JP2011078911A - Microcapsule encapsulating denitrifying bacteria and production method thereof - Google Patents

Microcapsule encapsulating denitrifying bacteria and production method thereof Download PDF

Info

Publication number
JP2011078911A
JP2011078911A JP2009233575A JP2009233575A JP2011078911A JP 2011078911 A JP2011078911 A JP 2011078911A JP 2009233575 A JP2009233575 A JP 2009233575A JP 2009233575 A JP2009233575 A JP 2009233575A JP 2011078911 A JP2011078911 A JP 2011078911A
Authority
JP
Japan
Prior art keywords
denitrifying bacteria
polymer
organic phase
emulsion
aqueous phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009233575A
Other languages
Japanese (ja)
Inventor
Masahiro Yoshida
昌弘 吉田
Yasuo Hatate
泰雄 幡手
Yoshihiro Osumi
義浩 大角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagoshima University NUC
Original Assignee
Kagoshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagoshima University NUC filed Critical Kagoshima University NUC
Priority to JP2009233575A priority Critical patent/JP2011078911A/en
Publication of JP2011078911A publication Critical patent/JP2011078911A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microcapsule encapsulating denitrifying bacteria, exceedingly physically chemically stable, large in immobilized volume of denitrifying bacteria, excellent in diffusibility of nitrate nitrogen inside and activity of the denitrifying bacteria, and obtaining a high treatment efficiency as a microcapsule immobilized with autotrophic denitrifying bacteria. <P>SOLUTION: The microcapsule encapsulating denitrifying bacteria is provided in which a protective agent aqueous polymer solution containing the autotrophic denitrifying bacteria is internally capsuled in the lumen part of a mononuclear structure having a porous capsule wall containing a hydrophobic polymer and polyalkylene glycol as a principal component. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、水処理システム等において汚染物質の硝酸性窒素を除去するのに好適な独立栄養性脱窒細菌を内包するマイクロカプセルとその製造方法に関する。   The present invention relates to a microcapsule containing autotrophic denitrifying bacteria suitable for removing nitrate nitrogen as a contaminant in a water treatment system and the like, and a method for producing the same.

近年、世界的に硝酸性窒素による地下水汚染が深刻な問題になっている。この硝酸性窒素は、肥料、家畜の糞尿、生活排水等に含まれる窒素化合物が亜硝酸菌や硝酸菌によって分解されたり化学的酸化されて発生し、地下に浸透して広範な地下水汚染を生じているが、現在の浄水処理場では完全には処理できない水質汚染物質であるため、飲料水等に含まれる形での摂取が避けられない。しかして、硝酸性窒素が体内に摂取されると、亜硝酸性窒素に還元され、メトヘモグロビン血症を誘引してチアノーゼ(窒息症状)を生起したり、発癌物質であるニトロソアミン類の生成に関与するとされており、その有効な除去手段の確立が緊急課題になっている。   In recent years, contamination of groundwater by nitrate nitrogen has become a serious problem worldwide. This nitrate nitrogen is generated when nitrogen compounds contained in fertilizers, livestock manure, domestic wastewater, etc. are decomposed or chemically oxidized by nitrite and nitrate bacteria, and penetrate into the underground to cause extensive groundwater contamination. However, since it is a water pollutant that cannot be completely treated at current water treatment plants, it is inevitable that it will be ingested in drinking water. When nitrate nitrogen is ingested by the body, it is reduced to nitrite nitrogen, causing methemoglobinemia to cause cyanosis (choking symptoms), and involved in the production of nitrosamines that are carcinogens. The establishment of effective removal means is an urgent issue.

一般的に、硝酸性窒素の除去方法は、イオン交換樹脂や逆浸透膜を利用する物理化学的脱窒法と、微生物による脱窒作用を利用して硝酸性窒素を窒素ガスに分解して分離除去する生物学的脱窒法とに大別される。しかるに、前者の物理化学的脱窒法では、水中の硝酸性窒素を分離して浄水を生成させるが、分離した硝酸性窒素は同時に生成する再生排水や濃縮排水中に移行するだけで消滅しないため、硝酸性窒素を高濃度で含む排水の処理が新たな問題になる。一方、後者の生物学的脱窒法には、有機炭素源を栄養として摂取して硝酸呼吸を行う際に硝酸性窒素を還元する従属栄養性脱窒菌を用いる方法と、電子供与体として水素ガスや硫黄化合物の如き無機物を利用してに脱窒作用を行う独立栄養性脱窒菌を用いる方法とがあるが、従属栄養性脱窒菌に摂取させる有機炭素源も水質悪化の要因になるため、有機炭素源が不要な独立栄養性脱窒菌を用いる方法が好ましい。   In general, nitrate nitrogen is removed by physicochemical denitrification using ion exchange resin or reverse osmosis membrane and by denitrification by microorganisms to decompose and remove nitrate nitrogen into nitrogen gas. It is roughly divided into biological denitrification methods. However, in the former physicochemical denitrification method, nitrate water in the water is separated to produce purified water, but the separated nitrate nitrogen is transferred to the regenerated wastewater and concentrated wastewater that is generated at the same time, and does not disappear. The treatment of wastewater containing high concentrations of nitrate nitrogen becomes a new problem. On the other hand, the latter biological denitrification methods include a method using heterotrophic denitrification bacteria that reduce nitrate nitrogen when ingesting an organic carbon source as nutrients and performing nitrate respiration, and hydrogen gas or the like as an electron donor. There is a method using an autotrophic denitrifying bacterium that performs denitrification using an inorganic substance such as a sulfur compound, but the organic carbon source ingested by the heterotrophic denitrifying bacterium also causes deterioration of water quality. A method using autotrophic denitrifying bacteria that does not require a source is preferred.

独立栄養性脱窒菌による脱窒作用は、例えば水素ガスを電子供与体に用いた場合、次の反応式(I)(II)で表される。
2NO3 -+2H2 → 2NO2 -+2H2 O ・・・(I)
2NO2 -+3H2 → N2 +2H2 O+2OH- ・・・(II)
両反応式(I)(II)をまとめると、次式(III)となる。
2NO3 -+5H2 → N2 +4H2 O+2OH- ・・・(III)
The denitrification action by autotrophic denitrifying bacteria is expressed by the following reaction formulas (I) and (II) when hydrogen gas is used as an electron donor, for example.
2NO 3 + 2H 2 → 2NO 2 + 2H 2 O (I)
2NO 2 + 3H 2 → N 2 + 2H 2 O + 2OH (II)
When both reaction formulas (I) and (II) are put together, the following formula (III) is obtained.
2NO 3 + 5H 2 → N 2 + 4H 2 O + 2OH (III)

ただし、独立栄養性脱窒菌は、それ単独では取り扱いが困難である上、二次的環境汚染を引き起こす可能性があるため、マイクロカプセルに固定化することが望ましい。従来、マイクロカプセルに有用微生物を固定化する一般的な方法として、アルギン酸塩、κ−カラギーナン、キトサンの如き水溶性高分子多糖類やポリビニルアルコール(以下、PVAと略称する)の如き水溶性合成樹脂よりなる浸透性の高い多孔質ゲル粒子に微生物を担持させる方法がある。そして、多糖類系の多孔質ゲル粒子を得る具体的手段としては、多糖類の水溶液を塩化カルシウム水溶液中に滴下してゲル粒子を生成させる方法が一般的である。また、PVA系の多孔質ゲル粒子を得る具体的手段としては、PVA及びアルギン酸ナトリウムを溶解した水溶液を塩化カルシウム水溶液中に滴下して球状のゲル粒子を形成する方法(特許文献1)、微生物を含むアルギン酸ナトリウムの水溶液を塩化カルシウム水溶液中に滴下してゲル粒子を形成したのち、該ゲル粒子を可溶性固形分の高濃度溶液に浸漬して収縮させる方法(特許文献2)、多孔質核体に塩化カルシウム水溶液を浸透させたのち、PVA系重合体及びアルギン酸ナトリウムを溶解した水溶液に浸漬して該核体の外側にゲル層を形成し、次いで該核体を架橋剤含有液に浸漬してPVA系重合体の架橋を行い、更に水酸化ナトリウム水溶液に浸漬してアルギン酸カルシウムゲルを溶解除去する方法(特許文献3)等が知られている。   However, autotrophic denitrifying bacteria are difficult to handle by themselves and may cause secondary environmental contamination, so it is desirable to immobilize them in microcapsules. Conventionally, as a general method for immobilizing useful microorganisms in microcapsules, water-soluble synthetic polysaccharides such as alginate, κ-carrageenan, chitosan and polyvinyl alcohol (hereinafter abbreviated as PVA) are used. There is a method of supporting microorganisms on porous gel particles having high permeability. As a specific means for obtaining polysaccharide-based porous gel particles, a method of producing gel particles by dropping a polysaccharide aqueous solution into a calcium chloride aqueous solution is generally used. Further, as a specific means for obtaining PVA-based porous gel particles, a method of forming spherical gel particles by dropping an aqueous solution in which PVA and sodium alginate are dissolved into an aqueous calcium chloride solution (Patent Document 1), a microorganism is used. A method in which an aqueous solution of sodium alginate is dropped into an aqueous calcium chloride solution to form gel particles, and the gel particles are immersed in a high-concentration solution of soluble solids to contract (Patent Document 2). After impregnating the aqueous calcium chloride solution, the gel layer is formed on the outside of the core by immersing in an aqueous solution in which the PVA polymer and sodium alginate are dissolved, and then the core is immersed in a cross-linking agent-containing liquid. A method of dissolving and removing calcium alginate gel by crosslinking a polymer and further immersing in an aqueous sodium hydroxide solution (Patent Document 3) is known. That.

