JP2011077420A - Method of manufacturing printed wiring board - Google Patents

Method of manufacturing printed wiring board Download PDF

Info

Publication number
JP2011077420A
JP2011077420A JP2009229219A JP2009229219A JP2011077420A JP 2011077420 A JP2011077420 A JP 2011077420A JP 2009229219 A JP2009229219 A JP 2009229219A JP 2009229219 A JP2009229219 A JP 2009229219A JP 2011077420 A JP2011077420 A JP 2011077420A
Authority
JP
Japan
Prior art keywords
protrusion
projecting
circuit pattern
printed wiring
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009229219A
Other languages
Japanese (ja)
Inventor
Hitoshi Shimatsu
仁 志満津
Takehiko Sawada
岳彦 澤田
Tomoro Asai
智朗 浅井
Ryo Yamauchi
良 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TIBC KK
Original Assignee
TIBC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TIBC KK filed Critical TIBC KK
Priority to JP2009229219A priority Critical patent/JP2011077420A/en
Publication of JP2011077420A publication Critical patent/JP2011077420A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a printed wiring board that can have a one surface-side plate-like circuit pattern and an other surface-side plate-like circuit pattern electrically connected to make a large current flow between both the circuit patterns. <P>SOLUTION: In the method of manufacturing the printed wiring board, a top surface-side circuit pattern 20 having a first protrusion 21 and a projection 22 is formed, and a reverse surface-side circuit pattern 40 having a second protrusion 41 is formed. In a state that the projection 22 and a protrusion-side end surface 41a of the second protrusion 41 are inserted into an insertion hole 31 formed at an insulating layer 30 from different directions to abut against each other, the top surface-side circuit pattern 20 and the reverse surface-side circuit pattern 40 are laminated together with the insulating layer 30. Then the projection 22 and the protrusion-side end surface 41a are electrically connected by resistance welding. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電気自動車、ハイブリッド自動車の高出力モータの制御基板等の大電流対応基板に好適に用いることができるプリント配線板の製造方法に関するものである。   The present invention relates to a method of manufacturing a printed wiring board that can be suitably used for a substrate for large currents such as a control substrate of a high-output motor of an electric vehicle or a hybrid vehicle.

従来、電気自動車、ハイブリッド自動車の高出力モータの制御基板等の大電流対応基板に好適に用いることができるプリント配線板に関する技術として、下記特許文献1に示すプリント配線基板の製造方法が知られている。このプリント配線基板の製造方法では、両面に配線パターンを形成するための銅箔がそれぞれ設けられた基材に対して貫通孔を設け、この貫通孔に導電性ペーストを充填・硬化することで当該導電性ペーストを介して両面の銅箔を電気的に接続して層間導通を取っている。   Conventionally, as a technique related to a printed wiring board that can be suitably used for a high-current compatible board such as a control board of a high output motor of an electric vehicle or a hybrid vehicle, a method for manufacturing a printed wiring board shown in Patent Document 1 below is known. Yes. In this method of manufacturing a printed wiring board, through holes are provided in a base material provided with a copper foil for forming a wiring pattern on both surfaces, and the through paste is filled and cured with a conductive paste. Interlayer conduction is established by electrically connecting the copper foils on both sides via a conductive paste.

また、下記特許文献2に示す多層積層配線板では、絶縁基板の表裏面間に電気的導通を確立するために貫通孔が形成されており、この貫通孔内に導電性金属片を存在させることにより、絶縁基板の表面に形成された配線パターンと裏面に形成された配線パターンとを電気的に接続している。この導電性金属片は、絶縁基板の表面に導電性金属箔を載置しポンチを用いて導電性金属箔と絶縁基板とを同時にパンチングすることで形成される貫通孔内の導電性金属箔により形成されている。   Moreover, in the multilayer laminated wiring board shown in the following Patent Document 2, a through hole is formed in order to establish electrical conduction between the front and back surfaces of the insulating substrate, and a conductive metal piece must exist in the through hole. Thus, the wiring pattern formed on the front surface of the insulating substrate and the wiring pattern formed on the back surface are electrically connected. This conductive metal piece is formed by placing the conductive metal foil on the surface of the insulating substrate and punching the conductive metal foil and the insulating substrate at the same time using a punch. Is formed.

また、下記特許文献3に示す配線基板の製造方法では、一方のリードフレームの配線パターンに層間接続部を形成するとともに、他方のリードフレームの配線パターンのうち上記層間接続部が接合される部分にはんだを印刷する。そして、層間接続部がはんだを介して他方の配線パターンの下面に接合するように、両リードフレームを重ね合わせて熱処理する。これにより、両リードフレームの配線パターンを層間接続部を介して電気的に相互接続して層間導通を取っている。   Further, in the method for manufacturing a wiring board shown in Patent Document 3 below, an interlayer connection portion is formed in the wiring pattern of one lead frame, and a portion of the wiring pattern of the other lead frame is joined to the interlayer connection portion. Print the solder. Then, both lead frames are superposed and heat-treated so that the interlayer connection portion is bonded to the lower surface of the other wiring pattern via solder. As a result, the wiring patterns of both lead frames are electrically interconnected via the interlayer connection portion to achieve interlayer conduction.

また、下記特許文献3に示す配線基板の製造方法では、銅ボールの表面にはんだ層が被覆された構造の導電性ボールを用意し、一方のリードフレームの配線パターンの凹部に導電性ボールを配置した後に、熱処理することにより、導電性ボールのはんだ層を一方の配線パターンに接合させる。そして、導電性ボールが他方の配線パターンの下面に接合するように、両リードフレームを重ね合わせて熱処理する。これにより、両リードフレームの配線パターンを導電性ボールを介して電気的に相互接続して層間導通を取っている。   In addition, in the method of manufacturing a wiring board shown in Patent Document 3 below, a conductive ball having a structure in which a solder layer is coated on the surface of a copper ball is prepared, and the conductive ball is disposed in a concave portion of the wiring pattern of one lead frame. After that, the conductive ball solder layer is bonded to one wiring pattern by heat treatment. Then, both lead frames are superposed and heat-treated so that the conductive balls are bonded to the lower surface of the other wiring pattern. As a result, the wiring patterns of both lead frames are electrically interconnected via the conductive balls to achieve interlayer conduction.

特開平11−074640号公報Japanese Patent Laid-Open No. 11-074640 特開2005−243911号公報JP 2005-243911 A 特開2008−182163号公報JP 2008-182163 A

しかしながら、上記特許文献1〜3に記載の発明のように、層間導通を取るためにパターン以外の部材(導電性ペースト、金属片、はんだ、導電性ボールなど)を用意する必要があることから別工程が必要となり製造コスト低減の障害となる。また、銅製のパターン間の層間導通を取るために導電性ペースト等を使用すると、パターンよりも電気抵抗が大きいことから損失や発熱という問題も発生してしまう。   However, as in the inventions described in the above Patent Documents 1 to 3, it is necessary to prepare a member (conductive paste, metal piece, solder, conductive ball, etc.) other than the pattern in order to obtain interlayer conduction. A process is required, which hinders manufacturing cost reduction. In addition, when a conductive paste or the like is used to obtain interlayer conduction between copper patterns, there is a problem of loss and heat generation because the electric resistance is larger than the pattern.

