JP2011077051A - Negative electrode active material, negative electrode, and battery - Google Patents

Negative electrode active material, negative electrode, and battery Download PDF

Info

Publication number
JP2011077051A
JP2011077051A JP2010274242A JP2010274242A JP2011077051A JP 2011077051 A JP2011077051 A JP 2011077051A JP 2010274242 A JP2010274242 A JP 2010274242A JP 2010274242 A JP2010274242 A JP 2010274242A JP 2011077051 A JP2011077051 A JP 2011077051A
Authority
JP
Japan
Prior art keywords
negative electrode
graphite
graphite material
bonded
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010274242A
Other languages
Japanese (ja)
Other versions
JP5177211B2 (en
Inventor
Akira Yamamoto
鑑 山本
Tomoyuki Nakamura
智之 中村
Yuji Uchida
有治 内田
Yukifumi Takeda
幸史 竹田
Takehiko Suwa
剛彦 諏訪
Gentaro Kano
巌大郎 狩野
Takahiro Endo
貴弘 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2010274242A priority Critical patent/JP5177211B2/en
Publication of JP2011077051A publication Critical patent/JP2011077051A/en
Application granted granted Critical
Publication of JP5177211B2 publication Critical patent/JP5177211B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery capable of obtaining high capacity and suppressing swelling. <P>SOLUTION: The battery is equipped with a wound electrode body 20 in which a positive electrode 21 and a negative electrode 22 are laminated and wound around via a separator 23 and an electrolyte 24 inside an exterior package member composed of an aluminum-laminated film. A negative electrode active material layer 22B contains a combined graphite material in which a plurality of primary particles composed of graphite having fine pores are combined so that oriented faces in at least a part of the primary particles become mutually in non-parallel to form secondary particles. In this combined graphite material, a volume of the fine pores having a pore diameter of 10 nm or more and 1×10<SP>5</SP>nm or less per unit mass, estimated by a mercury porosimetry, is 0.5 cm<SP>3</SP>/g or more and 1.5 cm<SP>3</SP>/g or less. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、黒鉛を含む負極活物質、ならびにそれを用いた負極および電池に関する。   The present invention relates to a negative electrode active material containing graphite, and a negative electrode and a battery using the same.

近年、カメラ一体型VTR(videotape recorder)、携帯電話あるいは携帯用コンピューターなどのポータブル電子機器が多く登場し、その小型軽量化が図られている。それに伴い、電子機器のポータブル電源として、電池、特に二次電池の開発が活発に進められている。中でも、リチウムイオン二次電池は、高いエネルギー密度を実現できるものとして注目されている。   In recent years, many portable electronic devices such as a camera-integrated VTR (videotape recorder), a mobile phone, or a portable computer have appeared, and their size and weight have been reduced. Accordingly, the development of batteries, particularly secondary batteries, has been actively promoted as portable power sources for electronic devices. Among these, lithium ion secondary batteries are attracting attention as being capable of realizing a high energy density.

その一方で、リチウムイオン二次電池は電圧が高く、正極の酸化電位が非常に貴となると共に、負極の還元電位が非常に卑となるので、電池反応以外の副反応として電解液に用いる非水溶媒が分解し、ガスが発生してしまうという問題があった。そこで、従来より、一次電池、二次電池を問わず、電池内にガス吸収材として高い比表面積を有する炭素材料を投入することが検討されてきた(例えば、特許文献1,2参照。)。また、ガス吸収材としてではないが、複数の炭素材料を混合して用いることも検討されている(例えば、特許文献3〜7参照。) 。   On the other hand, the lithium ion secondary battery has a high voltage, the positive electrode has a very noble oxidation potential, and the negative electrode has a very low reduction potential. There was a problem that the water solvent was decomposed and gas was generated. Therefore, conventionally, it has been studied to introduce a carbon material having a high specific surface area as a gas absorbing material into a battery regardless of whether it is a primary battery or a secondary battery (see, for example, Patent Documents 1 and 2). Moreover, although not as a gas absorption material, mixing and using a some carbon material is also examined (for example, refer patent documents 3-7).

特許第3067080号公報Japanese Patent No. 30670080 特開平8−24637号公報JP-A-8-24637 特許第3216661号公報Japanese Patent No. 3216661 特開平6−111818号公報JP-A-6-111818 特開2001−196095号公報JP 2001-196095 A 特開2002−8655号公報JP 2002-8655 A 特開2004−87437号公報Japanese Patent Laid-Open No. 2004-87437

しかしながら、電池内にガス吸収能の高い活性炭などを加えると、電池内で副反応が起こり、容量などの電池特性が低下してしまうという問題があった。   However, when activated carbon or the like having a high gas absorption capacity is added to the battery, there is a problem that side reactions occur in the battery and battery characteristics such as capacity are deteriorated.

本発明はかかる問題点に鑑みてなされたもので、その目的は、高い容量を得ることができ、かつ膨れを抑制することができる負極活物質、負極および電池を提供することにある。   The present invention has been made in view of such problems, and an object thereof is to provide a negative electrode active material, a negative electrode, and a battery that can obtain a high capacity and can suppress swelling.

本発明による負極活物質は、細孔を有する黒鉛よりなる複数の1次粒子が、少なくとも一部において配向面が互いに非平行となるように結合して2次粒子を形成している結合黒鉛材料と、メソカーボンマイクロビーズまたは天然黒鉛とを含有し、この結合黒鉛材料の、水銀圧入法により見積もられる細孔径10nm以上1×105 nm以下の細孔の体積が、単位質量当たり0.5cm3 /g以上1.5cm3 /g以下であり、結合黒鉛材料と、メソカーボンマイクロビーズまたは天然黒鉛との合計に対する、その結合黒鉛材料の割合が、3質量%以上30質量%以下のものである。 The negative electrode active material according to the present invention is a bonded graphite material in which a plurality of primary particles made of graphite having pores are combined to form secondary particles such that at least some of the alignment particles are non-parallel to each other. And mesocarbon microbeads or natural graphite, and the volume of pores having a pore diameter of 10 nm or more and 1 × 10 5 nm or less estimated by the mercury intrusion method of this bonded graphite material is 0.5 cm 3 per unit mass. / G to 1.5 cm 3 / g, and the ratio of the combined graphite material to the total of the combined graphite material and mesocarbon microbeads or natural graphite is 3% by mass to 30% by mass. .

本発明による負極は、負極集電体上に負極活物質層を有し、負極活物質層が、負極活物質として、細孔を有する黒鉛よりなる複数の1次粒子が、少なくとも一部において配向面が互いに非平行となるように結合して2次粒子を形成している結合黒鉛材料と、メソカーボンマイクロビーズまたは天然黒鉛とを含有し、この結合黒鉛材料の、水銀圧入法により見積もられる細孔径10nm以上1×105 nm以下の細孔の体積が、単位質量当たり0.5cm3 /g以上1.5cm3 /g以下であり、結合黒鉛材料と、メソカーボンマイクロビーズまたは天然黒鉛との合計に対する、その結合黒鉛材料の割合が、3質量%以上30質量%以下のものである。 The negative electrode according to the present invention has a negative electrode active material layer on a negative electrode current collector, and the negative electrode active material layer has a plurality of primary particles made of graphite having pores as the negative electrode active material. It contains a bonded graphite material that is bonded so that the surfaces are not parallel to each other to form secondary particles, and mesocarbon microbeads or natural graphite, and this bonded graphite material is estimated by a mercury intrusion method. The volume of pores having a pore diameter of 10 nm or more and 1 × 10 5 nm or less is 0.5 cm 3 / g or more and 1.5 cm 3 / g or less per unit mass, and the bonded graphite material and mesocarbon microbeads or natural graphite The ratio of the combined graphite material to the total is 3% by mass or more and 30% by mass or less.

本発明による電池は、正極および負極と共に電解質を備え、負極は、負極活物質として、細孔を有する黒鉛よりなる複数の1次粒子が、少なくとも一部において配向面が互いに非平行となるように結合して2次粒子を形成している結合黒鉛材料と、メソカーボンマイクロビーズまたは天然黒鉛とを含有し、この結合黒鉛材料の、水銀圧入法により見積もられる細孔径10nm以上1×105 nm以下の細孔の体積が、単位質量当たり0.5cm3 /g以上1.5cm3 /g以下であり、結合黒鉛材料と、メソカーボンマイクロビーズまたは天然黒鉛との合計に対する、その結合黒鉛材料の割合が、3質量%以上30質量%以下のものである。 The battery according to the present invention includes an electrolyte together with a positive electrode and a negative electrode, and the negative electrode has, as a negative electrode active material, a plurality of primary particles made of graphite having pores so that the orientation planes are non-parallel to each other at least partially. It contains a bonded graphite material that is bonded to form secondary particles, and mesocarbon microbeads or natural graphite. The pore diameter of this bonded graphite material is 10 nm or more and 1 × 10 5 nm or less estimated by the mercury intrusion method. The volume of the pores is 0.5 cm 3 / g or more and 1.5 cm 3 / g or less per unit mass, and the ratio of the bound graphite material to the total of the bound graphite material and mesocarbon microbeads or natural graphite Is 3% by mass or more and 30% by mass or less.

本発明の負極活物質、負極および電池によれば、配向面が非平行となるように1次粒子が結合して2次粒子を形成し、細孔径10nm以上1×105 nm以下の細孔の体積が0.5cm3 /g以上1.5cm3 /g以下である結合黒鉛材料と、メソカーボンマイクロビーズまたは天然黒鉛とを含有すると共に、結合黒鉛材料とメソカーボンマイクロビーズまたは天然黒鉛との合計に対する結合黒鉛材料の割合が3質量%以上30質量%以下となるようにしたので、容量を向上させることができると共に、副反応などにより発生したガスを吸収して、膨れを抑制することができる。 According to the negative electrode active material, the negative electrode, and the battery of the present invention, primary particles are bonded to form secondary particles so that the orientation planes are non-parallel, and pores having a pore diameter of 10 nm or more and 1 × 10 5 nm or less. Containing a bonded graphite material having a volume of 0.5 cm 3 / g or more and 1.5 cm 3 / g or less, and mesocarbon microbeads or natural graphite, and comprising the bonded graphite material and mesocarbon microbeads or natural graphite. Since the ratio of the bonded graphite material to the total is 3% by mass or more and 30% by mass or less, the capacity can be improved and the gas generated by the side reaction or the like can be absorbed to suppress the swelling. it can.

本発明の一実施の形態に係る二次電池の構成を表す分解斜視図である。It is a disassembled perspective view showing the structure of the secondary battery which concerns on one embodiment of this invention. 図1に示した巻回電極体のII−II線に沿った断面図である。It is sectional drawing along the II-II line of the winding electrode body shown in FIG. 実施例において作製した負極活物質層の断面構造を表す電子顕微鏡写真である。It is an electron micrograph showing the cross-sectional structure of the negative electrode active material layer produced in the Example.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。

1.二次電池の構成
2.二次電池の製造方法
3.二次電池の作用および効果
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The order of explanation is as follows.

1. Configuration of secondary battery 2. Manufacturing method of secondary battery Action and effect of secondary battery

<1.二次電池の構成>
図1は、本発明の一実施の形態に係る二次電池の構成を表すものである。この二次電池は、電極反応物質としてリチウムを用いるものであり、正極端子11および負極端子12が取り付けられた巻回電極体20をフィルム状の外装部材30の内部に備えている。
<1. Configuration of secondary battery>
FIG. 1 shows a configuration of a secondary battery according to an embodiment of the present invention. This secondary battery uses lithium as an electrode reactant, and includes a wound electrode body 20 to which a positive electrode terminal 11 and a negative electrode terminal 12 are attached inside a film-shaped exterior member 30.