しかるに、独立栄養性脱窒菌を固定化したマイクロカプセルを水処理システム等の工業的規模での硝酸性窒素の除去に利用する場合、固定化した脱窒菌が散逸しにくく且つ硝酸性窒素が内部へ拡散し易いことに加え、マイクロカプセル自体が物理的・化学的強度に優れて崩壊しにくく、また処理効率を高める上で脱窒菌の固定化容積が大きく且つ内部への硝酸性窒素の拡散性がよいことが必要であり、更に量産性や経済性にも優れることが要求される。ところが、前記従来の多孔質ゲル粒子では、物理的・化学的強度が不十分で崩壊し易い上、脱窒菌の固定化容積も小さく処理効率に劣り、またゲル形成用ポリマーの水溶液を塩化カルシウム水溶液中に滴下するという製法的に量産性に乏しく、水処理システム等の工業的規模で利用するには供給能力及びコストの両面で不適である。   However, when microcapsules with immobilized autotrophic denitrifying bacteria are used to remove nitrate nitrogen on an industrial scale such as a water treatment system, the immobilized denitrifying bacteria are less likely to dissipate and nitrate nitrogen is introduced into the interior. In addition to being easy to diffuse, the microcapsules themselves are excellent in physical and chemical strength and are not easily disintegrated. In addition, the denitrifying bacteria have a large immobilization volume and increase the diffusibility of nitrate nitrogen into the interior in order to increase the processing efficiency. It is necessary to be good, and it is also required to be excellent in mass productivity and economy. However, the conventional porous gel particles are insufficient in physical and chemical strength and easily disintegrated, have a small fixed volume of denitrifying bacteria and are inferior in processing efficiency, and an aqueous solution of the gel-forming polymer is an aqueous calcium chloride solution. In terms of production method, it is not suitable for use on an industrial scale such as a water treatment system in terms of supply capacity and cost.

一方、本発明者らは先に、微生物を内包するマイクロカプセルの製造方法をいくつか提案している。その一つ目は、外壁材ポリマーを溶かした有機溶媒中に、微生物を内包したアルギン酸ナトリウム等の高分子ビーズを乳化分散させ、このS/Oエマルジョンを水溶液中に移して有機溶媒を徐々に除去することにより、微生物内包の芯物質が外壁材被膜で覆われたマイクロカプセルを得る方法(特許文献4)である。また二つ目は、良溶剤として壁材ポリマーを溶解した有機溶剤Aと、これよりも高沸点で該壁材ポリマーに対する貧溶剤である有機溶剤Bとからなる油相中に、微生物及び保護剤ポリマーを含有する水溶液を添加して乳化させることにより、該水溶液が水滴微粒子として有機相中に分散したW/Oエマルションを調製し、これを水相に添加して乳化させて得られるW/O/Wエマルションの加温又は加温・減圧により、前記良溶剤及び貧溶剤を順次に蒸発・除去して壁材ポリマーを結晶化させる方法である(特許文献5)。   On the other hand, the present inventors have previously proposed several methods for producing microcapsules containing microorganisms. First, polymer beads such as sodium alginate containing microorganisms are emulsified and dispersed in an organic solvent in which the outer wall material polymer is dissolved, and this S / O emulsion is transferred into an aqueous solution to gradually remove the organic solvent. This is a method (Patent Document 4) for obtaining microcapsules in which the core substance of microorganisms is covered with an outer wall material coating. The second is a microorganism and a protective agent in an oil phase comprising an organic solvent A in which a wall material polymer is dissolved as a good solvent and an organic solvent B having a higher boiling point and a poor solvent for the wall material polymer. An aqueous solution containing a polymer is added and emulsified to prepare a W / O emulsion in which the aqueous solution is dispersed as water droplets in the organic phase, and this is added to the aqueous phase and emulsified to obtain W / O. This is a method of crystallizing the wall material polymer by sequentially evaporating and removing the good solvent and the poor solvent by heating / heating / depressurizing the / W emulsion (Patent Document 5).

特開平8−116974号公報JP-A-8-116974 特開2005−224160号公報JP-A-2005-224160 特開2005−42037号公報JP 2005-42037 A 特開2003−88747号公報JP 2003-88747 A 特開2004−329159号公報JP 2004-329159 A

本発明者らの前記提案に係る方法によれば、有用な微生物を内包し、物理的及び化学的に安定なマイクロカプセルを製出できることが実証されている。特に、前記二つ目の方法で得られるマイクロカプセルは、所謂コアーシェル型の中空構造で微生物の固定化容積が大きく、また液剤を順次混合してゆくことでカプセルを製出できるので生産能率もよいという利点があった。しかしながら、本発明者らの引き続く研究の過程で、これら提案方法に基づいて作製した独立栄養性脱窒菌を固定化したマイクロカプセルでも、更に処理効率つまり硝酸性窒素の除去能力の面で多分に改良の余地を残していることが判明した。   According to the method of the present inventors' proposal, it has been demonstrated that a useful microbe can be encapsulated and a physically and chemically stable microcapsule can be produced. In particular, the microcapsules obtained by the second method have a so-called core-shell type hollow structure with a large immobilized volume of microorganisms, and can be produced by sequentially mixing liquid agents, so that the production efficiency is good. There was an advantage. However, in the course of the subsequent studies by the present inventors, even the microcapsules with immobilized autotrophic denitrifying bacteria prepared based on these proposed methods are further improved in terms of processing efficiency, that is, nitrate nitrate removal ability. It turns out that there is room for.

本発明は、上記の情況に鑑み、独立栄養性脱窒菌を固定化したマイクロカプセルとして、物理的及び化学的に極めて安定で、且つ脱窒菌の固定化容積が大きく、しかも内部への硝酸性窒素の拡散性と脱窒菌の活動性に優れ、高い処理効率が得られる脱窒菌内包マイクロカプセルと、これを低コストで確実に量産し得る製造方法とを提供することを目的としている。   In view of the above circumstances, the present invention is a microcapsule in which autotrophic denitrifying bacteria are immobilized, which is physically and chemically very stable, has a large fixed volume of denitrifying bacteria, and has nitrate nitrogen inside. It is an object of the present invention to provide a denitrifying bacteria-encapsulated microcapsule that is excellent in diffusibility and activity of denitrifying bacteria and that can achieve high processing efficiency, and a production method that can reliably mass-produce this.

上記目的を達成するために、請求項1の発明に係る脱窒菌内包マイクロカプセルは、疎水性ポリマー及びポリアルキレングリコールを主成分とする多孔質のカプセル壁を備えたコアーシェル型構造の内腔部に、独立栄養性脱窒細菌を含む保護剤ポリマー水溶液が内包されてなる構成としている。   In order to achieve the above object, a denitrifying bacteria-encapsulating microcapsule according to the invention of claim 1 is provided in a lumen of a core-shell type structure having a porous capsule wall mainly composed of a hydrophobic polymer and polyalkylene glycol. In addition, a protective polymer aqueous solution containing autotrophic denitrifying bacteria is included.

また、上記請求項1の脱窒菌内包マイクロカプセルにおいて、請求項2の発明ではカプセル壁の疎水性ポリマー:ポリアルキレングリコールの質量比が1:0.5〜5の範囲にある構成、請求項3の発明ではカプセル壁の疎水性ポリマーがポリメチルメタクリレートであり、ポリアルキレングリコールが平均分子量500〜500,000のポリエチレングリコールである構成、請求項4の発明では平均粒子径が50〜1,500μm、平均内腔径及び平均粒子径に基づく算出比表面積S1と実測比表面積S2の比である相対比表面積S2/S1が40以上である構成、をそれぞれ好適態様としている。   Further, in the denitrifying bacteria-encapsulated microcapsule of claim 1, in the invention of claim 2, the capsule wall has a hydrophobic polymer: polyalkylene glycol mass ratio in the range of 1: 0.5 to 5, In the invention, the hydrophobic polymer of the capsule wall is polymethyl methacrylate, and the polyalkylene glycol is polyethylene glycol having an average molecular weight of 500 to 500,000. In the invention of claim 4, the average particle diameter is 50 to 1,500 μm, A configuration in which the relative specific surface area S2 / S1, which is the ratio of the calculated specific surface area S1 and the measured specific surface area S2 based on the average lumen diameter and the average particle diameter, is 40 or more is a preferable aspect.