本発明は、上述した課題を解決するためになされたものであり、その目的とするところは、一面側板状回路パターンと他面側板状回路パターンとを電気的に接続して両回路パターン間に大電流を流すことができるプリント配線板の製造方法を提供することにある。   The present invention has been made in order to solve the above-described problems. The object of the present invention is to electrically connect the one-side plate circuit pattern and the other-side plate circuit pattern between the two circuit patterns. An object of the present invention is to provide a method for manufacturing a printed wiring board capable of flowing a large current.

上記目的を達成するため、特許請求の範囲に記載の請求項1のプリント配線板の製造方法では、一面側板状回路パターンおよび他面側板状回路パターンを絶縁層を介在させて製造されるプリント配線板の製造方法であって、有底筒状に突出する第1突出部とこの第1突出部の突出側端面の一部から突出する突起部とを有する前記一面側板状回路パターンを形成する第1工程と、有底筒状に突出する第2突出部を有する前記他面側板状回路パターンを形成する第2工程と、前記第1突出部の前記突起部と前記第2突出部の突出側端面とを前記絶縁層に設けられる挿入穴に対して異なる方向から挿入して当接させた状態で前記一面側板状回路パターンおよび前記他面側板状回路パターンを前記絶縁層とともに積層する第3工程と、前記突起部および前記第2突出部を抵抗溶接により電気的に接続する第4工程と、を備えることを特徴とする。   In order to achieve the above object, in the printed wiring board manufacturing method according to claim 1, the printed wiring board manufactured by interposing the one-side plate circuit pattern and the other-side plate circuit pattern with an insulating layer interposed therebetween. A method for manufacturing a plate, comprising: forming a one-side plate-like circuit pattern having a first projecting portion projecting in a bottomed cylindrical shape and a projecting portion projecting from a part of a projecting side end surface of the first projecting portion. 1st process, 2nd process of forming the said other surface side plate-shaped circuit pattern which has the 2nd protrusion part which protrudes in a bottomed cylindrical shape, The protrusion part of the said 1st protrusion part, and the protrusion side of the said 2nd protrusion part A third step of laminating the one-surface side plate-like circuit pattern and the other-surface-side plate-like circuit pattern together with the insulating layer in a state where the end surface is inserted and brought into contact with the insertion hole provided in the insulating layer from different directions. And the protrusion and Characterized in that it comprises a fourth step of electrically connecting by resistance welding the second projecting portion.

請求項2の発明は、請求項1に記載のプリント配線板の製造方法において、前記第2突出部の突出側端面上であってその外縁近傍には前記突起部との当接部位を囲う環状凸部が形成されることを特徴とする。   According to a second aspect of the present invention, in the method for manufacturing a printed wiring board according to the first aspect, an annular shape is provided on the protruding side end face of the second protruding portion and in the vicinity of the outer edge thereof, surrounding the contact portion with the protruding portion. A convex portion is formed.

請求項3の発明は、請求項1または2に記載のプリント配線板の製造方法において、前記第1工程は、前記第1突出部および前記突起部と前記第1突出部の突出側に対して反対側へ当該第1突出部の近傍にて突出する第1伝熱部とを有する前記一面側板状回路パターンを形成し、前記第4工程は、前記絶縁層から露出する前記第1伝熱部に第1放熱部材を接触させた状態で前記抵抗溶接を実施することを特徴とする。   According to a third aspect of the present invention, in the method for manufacturing a printed wiring board according to the first or second aspect, the first step is performed with respect to the first projecting portion, the projecting portion, and the projecting side of the first projecting portion. Forming the one-side plate-like circuit pattern having a first heat transfer portion protruding in the vicinity of the first protrusion to the opposite side, and the fourth step includes the first heat transfer portion exposed from the insulating layer. The resistance welding is performed in a state where the first heat radiating member is in contact therewith.

請求項4の発明は、請求項3に記載のプリント配線板の製造方法において、前記第1伝熱部は、前記第1突出部を囲うように突出して形成されることを特徴とする。   According to a fourth aspect of the present invention, in the method for manufacturing a printed wiring board according to the third aspect, the first heat transfer section is formed to protrude so as to surround the first protrusion.

請求項5の発明は、請求項3または4に記載のプリント配線板の製造方法において、前記第1伝熱部の近傍には前記絶縁層から露出して前記第1放熱部材に接触可能な伝熱部が複数形成されることを特徴とする。   According to a fifth aspect of the present invention, in the method for manufacturing a printed wiring board according to the third or fourth aspect, in the vicinity of the first heat transfer section, the heat transfer is exposed from the insulating layer and can contact the first heat radiating member. A plurality of heat parts are formed.

請求項6の発明は、請求項1〜5のいずれか一項に記載のプリント配線板の製造方法において、前記第2工程は、前記第2突出部と当該第2突出部の突出側に対して反対側へ当該第2突出部の近傍にて突出する第2伝熱部とを有する前記他面側板状回路パターンを形成し、前記第4工程は、前記絶縁層から露出する前記第2伝熱部に第2放熱部材を接触させた状態で前記抵抗溶接を実施することを特徴とする。   Invention of Claim 6 is a manufacturing method of the printed wiring board as described in any one of Claims 1-5. WHEREIN: A said 2nd process is with respect to the 2nd protrusion part and the protrusion side of the said 2nd protrusion part. And forming the other surface side plate-like circuit pattern having a second heat transfer portion projecting in the vicinity of the second projecting portion to the opposite side, and the fourth step includes exposing the second transfer surface exposed from the insulating layer. The resistance welding is performed in a state in which the second heat radiating member is in contact with the hot part.

請求項7の発明は、請求項6に記載のプリント配線板の製造方法において、前記第2伝熱部は、前記第2突出部を囲うように突出して形成されることを特徴とする。   The invention according to claim 7 is the method for manufacturing a printed wiring board according to claim 6, wherein the second heat transfer portion is formed to protrude so as to surround the second protrusion.

請求項8の発明は、請求項6または7に記載のプリント配線板の製造方法において、前記第2伝熱部の近傍には前記絶縁層から露出して前記第2放熱部材に接触可能な伝熱部が複数形成されることを特徴とする。   An eighth aspect of the present invention is the method for manufacturing a printed wiring board according to the sixth or seventh aspect, wherein the second heat transfer portion is exposed near the second heat transfer portion and exposed from the insulating layer so as to be in contact with the second heat radiating member. A plurality of heat parts are formed.

請求項1の発明では、第1工程により、有底筒状に突出する第1突出部とこの第1突出部の突出側端面の一部から突出する突起部とを有する一面側板状回路パターンが形成される。そして、第2工程により、有底筒状に突出する第2突出部を有する他面側板状回路パターンが形成される。そして、第3工程により、第1突出部の突起部と第2突出部の突出側端面とを絶縁層に設けられる挿入穴に対して異なる方向から挿入して当接させた状態で一面側板状回路パターンおよび他面側板状回路パターンが絶縁層とともに積層される。そして、第4工程により、突起部および第2突出部が抵抗溶接により電気的に接続される。   According to the first aspect of the present invention, there is provided a one-side plate-like circuit pattern having a first projecting portion projecting into a bottomed cylindrical shape and a projecting portion projecting from a part of the projecting side end surface of the first projecting portion. It is formed. And the other surface side plate-shaped circuit pattern which has the 2nd protrusion part which protrudes in a bottomed cylinder shape is formed by a 2nd process. Then, in the third step, the one-side plate-like shape in a state where the protruding portion of the first protruding portion and the protruding side end surface of the second protruding portion are inserted and brought into contact with the insertion hole provided in the insulating layer from different directions. The circuit pattern and the other side plate-like circuit pattern are laminated together with the insulating layer. In the fourth step, the protrusion and the second protrusion are electrically connected by resistance welding.