正極端子11および負極端子12は、それぞれ、外装部材30の内部から外部に向かい例えば同一方向に導出されている。正極端子11および負極端子12は、例えば、アルミニウム,銅(Cu),ニッケル(Ni)あるいはステンレスなどの金属材料によりそれぞれ構成されており、それぞれ薄板状または網目状とされている。   The positive electrode terminal 11 and the negative electrode terminal 12 are each led out from the inside of the exterior member 30 to the outside, for example, in the same direction. The positive electrode terminal 11 and the negative electrode terminal 12 are made of, for example, a metal material such as aluminum, copper (Cu), nickel (Ni), or stainless steel, and have a thin plate shape or a mesh shape, respectively.

外装部材30は、例えば、ナイロンフィルム,アルミニウム箔およびポリエチレンフィルムをこの順に貼り合わせた矩形状のアルミラミネートフィルムにより構成されている。外装部材30は、例えば、ポリエチレンフィルム側と巻回電極体20とが対向するように配設されており、各外縁部が融着あるいは接着剤により互いに密着されている。外装部材30と正極端子11および負極端子12との間には、外気の侵入を防止するための密着フィルム31が挿入されている。密着フィルム31は、正極端子11および負極端子12に対して密着性を有する材料、例えば、ポリエチレン,ポリプロピレン,変性ポリエチレンあるいは変性ポリプロピレンなどのポリオレフィン樹脂により構成されている。   The exterior member 30 is made of, for example, a rectangular aluminum laminated film in which a nylon film, an aluminum foil, and a polyethylene film are bonded together in this order. The exterior member 30 is disposed, for example, so that the polyethylene film side and the wound electrode body 20 face each other, and the outer edge portions are in close contact with each other by fusion or an adhesive. An adhesive film 31 for preventing the entry of outside air is inserted between the exterior member 30 and the positive electrode terminal 11 and the negative electrode terminal 12. The adhesion film 31 is made of a material having adhesion to the positive electrode terminal 11 and the negative electrode terminal 12, for example, a polyolefin resin such as polyethylene, polypropylene, modified polyethylene, or modified polypropylene.

なお、外装部材30は、アルミニウム箔を他の高分子フィルムで挟んだ他のアルミラミネートフィルムにより構成するようにしてもよく、また、他の構造を有するラミネートフィルム、ポリプロピレンなどの高分子フィルムあるいは金属フィルムにより構成するようにしてもよい。   The exterior member 30 may be constituted by another aluminum laminate film in which an aluminum foil is sandwiched between other polymer films, a laminate film having another structure, a polymer film such as polypropylene, or a metal. You may make it comprise with a film.

図2は、図1に示した巻回電極体20のII−II線に沿った断面構造を表すものである。巻回電極体20は、正極21と負極22とをセパレータ23および電解質24を介して積層し、巻回したものであり、最外周部は保護テープ25により保護されている。   FIG. 2 shows a cross-sectional structure taken along line II-II of the spirally wound electrode body 20 shown in FIG. The wound electrode body 20 is obtained by laminating a positive electrode 21 and a negative electrode 22 via a separator 23 and an electrolyte 24 and winding them, and the outermost periphery is protected by a protective tape 25.

正極21は、例えば、対向する一対の面を有する正極集電体21Aと、正極集電体21Aの両面に設けられた正極活物質層21Bとを有している。正極集電体21Aには、長手方向における一方の端部に正極活物質層21Bが設けられず露出している部分があり、この露出部分に正極端子11が取り付けられている。正極集電体21Aは、例えば、アルミニウム箔,ニッケル箔あるいはステンレス箔などの金属箔により構成されている。正極活物質層21Bは、例えば、正極活物質として、リチウムを吸蔵および放出することが可能な正極材料のいずれか1種または2種以上を含んでおり、必要に応じて導電材および結着材を含んでいてもよい。   The positive electrode 21 includes, for example, a positive electrode current collector 21A having a pair of opposed surfaces, and a positive electrode active material layer 21B provided on both surfaces of the positive electrode current collector 21A. The positive electrode current collector 21A has an exposed portion where the positive electrode active material layer 21B is not provided at one end in the longitudinal direction, and the positive electrode terminal 11 is attached to the exposed portion. The positive electrode current collector 21A is made of, for example, a metal foil such as an aluminum foil, a nickel foil, or a stainless steel foil. The positive electrode active material layer 21B includes, for example, any one or more of positive electrode materials capable of inserting and extracting lithium as a positive electrode active material, and a conductive material and a binder as necessary. May be included.

リチウムを吸蔵および放出することが可能な正極材料としては、例えば、硫化チタン(TiS2 ),硫化モリブデン(MoS2 ),セレン化ニオブ(NbSe2 )あるいは酸化バナジウム(V2 5 )などのリチウムを含有しないカルコゲン化物、またはリチウムを含有するリチウム複合酸化物あるいはリチウム含有リン酸化合物、またはポリアセチレンあるいはポリピロールなどの高分子化合物が挙げられる。 Examples of the positive electrode material capable of inserting and extracting lithium include lithium such as titanium sulfide (TiS 2 ), molybdenum sulfide (MoS 2 ), niobium selenide (NbSe 2 ), or vanadium oxide (V 2 O 5 ). A chalcogenide containing no lithium, a lithium composite oxide containing lithium or a lithium-containing phosphate compound, or a polymer compound such as polyacetylene or polypyrrole.

中でも、リチウムと遷移金属元素とを含むリチウム複合酸化物、またはリチウムと遷移金属元素とを含むリチウム含有リン酸化合物は、高電圧および高エネルギー密度を得ることができるものがあるので好ましく、特に遷移金属元素としてコバルト(Co),ニッケル,マンガン(Mn)および鉄(Fe)のうちの少なくとも1種を含むものが好ましい。その化学式は、例えば、Lix MIO2 あるいはLiy MIIPO4 で表される。式中、MIおよびMIIは1種類以上の遷移金属元素を表す。xおよびyの値は電池の充放電状態によって異なり、通常、0.05≦x≦1.10、0.05≦y≦1.10である。 Among them, a lithium composite oxide containing lithium and a transition metal element or a lithium-containing phosphoric acid compound containing lithium and a transition metal element is preferable because it can obtain a high voltage and a high energy density. A metal element containing at least one of cobalt (Co), nickel, manganese (Mn) and iron (Fe) is preferable. The chemical formula is represented by, for example, Li x MIO 2 or Li y MIIPO 4 . In the formula, MI and MII represent one or more transition metal elements. The values of x and y vary depending on the charge / discharge state of the battery, and are generally 0.05 ≦ x ≦ 1.10 and 0.05 ≦ y ≦ 1.10.

具体例としては、リチウムコバルト複合酸化物(Lix CoO2 )、リチウムニッケル複合酸化物(Lix NiO2 )、リチウムニッケルコバルト複合酸化物(Lix Ni1-z Coz 2 (z<1))、スピネル型構造を有するリチウムマンガン複合酸化物(LiMn2 4 )、リチウム鉄リン酸化合物(Liy FePO4 )、あるいはリチウム鉄マンガンリン酸化合物(Liy Fe1-v Mnv PO4 (v<1))などが挙げられる。 Specific examples include lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel composite oxide (Li x NiO 2 ), lithium nickel cobalt composite oxide (Li x Ni 1-z Co z O 2 (z <1). )), Lithium manganese composite oxide (LiMn 2 O 4 ) having a spinel structure, lithium iron phosphate compound (Li y FePO 4 ), or lithium iron manganese phosphate compound (Li y Fe 1-v Mn v PO 4) (V <1)).

導電材としては、例えば、黒鉛,カーボンブラックあるいはケッチェンブラックなどの炭素材料が挙げられ、そのうちの1種または2種以上が混合して用いられる。また、炭素材料の他にも、導電性を有する材料であれば金属材料あるいは導電性高分子材料などを用いてもよい。結着材としては、例えば、スチレンブタジエン系ゴム,フッ素系ゴムあるいはエチレンプロピレンジエンゴムなどの合成ゴム、またはポリフッ化ビニリデンなどの高分子材料が挙げられ、そのうちの1種または2種以上が混合して用いられる。   Examples of the conductive material include carbon materials such as graphite, carbon black, and ketjen black, and one or more of them are used in combination. In addition to the carbon material, a metal material or a conductive polymer material may be used as long as it is a conductive material. Examples of the binder include synthetic rubbers such as styrene butadiene rubber, fluorine rubber or ethylene propylene diene rubber, or polymer materials such as polyvinylidene fluoride, and one or more of them are mixed. Used.

負極22は、例えば、対向する一対の面を有する負極集電体22Aと、負極集電体22Aの両面に設けられた負極活物質層22Bとを有している。負極集電体22Aにも、長手方向における一方の端部に負極活物質層22Bが設けられず露出している部分があり、この露出部分に負極端子12が取り付けられている。負極集電体22Aは、例えば、銅箔,ニッケル箔あるいはステンレス箔などの金属箔により構成されている。   The negative electrode 22 includes, for example, a negative electrode current collector 22A having a pair of opposed surfaces and a negative electrode active material layer 22B provided on both surfaces of the negative electrode current collector 22A. The negative electrode current collector 22A also has an exposed portion where the negative electrode active material layer 22B is not provided at one end in the longitudinal direction, and the negative electrode terminal 12 is attached to the exposed portion. The negative electrode current collector 22A is made of, for example, a metal foil such as a copper foil, a nickel foil, or a stainless steel foil.

負極活物質層22Bは、例えば、負極活物質として、リチウムを吸蔵および放出することが可能な負極材料のいずれか1種または2種以上を含んで構成されており、必要に応じて導電材および結着材を含んでいてもよい。導電材および結着材については正極21で説明したものと同様のものを用いることができる。   The negative electrode active material layer 22B includes, for example, any one or two or more negative electrode materials capable of inserting and extracting lithium as a negative electrode active material. A binder may be included. As the conductive material and the binder, the same materials as those described for the positive electrode 21 can be used.

リチウムを吸蔵および放出することが可能な負極材料としては、例えば、炭素材料,リチウムと合金を形成可能な金属元素または半金属元素を構成元素として含む材料,金属酸化物あるいは高分子化合物が挙げられる。炭素材料としては、例えば、易黒鉛化炭素、(002)面の面間隔が0.37nm以上の難黒鉛化炭素、あるいは(002)面の面間隔が0.340nm以下の黒鉛が挙げられ、黒鉛は人造黒鉛でも天然黒鉛でもよい。リチウムと合金を形成可能な金属元素または半金属元素を構成元素として含む材料としては、例えば、リチウムと合金を形成可能な金属元素の単体,合金,あるいは化合物、またはリチウムと合金を形成可能な半金属元素の単体,合金,あるいは化合物、またはこれらの1種あるいは2種以上の相を少なくとも一部に有する材料が挙げられ、特に、ケイ素(Si)またはスズ(Sn)を構成元素として含むものが好ましい。金属酸化物としては、酸化鉄,酸化ルテニウムあるいは酸化モリブデンなどが挙げられ、高分子化合物としてはポリアセチレンあるいはポリピロールなどが挙げられる。   Examples of the anode material capable of inserting and extracting lithium include a carbon material, a material containing a metal element or a metalloid element capable of forming an alloy with lithium as a constituent element, a metal oxide, or a polymer compound. . Examples of the carbon material include graphitizable carbon, non-graphitizable carbon having a (002) plane spacing of 0.37 nm or more, or graphite having a (002) plane spacing of 0.340 nm or less. May be artificial graphite or natural graphite. Examples of a material containing a metal element or metalloid element capable of forming an alloy with lithium as a constituent element include, for example, a simple substance, an alloy, or a compound of a metal element capable of forming an alloy with lithium, or a metal element capable of forming an alloy with lithium. Examples include simple substances, alloys, or compounds of metal elements, or materials having at least a part of one or more of these phases, particularly those containing silicon (Si) or tin (Sn) as a constituent element. preferable. Examples of the metal oxide include iron oxide, ruthenium oxide, and molybdenum oxide. Examples of the polymer compound include polyacetylene and polypyrrole.