一方、請求項5の発明に係る脱窒菌内包マイクロカプセルの製造方法は、疎水性ポリマー及びポリアルキレングリコールを主成分とする壁材ポリマーが低沸点有機溶媒に溶解されてなる有機相中に、独立栄養性脱窒細菌を含む保護剤ポリマー水溶液を添加混合することにより、該有機相中に内水相として独立栄養性脱窒細菌を含む保護剤ポリマー水溶液の液滴が分散したW/Oエマルションを調製したのち、このW/Oエマルションを水相中に添加混合して所定時間の攪拌を行うことにより、外水相中に前記W/Oエマルションの液滴が分散したW/O/Wエマルションを調製すると共に、その分散液滴を内水相液滴の合一によって内側の単一水相が外側の有機相で覆われた構造の液滴に転化させ、次いで有機相中の有機溶媒を加温又は/及び減圧による液中乾燥で除去して壁材ポリマーをゲル化させることにより、上記請求項1〜4の何れかの脱窒菌内包マイクロカプセルを生成させることを特徴としている。   On the other hand, the method for producing the microcapsules containing denitrifying bacteria according to the invention of claim 5 is independent of the organic phase in which the wall material polymer mainly composed of a hydrophobic polymer and polyalkylene glycol is dissolved in a low-boiling organic solvent. A W / O emulsion in which droplets of the protective polymer aqueous solution containing autotrophic denitrifying bacteria are dispersed in the organic phase as an inner aqueous phase by adding and mixing the protective polymer aqueous solution containing the nutritional denitrifying bacteria. After the preparation, the W / O emulsion is added and mixed in the aqueous phase and stirred for a predetermined time, whereby the W / O / W emulsion in which the droplets of the W / O emulsion are dispersed in the outer aqueous phase. As prepared, the dispersed droplets are converted into droplets with a structure in which the inner single aqueous phase is covered with the outer organic phase by coalescence of the inner aqueous phase droplets, and then the organic solvent in the organic phase is added. Temperature or / and By gelling the wall material polymer was removed liquid drying by vacuum, it is characterized in that to generate any of the denitrifying bacteria containing microcapsules of the claims 1-4.

更に、上記請求項5の脱窒菌内包マイクロカプセルの製造方法において、請求項6の発明は有機相の低沸点有機溶剤がジクロロメタンを主成分とする構成、請求項7の発明は有機相の低沸点有機溶剤が疎水性ポリマーに対する良溶剤からなり、有機相中に該良溶剤よりも高沸点で疎水性ポリマーに対する溶解度の小さい貧溶剤が溶媒成分中の4質量%以下の範囲で配合されてなる構成、請求項8の発明は有機相中に添加混合する保護剤ポリマー水溶液がアルギン酸ナトリウムの0.5〜10質量%濃度の水溶液である構成、請求項9の発明は外水相とする水相に分散安定剤として第三リン酸カルシウムを含む構成、をそれぞれ好適態様としている。   Furthermore, in the method for producing microcapsules containing denitrifying bacteria according to claim 5, the invention according to claim 6 is a constitution in which the organic solvent having a low boiling point is mainly composed of dichloromethane, and the invention according to claim 7 is a method having a low boiling point of the organic phase. The organic solvent comprises a good solvent for the hydrophobic polymer, and a poor solvent having a higher boiling point than the good solvent and a low solubility for the hydrophobic polymer is blended in the organic phase in a range of 4% by mass or less in the solvent component. In the invention of claim 8, the protective polymer aqueous solution added and mixed in the organic phase is an aqueous solution of sodium alginate having a concentration of 0.5 to 10% by mass, and the invention of claim 9 is an aqueous phase as an outer aqueous phase. A configuration containing tricalcium phosphate as a dispersion stabilizer is a preferred embodiment.

請求項1の発明に係る脱窒菌内包マイクロカプセルは、コアーシェル型構造であることから、粒子サイズの割に内腔部つまり独立栄養性脱窒菌の固定化容積が大きく、カプセル内部に該脱窒菌が活発に動いて硝酸性窒素を分解するための反応場を広く確保できる。また、カプセル壁が疎水性ポリマー及びポリアルキレングリコールを主成分として構成されるから、その疎水性ポリマーのゲル構造に基づく優れた物理的・化学的強度が発揮されて崩壊しにくく、過酷な使用条件でも充分な耐久性が得られる。しかも、カプセル壁の一方の構成成分であるポリアルキレングリコールが親水性と親油性を兼ね備えているため、カプセル壁には、疎水性ポリマーのゲル化時の溶媒揮散に伴って生じる細孔に加え、疎水性ポリマーとポリアルキレングリコールの高分子同士の絡み合い状態からポリアルキレングリコールの一部が水相に溶解することで、内外に通じる適度な微孔通路が無数に形成され、これら微孔通路を介して汚染物質のカプセル内部への大きな拡散性が得られる。従って、汚染物質として硝酸性窒素を含む上下水等の浄化処理において、この脱窒菌内包マイクロカプセルを用いることにより、長期にわたって持続的に高い処理効率で硝酸性窒素の除去を行える。   Since the denitrifying bacteria-encapsulating microcapsules according to the invention of claim 1 have a core-shell structure, the volume of the lumen, ie, the autotrophic denitrifying bacteria, is large for the particle size, and the denitrifying bacteria are contained inside the capsule. It is possible to secure a wide reaction field to move actively and decompose nitrate nitrogen. In addition, because the capsule wall is composed mainly of a hydrophobic polymer and polyalkylene glycol, it exhibits excellent physical and chemical strength based on the gel structure of the hydrophobic polymer and is difficult to disintegrate. But sufficient durability is obtained. Moreover, since the polyalkylene glycol, which is one component of the capsule wall, has both hydrophilicity and lipophilicity, the capsule wall has pores that are generated due to solvent volatilization during gelation of the hydrophobic polymer, A part of the polyalkylene glycol dissolves in the aqueous phase from the entangled state of the polymer of the hydrophobic polymer and the polyalkylene glycol, so that an infinite number of appropriate microporous channels leading to the inside and outside are formed. Thus, a large diffusibility of contaminants inside the capsule can be obtained. Therefore, by using this denitrifying microcapsule containing microcapsules in purification treatment of water and sewage containing nitrate nitrogen as a contaminant, nitrate nitrogen can be removed with high treatment efficiency over a long period of time.

請求項2の発明によれば、上記の脱窒菌内包マイクロカプセルとして、カプセル壁を構成する疎水性ポリマーとポリアルキレングリコールが特定比率であることから、物理的・化学的強度と硝酸性窒素の内部への拡散性に共に優れるものが提供される。   According to the invention of claim 2, since the hydrophobic polymer and the polyalkylene glycol constituting the capsule wall are in a specific ratio as the denitrifying bacteria-encapsulating microcapsule, the physical / chemical strength and the inside of the nitrate nitrogen are Both are excellent in diffusibility to the surface.

請求項3の発明によれば、上記の脱窒菌内包マイクロカプセルとして、カプセル壁を構成する疎水性ポリマーとポリアルキレングリコールが特定種であることから、物理的・化学的強度と硝酸性窒素の内部への拡散性により優れるものが提供される。   According to the invention of claim 3, as the denitrifying bacteria-encapsulating microcapsules, the hydrophobic polymer and polyalkylene glycol constituting the capsule wall are specific species, so that the physical / chemical strength and the inside of nitrate nitrogen are A superior diffusivity is provided.

請求項4の発明によれば、上記の脱窒菌内包マイクロカプセルとして、特定の平均粒子径で、且つ平均内腔径及び平均粒子径に基づく算出比表面積S1と実測比表面積S2とが特定比率であることから、独立栄養性脱窒菌の固定化容積が非常に大きい上に、カプセル壁が極めて良好な多孔構造をなし、もってより高い処理効率を発揮できるものが提供される。   According to invention of Claim 4, as said denitrifying microbe inclusion microcapsule, it is a specific average particle diameter, and calculated specific surface area S1 based on an average lumen | bore diameter and an average particle diameter and measured specific surface area S2 are a specific ratio. Therefore, there is provided an autotrophic denitrifying bacterium having a very large immobilization volume and a capsule wall having a very good porous structure, which can exhibit higher processing efficiency.

請求項5の発明によれば、脱窒菌内包マイクロカプセルの製造方法として、上記の優れた特性を備えるマイクロカプセルを高い生産能率で容易に且つ確実に製出できる手段が提供される。   According to the invention of claim 5, as a method for producing a denitrifying microcapsule-containing microcapsule, there is provided means capable of easily and reliably producing a microcapsule having the above-mentioned excellent characteristics with high production efficiency.

請求項6の発明によれば、上記製造方法において、有機相の低沸点有機溶剤が特に沸点の低いジクロロメタンを主成分とすることから、液中乾燥による壁材ポリマーのゲル化が効率よく進行すると共に、液中乾燥時の温度・圧力条件が緩和されて消費エネルギーを少なくできるという利点がある。   According to the invention of claim 6, in the above production method, since the low-boiling organic solvent in the organic phase is mainly composed of dichloromethane having a low boiling point, the gelation of the wall material polymer by in-liquid drying efficiently proceeds. At the same time, there is an advantage that the temperature and pressure conditions at the time of drying in the liquid are relaxed and energy consumption can be reduced.

請求項7の発明によれば、有機相の低沸点有機溶剤が疎水性ポリマーに対する良溶剤からなり、有機相中に該良溶剤よりも高沸点の貧溶剤を適量含むことから、形成されるカプセル壁がより多孔質になるという利点がある。   According to the invention of claim 7, the low-boiling organic solvent in the organic phase is a good solvent for the hydrophobic polymer, and the organic phase contains an appropriate amount of a poor solvent having a higher boiling point than the good solvent. The advantage is that the walls are more porous.

請求項8の発明によれば、上記製造方法において、有機相中に添加混合する保護剤ポリマー水溶液が特定濃度のナトリウム塩水溶液であることから、特に硝酸性窒素の除去速度の大きい脱窒菌内包マイクロカプセルが得られる。   According to the invention of claim 8, in the above production method, the protective polymer aqueous solution added and mixed in the organic phase is a sodium salt aqueous solution having a specific concentration. Capsules are obtained.