これにより、一面側板状回路パターンおよび他面側板状回路パターンは、抵抗値の大きな接続部材を使用することなく、第1突出部および第2突出部を介して電気的に接続されることとなるので、接続部得分での損失や発熱が抑制されて両突出部の板厚等に応じて両回路パターン間に大電流を流すことができる。また、抵抗溶接により第1突出部および第2突出部を接合して層間導通を取るため、レーザ溶接や超音波接合により層間導通を取る場合と比較して、低コスト化を図ることができる。特に、第1突出部の突起部と第2突出部の突出側端面とを抵抗溶接するため、突出側端面同士を抵抗溶接する場合と比較して接合面積が小さくなるので、板厚の厚い板状回路パターンを抵抗溶接する場合でも接合時の入力電流を抑えて発熱を抑制することができる。このため、接合時の発熱に起因する回路パターンの変形による絶縁層や実装部品等への影響を低減することができる。
したがって、一面側回路パターンと他面側回路パターンとを電気的に接続して両回路パターン間に大電流を流し得るプリント配線板を製造することができる。
As a result, the one-surface-side plate-like circuit pattern and the other-surface-side plate-like circuit pattern are electrically connected via the first projecting portion and the second projecting portion without using a connection member having a large resistance value. Therefore, the loss and heat generation in the obtained connection portion are suppressed, and a large current can be passed between both circuit patterns in accordance with the plate thicknesses of both protruding portions. In addition, since the first projecting portion and the second projecting portion are joined by resistance welding to obtain interlayer conduction, the cost can be reduced as compared with the case of interlayer conduction by laser welding or ultrasonic joining. In particular, since the protrusion of the first protrusion and the protrusion-side end face of the second protrusion are resistance-welded, the joint area is smaller than when the protrusion-side end faces are resistance-welded to each other. Even when resistance-like circuit patterns are resistance-welded, the input current at the time of joining can be suppressed to suppress heat generation. For this reason, it is possible to reduce the influence on the insulating layer, the mounted component, and the like due to the deformation of the circuit pattern caused by the heat generated during the bonding.
Therefore, it is possible to manufacture a printed wiring board that can electrically connect the one-side circuit pattern and the other-side circuit pattern to allow a large current to flow between the two circuit patterns.

請求項2の発明では、第2突出部の突出側端面上であってその外縁近傍には第1突出部の突起部との当接部位を囲う環状凸部が形成されるため、抵抗溶接時に第1突出部の突出側端面の外縁が突起部を基点として第2突出部側に変形する場合でも上記環状凸部に当接するので、抵抗溶接時の第1突出部の変形を制限することができる。   In the invention of claim 2, since an annular convex portion is formed on the projecting side end surface of the second projecting portion and in the vicinity of the outer edge thereof so as to surround the contact portion with the projecting portion of the first projecting portion. Even when the outer edge of the projecting side end surface of the first projecting part deforms to the second projecting part side with the projecting part as a base point, the outer edge of the first projecting part comes into contact with the annular projecting part. it can.

請求項3の発明では、第1工程により、第1突出部および突起部と、第1突出部の突出側に対して反対側へ当該第1突出部の近傍にて突出する第1伝熱部とを有するように一面側板状回路パターンが形成される。そして、第4工程により、絶縁層から露出する第1伝熱部に第1放熱部材を接触させた状態で抵抗溶接が実施される。   In the invention of claim 3, in the first step, the first projecting portion and the projecting portion, and the first heat transfer portion projecting in the vicinity of the first projecting portion to the opposite side to the projecting side of the first projecting portion. A one-side plate circuit pattern is formed so as to have And by 4th process, resistance welding is implemented in the state which made the 1st heat radiating member contact the 1st heat-transfer part exposed from an insulating layer.

これにより、第1突出部の突起部と第2突出部の突出側端面とを抵抗溶接するときに発生する熱が第1伝熱部を介して第1放熱部材に熱伝達されるので、上記抵抗溶接の発熱による絶縁層や実装部品等への影響を確実に抑制することができる。   As a result, heat generated when resistance-welding the projecting portion of the first projecting portion and the projecting side end surface of the second projecting portion is transferred to the first heat radiating member via the first heat transfer portion. The influence of the heat generated by resistance welding on the insulating layer and the mounted parts can be reliably suppressed.

請求項4の発明では、第1伝熱部は、第1突出部を囲うように突出して形成されるため、第1突出部に近接してかつ第1放熱部材への接触面積が大きな伝熱部を設けることができるので、上記抵抗溶接の発熱を第1伝熱部を介し第1放熱部材へ効果的に伝達することができる。   In the invention of claim 4, since the first heat transfer portion is formed so as to surround the first protrusion, the heat transfer is close to the first protrusion and has a large contact area with the first heat radiating member. Since the part can be provided, the heat generated by the resistance welding can be effectively transmitted to the first heat radiating member via the first heat transfer part.

請求項5の発明では、第1伝熱部の近傍には絶縁層から露出して第1放熱部材に接触可能な伝熱部が複数形成されるため、第1放熱部材への熱伝達経路が複数になるので、上記抵抗溶接の発熱による絶縁層や実装部品等への影響をより確実に抑制することができる。   In the invention of claim 5, since a plurality of heat transfer portions that are exposed from the insulating layer and can contact the first heat radiating member are formed in the vicinity of the first heat transfer portion, a heat transfer path to the first heat radiating member is provided. Since there are multiple, the influence of the heat generated by the resistance welding on the insulating layer, the mounted component, and the like can be more reliably suppressed.

請求項6の発明では、第2工程により、第2突出部と、第2突出部の突出側に対して反対側へ当該第2突出部の近傍にて突出する第2伝熱部とを有するように他面側板状回路パターンが形成される。そして、第4工程により、絶縁層から露出する第2伝熱部に第2放熱部材を接触させた状態で抵抗溶接が実施される。   In the invention of claim 6, the second step includes a second projecting portion and a second heat transfer portion projecting in the vicinity of the second projecting portion to the opposite side to the projecting side of the second projecting portion. Thus, the other side plate-like circuit pattern is formed. And by 4th process, resistance welding is implemented in the state which made the 2nd heat radiating member contact the 2nd heat-transfer part exposed from an insulating layer.

これにより、第1突出部の突起部と第2突出部の突出側端面とを抵抗溶接するときに発生する熱が第2伝熱部を介して第2放熱部材に熱伝達されるので、上記抵抗溶接の発熱による絶縁層や実装部品等への影響を確実に抑制することができる。   As a result, heat generated when resistance welding the protrusion of the first protrusion and the protrusion-side end surface of the second protrusion is transferred to the second heat radiating member via the second heat transfer portion. The influence of the heat generated by resistance welding on the insulating layer and the mounted parts can be reliably suppressed.

請求項7の発明では、第2伝熱部は、第2突出部を囲うように突出して形成されるため、第2突出部に近接してかつ第2放熱部材への接触面積が大きな伝熱部を設けることができるので、上記抵抗溶接の発熱を第2伝熱部を介し第2放熱部材へ効果的に伝達することができる。   In the invention of claim 7, since the second heat transfer portion is formed to protrude so as to surround the second protrusion, the heat transfer is close to the second protrusion and has a large contact area with the second heat radiating member. Since the part can be provided, the heat generated by the resistance welding can be effectively transmitted to the second heat radiating member via the second heat transfer part.