また、本実施の形態では、細孔を有する黒鉛よりなる複数の1次粒子が、少なくとも一部において配向面が互いに非平行となるように結合して2次粒子を形成している結合黒鉛材料を含有している。細孔を有する黒鉛は高容量を得ることができると共に、電池内において発生したガスを吸収することができるので好ましく、特に、配向面が互いに非平行となるように結合した2次粒子とすることにより、リチウムイオン受け入れ性をより向上させることができるからである。   Further, in the present embodiment, a combined graphite material in which a plurality of primary particles made of graphite having pores are combined to form secondary particles in such a manner that at least some of the alignment surfaces are non-parallel to each other. Contains. The graphite having pores is preferable because it can obtain a high capacity and can absorb the gas generated in the battery, and in particular, secondary particles bonded so that the orientation planes are not parallel to each other. This is because the lithium ion acceptability can be further improved.

この結合黒鉛材料は、2次粒子の長軸方向の長さをA、短軸方向の長さをBとすると、A/Bで表されるアスペクト比の平均値が放電状態において1以上4以下であることが好ましい。2次粒子を構成している1次粒子の配向面が平行に近いとこのアスペクト比の値は大きくなりやすく、1次粒子の配向面がより非平行であるとこのアスペクト比の値は小さくなりやすいので、その平均値を4以下とすれば、より高い効果を得ることができるからである。なお、このアスペクト比は、例えば走査型電子顕微鏡(Scanning Electron Microscope;SEM)により見積もった2次粒子の長軸方向の長さA、および短軸方向の長さBに基づいて算出することができる。   In this bonded graphite material, when the length in the major axis direction of the secondary particles is A and the length in the minor axis direction is B, the average aspect ratio represented by A / B is 1 or more and 4 or less in the discharge state. It is preferable that The aspect ratio value tends to increase when the orientation planes of the primary particles constituting the secondary particles are nearly parallel, and the aspect ratio value decreases when the orientation planes of the primary particles are more non-parallel. This is because if the average value is 4 or less, a higher effect can be obtained. The aspect ratio can be calculated based on the length A in the major axis direction and the length B in the minor axis direction of the secondary particles estimated by, for example, a scanning electron microscope (SEM). .

この結合黒鉛材料の比表面積は、5m2 /g以下であることが好ましい。比表面積が大きすぎると、電解液の分解などの副反応が多くなり、特性を十分に向上させることができないからである。また、この結合黒鉛材料の比表面積は、1m2 /g以上であることが好ましい。比表面積が小さすぎると、ガスの吸収能が低下してしまうからである。なお、結合黒鉛材料の比表面積は、例えばBET(Brunauer Emmett Teller)1点法により見積もることができる。 The specific surface area of the bonded graphite material is preferably 5 m 2 / g or less. This is because if the specific surface area is too large, side reactions such as decomposition of the electrolytic solution increase, and the characteristics cannot be sufficiently improved. The specific surface area of the bonded graphite material is preferably 1 m 2 / g or more. This is because if the specific surface area is too small, the gas absorption ability is lowered. The specific surface area of the bonded graphite material can be estimated by, for example, the BET (Brunauer Emmett Teller) one-point method.

更に、この結合黒鉛材料は、水銀圧入法により見積もられる細孔径10nm以上1×105 nm以下の細孔の体積が、単位質量当たり0.5cm3 /g以上1.5cm3 /g以下であることが好ましく、更に、水銀圧入法により見積もられる細孔径10nm以上2×103 nm以下の細孔の体積が、単位質量当たり0.1cm3 /g以上0.3cm3 /g以下であればより好ましい。このような細孔分布を有することにより、リチウムイオン受け入れ性がより向上し、容量およびサイクル容量維持率をより向上させることができるからである。 Further, in this bonded graphite material, the volume of pores having a pore diameter of 10 nm or more and 1 × 10 5 nm or less estimated by a mercury intrusion method is 0.5 cm 3 / g or more and 1.5 cm 3 / g or less per unit mass. More preferably, the volume of pores having a pore diameter of 10 nm or more and 2 × 10 3 nm or less estimated by a mercury intrusion method is 0.1 cm 3 / g or more and 0.3 cm 3 / g or less per unit mass. preferable. This is because by having such a pore distribution, the lithium ion acceptability is further improved, and the capacity and cycle capacity maintenance rate can be further improved.

この結合黒鉛材料は、例えば、フィラーとなるコークスなどと、成型剤あるいは焼結剤となるピッチなどとを混合して熱処理し、黒鉛化することにより得ることができる。この方法によれば、フィラー(コークス)およびバインダーピッチなどを原料とするので、多結晶体の黒鉛が得られ、また、原料に含まれる硫黄あるいは窒素が熱処理時にガスとなって発生することにより、その通り道に細孔が形成される。この結合黒鉛材料は、他にも、細孔を有する黒鉛の1次粒子を造粒することにより得ることができる。造粒にはどのような方法を用いてもよく、例えば、溶媒または造粒助剤を含む液体を用いて撹拌転動する湿式法を用いてもよいし、無添加で転動する乾式法を用いてもよい。更に、上述した熱処理または造粒処理を行ったのちに、等方性加圧処理を行うようにすればより好ましい。   This bonded graphite material can be obtained, for example, by mixing coke as a filler and pitch or the like as a molding agent or a sintering agent, followed by heat treatment and graphitization. According to this method, since filler (coke), binder pitch, and the like are used as raw materials, polycrystalline graphite is obtained, and sulfur or nitrogen contained in the raw materials is generated as a gas during heat treatment. A pore is formed in the path. In addition, this bonded graphite material can be obtained by granulating primary particles of graphite having pores. Any method may be used for the granulation. For example, a wet method in which a solvent or a liquid containing a granulation aid is used for stirring and rolling may be used, or a dry method in which no rolling is performed without addition. It may be used. Furthermore, it is more preferable to perform isotropic pressure treatment after the heat treatment or granulation treatment described above.

なお、負極活物質層22Bは、負極活物質としてこの結合黒鉛材料のみを用いてもよいが、他の1種または2種以上の負極活物質と共に用いてもよい。その場合、負極活物質における結合黒鉛材料の割合は、0質量%よりも多く、60質量%以下の範囲内が好ましく、3質量%以上30質量%以下の範囲内であればより好ましい。膨れを抑制しつつ、より高いサイクル容量維持率を得ることができるからである。   The negative electrode active material layer 22B may use only this bonded graphite material as the negative electrode active material, but may also be used with one or more other negative electrode active materials. In that case, the ratio of the bonded graphite material in the negative electrode active material is more than 0% by mass, preferably in the range of 60% by mass or less, and more preferably in the range of 3% by mass to 30% by mass. This is because a higher cycle capacity maintenance rate can be obtained while suppressing swelling.

セパレータ23は、例えば、ポリプロピレンあるいはポリエチレンなどのポリオレフィン系の合成樹脂よりなる多孔質膜、またはセラミック製の不織布などの無機材料よりなる多孔質膜など、イオン透過度が大きく、所定の機械的強度を有する絶縁性の薄膜により構成されており、これら2種以上の多孔質膜を積層した構造とされていてもよい。   The separator 23 has a high ion permeability and a predetermined mechanical strength, such as a porous film made of a polyolefin-based synthetic resin such as polypropylene or polyethylene, or a porous film made of an inorganic material such as a ceramic nonwoven fabric. It is comprised by the insulating thin film which has, and may be set as the structure which laminated | stacked these 2 or more types of porous films.

電解質24は、電解液を高分子化合物に保持させたいわゆるゲル状の電解質により構成されている。電解質24はセパレータ23に含浸されていてもよく、また、セパレータ23と正極21および負極22との間に存在していてもよい。   The electrolyte 24 is constituted by a so-called gel electrolyte in which an electrolytic solution is held in a polymer compound. The electrolyte 24 may be impregnated in the separator 23, or may exist between the separator 23 and the positive electrode 21 and the negative electrode 22.

電解液は、例えば、溶媒と、この溶媒に溶解された電解質塩とを含んでいる。溶媒としては、例えば、γ−ブチロラクトン,γ−バレロラクトン,δ−バレロラクトンあるいはε−カプロラクトンなどのラクトン系溶媒、炭酸エチレン,炭酸プロピレン,炭酸ブチレン,炭酸ビニレン,炭酸ジメチル,炭酸エチルメチルあるいは炭酸ジエチルなどの炭酸エステル系溶媒、1,2−ジメトキシエタン,1−エトキシ−2−メトキシエタン,1,2−ジエトキシエタン,テトラヒドロフランあるいは2−メチルテトラヒドロフランなどのエーテル系溶媒、アセトニトリルなどのニトリル系溶媒、スルフォラン系溶媒、リン酸類、リン酸エステル溶媒、またはピロリドン類などの非水溶媒が挙げられる。溶媒は、いずれか1種を単独で用いてもよく、2種以上を混合して用いてもよい。   The electrolytic solution includes, for example, a solvent and an electrolyte salt dissolved in the solvent. Examples of the solvent include lactone solvents such as γ-butyrolactone, γ-valerolactone, δ-valerolactone, and ε-caprolactone, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate. Carbonate ester solvents such as 1,2-dimethoxyethane, 1-ethoxy-2-methoxyethane, 1,2-diethoxyethane, ether solvents such as tetrahydrofuran or 2-methyltetrahydrofuran, nitrile solvents such as acetonitrile, Nonaqueous solvents such as sulfolane-based solvents, phosphoric acids, phosphate ester solvents, or pyrrolidones are mentioned. Any one type of solvent may be used alone, or two or more types may be mixed and used.

電解質塩は、溶媒に溶解してイオンを生ずるものであればいずれを用いてもよく、1種を単独で用いても、2種以上を混合して用いてもよい。例えばリチウム塩であれば、六フッ化リン酸リチウム(LiPF6 ),四フッ化ホウ酸リチウム(LiBF4 ),六フッ化ヒ酸リチウム(LiAsF6 ),過塩素酸リチウム(LiClO4 ),トリフルオロメタンスルホン酸リチウム(LiCF3 SO3 ),ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(SO2 CF3 2 ),トリス(トリフルオロメタンスルホニル)メチルリチウム(LiC(SO2 CF3 3 ),四塩化アルミン酸リチウム(LiAlCl4 )あるいは六フッ化ケイ酸リチウム(LiSiF6 )などが挙げられる。 Any electrolyte salt may be used as long as it dissolves in a solvent to generate ions, and one kind may be used alone, or two or more kinds may be used in combination. For example, for lithium salts, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium perchlorate (LiClO 4 ), trifluoro Lithium methanesulfonate (LiCF 3 SO 3 ), bis (trifluoromethanesulfonyl) imidolithium (LiN (SO 2 CF 3 ) 2 ), tris (trifluoromethanesulfonyl) methyllithium (LiC (SO 2 CF 3 ) 3 ), four Examples thereof include lithium chloroaluminate (LiAlCl 4 ) and lithium hexafluorosilicate (LiSiF 6 ).