請求項9の発明によれば、上記製造方法において、外水相とする水相に特定の分散安定剤を含むことから、安定性のよいW/O/Wエマルションを調製できる。   According to the ninth aspect of the invention, since the specific dispersion stabilizer is included in the aqueous phase as the outer aqueous phase in the above production method, a stable W / O / W emulsion can be prepared.

本発明の脱窒菌内包マイクロカプセルの生成機構を示す模式図である。It is a schematic diagram which shows the production | generation mechanism of the denitrifying bacteria inclusion microcapsule of this invention. 本発明の実施例における製造例a〜cで得られた脱窒菌内包マイクロカプセルの断面及び全体を示す走査電子顕微鏡写真図である。It is a scanning electron micrograph figure which shows the cross section and the whole of the denitrifying bacteria inclusion microcapsule obtained by manufacture example ac in the Example of this invention. 同実施例における製造例d〜gで得られた脱窒菌内包マイクロカプセルの断面及び全体を示す走査電子顕微鏡写真図である。It is a scanning electron micrograph figure which shows the cross section of the denitrifying bacteria inclusion microcapsule obtained by manufacture example dg in the Example, and the whole. 同実施例における製造例gで得られた脱窒菌内包マイクロカプセルを用いた回分脱窒反応試験による硝酸性窒素及び亜硝酸性窒素濃度−時間の相関特性図である。It is a correlation characteristic figure of nitrate nitrogen and nitrite nitrogen concentration-time by a batch denitrification reaction test using the denitrifying bacteria inclusion microcapsule obtained by manufacture example g in the example. 同回分脱窒反応試験による総窒素濃度−時間の相関特性図である。It is a correlation characteristic figure of the total nitrogen concentration-time by the same batch denitrification reaction test.

本発明の脱窒菌内包マイクロカプセルは、疎水性ポリマー及びポリアルキレングリコールを主成分とする多孔質のカプセル壁を備えたコアーシェル型構造の内腔部に、独立栄養性脱窒細菌を含む保護剤ポリマー水溶液が内包されたものである。次に、その生成機構を図1を参照して説明する。   The denitrifying bacteria-encapsulating microcapsule of the present invention is a protective polymer containing an autotrophic denitrifying bacterium in a core-shell type lumen having a porous capsule wall mainly composed of a hydrophobic polymer and polyalkylene glycol. An aqueous solution is included. Next, the generation mechanism will be described with reference to FIG.

まず、疎水性ポリマー及びポリアルキレングリコールを主成分とする壁材ポリマーが低沸点有機溶媒に溶解されてなる有機相中に、独立栄養性脱窒細菌を含む保護剤ポリマー水溶液を添加混合することにより、該有機相中に内水相として独立栄養性脱窒細菌を含む保護剤ポリマー水溶液の液滴が分散したW/Oエマルションを調製する。そして、このW/Oエマルションを水相中に添加して攪拌混合することにより、図1(a)で示すように、外水相中にW/Oエマルションの液滴Edが分散したW/O/Wエマルションを調製する。そして、更に該W/O/Wエマルションの攪拌を続行すると、図1(b)で示すように、分散しているW/Oエマルションの液滴Ed中の内水相液滴Wd同士が合体してゆき、最終的に図1(c)の如く液滴合一した内側の単一水相Wpが外側の有機相Opで覆われた構造の液滴に転化する。次いで有機相Op中の有機溶媒を加温又は/及び減圧による液中乾燥で除去することにより、図1(d)で示すように、壁材ポリマーのゲル化で固化したカプセル外殻Csが形成され、もってコアーシェル型構造の脱窒菌内包マイクロカプセルMCが生成する。   First, by adding and mixing a protective polymer aqueous solution containing autotrophic denitrifying bacteria into an organic phase in which a wall polymer mainly composed of a hydrophobic polymer and a polyalkylene glycol is dissolved in a low-boiling organic solvent. Then, a W / O emulsion is prepared in which droplets of an aqueous protective polymer solution containing autotrophic denitrifying bacteria are dispersed in the organic phase as an inner aqueous phase. Then, by adding this W / O emulsion to the aqueous phase and stirring and mixing, as shown in FIG. 1A, W / O in which the droplets Ed of the W / O emulsion are dispersed in the outer aqueous phase. / W emulsion is prepared. When the stirring of the W / O / W emulsion is further continued, as shown in FIG. 1B, the inner aqueous phase droplets Wd in the droplets Ed of the dispersed W / O emulsion are combined. Eventually, as shown in FIG. 1 (c), the inner single aqueous phase Wp, which is the united droplet, is converted into a droplet having a structure covered with the outer organic phase Op. Next, by removing the organic solvent in the organic phase Op by heating or / and drying in liquid under reduced pressure, the capsule outer shell Cs solidified by the gelation of the wall material polymer is formed as shown in FIG. Thus, denitrifying bacteria-encapsulating microcapsules MC having a core-shell structure are produced.

このような脱窒菌内包マイクロカプセルでは、カプセル粒子がコアーシェル型構造であることから、その粒子サイズの割に内腔部つまり独立栄養性脱窒菌の固定化容積が大きくなり、カプセル内部に該脱窒菌が活発に動いて硝酸性窒素を分解するための反応場を広く確保できる。また、カプセル粒子は、カプセル壁が疎水性ポリマー及びポリアルキレングリコールを主成分として構成されるから、その疎水性ポリマーのゲル構造に基づく優れた物理的・化学的強度が発揮されて崩壊しにくく、水処理システム等における過酷な使用条件下でも充分な耐久性が得られる。しかも、カプセル壁の一方の構成成分であるポリアルキレングリコールが親水性と親油性を兼ね備えているため、カプセル壁には、疎水性ポリマーのゲル化時の溶媒揮散に伴って生じる細孔に加え、疎水性ポリマーとポリアルキレングリコールの高分子同士の絡み合い状態からポリアルキレングリコールの一部が水相に溶解することで、内外に通じる適度な微孔通路が無数に形成され、これら微孔通路を介して汚染物質のカプセル内部への大きな拡散性が得られる。従って、汚染物質として硝酸性窒素を含む上下水等の浄化処理において、この脱窒菌内包マイクロカプセルを用いることにより、長期にわたって持続的に極めて高い処理効率で硝酸性窒素を除去することが可能となる。   In such denitrifying bacteria-encapsulating microcapsules, since the capsule particles have a core-shell structure, the volume of the inner cavity, that is, the autotrophic denitrifying bacteria is increased for the particle size, and the denitrifying bacteria are encapsulated inside the capsule. Can move widely and can secure a wide reaction field to decompose nitrate nitrogen. In addition, since the capsule particles are composed mainly of a hydrophobic polymer and a polyalkylene glycol, the capsule particles exhibit excellent physical and chemical strength based on the gel structure of the hydrophobic polymer and are not easily disintegrated. Sufficient durability can be obtained even under severe use conditions in a water treatment system or the like. Moreover, since the polyalkylene glycol, which is one component of the capsule wall, has both hydrophilicity and lipophilicity, the capsule wall has pores that are generated due to solvent volatilization during gelation of the hydrophobic polymer, A part of the polyalkylene glycol dissolves in the aqueous phase from the entangled state of the polymer of the hydrophobic polymer and the polyalkylene glycol, so that an infinite number of appropriate microporous channels leading to the inside and outside are formed. Thus, a large diffusibility of contaminants inside the capsule can be obtained. Therefore, by using this denitrifying microcapsule-containing microcapsules in purification treatment of water and sewage containing nitrate nitrogen as a contaminant, nitrate nitrogen can be removed with a very high treatment efficiency over a long period of time. .

本発明において壁材ポリマーに用いる疎水性ポリマーとしては、マイクロカプセル用の固定化担体として知られる種々の合成高分子材料を採用できるが、化学的及び物理的強度に優れるカプセル壁を形成する上でポリメチルメタクリレート、ポリスチレン、ポリアクリル酸、ポリ乳酸、ポリε−カプロラクタム等が好適であり、特にポリメチルメタクリレートが最適なものとして推奨される。なお、ポリメチルメタクリレートとしては、平均分子量500〜1000,000程度のものがよい。   As the hydrophobic polymer used for the wall material polymer in the present invention, various synthetic polymer materials known as immobilization carriers for microcapsules can be used. However, in forming a capsule wall having excellent chemical and physical strength. Polymethyl methacrylate, polystyrene, polyacrylic acid, polylactic acid, poly ε-caprolactam and the like are suitable, and polymethyl methacrylate is particularly recommended as the optimum one. The polymethyl methacrylate preferably has an average molecular weight of about 500 to 1,000,000.

また、壁材ポリマーに用いるポリアルキレングリコールとしては、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレン・ポリプロピレングリコール等が挙げられるが、特にポリエチレングリコールが好適であり、更に親水性と親油性のバランス面より平均分子量500〜500,000程度のポリエチレングリコールが最適なものとして推奨される。   Examples of the polyalkylene glycol used for the wall material polymer include polyethylene glycol, polypropylene glycol, polyethylene / polypropylene glycol, and the like. Particularly, polyethylene glycol is preferable, and the average molecular weight is 500 from the balance of hydrophilicity and lipophilicity. A polyethylene glycol of about ~ 500,000 is recommended as the optimum.