請求項8の発明では、第2伝熱部の近傍には絶縁層から露出して第2放熱部材に接触可能な伝熱部が複数形成されるため、第2放熱部材への熱伝達経路が複数になるので、上記抵抗溶接の発熱による絶縁層や実装部品等への影響をより確実に抑制することができる。   In the invention of claim 8, since a plurality of heat transfer portions that are exposed from the insulating layer and can contact the second heat radiating member are formed in the vicinity of the second heat transfer portion, a heat transfer path to the second heat radiating member is provided. Since there are multiple, the influence of the heat generated by the resistance welding on the insulating layer, the mounted component, and the like can be more reliably suppressed.

第1実施形態に係るプリント配線板10の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the printed wiring board 10 which concerns on 1st Embodiment. 第1実施形態に係るプリント配線板10の製造工程の一部を示す工程図である。It is process drawing which shows a part of manufacturing process of the printed wiring board 10 which concerns on 1st Embodiment. 第1実施形態に係るプリント配線板10の製造工程の一部を示す工程図である。It is process drawing which shows a part of manufacturing process of the printed wiring board 10 which concerns on 1st Embodiment. 第1実施形態に係るプリント配線板10の製造工程の一部を示す工程図である。It is process drawing which shows a part of manufacturing process of the printed wiring board 10 which concerns on 1st Embodiment. 第1実施形態に係るプリント配線板10の製造工程の一部を示す工程図である。It is process drawing which shows a part of manufacturing process of the printed wiring board 10 which concerns on 1st Embodiment. 第2実施形態に係るプリント配線板10の製造工程の要部を示す断面図である。It is sectional drawing which shows the principal part of the manufacturing process of the printed wiring board 10 which concerns on 2nd Embodiment. 第2実施形態の第1変形例に係るプリント配線板10の製造工程の要部を示す断面図である。It is sectional drawing which shows the principal part of the manufacturing process of the printed wiring board 10 which concerns on the 1st modification of 2nd Embodiment. 第2実施形態の第2変形例に係るプリント配線板10の製造工程の要部を示す断面図である。It is sectional drawing which shows the principal part of the manufacturing process of the printed wiring board 10 which concerns on the 2nd modification of 2nd Embodiment.

[第1実施形態]
以下、本発明の第1実施形態に係るプリント配線板の製造方法について、図1〜図5を参照して説明する。
図1に示すように、プリント配線板10は、絶縁層30に対して板状の表面側回路パターン20および裏面側回路パターン40が上面側および下面側から積層されて構成されている。
[First Embodiment]
Hereinafter, a method for manufacturing a printed wiring board according to a first embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the printed wiring board 10 is configured by laminating a plate-like surface side circuit pattern 20 and a back surface side circuit pattern 40 on an insulating layer 30 from an upper surface side and a lower surface side.

表面側回路パターン20および裏面側回路パターン40は、厚さが例えば0.5〜2.0mmの銅板に所定のパターンを打ち抜きプレス加工して構成されている。本第1実施形態では、大電流(例えば50〜180A)に対応可能な板状回路パターンとして金属箔では無く所定の板厚の金属板が採用されている。ここで、本第1実施形態で定義する金属板とは打ち抜き加工が可能で、テンション等の外力を加えることなく形状の維持可能な厚みの板状体を意味し、エッチング加工を行う自ら形状を維持し得ない金属箔を除く概念である。   The front-side circuit pattern 20 and the back-side circuit pattern 40 are configured by punching and pressing a predetermined pattern on a copper plate having a thickness of 0.5 to 2.0 mm, for example. In the first embodiment, a metal plate having a predetermined thickness is used instead of a metal foil as a plate-like circuit pattern that can handle a large current (for example, 50 to 180 A). Here, the metal plate defined in the first embodiment means a plate-like body that can be punched and can maintain the shape without applying an external force such as tension, and has a shape of itself that performs etching. It is a concept that excludes metal foil that cannot be maintained.

表面側回路パターン20には、有底筒状に突出する第1突出部21が形成されており、裏面側回路パターン40には、有底筒状に突出する第2突出部41が形成されている。そして、両突出部21,41が絶縁層30に設けられる挿入穴31に対して異なる方向から挿入して第1突出部21の突出側端面21aの中央に抵抗溶接用の突起部として設けられるプロジェクション22と第2突出部41の突出側端面41aとが電気的に接続されることで、両回路パターン20,40の層間導通が取られている。なお、表面側回路パターン20および裏面側回路パターン40は、特許請求の範囲に記載の「一面側板状回路パターンおよび他面側板状回路パターン」の一例に相当する。   The front-side circuit pattern 20 is formed with a first protruding portion 21 that protrudes in a bottomed cylindrical shape, and the back-side circuit pattern 40 is formed with a second protruding portion 41 that protrudes in a bottomed cylindrical shape. Yes. The projections 21 and 41 are inserted from different directions into the insertion hole 31 provided in the insulating layer 30 and are provided as projections for resistance welding at the center of the projection-side end surface 21a of the first projection 21. 22 and the projecting side end surface 41a of the second projecting portion 41 are electrically connected to each other, so that interlayer connection between both circuit patterns 20 and 40 is established. The front-side circuit pattern 20 and the back-side circuit pattern 40 correspond to an example of “one-side plate circuit pattern and other-side plate circuit pattern” recited in the claims.

絶縁層30は、ガラスクロス等の芯材にエポキシ等の樹脂を含浸させた複数のプリプレグを積層後に硬化させて構成されており、その厚さが例えば0.5〜4.0mmに設定されている。   The insulating layer 30 is formed by laminating a plurality of prepregs in which a core material such as a glass cloth is impregnated with a resin such as epoxy, and the thickness thereof is set to 0.5 to 4.0 mm, for example. Yes.

次に、本第1実施形態のプリント配線板10の製造工程について、図2〜図5を参照して説明する。
まず、図2(A)に示すように素材となる所定の形状の銅板20aを用意する。そして、図2(B),(C)に示すように、上述した第1突出部21およびプロジェクション22と、第1突起23とを有する表面側回路パターン20を、所定のパターンに応じたプレス型51U,51Dを用いてプレス加工により一括成形する。なお、図2(A)〜(C)に示す工程は、特許請求の範囲に記載の「第1工程」の一例に相当し、プロジェクション22は、特許請求の範囲に記載の「突起部」の一例に相当する。
Next, the manufacturing process of the printed wiring board 10 of the first embodiment will be described with reference to FIGS.
First, as shown in FIG. 2A, a copper plate 20a having a predetermined shape as a material is prepared. Then, as shown in FIGS. 2 (B) and 2 (C), the surface-side circuit pattern 20 having the first protrusions 21 and the projections 22 and the first protrusions 23 described above is pressed into a press die according to a predetermined pattern. Batch forming is performed by pressing using 51U and 51D. 2A to 2C correspond to an example of the “first step” described in the claims, and the projection 22 corresponds to the “projection portion” described in the claims. It corresponds to an example.

ここで、第1突起23は、第1突出部21の突出側に対して反対側へ当該第1突出部21を囲うように環状に突出して形成されている。なお、第1突起23は、例えば、幅寸法が0.5mm、高さ寸法が0.2mmに設定されている。   Here, the first projection 23 is formed to project in an annular shape so as to surround the first projection 21 on the opposite side to the projection side of the first projection 21. For example, the first protrusion 23 is set to have a width dimension of 0.5 mm and a height dimension of 0.2 mm.