高分子化合物としては、化1に示した構成単位を含むポリフッ化ビニリデンあるいはフッ化ビニリデンとヘキサフルオロプロピレンとの共重合体などのフッ化ビニリデンの重合体が好ましく挙げられる。酸化還元安定性が高いからである。   Preferred examples of the polymer compound include a polymer of vinylidene fluoride such as polyvinylidene fluoride containing the structural unit shown in Chemical Formula 1 or a copolymer of vinylidene fluoride and hexafluoropropylene. This is because the redox stability is high.

Figure 2011077051
Figure 2011077051

また、高分子化合物としては、重合性化合物が重合されることにより形成されたものも挙げられる。重合性化合物としては、例えば、ビニル基あるいはその一部の水素をメチル基などの置換基で置換した基を含有するものが挙げられる。具体的には、アクリル酸エステルなどの単官能アクリレート、メタクリル酸エステルなどの単官能メタクリレート、ジアクリル酸エステル,あるいはトリアクリル酸エステルなどの多官能アクリレート、ジメタクリル酸エステルあるいはトリメタクリル酸エステルなどの多官能メタクリレート、アクリロニトリル、またはメタクリロニトリルなどがあり、中でも、アクリレート基あるいはメタクリレート基を有するエステルが好ましい。重合が進行しやすく、重合性化合物の反応率が高いからである。また、重合性化合物としては、エーテル基を含まないものが好ましい。エーテル基が存在するとエーテル基にリチウムイオンが配位し、それによりイオン伝導率が低下してしまうからである。このような高分子化合物としては、例えば、化2に示した構成単位を含むポリアクリル酸エステル、ポリメタクリル酸エステル、ポリアクリロニトリル、またはポリメタクリロニトリルが挙げられる。   Examples of the polymer compound include those formed by polymerizing a polymerizable compound. Examples of the polymerizable compound include those containing a vinyl group or a group obtained by substituting a part of hydrogen with a substituent such as a methyl group. Specifically, monofunctional acrylates such as acrylic acid esters, monofunctional methacrylates such as methacrylic acid esters, polyfunctional acrylates such as diacrylic acid esters or triacrylic acid esters, and polyfunctional acrylates such as dimethacrylic acid esters or trimethacrylic acid esters. There are functional methacrylate, acrylonitrile, methacrylonitrile, and the like. Among them, an ester having an acrylate group or a methacrylate group is preferable. This is because the polymerization proceeds easily and the reaction rate of the polymerizable compound is high. Moreover, as a polymeric compound, what does not contain an ether group is preferable. This is because if an ether group is present, lithium ions are coordinated to the ether group, thereby reducing the ionic conductivity. Examples of such a polymer compound include polyacrylic acid ester, polymethacrylic acid ester, polyacrylonitrile, or polymethacrylonitrile containing the structural unit shown in Chemical Formula 2.

Figure 2011077051
(式中、R1は、Cj H2j-1 k を表す。j,kは、1≦j≦8,0≦k≦4の範囲内の整数である。)
Figure 2011077051
(In the formula, R1 represents C j H2 j-1 O k. J and k are integers in the range of 1 ≦ j ≦ 8, 0 ≦ k ≦ 4.)

重合性化合物は、いずれか1種を単独で用いてもよいが、単官能体と多官能体とを混合するか、または、多官能体を単独あるいは2種類以上を混合して用いることが望ましい。このように構成することにより、重合して形成された高分子化合物の機械的強度と、電解液保持性とを両立させやすくなるからである。   Any one of the polymerizable compounds may be used alone, but it is desirable to mix a monofunctional compound and a polyfunctional compound, or to use a polyfunctional compound singly or in combination of two or more. . This is because such a configuration makes it easy to achieve both the mechanical strength of the polymer compound formed by polymerization and the electrolyte solution retention.

更にまた、高分子化合物は、ポリビニルアセタールおよびその誘導体からなる群のうちの少なくとも1種を重合した構造を有するものも好ましく挙げられる。   Furthermore, the thing which has a structure which polymerized at least 1 sort (s) of the high molecular compound from the group which consists of polyvinyl acetal and its derivative (s) is mentioned preferably.

ポリビニルアセタールは、化3(1)に示したアセタール基を含む構成単位と、化3(2)に示した水酸基を含む構成単位と、化3(3)に示したアセチル基を含む構成単位とを繰り返し単位に含む化合物である。具体的には、例えば、化3(1)に示したR2が水素のポリビニルホルマール、またはR2がプロピル基のポリビニルブチラールが挙げられる。   The polyvinyl acetal includes a structural unit containing an acetal group shown in Chemical Formula 3 (1), a structural unit containing a hydroxyl group shown in Chemical Formula 3 (2), and a structural unit containing an acetyl group shown in Chemical Formula 3 (3) In a repeating unit. Specifically, for example, R2 is hydrogen polyvinyl formal shown in Chemical Formula 3 (1), or R2 is propyl group polyvinyl butyral.

Figure 2011077051
(R2は水素原子もしくは炭素数1〜3のアルキル基を表す。)
Figure 2011077051
(R2 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.)

ポリビニルアセタールにおけるアセタール基の割合は60mol%以上80mol%以下の範囲内であることが好ましい。この範囲内において溶媒との溶解性を向上させることができると共に、電解質の安定性をより高めることができるからである。また、ポリビニルアセタールの重量平均分子量は、10000以上500000以下の範囲内であることが好ましい。分子量が低すぎると重合反応が進行しにくく、高すぎると電解液の粘度が上昇してしまうからである。   The ratio of the acetal group in the polyvinyl acetal is preferably in the range of 60 mol% to 80 mol%. This is because the solubility with the solvent can be improved within this range, and the stability of the electrolyte can be further increased. Moreover, it is preferable that the weight average molecular weight of polyvinyl acetal exists in the range of 10,000 or more and 500,000 or less. This is because if the molecular weight is too low, the polymerization reaction does not proceed easily, and if it is too high, the viscosity of the electrolytic solution increases.

この高分子化合物は、ポリビニルアセタールのみ、またはその誘導体の1種のみを重合したものでも、それらの2種以上を重合したものでもよく、更に、ポリビニルアセタールおよびその誘導体以外のモノマーとの共重合体でもよい。また、架橋剤により重合したものでもよい。   The polymer compound may be a polymer obtained by polymerizing only polyvinyl acetal or one of its derivatives, or a polymer obtained by polymerizing two or more of them, and a copolymer with monomers other than polyvinyl acetal and its derivatives. But you can. Moreover, what was polymerized with the crosslinking agent may be used.

なお、電解質24には、電解液を高分子化合物に保持させることなく、液状の電解質としてそのまま用いてもよい。この場合、電解液はセパレータ23に含浸されている。   The electrolyte 24 may be used as it is as a liquid electrolyte without holding the electrolytic solution in the polymer compound. In this case, the electrolytic solution is impregnated in the separator 23.

<2.二次電池の製造方法>
この二次電池は、例えば、次のようにして製造することができる。
<2. Manufacturing method of secondary battery>
For example, the secondary battery can be manufactured as follows.

まず、例えば、正極集電体21Aに正極活物質層21Bを形成し正極21を作製する。正極活物質層21Bは、例えば、正極活物質の粉末と導電材と結着材とを混合して正極合剤を調製したのち、この正極合剤をN−メチル−2−ピロリドンなどの溶剤に分散させてペースト状の正極合剤スラリーとし、この正極合剤スラリーを正極集電体21Aに塗布し乾燥させ、圧縮成型することにより形成する。また、例えば、正極21と同様にして、負極集電体22Aに負極活物質層22Bを形成し負極22を作製する。   First, for example, the positive electrode active material layer 21B is formed on the positive electrode current collector 21A to produce the positive electrode 21. The positive electrode active material layer 21B is prepared, for example, by mixing a positive electrode active material powder, a conductive material, and a binder to prepare a positive electrode mixture, and then using the positive electrode mixture in a solvent such as N-methyl-2-pyrrolidone. The positive electrode mixture slurry is dispersed to form a positive electrode mixture slurry, and the positive electrode mixture slurry is applied to the positive electrode current collector 21A, dried, and compression molded. Further, for example, in the same manner as the positive electrode 21, the negative electrode active material layer 22 </ b> B is formed on the negative electrode current collector 22 </ b> A to produce the negative electrode 22.

次いで、正極集電体21Aに正極端子11を取り付けると共に、負極集電体22Aに負極端子12を取り付ける。続いて、正極21と負極22とをセパレータ23を介して積層し、長手方向に巻回して最外周部に保護テープを接着し、巻回電極体20の前駆体である巻回体を作製する。そののち、この巻回体を外装部材30の間に挟み、外装部材30の外周縁部を一辺を除いて熱融着し、電解液および高分子化合物の原料であるモノマーを含む電解質組成物を注入する。次いで、外装部材30の残りの一辺を熱融着して密閉したのち、モノマーを重合させて電解質24を形成する。これにより、図1,2に示した二次電池が得られる。   Next, the positive electrode terminal 11 is attached to the positive electrode current collector 21A, and the negative electrode terminal 12 is attached to the negative electrode current collector 22A. Subsequently, the positive electrode 21 and the negative electrode 22 are laminated via the separator 23, wound in the longitudinal direction, and a protective tape is adhered to the outermost peripheral portion, thereby producing a wound body that is a precursor of the wound electrode body 20. . After that, the wound body is sandwiched between the exterior members 30, and the outer peripheral edge of the exterior member 30 is heat-sealed except for one side, and an electrolyte composition containing an electrolyte and a monomer that is a raw material for the polymer compound is obtained. inject. Next, after the remaining one side of the exterior member 30 is heat-sealed and sealed, the monomer is polymerized to form the electrolyte 24. Thereby, the secondary battery shown in FIGS. 1 and 2 is obtained.

また、外装部材30の内部に電解質組成物を注入し、モノマーを重合させて電解質24を形成するのではなく、正極21および負極22を作製したのち、それらの上に、電解液および高分子化合物を含む電解質24を形成し、それらをセパレータ23を介して巻回し、外装部材30の内部に封入するようにしてもよい。   Further, instead of injecting the electrolyte composition into the exterior member 30 and polymerizing the monomer to form the electrolyte 24, the positive electrode 21 and the negative electrode 22 are produced, and then the electrolytic solution and the polymer compound are formed thereon. The electrolyte 24 may be formed, wound around the separator 23, and sealed in the exterior member 30.

更に、電解質24として電解液を用いる場合には、上述したようにして巻回体を作製し、外装部材30の間に挟み込んだのち、電解液を注入して外装部材30を密閉する。   Further, when an electrolytic solution is used as the electrolyte 24, the wound body is produced as described above and sandwiched between the exterior members 30, and then the electrolytic solution is injected to seal the exterior member 30.

<3.二次電池の作用および効果>
この二次電池では、充電を行うと、例えば、正極21からリチウムイオンが放出され、電解質24を介して負極22に吸蔵される。一方、放電を行うと、例えば、負極22からリチウムイオンが放出され、電解質24を介して正極21に吸蔵される。その際、負極活物質層22Bには上述した結合黒鉛材料が含まれているので、高い容量が得られると共に、発生したガスが吸収され、膨れが抑制される。
<3. Action and Effect of Secondary Battery>
In the secondary battery, when charged, for example, lithium ions are extracted from the positive electrode 21 and inserted in the negative electrode 22 through the electrolyte 24. On the other hand, when discharging is performed, for example, lithium ions are extracted from the negative electrode 22 and inserted in the positive electrode 21 through the electrolyte 24. At that time, since the above-mentioned bonded graphite material is included in the negative electrode active material layer 22B, a high capacity is obtained, and the generated gas is absorbed and swelling is suppressed.