壁材ポリマーの疎水性ポリマーとポリアルキレングリコールとの配合比率は、前者:後者の質量比で1:0.5〜5の範囲が好適であり、ポリアルキレングリコールの割合が少な過ぎては汚染物質のカプセル内部へ拡散性が不充分になり、逆にポリアルキレングリコールの割合が多過ぎてはカプセル壁の化学的及び物理的強度が低下する。なお、有機相の壁材ポリマー濃度は、5〜20質量%程度とするのがよい。   The mixing ratio of the hydrophobic polymer of the wall material polymer and the polyalkylene glycol is preferably in the range of 1: 0.5 to 5 in terms of the mass ratio of the former: the latter, and if the proportion of the polyalkylene glycol is too small, the contaminant However, if the proportion of the polyalkylene glycol is too large, the chemical and physical strength of the capsule wall is lowered. The wall material polymer concentration in the organic phase is preferably about 5 to 20% by mass.

壁材ポリマーを溶解して有機相を構成するための低沸点有機溶媒は、加温又は/及び減圧による液中乾燥を行う上で沸点が85℃以下の無極性溶剤が好ましく、例えばジクロロメタン(沸点40℃)、クロロホルム(同61℃)、酢酸エチル(同77℃)、1.2−ジクロロエタン(同83.5℃)等が好適なものとして挙げられ、これらは2種以上を併用してもよいが、ジクロロメタンを単独使用もしくは主成分として他と併用することが推奨される。すなわち、ジクロロメタンは特に沸点が低いため、液中乾燥による壁材ポリマーのゲル化が効率よく進行すると共に、液中乾燥に要する温度・圧力条件が緩和されて消費エネルギーを少なくできるという利点がある。   The low boiling point organic solvent for dissolving the wall material polymer to constitute the organic phase is preferably a nonpolar solvent having a boiling point of 85 ° C. or lower for drying in liquid by heating and / or reduced pressure, such as dichloromethane (boiling point). 40 ° C.), chloroform (61 ° C.), ethyl acetate (77 ° C.), 1.2-dichloroethane (83.5 ° C.) and the like. Although it is good, it is recommended to use dichloromethane alone or in combination with others as a main component. That is, since dichloromethane has a particularly low boiling point, gelation of the wall material polymer by in-liquid drying proceeds efficiently, and the temperature and pressure conditions required for in-liquid drying are eased and energy consumption can be reduced.

また、上記で例示したジクロロメタン等の低沸点有機溶媒は壁材ポリマーに対する良溶剤であるが、有機相には該良溶剤よりも高沸点で壁材ポリマーに対する貧溶剤を少量配合してもよい。このような高沸点の貧溶剤を少量配合すれば、液中乾燥時に先に良溶剤が揮散除去されて続いて貧溶剤が揮散除去される形になり、その間に壁材ポリマーのゲル化が進行してゆくため、形成されるカプセル壁がより多孔質になる。このような貧溶剤としては、n−ヘキサン(沸点69℃)、イソオクタン(同99.25℃)、n−オクタン(同125.7℃)、n−ノナン(同149.5℃)、n−デカン(同174℃)、n−テトラデカン(同252.5℃)等が挙げられる。しかして、特にジクロロメタンを主体として用いる場合、前記貧溶剤としてn−ヘキサンを配合することが推奨される。なお、貧溶剤の配合量は溶媒成分中の4質量%以下の範囲がよく、配合割合が多すぎると凝集を生じ易くなる。   Moreover, although the low boiling point organic solvents such as dichloromethane exemplified above are good solvents for the wall material polymer, the organic phase may contain a small amount of a poor solvent for the wall material polymer having a higher boiling point than the good solvent. When a small amount of such a high-boiling poor solvent is blended, the good solvent is volatilized and removed first when drying in the liquid, and then the poor solvent is volatilized and removed. As a result, the capsule wall formed becomes more porous. Examples of such poor solvents include n-hexane (boiling point 69 ° C.), isooctane (99.25 ° C.), n-octane (125.7 ° C.), n-nonane (149.5 ° C.), n- Examples include decane (174 ° C.) and n-tetradecane (252.5 ° C.). Therefore, particularly when dichloromethane is mainly used, it is recommended that n-hexane is blended as the poor solvent. In addition, the compounding quantity of a poor solvent has a good range of 4 mass% or less in a solvent component, and when there are too many compounding ratios, it will become easy to produce aggregation.

壁材ポリマーを低沸点有機溶媒に溶解した有機相中には、内水相添加によるW/Oエマルションの調製のために、適当なエマルション安定剤を配合しておくのがよい。このようなエマルション安定剤としては、ソルビタンモノオレエートの如きスパン系界面活性剤を始めとして、一般的にエマルション調製に用いる種々の界面活性剤、水溶性樹脂、水溶性多糖類等がある。   In the organic phase in which the wall material polymer is dissolved in a low-boiling organic solvent, an appropriate emulsion stabilizer is preferably blended in order to prepare a W / O emulsion by adding the inner aqueous phase. Examples of such emulsion stabilizers include a spanning surfactant such as sorbitan monooleate, and various surfactants, water-soluble resins, water-soluble polysaccharides and the like generally used for emulsion preparation.

保護剤ポリマー水溶液に含有させる独立栄養性脱窒菌としては、特に制約はないが、例えば、Paracoccus denitrificans、Alcaligenes eutrophas、Pseudomonas pseudoflava等が挙げられる。   The autotrophic denitrifying bacteria contained in the protective polymer aqueous solution is not particularly limited, and examples thereof include Paracoccus denitrificans, Alcaligenes eutrophas, Pseudomonas pseudoflava and the like.

保護剤ポリマーとしては、独立栄養性脱窒菌に対する適合性を備えて水中でのゲル形成性を有するものであればよく、例えばアルギン酸塩、κ−カラギーナン、キトサンの如き水溶性高分子多糖類やポリビニルアルコールが挙げられるが、特にアルギン酸ナトリウムが好適である。このアルギン酸ナトリウムを用いる場合の水溶液濃度は、0.5〜10質量%程度とするのがよく、高過ぎてはW/Oエマルションの分散安定性が低下して凝集を生じ易くなる。なお、保護剤ポリマー水溶液中には、独立栄養性脱窒菌の栄養源として、ポリペプトン、イーストエキス、硫酸マグネシウム等を適宜配合できる。   The protective polymer is not particularly limited as long as it is compatible with autotrophic denitrifying bacteria and has gel-forming properties in water. For example, water-soluble polymeric polysaccharides such as alginate, κ-carrageenan, chitosan, and polyvinyl Although alcohol is mentioned, sodium alginate is particularly preferable. The concentration of the aqueous solution in the case of using this sodium alginate is preferably about 0.5 to 10% by mass, and if it is too high, the dispersion stability of the W / O emulsion is lowered and aggregation tends to occur. In addition, polypeptone, a yeast extract, magnesium sulfate, etc. can be suitably mix | blended in the protective agent polymer aqueous solution as a nutrient source of autotrophic denitrifying bacteria.

有機相中に内水相として独立栄養性脱窒細菌を含む保護剤ポリマー水溶液の液滴が分散したW/Oエマルションを調製するには、該保護剤ポリマー水溶液を常温下で有機相に添加混合するだけでよい。そして、このW/Oエマルションを用いて前記のW/O/Wエマルションを調製するには、やはり外水相となる水相に常温下でW/Oエマルションを添加混合すればよく、そのまま攪拌を数10分程度続けることによって分散相であるW/Oエマルション液滴の各粒子中で内水相の液滴合一がなされる。この液滴合一により、W/Oエマルション液滴は内側の単一水相Wpが外側の有機相Opで覆われた構造の液滴に転化する。   In order to prepare a W / O emulsion in which droplets of a protective polymer aqueous solution containing autotrophic denitrifying bacteria are dispersed as an inner aqueous phase in the organic phase, the protective polymer aqueous solution is added to the organic phase at room temperature and mixed. Just do it. In order to prepare the W / O / W emulsion using the W / O emulsion, the W / O emulsion may be added and mixed at room temperature to the aqueous phase that is also the outer aqueous phase, and the stirring is performed as it is. By continuing for about several tens of minutes, the droplets of the inner aqueous phase are coalesced in each particle of the W / O emulsion droplets which are the dispersed phase. By this droplet coalescence, the W / O emulsion droplet is converted into a droplet having a structure in which the inner single aqueous phase Wp is covered with the outer organic phase Op.

W/O/Wエマルションの外水相に用いる水相には、分散安定剤を含むことが望ましい。この分散安定剤としては、特に制約はなく、一般的にエマルション調製に使用されるものをいずれも使用できるが、液滴粒子の凝集抑制のために少なくとも一成分として第三リン酸カルシウムを含むことが推奨される。   The aqueous phase used for the outer aqueous phase of the W / O / W emulsion desirably contains a dispersion stabilizer. The dispersion stabilizer is not particularly limited, and any of those generally used for emulsion preparation can be used. However, it is recommended that tribasic calcium phosphate is included as at least one component for suppressing aggregation of droplet particles. Is done.