また、図2(A)〜(C)に示す工程では、上記所定のパターンとともに第1突出部21、プロジェクション22および第1突起23が同時に一括成形されている。これにより、各部位を個別に成形する場合と比較して、製造コストを低減することができる。   2A to 2C, the first protrusion 21, the projection 22 and the first protrusion 23 are simultaneously formed together with the predetermined pattern. Thereby, compared with the case where each site | part is shape | molded separately, manufacturing cost can be reduced.

次に、図3(A)に示すように素材となる所定の形状の銅板40aを用意する。そして、図3(B),(C)に示すように、上述した第2突出部41と、第2突起42および環状凸部43とを有する裏面側回路パターン40を、所定のパターンに応じたプレス型52U,52Dを用いてプレス加工により一括成形する。なお、図3(A)〜(C)に示す工程は、特許請求の範囲に記載の「第2工程」の一例に相当する。   Next, as shown in FIG. 3A, a copper plate 40a having a predetermined shape as a material is prepared. Then, as shown in FIGS. 3B and 3C, the back side circuit pattern 40 having the second protrusion 41, the second protrusion 42, and the annular protrusion 43 described above is formed in accordance with a predetermined pattern. Batch forming is performed by press working using the press dies 52U and 52D. The steps shown in FIGS. 3A to 3C correspond to an example of “second step” described in the claims.

ここで、第2突起42は、第2突出部41の突出側に対して反対側へ当該第2突出部41を囲うように環状に突出して形成されている。また、環状凸部43は、突出側端面41a上であってその外縁近傍にて、後述するようにプロジェクション22と当接する当接部位を囲うように形成されている。なお、第2突起42は、例えば、幅寸法が0.5mm、高さ寸法が0.2mmに設定されている。   Here, the second protrusion 42 is formed to project in an annular shape so as to surround the second protrusion 41 on the opposite side to the protrusion side of the second protrusion 41. Further, the annular convex portion 43 is formed on the protruding side end surface 41a and in the vicinity of the outer edge so as to surround a contact portion that contacts the projection 22 as will be described later. For example, the second protrusion 42 has a width dimension set to 0.5 mm and a height dimension set to 0.2 mm.

また、図3(A)〜(C)に示す工程では、上記所定のパターンとともに第2突出部41および第2突起42が同時に一括成形されている。これにより、各部位を個別に成形する場合と比較して、製造コストを低減することができる。   3A to 3C, the second protrusion 41 and the second protrusion 42 are simultaneously formed together with the predetermined pattern. Thereby, compared with the case where each site | part is shape | molded separately, manufacturing cost can be reduced.

次に、図4(A)に示すように、挿入穴31が形成されたプリプレグ30aと最外層用のプリプレグ30b,30cを用意し、第1突出部21のプロジェクション22と第2突出部41の突出側端面41aとを挿入穴31に対して異なる方向から挿入して当接させる。なお、プリプレグ30a〜30cは、本第1実施形態ではそれぞれ薄膜のプリプレグを複数積層して形成されているが、単一のプリプレグで形成されてもよい。   Next, as shown in FIG. 4A, a prepreg 30a in which an insertion hole 31 is formed and prepregs 30b and 30c for the outermost layer are prepared, and the projection 22 of the first protrusion 21 and the second protrusion 41 are formed. The projecting side end surface 41a is inserted into contact with the insertion hole 31 from a different direction. The prepregs 30a to 30c are each formed by stacking a plurality of thin film prepregs in the first embodiment, but may be formed by a single prepreg.

続いて、図4(B)に示すように、表面側回路パターン20の反絶縁層側および裏面側回路パターン40の反絶縁層側を上型53Uおよび下型53Dを用いてプレス等により加圧・加熱する。これにより、プリプレグ30a〜30cを熱硬化して絶縁層30が形成され、プロジェクション22と突出側端面41aとを当接させた状態で両回路パターン20,40および絶縁層30が積層されることとなる。なお、図4(A),(B)に示す工程は、特許請求の範囲に記載の「第3工程」の一例に相当する。   Subsequently, as shown in FIG. 4B, the anti-insulating layer side of the front-side circuit pattern 20 and the anti-insulating layer side of the back-side circuit pattern 40 are pressed with an upper die 53U and a lower die 53D by pressing or the like. -Heat. Thereby, the prepregs 30a to 30c are thermally cured to form the insulating layer 30, and the circuit patterns 20 and 40 and the insulating layer 30 are laminated in a state where the projection 22 and the projecting side end surface 41a are in contact with each other. Become. The steps shown in FIGS. 4A and 4B correspond to an example of “third step” described in the claims.

このとき、第1突起23および第2突起42が上型53Uおよび下型53Dに直接的に押圧されるので、上型53Uおよび下型53D近傍の樹脂等が環状の両突起23,42を超えて第1突出部21および第2突出部41の内周側に流入することを抑制することができる。   At this time, since the first protrusion 23 and the second protrusion 42 are directly pressed against the upper mold 53U and the lower mold 53D, the resin or the like in the vicinity of the upper mold 53U and the lower mold 53D exceeds the annular protrusions 23, 42. Thus, it is possible to prevent the first projecting portion 21 and the second projecting portion 41 from flowing into the inner peripheral side.

次に、図5に示すように、第1突出部21のプロジェクション22と第2突出部41の突出側端面41aとを溶接電極61U,61Dを用いて抵抗溶接を実施することにより電気的に接続する。これにより、図1に示すプリント配線板10が完成する。なお、図5に示す工程は、特許請求の範囲に記載の「第4工程」の一例に相当する。   Next, as shown in FIG. 5, the projection 22 of the first projecting portion 21 and the projecting side end surface 41a of the second projecting portion 41 are electrically connected by performing resistance welding using welding electrodes 61U and 61D. To do. Thereby, the printed wiring board 10 shown in FIG. 1 is completed. The process shown in FIG. 5 corresponds to an example of a “fourth process” recited in the claims.

このとき、第1突出部21のプロジェクション22と第2突出部41の突出側端面41aとを抵抗溶接するため、突出側端面同士を抵抗溶接する場合と比較して接合面積が小さくなるので、板厚の厚い板状回路パターン20,40を抵抗溶接する場合でも接合時の入力電流を抑えられて発熱が抑制される。   At this time, since the projection 22 of the first projecting portion 21 and the projecting side end surface 41a of the second projecting portion 41 are resistance-welded, the joint area is smaller than that when the projecting-side end surfaces are resistance-welded. Even when the thick plate-like circuit patterns 20 and 40 are resistance-welded, the input current at the time of joining can be suppressed and heat generation can be suppressed.

また、環状凸部43は、突出側端面41a上であってその外縁近傍にてプロジェクション22と当接する当接部位を囲うように形成されているため、抵抗溶接時に第1突出部21の突出側端面21aの外縁がプロジェクション22を基点として第2突出部側に変形する場合でも環状凸部43に当接するので、第1突出部21の変形を制限することができる。なお、環状凸部43を、図4(B)に示す積層時に、第1突出部21の突出側端面21aの外縁近傍に当接するように形成することで、挿入穴31近傍の樹脂等が環状凸部43を超えてプロジェクション22と突出側端面41aとの間に流入することを抑制してもよい。   In addition, the annular protrusion 43 is formed on the protrusion side end surface 41a so as to surround a contact portion that contacts the projection 22 in the vicinity of the outer edge thereof, so that the protrusion side of the first protrusion 21 is formed during resistance welding. Even when the outer edge of the end surface 21a is deformed to the second projecting portion side with the projection 22 as a base point, the outer surface abuts the annular projecting portion 43, so that deformation of the first projecting portion 21 can be limited. In addition, the resin etc. of the insertion hole 31 vicinity are cyclic | annular by forming the annular convex part 43 so that it may contact | abut to the outer edge vicinity of the protrusion side end surface 21a of the 1st protrusion part 21 at the time of lamination | stacking shown in FIG.4 (B). You may suppress flowing in between projection 22 and the protrusion side end surface 41a beyond the convex part 43. FIG.