このように本実施の形態によれば、配向面が非平行となるように1次粒子が結合して2次粒子を形成しており、細孔径10nm以上1×105 nm以下の細孔の体積が0.5cm3 /g以上1.5cm3 /g以下の結合黒鉛材料を含有するようにしたので、容量を向上させることができると共に、副反応などにより発生したガスを吸収して、膨れを抑制することができる。 As described above, according to the present embodiment, the primary particles are bonded to form the secondary particles so that the orientation planes are not parallel, and the pores having a pore diameter of 10 nm or more and 1 × 10 5 nm or less are formed. Since the bonded graphite material having a volume of 0.5 cm 3 / g or more and 1.5 cm 3 / g or less is contained, the capacity can be improved and the gas generated by the side reaction or the like can be absorbed and swollen. Can be suppressed.

特に、負極活物質における結合黒鉛材料の割合を60質量%以下とするようにすれば、膨れを抑制しつつ、サイクル容量維持率を向上させることができる。   In particular, when the ratio of the bonded graphite material in the negative electrode active material is set to 60% by mass or less, the cycle capacity maintenance rate can be improved while suppressing swelling.

また、細孔径10nm以上2×103 nm以下の細孔の体積を0.1cm3 /g以上0.3cm3 /g以下とするようにすれば、または、2次粒子のアスペクト比A/Bの平均値を4以下とするようにすれば、または、結合黒鉛材料の比表面積を5m2 /g以下とするようにすれば、より高い効果を得ることができる。 Further, if the volume of pores having a pore diameter of 10 nm or more and 2 × 10 3 nm or less is set to 0.1 cm 3 / g or more and 0.3 cm 3 / g or less, or the aspect ratio A / B of the secondary particles If the average value is made 4 or less, or the specific surface area of the bonded graphite material is made 5 m 2 / g or less, a higher effect can be obtained.

更に、本発明の具体的な実施例について詳細に説明する。   Further, specific embodiments of the present invention will be described in detail.

(実験例1−1〜1−5)
図1,2に示したフィルム状の外装部材を用いた二次電池を作製した。
(Experimental Examples 1-1 to 1-5)
A secondary battery using the film-shaped exterior member shown in FIGS.

まず、炭酸リチウム0.5molと炭酸コバルト1molとを混合し、この混合物を空気中において900℃で5時間焼成して正極活物質であるリチウムコバルト複合酸化物(LiCoO2 )を合成した。次いで、このリチウムコバルト複合酸化物粉末85質量%と、導電材である人造黒鉛5質量%と、結着材であるポリフッ化ビニリデン10質量%とを混合して正極合剤を調製したのち、溶剤であるN−メチル−2−ピロリドンに分散させて正極合剤スラリーを作製した。続いて、この正極合剤スラリーを厚み20μmのアルミニウム箔よりなる正極集電体21Aの両面に塗布し乾燥させたのち、圧縮成型して正極活物質層21Bを形成し、正極21を作製した。そののち、正極21に正極端子11を取り付けた。 First, 0.5 mol of lithium carbonate and 1 mol of cobalt carbonate were mixed, and this mixture was fired in air at 900 ° C. for 5 hours to synthesize a lithium cobalt composite oxide (LiCoO 2 ) as a positive electrode active material. Subsequently, 85% by mass of this lithium cobalt composite oxide powder, 5% by mass of artificial graphite as a conductive material, and 10% by mass of polyvinylidene fluoride as a binder were prepared, and then a positive electrode mixture was prepared. A positive electrode mixture slurry was prepared by dispersing in N-methyl-2-pyrrolidone. Subsequently, this positive electrode mixture slurry was applied to both surfaces of a positive electrode current collector 21A made of an aluminum foil having a thickness of 20 μm and dried, and then compression molded to form the positive electrode active material layer 21B, whereby the positive electrode 21 was produced. After that, the positive electrode terminal 11 was attached to the positive electrode 21.

また、平均粒径10μmのコークス粉末50質量部と、ピッチ15質量部と、炭化ケイ素(揮発温度2500℃〜3000℃)10質量部と、コールタール10質量部とを混合し、200℃で1時間撹拌した。次いで、この混合物を平均粒径20μmに粉砕し、これを金型に入れてプレス成形し、大きさ15mm×25cm×6cmの直方体の黒鉛前駆体成形体とした。この黒鉛前駆体成形体を窒素雰囲気中において1000℃以上で熱処理したのち、更に窒素雰囲気中において3000℃前後で熱処理し、結合黒鉛材料を作製した。その際、実験例1−1〜1−5で、熱処理温度および時間を変化させることにより、結合黒鉛材料の細孔分布、比表面積およびアスペクト比A/Bを変化させた。作製した結合黒鉛材料の細孔分布、比表面積およびアスペクト比A/Bを表1に示す。なお、細孔分布は水銀圧入法により測定し、比表面積はキャリア、リファレンスとして窒素および窒素ヘリウム混合ガスを用いたBET1点法により測定し、アスペクト比A/BはSEMにより任意の10個を取り出して測定し、その平均値を算出した。   Further, 50 parts by mass of coke powder having an average particle diameter of 10 μm, 15 parts by mass of pitch, 10 parts by mass of silicon carbide (volatilization temperature 2500 ° C. to 3000 ° C.) and 10 parts by mass of coal tar are mixed, and 1 at 200 ° C. Stir for hours. Next, the mixture was pulverized to an average particle size of 20 μm, put into a mold and press-molded, to obtain a rectangular graphite precursor compact having a size of 15 mm × 25 cm × 6 cm. This graphite precursor compact was heat-treated at 1000 ° C. or higher in a nitrogen atmosphere, and further heat-treated at about 3000 ° C. in a nitrogen atmosphere to produce a bonded graphite material. At that time, in Experiments 1-1 to 1-5, the pore distribution, specific surface area, and aspect ratio A / B of the bonded graphite material were changed by changing the heat treatment temperature and time. Table 1 shows the pore distribution, specific surface area, and aspect ratio A / B of the produced bonded graphite material. The pore distribution is measured by the mercury intrusion method, the specific surface area is measured by the BET one-point method using nitrogen and nitrogen helium mixed gas as a carrier and reference, and the aspect ratio A / B is taken out by arbitrary 10 by SEM. The average value was calculated.

また、得られた実験例1−1〜1−5の結合黒鉛材料について、X線回折法により分析したところ、いずれも黒鉛であることが確認された。更に、集束イオンビームを用いてこの結合黒鉛材料の断面を出し、透過型電子顕微鏡により観察したところ、いずれも複数の1次粒子が結合して2次粒子を形成しており、1次粒子の少なくとも一部は六角網面の配向面が非平行となっていることが確認された。   Moreover, when it analyzed by the X-ray-diffraction method about the obtained bonded graphite material of Experimental example 1-1 to 1-5, it was confirmed that all are graphite. Further, a cross-section of this bonded graphite material was taken out using a focused ion beam and observed with a transmission electron microscope. As a result, a plurality of primary particles were combined to form secondary particles. It was confirmed that at least a part of the orientation plane of the hexagonal mesh surface was non-parallel.

作製した結合黒鉛材料を負極活物質とし、この負極活物質粉末95質量%と、結着材であるポリフッ化ビニリデン5質量%とを混合して負極合剤を調製したのち、溶剤であるN−メチル−2−ピロリドンに分散させて負極合剤スラリーを作製した。次いで、この負極合剤スラリーを厚み15μmの銅箔よりなる負極集電体22Aの両面に塗布し乾燥させたのち、圧縮成型して負極活物質層22Bを形成し、負極22を作製した。図3に、実験例1−3において作製した負極活物質層22Bの断面写真を代表して示す。図3に示したように、結合黒鉛材料は、配向面が非平行となるように複数の1次粒子が結合して2次粒子を形成していることが分かる。   The prepared bonded graphite material is used as a negative electrode active material, and 95% by mass of the negative electrode active material powder and 5% by mass of polyvinylidene fluoride as a binder are mixed to prepare a negative electrode mixture, and then N— which is a solvent. A negative electrode mixture slurry was prepared by dispersing in methyl-2-pyrrolidone. Next, this negative electrode mixture slurry was applied to both surfaces of a negative electrode current collector 22A made of a copper foil having a thickness of 15 μm and dried, and then compression molded to form a negative electrode active material layer 22B, whereby a negative electrode 22 was produced. FIG. 3 representatively shows a cross-sectional photograph of the negative electrode active material layer 22B produced in Experimental Example 1-3. As shown in FIG. 3, it can be seen that in the bonded graphite material, a plurality of primary particles are combined to form secondary particles such that the orientation planes are non-parallel.

続いて、負極22に負極端子12を取り付けたのち、作製した正極21および負極22を、厚み25μmの微多孔性ポリエチレンフィルムよりなるセパレータ23を介して密着させ、長手方向に巻き回して巻回体を作製した。そののち、作製した巻回体を外装部材30の間に装填し、外装部材30の外周縁部を一辺を除いて熱融着した。外装部材30には最外層から順に25μm厚のナイロンフィルムと40μm厚のアルミニウム箔と30μm厚のポリプロピレンフィルムとが積層されてなる防湿性のアルミラミネートフィルムを用いた。   Subsequently, after attaching the negative electrode terminal 12 to the negative electrode 22, the prepared positive electrode 21 and negative electrode 22 are closely attached via a separator 23 made of a microporous polyethylene film having a thickness of 25 μm, and wound in the longitudinal direction. Was made. After that, the produced wound body was loaded between the exterior members 30, and the outer peripheral edge of the exterior member 30 was heat-sealed except for one side. The exterior member 30 was a moisture-proof aluminum laminate film in which a 25 μm thick nylon film, a 40 μm thick aluminum foil, and a 30 μm thick polypropylene film were laminated in order from the outermost layer.

次いで、炭酸エチレンと炭酸ジエチルとを、炭酸エチレン:炭酸ジエチル=3:7の質量比で混合した溶媒に、六フッ化リン酸リチウムを1mol/lの濃度で溶解させた電解液を、外装部材30の内部に注入し、外装部材30の残りの1辺を熱融着することにより二次電池を得た。   Next, an exterior member is prepared by dissolving an electrolytic solution in which lithium hexafluorophosphate is dissolved at a concentration of 1 mol / l in a solvent in which ethylene carbonate and diethyl carbonate are mixed at a mass ratio of ethylene carbonate: diethyl carbonate = 3: 7. The secondary battery was obtained by injecting into the interior of 30 and thermally fusing the remaining one side of the exterior member 30.

また、実験例1−1〜1−5に対する比較例1−1として、結合黒鉛材料に代えて、造粒していない人造黒鉛粒子を負極活物質として用いたことを除き、他は実験例1−1〜1−5と同様にして二次電池を作製した。比較例1−2,1−3として、黒鉛化する際の熱処理温度、原材料組成比および時間を変化させることにより、細孔分布、比表面積およびアスペクト比A/Bを変化させた結合黒鉛材料を用いたことを除き、他は実験例1−1〜1−5と同様にして二次電池を作製した。比較例1−1〜1−3についても、実験例1−1〜1−5と同様にして、細孔分布、比表面積およびアスペクト比A/Bを測定した。それらの結果も表1に合わせて示す。なお、比較例1−1で用いた人造黒鉛には、細孔径10nm以上1×105 nm以下の細孔は測定されず、比表面積およびアスペクト比A/Bは1次粒子のものである。 Further, as Comparative Example 1-1 with respect to Experimental Examples 1-1 to 1-5, Experimental Example 1 is used except that artificial graphite particles that are not granulated are used as the negative electrode active material instead of the bonded graphite material. Secondary batteries were fabricated in the same manner as -1 to 1-5. As Comparative Examples 1-2 and 1-3, bonded graphite materials in which the pore distribution, the specific surface area, and the aspect ratio A / B were changed by changing the heat treatment temperature, raw material composition ratio, and time during graphitization were used. A secondary battery was fabricated in the same manner as in Experimental Examples 1-1 to 1-5 except that they were used. For Comparative Examples 1-1 to 1-3, the pore distribution, specific surface area, and aspect ratio A / B were measured in the same manner as in Experimental Examples 1-1 to 1-5. The results are also shown in Table 1. In the artificial graphite used in Comparative Example 1-1, pores having a pore diameter of 10 nm to 1 × 10 5 nm are not measured, and the specific surface area and aspect ratio A / B are those of primary particles.