前記の液滴合一後、液中乾燥によって有機相の低沸点有機溶媒を揮散除去するために、攪拌下で加温と減圧の一方もしくは両方を行うが、処理効率面より加温と減圧を同時に行うことが推奨される。その加温ではエマルションの液温を数時間をかけて段階的又は連続的に昇温してゆけばよいが、最高到達温度は低沸点有機溶媒の沸点より低い温度でよい。また減圧ではエマルションの液面が接する雰囲気の圧力を同様に数時間をかけて段階的又は連続的に減じてゆけばよいが、最高減圧は大気圧の数分の1程度まででよい。しかして、有機相の低沸点有機溶媒がジクロロメタンを主体とする場合、加温と減圧を同時に行う液中乾燥では最高到達温度は35℃程度、最高減圧は300hPa程度で済む。なお、この液中乾燥における攪拌速度は、100〜1,000rpm程度とするのがよい。   After the droplets are combined, in order to volatilize and remove the low-boiling organic solvent in the organic phase by drying in the liquid, one or both of heating and decompression is performed with stirring. It is recommended to do it simultaneously. In the heating, the temperature of the emulsion may be raised stepwise or continuously over several hours, but the highest temperature may be lower than the boiling point of the low boiling organic solvent. Further, in the reduced pressure, the pressure of the atmosphere in contact with the liquid level of the emulsion may be reduced stepwise or continuously over several hours, but the maximum reduced pressure may be about a fraction of the atmospheric pressure. Thus, when the low-boiling organic solvent of the organic phase is mainly composed of dichloromethane, the maximum ultimate temperature is about 35 ° C. and the maximum pressure reduction is about 300 hPa in the liquid drying in which heating and decompression are performed simultaneously. In addition, it is good for the stirring speed in this liquid drying to be about 100-1,000 rpm.

上記液中乾燥によって有機相の低沸点有機溶媒が揮散除去される過程で、該有機相中の壁材ポリマーが有機溶媒から相分離して結晶化してゆき、固化した多孔状のカプセル壁が形成されることでコアーシェル型のマイクロカプセルを生成する。かくして生成した脱窒菌内包マイクロカプセルは、ろ過して外水相から分離後、洗浄して回収される。なお、外水相に分散安定剤として第三リン酸カルシウムが含まれる場合、希塩酸水溶液等の酸洗浄によって第三リン酸カルシウムを除去した上で蒸留水等による水洗を施すのがよい。   In the process where the low-boiling organic solvent in the organic phase is volatilized and removed by drying in the liquid, the wall material polymer in the organic phase is phase-separated from the organic solvent and crystallizes to form a solid porous capsule wall. As a result, a core-shell type microcapsule is generated. The denitrifying bacteria-encapsulated microcapsules thus produced are collected by filtration and separation from the outer aqueous phase, followed by washing. In addition, when tribasic calcium phosphate is contained in the outer aqueous phase as a dispersion stabilizer, it is preferable to wash with distilled water or the like after removing the tertiary calcium phosphate by acid washing with a dilute hydrochloric acid aqueous solution or the like.

得られる脱窒菌内包マイクロカプセルの粒子サイズについては、有機相及び内水相として用いる液組成及びポリマー濃度、W/Oエマルション及びW/O/Wエマルションの調製時の液混合比率及び攪拌速度等の条件設定によって調整できるが、水処理システムへの適用性から平均粒子径として50〜1,500μmの範囲が好適である。また、汚染物質である硝酸性窒素のカプセル内部への高度な拡散性を確保する上で、カプセル粒子の平均内腔径及び平均粒子径に基づく算出比表面積S1と実測比表面積S2の比である相対比表面積S2/S1が40以上であることが好ましい。   About the particle size of the denitrifying bacteria-encapsulated microcapsules obtained, the liquid composition and polymer concentration used as the organic phase and the inner aqueous phase, the liquid mixing ratio and the stirring speed at the time of preparing the W / O emulsion and W / O / W emulsion Although it can adjust by condition setting, the range of 50-1500 micrometers is suitable as an average particle diameter from the applicability to a water treatment system. Further, in order to ensure high diffusibility of nitrate nitrogen as a contaminant into the capsule, the ratio of the calculated specific surface area S1 and the measured specific surface area S2 based on the average lumen diameter and the average particle diameter of the capsule particles. The relative specific surface area S2 / S1 is preferably 40 or more.

以下に、本発明の実施例として、異なる調製条件での脱窒菌内包マイクロカプセルの製造例a〜hを示す。   Hereinafter, as examples of the present invention, production examples a to h of denitrifying bacteria-encapsulating microcapsules under different preparation conditions are shown.

〔独立栄養性脱窒菌の培養〕
独立栄養性脱窒菌としてParacoccus denitrificans NBRC13301を用い、1.0重量%のポリペプトン、0.2重量%のイーストエキス、0.1重量%のMgSO4・7H2Oを含む培養液5ml中で前培養(液温30℃、攪拌速度150rpm、24時間)し、次いで前培養の4倍濃度の培養液100ml中で本培養(液温30℃、攪拌速度150rpm、24時間)を行ったのち、集菌した脱窒菌を0.9重量%濃度の生理食塩水で洗浄して回収した。
[Cultivation of autotrophic denitrifying bacteria]
Paracoccus denitrificans NBRC13301 is used as an autotrophic denitrifying bacterium and pre-cultured in 5 ml of a culture solution containing 1.0% by weight polypeptone, 0.2% by weight yeast extract and 0.1% by weight MgSO 4 .7H 2 O (Liquid temperature 30 ° C., stirring speed 150 rpm, 24 hours), followed by main culture (liquid temperature 30 ° C., stirring speed 150 rpm, 24 hours) in 100 ml of 4 times the concentration of the preculture, The denitrifying bacteria thus obtained were washed and recovered with 0.9% by weight physiological saline.

〔有機相の調製〕
20gのジクロロメタンに対し、2gのポリメチルメタクリレート(平均分子量100,000)、4gのポリエチレングリコール(平均分子量20,000)、後記表1記載量のn−ヘキサン、0.6gのソルビタンモノオレエートを添加混合して有機相を調製した。
(Preparation of organic phase)
For 20 g of dichloromethane, 2 g of polymethyl methacrylate (average molecular weight 100,000), 4 g of polyethylene glycol (average molecular weight 20,000), n-hexane described in Table 1 below, 0.6 g of sorbitan monooleate The organic phase was prepared by addition and mixing.

〔内水相の調製〕
後記表1記載の濃度のアルギン酸ナトリウム、4重量%のポリペプトン、0.8重量%のイーストエキス、0.4重量%のMgSO4・7H2Oを含む水溶液4gに、独立栄養性脱窒菌4g(湿潤重量)を添加混合して内水相を調製した。
(Preparation of inner aqueous phase)
4 g of an aqueous solution containing sodium alginate at a concentration shown in Table 1 below, 4% by weight polypeptone, 0.8% by weight yeast extract and 0.4% by weight MgSO 4 .7H 2 O was added to 4 g of autotrophic denitrifying bacteria ( Wet weight) was added and mixed to prepare an inner aqueous phase.

〔外水相の調製〕
1重量%のポリビニルアルコール水溶液500gに、第三リン酸カルシウム250gを添加混合して外水相を調製した。
(Preparation of outer aqueous phase)
An outer aqueous phase was prepared by adding and mixing 250 g of tribasic calcium phosphate to 500 g of a 1 wt% aqueous polyvinyl alcohol solution.

〔脱窒菌内包マイクロカプセルの調製〕
前記有機相を常温(20℃)下で攪拌しながら前記内水相を添加混合してW/Oエマルションを調製し、このW/Oエマルションを液温20℃で攪拌下にある前記外水相に添加してW/O/Wエマルションを調製し、続いて大気圧において150rpmで30分間攪拌することによって分散しているW/Oエマルション液滴中の内水相液滴を合一させたのち、攪拌速度150rpmを維持しつつ、第一段では液温25℃,雰囲気圧800hPaで1時間、第二段階では液温35℃,雰囲気圧500hPaで1時間、第三段階では液温35℃,雰囲気圧300hPaで2時間の三段階の液中乾燥処理を行い、製出した脱窒菌内包マイクロカプセルをろ過分離し、0.5モル濃度の塩酸水溶液で洗浄して第三リン酸カルシウムを除去し、更に蒸留水で洗浄して回収した。
[Preparation of microcapsules containing denitrifying bacteria]
While stirring the organic phase at room temperature (20 ° C.), the inner aqueous phase is added and mixed to prepare a W / O emulsion, and the W / O emulsion is stirred at a liquid temperature of 20 ° C. To prepare a W / O / W emulsion and then coalesce the inner aqueous phase droplets in the dispersed W / O emulsion droplets by stirring at 150 rpm at atmospheric pressure for 30 minutes. While maintaining the stirring speed at 150 rpm, in the first stage, the liquid temperature is 25 ° C. and the atmospheric pressure is 800 hPa for 1 hour, in the second stage, the liquid temperature is 35 ° C., and the atmospheric pressure is 500 hPa for 1 hour, and in the third stage, the liquid temperature is 35 ° C. A three-stage in-liquid drying process for 2 hours at an atmospheric pressure of 300 hPa is performed, and the produced denitrifying bacteria-encapsulated microcapsules are separated by filtration, washed with a 0.5 molar aqueous hydrochloric acid solution to remove tricalcium phosphate, and distillation It was recovered in the wash to.