以上説明したように、本第1実施形態に係るプリント配線板10の製造方法では、図2に示す工程により、第1突出部21とプロジェクション22とを有する表面側回路パターン20が形成される。そして、図3に示す工程により、第2突出部41を有する裏面側回路パターン40が形成される。そして、図4に示す工程により、プロジェクション22と第2突出部41の突出側端面41aとを絶縁層30に設けられる挿入穴31に対して異なる方向から挿入して当接させた状態で表面側回路パターン20および裏面側回路パターン40が絶縁層30とともに積層される。そして、図5に示す工程により、プロジェクション22および突出側端面41aが抵抗溶接により電気的に接続される。   As described above, in the method for manufacturing the printed wiring board 10 according to the first embodiment, the surface-side circuit pattern 20 having the first protrusions 21 and the projections 22 is formed by the process shown in FIG. And the back surface side circuit pattern 40 which has the 2nd protrusion part 41 is formed of the process shown in FIG. Then, by the process shown in FIG. 4, the projection 22 and the projecting side end surface 41 a of the second projecting portion 41 are inserted into and contacted with the insertion hole 31 provided in the insulating layer 30 from different directions. The circuit pattern 20 and the back side circuit pattern 40 are laminated together with the insulating layer 30. And the projection 22 and the protrusion side end surface 41a are electrically connected by resistance welding by the process shown in FIG.

これにより、表面側回路パターン20および裏面側回路パターン40は、抵抗値の大きな接続部材を使用することなく、第1突出部21および第2突出部41を介して電気的に接続されることとなるので、接続部得分での損失や発熱が抑制されて両突出部21,41の板厚等に応じて両回路パターン20,40間に大電流を流すことができる。また、抵抗溶接により両突出部21,41を接合して層間導通を取るため、レーザ溶接や超音波接合により層間導通を取る場合と比較して、低コスト化を図ることができる。特に、プロジェクション22と第2突出部41の突出側端面41aとを抵抗溶接するため、突出側端面21a,41a同士を抵抗溶接する場合と比較して接合面積が小さくなるので、板厚の厚い板状回路パターンを抵抗溶接する場合でも接合時の入力電流を抑えて発熱を抑制することができる。このため、接合時の発熱に起因する両回路パターン20,40の変形による絶縁層30や実装部品等への影響を低減することができる。
したがって、表面側回路パターン20および裏面側回路パターン40とを電気的に接続して両回路パターン20,40間に大電流を流し得るプリント配線板10を製造することができる。特に、層間接続のために別部材を使用しないので部品点数の削減と低コスト化を図ることができる。
Thereby, the front surface side circuit pattern 20 and the back surface side circuit pattern 40 are electrically connected via the first protrusion 21 and the second protrusion 41 without using a connection member having a large resistance value. As a result, the loss and heat generation in the connection portion are suppressed, and a large current can be passed between the circuit patterns 20 and 40 in accordance with the plate thicknesses of the protrusions 21 and 41. Moreover, since both the protrusion parts 21 and 41 are joined by resistance welding and interlayer conduction is taken, cost reduction can be achieved compared with the case where interlayer welding is taken by laser welding or ultrasonic joining. In particular, since the projection 22 and the projecting side end surface 41a of the second projecting portion 41 are resistance-welded, the joint area is smaller than when the projecting-side end surfaces 21a and 41a are resistance-welded to each other. Even when resistance-like circuit patterns are resistance-welded, the input current at the time of joining can be suppressed to suppress heat generation. For this reason, it is possible to reduce the influence on the insulating layer 30 and the mounted component due to the deformation of the circuit patterns 20 and 40 caused by the heat generated during the bonding.
Therefore, the printed wiring board 10 capable of flowing a large current between the circuit patterns 20 and 40 by electrically connecting the front-side circuit pattern 20 and the back-side circuit pattern 40 can be manufactured. In particular, since no separate member is used for interlayer connection, the number of parts can be reduced and the cost can be reduced.

また、本第1実施形態に係るプリント配線板10の製造方法では、第2突出部41の突出側端面41aには環状凸部43が形成されるため、抵抗溶接時に第1突出部21の突出側端面21aの外縁がプロジェクション22を基点として第2突出部側に変形する場合でも環状凸部43に当接するので、抵抗溶接時の第1突出部21の変形を制限することができる。   In the method for manufacturing the printed wiring board 10 according to the first embodiment, since the annular protrusion 43 is formed on the protrusion-side end surface 41a of the second protrusion 41, the protrusion of the first protrusion 21 is caused during resistance welding. Even when the outer edge of the side end face 21a is deformed to the second projecting portion side with the projection 22 as a base point, the outer end abuts on the annular projecting portion 43, so that deformation of the first projecting portion 21 during resistance welding can be limited.

[第2実施形態]
次に、本発明の第2実施形態に係るプリント配線板の製造方法について、図6を参照して説明する。
本第2実施形態に係るプリント配線板10の製造方法では、第1放熱部材62Uおよび第2放熱部材62Dを新たに採用している点が、上記第1実施形態に係るプリント配線板の製造方法と異なる。したがって、第1実施形態のプリント配線板の製造方法と実質的に同一の構成部分には、同一符号を付し、その説明を省略する。
[Second Embodiment]
Next, a method for manufacturing a printed wiring board according to the second embodiment of the present invention will be described with reference to FIG.
In the method for manufacturing the printed wiring board 10 according to the second embodiment, the first heat dissipating member 62U and the second heat dissipating member 62D are newly employed. The method for manufacturing the printed wiring board according to the first embodiment is as follows. And different. Therefore, substantially the same components as those of the printed wiring board manufacturing method of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

本第2実施形態では、上述した抵抗溶接時に、図6に示すように、絶縁層30から上側に露出する第1突起23に第1放熱部材62Uを接触させるとともに絶縁層30から下側に露出する第2突起42に第2放熱部材62Dを接触させた状態で、上述した抵抗溶接を実施する。   In the second embodiment, during the resistance welding described above, as shown in FIG. 6, the first heat radiating member 62 </ b> U is brought into contact with the first protrusion 23 exposed upward from the insulating layer 30 and exposed downward from the insulating layer 30. The resistance welding described above is performed in a state where the second heat radiation member 62D is in contact with the second protrusion 42 to be performed.

これにより、第1突出部21のプロジェクション22と第2突出部41の突出側端面41aとを抵抗溶接するときに発生する熱が、溶接部分近傍の第1突起23および第2突起42を介して第1放熱部材62Uおよび第2放熱部材62Dに熱伝達される(図6の矢印α参照)。このように、第1突起23および第2突起42が伝熱部として機能するため、上記抵抗溶接の発熱による絶縁層30や実装部品等への影響を確実に抑制することができる。なお、第1突起23および第2突起42は、特許請求の範囲に記載の「第1伝熱部および第2伝熱部」の一例に相当する。   As a result, the heat generated when resistance welding is performed between the projection 22 of the first protrusion 21 and the protrusion-side end surface 41a of the second protrusion 41 via the first protrusion 23 and the second protrusion 42 in the vicinity of the welded portion. Heat is transferred to the first heat radiating member 62U and the second heat radiating member 62D (see arrow α in FIG. 6). Thus, since the 1st protrusion 23 and the 2nd protrusion 42 function as a heat-transfer part, the influence on the insulating layer 30 or mounting components by the heat_generation | fever of the said resistance welding can be suppressed reliably. The first protrusion 23 and the second protrusion 42 correspond to an example of “first heat transfer section and second heat transfer section” recited in the claims.