作製した実験例1−1〜1−5および比較例1−1〜1−3の二次電池について、23℃で充放電を行い、定格容量および300サイクル目の放電容量維持率を求めた。充電は、100mAの定電流定電圧充電を上限4.2Vまで15時間行い、放電は100mAの定電流放電を終止電圧2.5Vまで行った。定格容量は1サイクル目の放電容量とし、300サイクル目の放電容量は、定格容量に対する300サイクル目の放電容量の割合、(300サイクル目の放電容量/定格容量)×100により求めた。   About the produced secondary battery of Experimental example 1-1 to 1-5 and Comparative example 1-1 to 1-3, it charged / discharged at 23 degreeC, and calculated | required the rated capacity and the discharge capacity maintenance factor of the 300th cycle. Charging was performed at a constant current and constant voltage of 100 mA for 15 hours up to an upper limit of 4.2 V, and discharging was performed at a constant current of 100 mA up to a final voltage of 2.5 V. The rated capacity was the discharge capacity at the first cycle, and the discharge capacity at the 300th cycle was determined by the ratio of the discharge capacity at the 300th cycle to the rated capacity, (discharge capacity at the 300th cycle / rated capacity) × 100.

また、別途に上述した条件で初回充放電を行った各二次電池について、電池の厚みを測定したのち、再度4.31Vまで3時間充電して60℃の恒温槽内で1ヶ月保管し、保存後の電池の厚みを測定した。保存後の電池厚みから保存前の電池厚みを引いた値を、保存後の膨れとして求めた。得られた結果を表1に示す。   In addition, for each secondary battery that was charged and discharged for the first time under the above-described conditions separately, after measuring the thickness of the battery, it was charged again to 4.31 V for 3 hours and stored in a thermostatic bath at 60 ° C. for 1 month. The thickness of the battery after storage was measured. A value obtained by subtracting the battery thickness before storage from the battery thickness after storage was determined as the swelling after storage. The obtained results are shown in Table 1.

Figure 2011077051
Figure 2011077051

表1に示したように、実験例1−1〜1−5によれば、比較例1−1〜1−3に比べて、定格容量が同等以上で、放電容量維持率が向上し、膨れ量が小さくなった。すなわち、細孔径10nm以上1×105 nm以下の細孔の体積が0.5cm3 /g以上1.5cm3 /g以下の結合黒鉛材料を用いるようにすれば、高い容量を得ることができると共に、サイクル特性を向上させ、膨れを抑制できることが分かった。また、2次粒子のアスペクト比A/Bは平均値で4以下とすることが好ましく、結合黒鉛材料の比表面積は5m2 /g以下とすることが好ましいことも分かった。 As shown in Table 1, according to Experimental Examples 1-1 to 1-5, compared with Comparative Examples 1-1 to 1-3, the rated capacity is equal to or higher, the discharge capacity retention rate is improved, and the swelling is increased. The amount has become smaller. That is, a high capacity can be obtained by using a bonded graphite material having a pore volume of not less than 10 nm and not more than 1 × 10 5 nm having a volume of not less than 0.5 cm 3 / g and not more than 1.5 cm 3 / g. At the same time, it was found that cycle characteristics can be improved and swelling can be suppressed. It was also found that the average aspect ratio A / B of the secondary particles is preferably 4 or less, and the specific surface area of the bonded graphite material is preferably 5 m 2 / g or less.

更に、実験例1−1〜1−5を比較すれば分かるように、細孔径10nm以上2×103 nm以下の細孔の体積が少なくなるに従い、定格容量およびサイクル特性は向上したのち、低下する傾向がみられ、膨れ量は減少したのち増大する傾向がみられた。すなわち、細孔径10nm以上2×103 nm以下の細孔の体積を0.1cm3 /g以上0.3cm3 /g以下とするようにすれば、より好ましいことが分かった。 Furthermore, as can be seen by comparing Experimental Examples 1-1 to 1-5, the rated capacity and cycle characteristics are improved and then decreased as the volume of pores having a pore diameter of 10 nm or more and 2 × 10 3 nm or less decreases. There was a tendency to increase, and the amount of swelling decreased and then increased. That is, it has been found that it is more preferable that the volume of pores having a pore diameter of 10 nm or more and 2 × 10 3 nm or less is 0.1 cm 3 / g or more and 0.3 cm 3 / g or less.

(実験例2−1〜2−18)
結合黒鉛材料に加えて、人造黒鉛であるメソカーボンマイクロビーズ、または天然黒鉛を混合して用いたことを除き、他は実験例1−3と同様にして二次電池を作製した。すなわち、用いた結合黒鉛材料の物性は、実験例1−3と同様に、細孔径10nm以上1×105 nm以下の細孔の体積が1.0cm3 /g、細孔径10nm以上2×10nm以下の細孔の体積が0.2cm3 /g、比表面積が3.5m2 /g、2次粒子のアスペクト比A/Bは平均値で2.1である。結合黒鉛材料と、他の負極活物質との混合割合は、実験例2−1〜2−18で、表2に示したように変化させた。
(Experimental examples 2-1 to 2-18)
A secondary battery was fabricated in the same manner as in Experimental Example 1-3, except that mesocarbon microbeads, which are artificial graphite, or natural graphite was mixed and used in addition to the bonded graphite material. That is, the physical properties of the bonded graphite material used were as follows in Experimental Example 1-3: the pore volume with a pore diameter of 10 nm or more and 1 × 10 5 nm or less was 1.0 cm 3 / g, and the pore diameter was 10 nm or more and 2 × 10 nm. The volume of the following pores is 0.2 cm 3 / g, the specific surface area is 3.5 m 2 / g, and the aspect ratio A / B of the secondary particles is 2.1 on average. The mixing ratio of the bonded graphite material and the other negative electrode active material was changed as shown in Table 2 in Experimental Examples 2-1 to 2-18.

実験例2−1〜2−9で用いたメソカーボンマイクロビーズの比表面積は0.7m2 /g、アスペクト比A/Bは1.1であり、実験例2−10〜2−18で用いた天然黒鉛の比表面積は4m2 /g、アスペクト比A/Bは7である。これらはいずれも1次粒子の値であり、天然黒鉛についてもメソカーボンマイクロビーズについても、細孔径10nm以上1×105 nm以下の細孔は測定されなかった。 The specific surface area of the mesocarbon microbeads used in Experimental Examples 2-1 to 2-9 is 0.7 m 2 / g, and the aspect ratio A / B is 1.1, which is used in Experimental Examples 2-10 to 2-18. The natural graphite had a specific surface area of 4 m 2 / g and an aspect ratio A / B of 7. These are all primary particle values, and pores having a pore diameter of 10 nm or more and 1 × 10 5 nm or less were not measured for natural graphite and mesocarbon microbeads.

また、実験例2−1〜2−18に対する比較例2−1として、結合黒鉛材料に代えて、天然黒鉛を負極活物質として用いたことを除き、他は実験例1−3と同様にして二次電池を作製した。天然黒鉛は実験例2−10〜2−18で用いたものと同一である。   Further, as Comparative Example 2-1 with respect to Experimental Examples 2-1 to 2-18, except that natural graphite was used as the negative electrode active material instead of the bonded graphite material, the other was the same as Experimental Example 1-3. A secondary battery was produced. Natural graphite is the same as that used in Experimental Examples 2-10 to 2-18.

作製した実験例2−1〜2−18および比較例2−1の二次電池についても、実験例1−3と同様にして、定格容量、300サイクル目の放電容量維持率、および保存後の膨れ量を調べた。得られた結果を実験例1−3および比較例1−1の結果と共に表2に示す。   For the fabricated secondary batteries of Experimental Examples 2-1 to 2-18 and Comparative Example 2-1, in the same manner as in Experimental Example 1-3, the rated capacity, the discharge capacity maintenance rate at the 300th cycle, The amount of swelling was examined. The obtained results are shown in Table 2 together with the results of Experimental Example 1-3 and Comparative Example 1-1.

Figure 2011077051
Figure 2011077051

表2に示したように、負極活物質として他の材料を混合した実験例2−1〜2−12についても、実験例1−3と同様に、定格容量は同等以上で、放電容量維持率を向上させることができ、膨れ量は小さくすることができた。また、放電容量維持率は、結合黒鉛材料の含有量を増加させるに従い向上したのち、低下する傾向がみられた。すなわち、負極活物質における結合黒鉛材料の割合は、0質量%よりも多く60質量%以下の範囲内が好ましく、3質量%以上30質量%以下の範囲内であればより好ましいことが分かった。   As shown in Table 2, also in Experimental Examples 2-1 to 2-12 in which other materials are mixed as the negative electrode active material, the rated capacity is equal to or higher than that of Experimental Example 1-3, and the discharge capacity maintenance rate The amount of swelling was able to be reduced. Moreover, the discharge capacity retention rate tended to decrease after increasing as the content of the bonded graphite material was increased. That is, it was found that the ratio of the bonded graphite material in the negative electrode active material is preferably in the range of more than 0% by mass and 60% by mass or less, and more preferably in the range of 3% by mass to 30% by mass.

(実験例3−1〜3−6)
電解液に代えて、電解液を高分子化合物に保持させたゲル状の電解質24を用いたことを除き、他は実験例2−2と同様にして二次電池を作製した。すなわち、負極活物質には実験例1−3と同様の結合黒鉛材料50質量%と、メソカーボンマイクロビーズ50質量%とを混合して用いた。電解質24は、実験例3−1では、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体と、電解液とを、混合溶剤に溶解させて正極21および負極22に塗布し、混合溶剤を揮発させることにより形成した。電解液には、炭酸エチレン60質量%と、炭酸プロピレン40質量%とを混合した溶媒に、六フッ化リン酸リチウムを1mol/lの濃度で溶解させたものを用いた。
(Experimental examples 3-1 to 3-6)
A secondary battery was fabricated in the same manner as in Experimental Example 2-2 except that instead of the electrolytic solution, a gel electrolyte 24 in which the electrolytic solution was held in a polymer compound was used. That is, the negative electrode active material was used by mixing 50% by mass of the bonded graphite material similar to Experimental Example 1-3 and 50% by mass of mesocarbon microbeads. In Experimental Example 3-1, the electrolyte 24 is prepared by dissolving a copolymer of vinylidene fluoride and hexafluoropropylene and an electrolytic solution in a mixed solvent and applying the solution to the positive electrode 21 and the negative electrode 22 to volatilize the mixed solvent. Was formed. As the electrolytic solution, a solution obtained by dissolving lithium hexafluorophosphate at a concentration of 1 mol / l in a solvent in which 60% by mass of ethylene carbonate and 40% by mass of propylene carbonate were mixed was used.