各製造例で得られた脱窒菌内包マイクロカプセルについて、平均粒子径、回収率、算出比表面積S1、実測比表面積S2、相対比表面積S2/S1を調べた結果を、有機相におけるn−ヘキサンの使用量ならびに内水相におけるアルギン酸ナトリウム濃度と共に次の表1に示す。なお、算出比表面積S1は、カプセル粒子の平均粒子径と平均内腔径に基づいて算出される、単位体積あたりの外部比表面積と内部比表面積の和である。






























For the denitrifying bacteria-encapsulated microcapsules obtained in each production example, the average particle diameter, the recovery rate, the calculated specific surface area S1, the measured specific surface area S2, and the relative specific surface area S2 / S1 were examined. The amount used and the sodium alginate concentration in the inner aqueous phase are shown in Table 1 below. The calculated specific surface area S1 is the sum of the external specific surface area and the internal specific surface area per unit volume calculated based on the average particle diameter and the average lumen diameter of the capsule particles.






























また、製造例a〜cで得られた脱窒菌内包マイクロカプセルの断面及び全体の走査電子顕微鏡写真図を図2の対応符号(a)〜(c)として、同じく製造例d〜gで得られた脱窒菌内包マイクロカプセルの断面及び全体の走査電子顕微鏡写真図を図3の対応符号(d)〜(g)として、ぞれぞれ示す。   Moreover, the cross-section of the denitrifying bacteria-encapsulating microcapsules obtained in Production Examples a to c and the entire scanning electron micrographs are represented by corresponding symbols (a) to (c) in FIG. The cross section of the denitrifying microcapsule-encapsulated microcapsule and the entire scanning electron micrograph are shown as corresponding symbols (d) to (g) in FIG.

図2,図3の電子顕微鏡から、本発明の脱窒菌内包マイクロカプセルは、完全なコアーシェル型で大きな内腔部を有していることから、脱窒菌の固定化容積が大きく、しかもカプセル壁が極めて多孔質であるため、カプセル内部への硝酸性窒素の拡散性が非常に高いことが明らかである。このカプセル壁の多孔度合が極めて大きいことは、表1に示す相対比表面積S2/S1が最低の製造例eでも46(算出比表面積S1に対して実測比表面積S2が46倍)であることからも実証される。また、表1における製造例a〜cの対比から、有機相に加えるn−ヘキサンの量が多くなるほど、粒子径が小さくなる傾向を示すことが判る。更に、表1における製造例d〜g及びcの対比から、内水相のアルギン酸ナトリウム濃度が高い方が、カプセル壁の多孔度合も大きいことが判る。ただし、アルギン酸ナトリウム濃度5重量%の製造例hでは凝集を生じているため、該濃度が高過ぎる場合は内水相の粘度が高過ぎてエマルションの分散安定性を悪化させることが推測される。なお、製造例dのように内水相にアルギン酸ナトリウムを含まなくとも形態的には良好なマイクロカプセルが得られるが、内包させる脱窒菌の保護と逸散防止のためには保護剤ポリマーの存在が必要である。   2 and 3, the denitrifying bacteria-encapsulating microcapsules of the present invention have a complete core-shell type and a large lumen, so that the denitrifying bacteria have a large immobilization volume and a capsule wall. Since it is extremely porous, it is clear that the diffusion of nitrate nitrogen into the capsule is very high. The very high porosity of the capsule wall is 46 even in Production Example e having the lowest relative specific surface area S2 / S1 shown in Table 1 (the measured specific surface area S2 is 46 times the calculated specific surface area S1). Is also demonstrated. Moreover, it turns out that the particle diameter tends to become smaller as the amount of n-hexane added to the organic phase increases from the comparison of Production Examples a to c in Table 1. Further, from the comparison of Production Examples d to g and c in Table 1, it can be seen that the higher the sodium alginate concentration in the inner aqueous phase, the greater the porosity of the capsule wall. However, in Production Example h having a sodium alginate concentration of 5% by weight, agglomeration occurs. Therefore, when the concentration is too high, it is presumed that the viscosity of the inner aqueous phase is too high to deteriorate the dispersion stability of the emulsion. As in Production Example d, microcapsules with good morphology can be obtained even if sodium alginate is not included in the inner aqueous phase. However, in order to protect the denitrifying bacteria to be encapsulated and prevent their dissipation, the presence of a protective polymer is required.

〔回分脱窒反応試験〕
蒸留水1Lに対してNaNO3 0.12gとKH2PO4 0.2mgを添加し、窒素濃度として20mg/Lの模擬汚染水を調製した。そして,200ml三角フラスコ中に、予め水素ガスで飽和させた模擬排汚染水100mlと、前記製造例gで得られた脱窒菌内包マイクロカプセル7g(湿潤質量)7gとを入れ、この三角フラスコを30℃,100rpmの震盪恒温槽中に収容し、水素ガス雰囲気下(H2 流量30ml/分)で脱窒試験を行った。この脱窒試験中、経時的に模擬汚染水をサンプリングし、硝酸窒素濃度及び亜硝酸窒素濃度をイオンクロマトグラフ(日立社製の日立L−2470型電導度検出器)にて定量して脱窒能力を調べたところ、図4及び図5に示す結果が得られた。
[Batch denitrification test]
0.12 g of NaNO 3 and 0.2 mg of KH 2 PO 4 were added to 1 L of distilled water to prepare simulated contaminated water having a nitrogen concentration of 20 mg / L. In a 200 ml Erlenmeyer flask, 100 ml of simulated waste water contaminated with hydrogen gas in advance and 7 g (wet mass) 7 g of denitrifying bacteria-encapsulated microcapsules obtained in Production Example g were placed. The denitrification test was conducted under a hydrogen gas atmosphere (H 2 flow rate 30 ml / min) in a shaking constant temperature bath at 100 ° C. and 100 rpm. During this denitrification test, simulated contaminated water is sampled over time, and the nitrogen nitrate concentration and nitrogen nitrite concentration are quantified with an ion chromatograph (Hitachi L-2470 conductivity detector) and denitrified. When the ability was examined, the results shown in FIGS. 4 and 5 were obtained.

図4及び図5で示す結果から、本発明の脱窒菌内包マイクロカプセルにより、水中の汚染物質である硝酸窒素及び亜硝酸窒素を完全に除去できることが判る。なお、最小二乗法により求めた総窒素除去速度は、1時間当たり0.23mg/Lであった。   From the results shown in FIG. 4 and FIG. 5, it can be seen that nitrogen nitrate and nitrogen nitrite, which are contaminants in water, can be completely removed by the denitrifying bacteria-encapsulating microcapsules of the present invention. The total nitrogen removal rate determined by the least square method was 0.23 mg / L per hour.

Cs カプセル外殻
Ed W/Oエマルションの液滴
MC マイクロカプセル
Op 外側の有機相
Wd 内水相液滴
Wp 単一水相
Cs capsule outer shell Ed W / O emulsion droplet MC microcapsule Op outer organic phase Wd inner aqueous phase droplet Wp single aqueous phase

Claims (9)