また、本第2実施形態では、第1突起23は、第1突出部21を囲うように突出して形成されるため、第1突出部21に近接してかつ第1放熱部材62Uへの接触面積が大きな伝熱部を設けることができるので、上記抵抗溶接の発熱を第1突起23を介し第1放熱部材62Uへ効果的に伝達することができる。   In the second embodiment, since the first protrusion 23 is formed so as to surround the first protrusion 21, it is close to the first protrusion 21 and is in contact with the first heat radiating member 62 </ b> U. Therefore, the heat generated by the resistance welding can be effectively transmitted to the first heat radiating member 62U via the first protrusion 23.

さらに、本第2実施形態では、第2突起42は、第2突出部41を囲うように突出して形成されるため、第2突出部41に近接してかつ第2放熱部材62Dへの接触面積が大きな伝熱部を設けることができるので、上記抵抗溶接の発熱を第2突起42を介し第2放熱部材62Dへ効果的に伝達することができる。   Furthermore, in the second embodiment, since the second protrusion 42 is formed so as to surround the second protrusion 41, the second protrusion 42 is close to the second protrusion 41 and is in contact with the second heat radiating member 62 </ b> D. Therefore, the heat generated by the resistance welding can be effectively transmitted to the second heat radiating member 62D via the second protrusion 42.

上記第2実施形態に係る第1変形例として、図7に示すように、第1突起23および第2突起42に代えて第1突起23aおよび第2突起42aを採用してもよい。第1突起23aは、第1突出部21の突出側に対して反対側へ当該第1突出部21の近傍にて突出するように形成され、第2突起42aは、第2突出部41の突出側に対して反対側へ当該第2突出部41の近傍にて突出するように形成されている。このようにしても、第1放熱部材62Uおよび第2放熱部材62Dへの熱伝達経路が確保されて、上記抵抗溶接の発熱による絶縁層30や実装部品等への影響を抑制することができる。   As a first modification according to the second embodiment, as shown in FIG. 7, a first protrusion 23 a and a second protrusion 42 a may be employed instead of the first protrusion 23 and the second protrusion 42. The first protrusion 23 a is formed to protrude in the vicinity of the first protrusion 21 toward the opposite side to the protrusion side of the first protrusion 21, and the second protrusion 42 a is a protrusion of the second protrusion 41. It is formed so as to protrude in the vicinity of the second protrusion 41 to the opposite side to the side. Even if it does in this way, the heat transfer path | route to 62 U of 1st heat radiating members and 62D of 2nd heat radiating members is ensured, and the influence on the insulating layer 30 or mounting components by the heat_generation | fever of the said resistance welding can be suppressed.

上記第2実施形態に係る第2変形例として、図8に示すように、第1突起23および第2突起42の近傍に絶縁層30から露出して第1放熱部材62Uおよび第2放熱部材62Dに接触可能な伝熱部25,44を複数形成してもよい。これにより、第1放熱部材62Uおよび第2放熱部材62Dへの熱伝達経路が複数になるので、上記抵抗溶接の発熱による絶縁層30や実装部品等への影響をより確実に抑制することができる。   As a second modification according to the second embodiment, as shown in FIG. 8, the first heat radiating member 62U and the second heat radiating member 62D are exposed from the insulating layer 30 in the vicinity of the first protrusion 23 and the second protrusion 42. A plurality of heat transfer portions 25 and 44 that can contact each other may be formed. Thereby, since there are a plurality of heat transfer paths to the first heat radiating member 62U and the second heat radiating member 62D, it is possible to more reliably suppress the influence of the heat generated by the resistance welding on the insulating layer 30 and the mounted components. .

なお、本発明は上記各実施形態に限定されるものではなく、以下のように具体化してもよく、その場合でも、上記各実施形態と同等の作用・効果が得られる。
(1)上記各実施形態において、プロジェクション22は、第1突出部21の突出側端面21a上において、その中央に設けられることに限らず、溶接作業を実施しやすい位置に設けてもよい。また、第1突出部21のプロジェクション22を廃止して当該プロジェクション22に対応する突起部を第2突出部41の突出側端面41a上に設けてもよい。
The present invention is not limited to the above embodiments, and may be embodied as follows. Even in this case, the same operations and effects as those of the above embodiments can be obtained.
(1) In each of the above embodiments, the projection 22 is not limited to being provided at the center on the protruding side end surface 21 a of the first protruding portion 21, but may be provided at a position where the welding operation can be easily performed. Alternatively, the projection 22 of the first protrusion 21 may be eliminated and a protrusion corresponding to the projection 22 may be provided on the protrusion-side end surface 41 a of the second protrusion 41.

(2)上記第2実施形態において、抵抗溶接時の発熱量が少ない場合等であれば、第1突起23のみを第1放熱部材62Uに接触させるか、第2突起42のみを第2放熱部材62Dに接触させた状態で、上記抵抗溶接を実施してもよい。 (2) In the second embodiment, if the amount of heat generated during resistance welding is small, only the first protrusion 23 is brought into contact with the first heat radiating member 62U or only the second protrusion 42 is connected to the second heat radiating member. You may implement the said resistance welding in the state made to contact 62D.

10…プリント配線板
20…表面側回路パターン(一面側板状回路パターン,他面側板状回路パターン)
21…第1突出部
21a…突出側端面
22…プロジェクション(突起部)
23…第1突起(第1伝熱部)
30…絶縁層
30a,30b,30c…プリプレグ
31…挿入穴
40…裏面側回路パターン(一面側板状回路パターン,他面側板状回路パターン)
41…第2突出部
41a…突出側端面
42…第2突起(第2伝熱部)
43…環状凸部
61U,61D…溶接電極
62U…第1放熱部材
62D…第2放熱部材
10 ... Printed wiring board 20 ... Front side circuit pattern (one side side plate circuit pattern, other side side plate circuit pattern)
21 ... 1st protrusion part 21a ... Projection side end surface 22 ... Projection (protrusion part)
23 ... 1st protrusion (1st heat-transfer part)
DESCRIPTION OF SYMBOLS 30 ... Insulating layer 30a, 30b, 30c ... Prepreg 31 ... Insertion hole 40 ... Back surface side circuit pattern (one surface side plate circuit pattern, other surface side plate circuit pattern)
41 ... 2nd protrusion part 41a ... protrusion side end surface 42 ... 2nd protrusion (2nd heat-transfer part)
43 ... annular projection 61U, 61D ... welding electrode 62U ... first heat radiation member 62D ... second heat radiation member

Claims (8)