実験例3−2では、重合性化合物として、化4に示したa,b,cの3つの構造部をa:b:c=2:3:5のモル比で有するものを用い、電解液と混合して外装部材30の内部に注入したのち、重合性化合物を重合させることにより電解質24を形成した。電解液の組成は実験例2−2と同一であり、炭酸エチレンと炭酸ジエチルとを、炭酸エチレン:炭酸ジエチル=3:7の質量比で混合した溶媒に、六フッ化リン酸リチウムを1mol/lの濃度で溶解させたものである。   In Experimental Example 3-2, a polymerizable compound having three structural parts a, b, and c shown in Chemical Formula 4 at a molar ratio of a: b: c = 2: 3: 5 was used, and an electrolytic solution was used. And the electrolyte 24 was formed by polymerizing the polymerizable compound. The composition of the electrolytic solution is the same as in Experimental Example 2-2. In a solvent in which ethylene carbonate and diethyl carbonate are mixed at a mass ratio of ethylene carbonate: diethyl carbonate = 3: 7, 1 mol / liter of lithium hexafluorophosphate is added. dissolved at a concentration of 1.

Figure 2011077051
Figure 2011077051

実験例3−3では、重合性化合物として、化5に示したトリメチロールプロパントリアクリレートと、化6に示したネオペンチルグリコールジアクリレートとを、3:7の質量比で用い、電解液と混合して外装部材30の内部に注入したのち、重合性化合物を重合させることにより電解質24を形成した。電解液の組成は実験例2−2と同一である。   In Experimental Example 3-3, trimethylolpropane triacrylate shown in Chemical Formula 5 and neopentylglycol diacrylate shown in Chemical Formula 6 were used at a mass ratio of 3: 7 as a polymerizable compound, and mixed with the electrolytic solution. And after inject | pouring in the inside of the exterior member 30, the electrolyte 24 was formed by polymerizing a polymeric compound. The composition of the electrolytic solution is the same as in Experimental Example 2-2.

Figure 2011077051
Figure 2011077051
Figure 2011077051
Figure 2011077051

実験例3−4では、重合性化合物として、化7に示した化合物を用い、電解液と混合して外装部材30の内部に注入したのち、重合性化合物を重合させることにより電解質24を形成した。電解液の組成は実験例2−2と同一である。   In Experimental Example 3-4, the compound shown in Chemical Formula 7 was used as the polymerizable compound, mixed with the electrolytic solution, injected into the exterior member 30, and then the polymerizable compound was polymerized to form the electrolyte 24. . The composition of the electrolytic solution is the same as in Experimental Example 2-2.

Figure 2011077051
Figure 2011077051

実験例3−5では、ポリフッ化ビニリデンをセパレータ23の表面に塗布し、巻回体を作製して外装部材30の内部に収納したのち、電解液を注入することにより電解質24を形成した。電解液の組成は実験例2−2と同一である。   In Experimental Example 3-5, polyvinylidene fluoride was applied to the surface of the separator 23, a wound body was prepared and housed in the exterior member 30, and then the electrolyte 24 was formed by injecting an electrolytic solution. The composition of the electrolytic solution is the same as in Experimental Example 2-2.

実験例3−6では、ポリビニルホルマールと電解液とを混合し、外装部材30の内部に注入したのち、ポリビニルホルマールを重合させることにより電解質24を形成した。電解液の組成は実験例2−2と同一である。   In Experimental Example 3-6, after the polyvinyl formal and the electrolytic solution were mixed and injected into the exterior member 30, the electrolyte 24 was formed by polymerizing the polyvinyl formal. The composition of the electrolytic solution is the same as in Experimental Example 2-2.

実験例3−1〜3−6に対する比較例3−1〜3−6として、比較例1−1と同一の人造黒鉛を負極活物質として用いたことを除き、他は実験例3−1〜3−6と同様にして二次電池を作製した。   As Comparative Examples 3-1 to 3-6 with respect to Experimental Examples 3-1 to 3-6, except that the same artificial graphite as Comparative Example 1-1 was used as the negative electrode active material, the others were Experimental Examples 3-1 to A secondary battery was fabricated in the same manner as in 3-6.

実験例3−1〜3−6および比較例3−1〜3−6についても、実験例2−2と同様にして、定格容量、300サイクル目の放電容量維持率、および保存後の膨れ量を調べた。得られた結果を表3に示す。   For Experimental Examples 3-1 to 3-6 and Comparative Examples 3-1 to 3-6, as in Experimental Example 2-2, the rated capacity, the discharge capacity retention rate at the 300th cycle, and the swelling amount after storage I investigated. The obtained results are shown in Table 3.

Figure 2011077051
Figure 2011077051

表3に示したように、実験例3−1〜3−6によれば、比較例3−1〜3−6に比べて、定格容量および放電容量維持率が向上し、膨れ量が小さくなった。すなわち、いわゆるゲル状の電解質24を用いた場合についても、同様の効果を得られることが分かった。   As shown in Table 3, according to Experimental Examples 3-1 to 3-6, compared with Comparative Examples 3-1 to 3-6, the rated capacity and the discharge capacity retention rate are improved, and the amount of swelling is reduced. It was. That is, it was found that the same effect can be obtained also when the so-called gel electrolyte 24 is used.

以上、実施の形態および実施例を挙げて本発明を説明したが、本発明は実施の形態および実施例に限定されず、種々の変形が可能である。例えば、上記実施の形態および実施例では、細孔を有する黒鉛よりなる複数の1次粒子が、少なくとも一部において配向面が互いに非平行となるように結合して2次粒子を形成しており、水銀圧入法により見積もられる細孔径10nm以上1×105 nm以下の細孔の体積が、単位質量当たり0.5cm3 /g以上1.5cm3 /g以下である結合黒鉛材料を用いて負極22を作製した電池について説明したが、この結合黒鉛材料を用いて電池を作製していなくても、作製時または使用時にこの結合黒鉛材料を含んでいればよい。 Although the present invention has been described with reference to the embodiments and examples, the present invention is not limited to the embodiments and examples, and various modifications can be made. For example, in the above-described embodiments and examples, a plurality of primary particles made of graphite having pores are combined to form secondary particles at least partially so that the orientation planes are not parallel to each other. Using a bonded graphite material in which the volume of pores having a pore diameter of 10 nm or more and 1 × 10 5 nm or less estimated by a mercury intrusion method is 0.5 cm 3 / g or more and 1.5 cm 3 / g or less per unit mass Although the battery which produced No. 22 was demonstrated, even if it does not produce a battery using this bonded graphite material, it should just contain this bonded graphite material at the time of manufacture or use.

また、上記実施の形態および実施例では、電解質として電解液を用いる場合および電解液を高分子化合物に保持させたゲル状電解質を用いる場合について説明したが、他の電解質を用いるようにしてもよい。他の電解質としては、例えば、イオン伝導性を有する高分子化合物に電解質塩を溶解または分散させた有機固体電解質、イオン伝導性セラミックス,イオン伝導性ガラスあるいはイオン性結晶などのイオン伝導性無機化合物を含む無機固体電解質、またはこれらと電解液との混合したものが挙げられる。   In the above embodiments and examples, the case where an electrolytic solution is used as the electrolyte and the case where a gel electrolyte in which the electrolytic solution is held in a polymer compound are used have been described. However, other electrolytes may be used. . Examples of other electrolytes include ion conductive inorganic compounds such as organic solid electrolytes, ion conductive ceramics, ion conductive glasses, or ionic crystals in which electrolyte salts are dissolved or dispersed in polymer compounds having ion conductivity. Inorganic solid electrolytes to be included, or a mixture of these with an electrolyte solution.

更に、上記実施の形態および実施例では、正極21および負極22を巻回した巻回電極体を外装部材30の内部に備える場合について説明したが、正極21と負極22とを1層または複数積層したものを備えるようにしてもよい。   Further, in the above-described embodiments and examples, the case where the wound electrode body in which the positive electrode 21 and the negative electrode 22 are wound is provided in the exterior member 30 is described. However, the positive electrode 21 and the negative electrode 22 are laminated in one or more layers. You may make it provide what was done.

加えて、上記実施の形態および実施例では、電極反応物質としてリチウムを用いる電池について説明したが、ナトリウム(Na)あるいはカリウム(K)などの他のアルカリ金属、またはマグネシウムあるいはカルシウム(Ca)などのアルカリ土類金属、またはアルミニウムなどの他の軽金属を用いる場合についても、本発明を適用することができる。加えて、本発明は、二次電池に限らず、一次電池などの他の電池についても同様に適用することができる。   In addition, in the embodiments and examples described above, a battery using lithium as an electrode reactant has been described. However, other alkali metals such as sodium (Na) or potassium (K), or magnesium or calcium (Ca) The present invention can also be applied to the case of using an alkaline earth metal or another light metal such as aluminum. In addition, the present invention is not limited to the secondary battery, and can be similarly applied to other batteries such as a primary battery.

11…正極端子、12…負極端子、20…巻回電極体、21…正極、21A…正極集電体、21B…正極活物質層、22…負極、22A…負極集電体、22B…負極活物質層、23…セパレータ、24…電解質、25…保護テープ、30…外装部材、31…密着フィルム。   DESCRIPTION OF SYMBOLS 11 ... Positive electrode terminal, 12 ... Negative electrode terminal, 20 ... Winding electrode body, 21 ... Positive electrode, 21A ... Positive electrode collector, 21B ... Positive electrode active material layer, 22 ... Negative electrode, 22A ... Negative electrode collector, 22B ... Negative electrode active Material layer, 23 ... separator, 24 ... electrolyte, 25 ... protective tape, 30 ... exterior member, 31 ... adhesion film.

Claims (17)