疎水性ポリマー及びポリアルキレングリコールを主成分とする多孔質のカプセル壁を備えたコアーシェル型構造の内腔部に、独立栄養性脱窒細菌を含む保護剤ポリマー水溶液が内包されてなる脱窒菌内包マイクロカプセル。   Denitrifying bacteria-encapsulated micro, in which an aqueous solution of a protective agent polymer containing autotrophic denitrifying bacteria is encapsulated in a core-shell type lumen having a porous capsule wall mainly composed of a hydrophobic polymer and polyalkylene glycol capsule. 前記カプセル壁の疎水性ポリマー:ポリアルキレングリコールの質量比が1:0.5〜5の範囲にある請求項1に記載の脱窒菌内包マイクロカプセル。   The denitrifying bacteria-encapsulating microcapsules according to claim 1, wherein the mass ratio of hydrophobic polymer to polyalkylene glycol in the capsule wall is in the range of 1: 0.5 to 5. 前記カプセル壁の疎水性ポリマーがポリメチルメタクリレートであり、ポリアルキレングリコールが平均分子量500〜500,000のポリエチレングリコールである請求項1又は2に記載の脱窒菌内包マイクロカプセル。   The denitrifying bacteria-encapsulated microcapsule according to claim 1 or 2, wherein the hydrophobic polymer of the capsule wall is polymethyl methacrylate, and the polyalkylene glycol is polyethylene glycol having an average molecular weight of 500 to 500,000. 平均粒子径が50〜1,500μm、平均内腔径及び平均粒子径に基づく算出比表面積S1と実測比表面積S2の比である相対比表面積S2/S1が40以上である請求項1〜3の何れかに記載の脱窒菌内包マイクロカプセル。   The relative specific surface area S2 / S1, which is the ratio of the calculated specific surface area S1 based on the average lumen diameter and the average particle diameter to the actually measured specific surface area S2, is 40 or more. The denitrifying bacteria inclusion microcapsule according to any one of the above. 疎水性ポリマー及びポリアルキレングリコールを主成分とする壁材ポリマーが低沸点有機溶媒に溶解されてなる有機相中に、独立栄養性脱窒細菌を含む保護剤ポリマー水溶液を添加混合することにより、該有機相中に内水相として独立栄養性脱窒細菌を含む保護剤ポリマー水溶液の液滴が分散したW/Oエマルションを調製したのち、このW/Oエマルションを水相中に添加混合して所定時間の攪拌を行うことにより、外水相中に前記W/Oエマルションの液滴が分散したW/O/Wエマルションを調製すると共に、その分散液滴を内水相液滴の合一によって内側の水相が外側の有機相で覆われた構造の液滴に転化させ、次いで有機相中の有機溶媒を加温又は/及び減圧による液中乾燥で除去して壁材ポリマーをゲル化させることにより、前記請求項1〜4の何れかに記載の脱窒菌内包マイクロカプセルを生成させることを特徴とする脱窒菌内包マイクロカプセルの製造方法。   By adding and mixing a protective polymer aqueous solution containing an autotrophic denitrifying bacterium into an organic phase in which a wall polymer mainly composed of a hydrophobic polymer and a polyalkylene glycol is dissolved in a low-boiling organic solvent, After preparing a W / O emulsion in which droplets of a protective polymer aqueous solution containing an autotrophic denitrifying bacterium are dispersed as an inner aqueous phase in an organic phase, the W / O emulsion is added to the aqueous phase and mixed to obtain a predetermined content. By stirring for a time, a W / O / W emulsion in which the droplets of the W / O emulsion are dispersed in the outer aqueous phase is prepared, and the dispersed droplets are brought into the inner side by coalescence of the inner aqueous phase droplets. The aqueous phase is converted into droplets having a structure covered with the outer organic phase, and then the organic solvent in the organic phase is removed by heating or / and drying under reduced pressure to gel the wall material polymer. Before Denitrificans method for producing microcapsules containing, characterized in that to produce the denitrifying bacteria containing microcapsules according to any one of claims 1 to 4. 前記有機相の低沸点有機溶剤がジクロロメタンを主成分とする請求項5に記載の脱窒菌内包マイクロカプセルの製造方法。   The method for producing microcapsules containing denitrifying bacteria according to claim 5, wherein the low-boiling organic solvent of the organic phase contains dichloromethane as a main component. 前記有機相の低沸点有機溶剤が前記疎水性ポリマーに対する良溶剤からなり、有機相中に該良溶剤よりも高沸点で前記疎水性ポリマーに対する溶解度の小さい貧溶剤が溶媒成分中の4質量%以下の範囲で配合されてなる請求項5又は6に記載の脱窒菌内包マイクロカプセルの製造方法。   The low boiling point organic solvent of the organic phase is a good solvent for the hydrophobic polymer, and the poor solvent having a higher boiling point than the good solvent and a low solubility for the hydrophobic polymer in the organic phase is 4% by mass or less in the solvent component. The method for producing microcapsules containing denitrifying bacteria according to claim 5 or 6, wherein the microcapsules are contained in a range of. 前記有機相中に添加混合する保護剤ポリマー水溶液がアルギン酸ナトリウムの0.5〜10質量%濃度の水溶液である請求項5〜7の何れかに記載の脱窒菌内包マイクロカプセルの製造方法。   The method for producing microcapsules containing denitrifying bacteria according to any one of claims 5 to 7, wherein the aqueous solution of a protective agent polymer added and mixed in the organic phase is an aqueous solution of sodium alginate having a concentration of 0.5 to 10% by mass. 前記外水相とする水相に分散安定剤として第三リン酸カルシウムを含む請求項5〜8の何れかに記載の脱窒菌内包マイクロカプセルの製造方法。   The method for producing microcapsules containing denitrifying bacteria according to any one of claims 5 to 8, wherein the aqueous phase used as the outer aqueous phase contains tricalcium phosphate as a dispersion stabilizer.
JP2009233575A 2009-10-07 2009-10-07 Microcapsule encapsulating denitrifying bacteria and production method thereof Withdrawn JP2011078911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009233575A JP2011078911A (en) 2009-10-07 2009-10-07 Microcapsule encapsulating denitrifying bacteria and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009233575A JP2011078911A (en) 2009-10-07 2009-10-07 Microcapsule encapsulating denitrifying bacteria and production method thereof

Publications (1)

Publication Number Publication Date
JP2011078911A true JP2011078911A (en) 2011-04-21

Family

ID=44073553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009233575A Withdrawn JP2011078911A (en) 2009-10-07 2009-10-07 Microcapsule encapsulating denitrifying bacteria and production method thereof

Country Status (1)

Country Link
JP (1) JP2011078911A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012066164A (en) * 2010-09-21 2012-04-05 Dowa Technology Kk Method and device for treating nitric acid containing water
CN105731582A (en) * 2016-04-18 2016-07-06 张传业 Shaft waste water purification agent and preparing method and application thereof
KR20180029131A (en) * 2016-09-09 2018-03-20 이미영 Ceramic substrate manufacturing method that includes natural polymer material algae removal and water purification
CN108083451A (en) * 2017-12-12 2018-05-29 武汉沃田生态科技有限公司 A kind of compound bacteria microcapsule water purification agent of slow-release and preparation method thereof
CN109294948A (en) * 2018-10-08 2019-02-01 北京交通大学 A kind of denitrifying bacterium immobilization particle and preparation method thereof
JP2019195792A (en) * 2018-05-11 2019-11-14 三原 義広 Particle, and purification processing method
CN112808187A (en) * 2021-01-19 2021-05-18 浙江省林业科学研究院 Automatic equipment and method for producing bubble capsule microbial inoculum

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012066164A (en) * 2010-09-21 2012-04-05 Dowa Technology Kk Method and device for treating nitric acid containing water
CN105731582A (en) * 2016-04-18 2016-07-06 张传业 Shaft waste water purification agent and preparing method and application thereof
KR20180029131A (en) * 2016-09-09 2018-03-20 이미영 Ceramic substrate manufacturing method that includes natural polymer material algae removal and water purification
CN108083451A (en) * 2017-12-12 2018-05-29 武汉沃田生态科技有限公司 A kind of compound bacteria microcapsule water purification agent of slow-release and preparation method thereof
JP2019195792A (en) * 2018-05-11 2019-11-14 三原 義広 Particle, and purification processing method
JP7215667B2 (en) 2018-05-11 2023-01-31 義広 三原 Particles, purification method
CN109294948A (en) * 2018-10-08 2019-02-01 北京交通大学 A kind of denitrifying bacterium immobilization particle and preparation method thereof
CN112808187A (en) * 2021-01-19 2021-05-18 浙江省林业科学研究院 Automatic equipment and method for producing bubble capsule microbial inoculum

Similar Documents

Publication Publication Date Title
JP2011078911A (en) Microcapsule encapsulating denitrifying bacteria and production method thereof
US5486292A (en) Adsorbent biocatalyst porous beads
KR100954539B1 (en) The sorbent composition which contains chitosan for water treatment and a method of preparing thereof
Chen et al. Biodegradation of tetrahydrofuran by Pseudomonas oleovorans DT4 immobilized in calcium alginate beads impregnated with activated carbon fiber: Mass transfer effect and continuous treatment
US10143972B2 (en) Ultrafiltration membrane and a preparation method thereof
CN104313008B (en) Complex microorganism preparations and its preparation method and application
EP1322559A1 (en) Microbiological culture for triggering microbiological processes in water
KR101386599B1 (en) Water treatment agent, manufacturing method thereof, and water treatment system and in-situ treatment system for underground water using that
Deng et al. Pyrene biodegradation with layer-by-layer assembly bio-microcapsules
CN108017793A (en) A kind of application being sustained in the preparation method and its chemical wastewater treatment of polyurethane mesh carrier
Younis et al. Novel eco-friendly amino-modified nanoparticles for phenol removal from aqueous solution
JP3965006B2 (en) Foam carrier for microbial immobilization treatment, and waste water such as organic waste water and eutrophication water using the same
JP4133567B2 (en) Method for producing microorganism-immobilized microcapsules
KR101473924B1 (en) Hybrid water treatment agent of biogenic manganese oxide nano particle and activated carbon, manufacturing method thereof, and water treatment system and in-situ treatment system for underground water using that
Ghahramani et al. Open‐cell polyvinylidene fluoride foams as carriers to promote biofilm growth for biological wastewater treatment
KR102093432B1 (en) The composition and preparation method of quorum quenching media of core-shell structure for anti-biofouling strategy
Hamidon et al. Improved p-chlorophenol adsorption onto copper-modified cellulose nanocrystal-based hydrogel spheres
CN112551644B (en) Preparation method of palladium-cellulose membrane capable of synchronizing emulsion separation and dye degradation
JP2003000238A (en) Pva-inclusively immobilized microbe carrier, method for manufacturing the same and method for purifying environment by using the carrier
JP2009233553A (en) Carrier for volatile organic compound decomposing fungus, and method for clalifying contaminated soil
Hernández‐Esparza et al. Removal of High Phenol Concentrations with Adapted Activated Sludge in Suspended Form and Entrapped in Calcium Alginate/Cross‐Linked Poly (N‐vinyl pyrrolidone) Hydrogels
Martin et al. Enhancement of the activated sludge process by activated carbon produced from surplus biological sludge
JP5135521B2 (en) Multi-capsule environmental hormone degrading agent and method for producing the same
Shaari et al. Manganese in the source of groundwater in Malaysia and the method for the removal process: A review on the adsorption and membrane separation processes/Norin Zamiah Kassim Shaari and Ahmed Qutb Akmal Sajali
Nikovaev et al. New biocomposite materials based on hydrocarbon-oxidizing microorganisms and their potential for oil products degradation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130108