一面側板状回路パターンおよび他面側板状回路パターンを絶縁層を介在させて製造されるプリント配線板の製造方法であって、
有底筒状に突出する第1突出部とこの第1突出部の突出側端面の一部から突出する突起部とを有する前記一面側板状回路パターンを形成する第1工程と、
有底筒状に突出する第2突出部を有する前記他面側板状回路パターンを形成する第2工程と、
前記第1突出部の前記突起部と前記第2突出部の突出側端面とを前記絶縁層に設けられる挿入穴に対して異なる方向から挿入して当接させた状態で前記一面側板状回路パターンおよび前記他面側板状回路パターンを前記絶縁層とともに積層する第3工程と、
前記突起部および前記第2突出部を抵抗溶接により電気的に接続する第4工程と、
を備えることを特徴とするプリント配線板の製造方法。
A method for producing a printed wiring board produced by interposing an insulating layer on one side plate-like circuit pattern and another side plate-like circuit pattern,
A first step of forming the one-surface-side plate-like circuit pattern having a first projecting portion projecting in a bottomed cylindrical shape and a projecting portion projecting from a part of the projecting side end surface of the first projecting portion;
A second step of forming the other surface side plate-like circuit pattern having a second projecting portion projecting into a bottomed cylindrical shape;
The one-surface-side plate-like circuit pattern in a state in which the protrusions of the first protrusions and the protrusion-side end surfaces of the second protrusions are inserted and brought into contact with insertion holes provided in the insulating layer from different directions. And a third step of laminating the other side plate circuit pattern together with the insulating layer,
A fourth step of electrically connecting the protrusion and the second protrusion by resistance welding;
A method for manufacturing a printed wiring board, comprising:
前記第2突出部の突出側端面上であってその外縁近傍には前記突起部との当接部位を囲う環状凸部が形成されることを特徴とする請求項1に記載のプリント配線板の製造方法。   2. The printed wiring board according to claim 1, wherein an annular convex portion is formed on the projecting side end surface of the second projecting portion and in the vicinity of an outer edge thereof so as to surround a contact portion with the projecting portion. Production method. 前記第1工程は、前記第1突出部および前記突起部と前記第1突出部の突出側に対して反対側へ当該第1突出部の近傍にて突出する第1伝熱部とを有する前記一面側板状回路パターンを形成し、
前記第4工程は、前記絶縁層から露出する前記第1伝熱部に第1放熱部材を接触させた状態で前記抵抗溶接を実施することを特徴とする請求項1または2に記載のプリント配線板の製造方法。
The first step includes the first projecting portion, the projecting portion, and a first heat transfer section projecting in the vicinity of the first projecting portion to the opposite side to the projecting side of the first projecting portion. Form a one-side plate circuit pattern,
3. The printed wiring according to claim 1, wherein in the fourth step, the resistance welding is performed in a state where a first heat radiating member is in contact with the first heat transfer portion exposed from the insulating layer. A manufacturing method of a board.
前記第1伝熱部は、前記第1突出部を囲うように突出して形成されることを特徴とする請求項3に記載のプリント配線板の製造方法。   4. The method of manufacturing a printed wiring board according to claim 3, wherein the first heat transfer portion is formed to protrude so as to surround the first protrusion. 5. 前記第1伝熱部の近傍には前記絶縁層から露出して前記第1放熱部材に接触可能な伝熱部が複数形成されることを特徴とする請求項3または4に記載のプリント配線板の製造方法。   5. The printed wiring board according to claim 3, wherein a plurality of heat transfer portions that are exposed from the insulating layer and are in contact with the first heat radiating member are formed in the vicinity of the first heat transfer portion. Manufacturing method. 前記第2工程は、前記第2突出部と当該第2突出部の突出側に対して反対側へ当該第2突出部の近傍にて突出する第2伝熱部とを有する前記他面側板状回路パターンを形成し、
前記第4工程は、前記絶縁層から露出する前記第2伝熱部に第2放熱部材を接触させた状態で前記抵抗溶接を実施することを特徴とする請求項1〜5のいずれか一項に記載のプリント配線板の製造方法。
The second surface side plate-like shape having the second projecting portion and a second heat transfer portion projecting in the vicinity of the second projecting portion to the opposite side to the projecting side of the second projecting portion. Forming a circuit pattern,
The said 4th process implements the said resistance welding in the state which made the 2nd heat radiating member contact the said 2nd heat transfer part exposed from the said insulating layer, The said any one of Claims 1-5 characterized by the above-mentioned. The manufacturing method of the printed wiring board as described in 1 ..
前記第2伝熱部は、前記第2突出部を囲うように突出して形成されることを特徴とする請求項6に記載のプリント配線板の製造方法。   The method for manufacturing a printed wiring board according to claim 6, wherein the second heat transfer portion is formed to protrude so as to surround the second protrusion. 前記第2伝熱部の近傍には前記絶縁層から露出して前記第2放熱部材に接触可能な伝熱部が複数形成されることを特徴とする請求項6または7に記載のプリント配線板の製造方法。   8. The printed wiring board according to claim 6, wherein a plurality of heat transfer portions that are exposed from the insulating layer and are in contact with the second heat radiating member are formed in the vicinity of the second heat transfer portion. Manufacturing method.
JP2009229219A 2009-10-01 2009-10-01 Method of manufacturing printed wiring board Pending JP2011077420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009229219A JP2011077420A (en) 2009-10-01 2009-10-01 Method of manufacturing printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009229219A JP2011077420A (en) 2009-10-01 2009-10-01 Method of manufacturing printed wiring board

Publications (1)

Publication Number Publication Date
JP2011077420A true JP2011077420A (en) 2011-04-14

Family

ID=44021058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009229219A Pending JP2011077420A (en) 2009-10-01 2009-10-01 Method of manufacturing printed wiring board

Country Status (1)

Country Link
JP (1) JP2011077420A (en)

Similar Documents

Publication Publication Date Title
JP5100081B2 (en) Electronic component-mounted multilayer wiring board and manufacturing method thereof
JP2006073763A (en) Manufacturing method for multilayer board
JP4634230B2 (en) Circuit boards, electronic components and electrical junction boxes
JP5482791B2 (en) Wiring board and method for manufacturing wiring board
JPWO2009110376A1 (en) Lead frame substrate, semiconductor module, and lead frame substrate manufacturing method
JP2009130044A (en) Method of manufacturing semiconductor device
JP2005051088A (en) Printed circuit board with heat conductive member, and method for manufacturing the same
JP5380242B2 (en) Manufacturing method of electronic component mounting substrate and electronic component mounting substrate
JP2008141007A (en) Method for manufacturing multilayer substrate
WO2020250405A1 (en) Substrate with built-in component and method for manufacturing substrate with built-in component
JP2008091814A (en) Circuit substrate, and method of manufacturing circuit substrate
JP2007088058A (en) Multilayer substrate and method of manufacturing same
JP5539453B2 (en) Electronic component-mounted multilayer wiring board and manufacturing method thereof
JP4598140B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP2011187477A (en) Manufacturing method for metal base circuit board, and metal base circuit board
JP4609042B2 (en) Solid electrolytic capacitor and method for producing solid electrolytic capacitor
JP5445368B2 (en) Semiconductor module and method for manufacturing semiconductor module
JP2011077420A (en) Method of manufacturing printed wiring board
JP5660472B2 (en) Printed wiring board
JP5381401B2 (en) Semiconductor device and manufacturing method thereof
JP2020167217A (en) Wiring board, and manufacturing method thereof
JP4370613B2 (en) Multilayer hybrid circuit
JP2011029448A (en) Method of manufacturing printed circuit board
JP2006186094A (en) Reliable plastic substrate and manufacturing method thereof
JP4655300B2 (en) Lead frame

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20110413

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110413

A521 Written amendment

Effective date: 20110520

Free format text: JAPANESE INTERMEDIATE CODE: A523