細孔を有する黒鉛よりなる複数の1次粒子が、少なくとも一部において配向面が互いに非平行となるように結合して2次粒子を形成している結合黒鉛材料と、メソカーボンマイクロビーズまたは天然黒鉛とを含有し、
前記結合黒鉛材料の、水銀圧入法により見積もられる細孔径10nm以上1×105 nm以下の細孔の体積が、単位質量当たり0.5cm3 /g以上1.5cm3 /g以下であり、
前記結合黒鉛材料と、前記メソカーボンマイクロビーズまたは天然黒鉛との合計に対する、その結合黒鉛材料の割合が、3質量%以上30質量%以下である、
負極活物質。
Bonded graphite material in which a plurality of primary particles made of graphite having pores are bonded so that orientation planes thereof are non-parallel to each other at least partially to form secondary particles, and mesocarbon microbeads or natural Containing graphite,
The volume of pores having a pore diameter of 10 nm or more and 1 × 10 5 nm or less estimated by the mercury intrusion method of the bonded graphite material is 0.5 cm 3 / g or more and 1.5 cm 3 / g or less per unit mass,
The ratio of the combined graphite material to the total of the combined graphite material and the mesocarbon microbeads or natural graphite is 3% by mass or more and 30% by mass or less.
Negative electrode active material.
前記2次粒子の長軸方向の長さをA、短軸方向の長さをBとすると、A/Bで表されるアスペクト比の平均値は4以下である、請求項1記載の負極活物質。   2. The negative electrode active according to claim 1, wherein the average value of the aspect ratio represented by A / B is 4 or less, where A is the length in the major axis direction of the secondary particles and B is the length in the minor axis direction. material. 前記結合黒鉛材料の比表面積は5m2 /g以下である、請求項1または請求項2に記載の負極活物質。 3. The negative electrode active material according to claim 1, wherein the combined graphite material has a specific surface area of 5 m 2 / g or less. 前記結合黒鉛材料は、少なくともコークスおよびバインダーピッチを混合して熱処理することにより得られたものである、請求項1ないし請求項3のいずれか1項に記載の負極活物質。   4. The negative electrode active material according to claim 1, wherein the combined graphite material is obtained by mixing at least coke and a binder pitch and heat-treating. 5. 前記結合黒鉛材料は、前記一次粒子を湿式法または乾式法で造粒することにより得られたものである、請求項1ないし請求項3のいずれか1項に記載の負極活物質。   4. The negative electrode active material according to claim 1, wherein the bonded graphite material is obtained by granulating the primary particles by a wet method or a dry method. 5. 前記結合黒鉛材料は、前記一次粒子を造粒したのち、等方性加圧処理を行うことにより得られたものである、請求項5記載の負極活物質。   The negative electrode active material according to claim 5, wherein the bonded graphite material is obtained by granulating the primary particles and then performing isotropic pressure treatment. 負極集電体上に負極活物質層を有し、
前記負極活物質層が、負極活物質として、細孔を有する黒鉛よりなる複数の1次粒子が、少なくとも一部において配向面が互いに非平行となるように結合して2次粒子を形成している結合黒鉛材料と、メソカーボンマイクロビーズまたは天然黒鉛とを含有し、
前記結合黒鉛材料の、水銀圧入法により見積もられる細孔径10nm以上1×105 nm以下の細孔の体積が、単位質量当たり0.5cm3 /g以上1.5cm3 /g以下であり、
前記結合黒鉛材料と、前記メソカーボンマイクロビーズまたは天然黒鉛との合計に対する、その結合黒鉛材料の割合が、3質量%以上30質量%以下である、
負極。
A negative electrode active material layer on the negative electrode current collector,
The negative electrode active material layer has a plurality of primary particles made of graphite having pores as a negative electrode active material, so that at least part of the primary particles are bonded so that the orientation planes are not parallel to each other, thereby forming secondary particles. Containing bound graphite material and mesocarbon microbeads or natural graphite,
The volume of pores having a pore diameter of 10 nm or more and 1 × 10 5 nm or less estimated by the mercury intrusion method of the bonded graphite material is 0.5 cm 3 / g or more and 1.5 cm 3 / g or less per unit mass,
The ratio of the combined graphite material to the total of the combined graphite material and the mesocarbon microbeads or natural graphite is 3% by mass or more and 30% by mass or less.
Negative electrode.
正極および負極と共に電解質を備え、
前記負極は、負極活物質として、細孔を有する黒鉛よりなる複数の1次粒子が、少なくとも一部において配向面が互いに非平行となるように結合して2次粒子を形成している結合黒鉛材料と、メソカーボンマイクロビーズまたは天然黒鉛とを含有し、
前記結合黒鉛材料の、水銀圧入法により見積もられる細孔径10nm以上1×105 nm以下の細孔の体積が、単位質量当たり0.5cm3 /g以上1.5cm3 /g以下であり、
前記結合黒鉛材料と、前記メソカーボンマイクロビーズまたは天然黒鉛との合計に対する、その結合黒鉛材料の割合が、3質量%以上30質量%以下である、
電池。
An electrolyte is provided with a positive electrode and a negative electrode,
In the negative electrode, as the negative electrode active material, a plurality of primary particles made of graphite having pores are combined to form secondary particles in such a manner that at least some of the primary particles are bonded so that the orientation planes are not parallel to each other. Containing material and mesocarbon microbeads or natural graphite,
The volume of pores having a pore diameter of 10 nm or more and 1 × 10 5 nm or less estimated by the mercury intrusion method of the bonded graphite material is 0.5 cm 3 / g or more and 1.5 cm 3 / g or less per unit mass,
The ratio of the combined graphite material to the total of the combined graphite material and the mesocarbon microbeads or natural graphite is 3% by mass or more and 30% by mass or less.
battery.
前記結合黒鉛材料は、前記2次粒子の長軸方向の長さをA、短軸方向の長さをBとすると、A/Bで表されるアスペクト比の平均値が4以下である、請求項8記載の電池。   The bonded graphite material has an average aspect ratio represented by A / B of 4 or less, where A is the length in the major axis direction of the secondary particles and B is the length in the minor axis direction. Item 9. The battery according to Item 8. 前記結合黒鉛材料の比表面積は5m2 /g以下である、請求項8または請求項9に記載の電池。 10. The battery according to claim 8, wherein a specific surface area of the bonded graphite material is 5 m 2 / g or less. 前記結合黒鉛材料は、少なくともコークスおよびバインダーピッチを混合して熱処理することにより得られたものである、請求項8ないし請求項10のいずれか1項に記載の電池。   The battery according to any one of claims 8 to 10, wherein the bonded graphite material is obtained by mixing at least coke and a binder pitch and performing heat treatment. 前記結合黒鉛材料は、前記一次粒子を湿式法または乾式法で造粒することにより得られたものである、請求項8ないし請求項10のいずれか1項に記載の電池。   The battery according to any one of claims 8 to 10, wherein the bonded graphite material is obtained by granulating the primary particles by a wet method or a dry method. 前記結合黒鉛材料は、前記一次粒子を造粒したのち、等方性加圧処理を行うことにより得られたものである、請求項12記載の電池。   The battery according to claim 12, wherein the bonded graphite material is obtained by granulating the primary particles and then performing an isotropic pressure treatment. 前記正極、負極および電解質は、フィルム状の外装部材の内部に収納された、請求項8ないし請求項13のいずれか1項に記載の電池。   The battery according to any one of claims 8 to 13, wherein the positive electrode, the negative electrode, and the electrolyte are housed inside a film-shaped exterior member. 前記電解質は、電解液と、フッ化ビニリデンを成分として含む重合体とを含む、請求項8ないし請求項14のいずれか1項に記載の電池。   The battery according to any one of claims 8 to 14, wherein the electrolyte includes an electrolytic solution and a polymer containing vinylidene fluoride as a component. 前記電解質は、電解液と、アクリレート基あるいはメタクリレート基を有する重合性化合物が重合した構造を有する重合体とを含む、請求項8ないし請求項14のいずれか1項に記載の電池。   The battery according to any one of claims 8 to 14, wherein the electrolyte includes an electrolytic solution and a polymer having a structure obtained by polymerizing a polymerizable compound having an acrylate group or a methacrylate group. 前記電解質は、電解液と、ポリビニルアセタールおよびその誘導体からなる群のうちの少なくとも1種を重合した構造を有する重合体とを含む、請求項8ないし請求項14のいずれか1項に記載の電池。   The battery according to any one of claims 8 to 14, wherein the electrolyte includes an electrolytic solution and a polymer having a structure obtained by polymerizing at least one selected from the group consisting of polyvinyl acetal and derivatives thereof. .
JP2010274242A 2010-12-09 2010-12-09 Negative electrode active material, negative electrode and battery Expired - Fee Related JP5177211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010274242A JP5177211B2 (en) 2010-12-09 2010-12-09 Negative electrode active material, negative electrode and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010274242A JP5177211B2 (en) 2010-12-09 2010-12-09 Negative electrode active material, negative electrode and battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005315877A Division JP4797577B2 (en) 2005-10-31 2005-10-31 battery

Publications (2)

Publication Number Publication Date
JP2011077051A true JP2011077051A (en) 2011-04-14
JP5177211B2 JP5177211B2 (en) 2013-04-03

Family

ID=44020781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010274242A Expired - Fee Related JP5177211B2 (en) 2010-12-09 2010-12-09 Negative electrode active material, negative electrode and battery

Country Status (1)

Country Link
JP (1) JP5177211B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013171838A (en) * 2012-02-21 2013-09-02 Samsung Sdi Co Ltd Lithium battery
JP2016006790A (en) * 2013-09-25 2016-01-14 国立大学法人 東京大学 Nonaqueous secondary battery
JP2016167408A (en) * 2015-03-10 2016-09-15 国立大学法人 東京大学 Electrolyte
JP2020009566A (en) * 2018-07-04 2020-01-16 株式会社Soken Method for manufacturing all-solid battery
US10686223B2 (en) 2013-09-25 2020-06-16 Kabushiki Kaisha Toyota Jidoshokki Nonaqueous electrolyte secondary battery
US11011781B2 (en) 2013-09-25 2021-05-18 The University Of Tokyo Nonaqueous electrolyte secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185149A (en) * 1999-12-28 2001-07-06 Hitachi Chem Co Ltd Lithium secondary battery
JP2004095426A (en) * 2002-09-02 2004-03-25 Sei Kk Negative electrode and positive electrode for lithium secondary battery and lithium secondary battery
JP2005108858A (en) * 1996-12-26 2005-04-21 Hitachi Chem Co Ltd Negative electrode for lithium secondary battery
JP4797577B2 (en) * 2005-10-31 2011-10-19 ソニー株式会社 battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108858A (en) * 1996-12-26 2005-04-21 Hitachi Chem Co Ltd Negative electrode for lithium secondary battery
JP2001185149A (en) * 1999-12-28 2001-07-06 Hitachi Chem Co Ltd Lithium secondary battery
JP2004095426A (en) * 2002-09-02 2004-03-25 Sei Kk Negative electrode and positive electrode for lithium secondary battery and lithium secondary battery
JP4797577B2 (en) * 2005-10-31 2011-10-19 ソニー株式会社 battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013171838A (en) * 2012-02-21 2013-09-02 Samsung Sdi Co Ltd Lithium battery
JP2016006790A (en) * 2013-09-25 2016-01-14 国立大学法人 東京大学 Nonaqueous secondary battery
US10686223B2 (en) 2013-09-25 2020-06-16 Kabushiki Kaisha Toyota Jidoshokki Nonaqueous electrolyte secondary battery
US11011781B2 (en) 2013-09-25 2021-05-18 The University Of Tokyo Nonaqueous electrolyte secondary battery
JP2016167408A (en) * 2015-03-10 2016-09-15 国立大学法人 東京大学 Electrolyte
JP2020009566A (en) * 2018-07-04 2020-01-16 株式会社Soken Method for manufacturing all-solid battery
JP7168360B2 (en) 2018-07-04 2022-11-09 株式会社Soken Method for manufacturing all-solid-state battery

Also Published As

Publication number Publication date
JP5177211B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
JP5070753B2 (en) battery
TWI387148B (en) Anode and secondary battery
KR101502894B1 (en) Secondary battery
KR20100094363A (en) Nonaqueous electrolyte secondary battery
JP2007250433A (en) Nonaqueous electrolyte battery
JP5163065B2 (en) Non-aqueous electrolyte secondary battery and non-aqueous electrolyte composition
JP5109329B2 (en) Secondary battery
JP4797577B2 (en) battery
JP2007258127A (en) Negative electrode and battery
JP2006216373A (en) Battery
JP5177211B2 (en) Negative electrode active material, negative electrode and battery
JP2009200043A (en) Battery
JP2009123474A (en) Nonaqueous electrolyte battery
JP2009164013A (en) Negative electrode, and battery
JP5082221B2 (en) Negative electrode for secondary battery and secondary battery
US20190131623A1 (en) Method for charging lithium-ion secondary battery, lithium-ion secondary battery system, and power storage device
JP2009134970A (en) Nonaqueous electrolytic battery
JP2008103311A (en) Battery
JP4466416B2 (en) Polymer electrolyte for secondary battery and secondary battery using the same
JP2007134245A (en) Electrolyte solution and battery
JP3786273B2 (en) Negative electrode material and battery using the same
JP2006253087A (en) Polymer electrolyte and battery using it
JP4609707B2 (en) battery
JP2006253086A (en) Polymer electrolyte, battery, and manufacturing method of battery
JP2007157538A (en) Battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121224

R151 Written notification of patent or utility model registration

Ref document number: 5177211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160118

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees