JP2011075120A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2011075120A
JP2011075120A JP2009223793A JP2009223793A JP2011075120A JP 2011075120 A JP2011075120 A JP 2011075120A JP 2009223793 A JP2009223793 A JP 2009223793A JP 2009223793 A JP2009223793 A JP 2009223793A JP 2011075120 A JP2011075120 A JP 2011075120A
Authority
JP
Japan
Prior art keywords
air
refrigerant
indoor
heat exchanger
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009223793A
Other languages
Japanese (ja)
Inventor
Masaru Miura
賢 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2009223793A priority Critical patent/JP2011075120A/en
Publication of JP2011075120A publication Critical patent/JP2011075120A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner free from frosting by improving the flow division of a refrigerant flowing in a flow divider tube of an indoor heat exchanger, and suppressing the degradation in a cooling capacity. <P>SOLUTION: This air conditioner has the indoor heat exchanger with the plurality of flow divider tubes in which the refrigerant flows, in parallel with each other, an indoor blower distributing the air to the indoor heat exchanger, and a movable panel controlling the flow rate of the indoor air flowing in the plurality of flow divider tubes. In a case when poor flow division occurs in part of the plurality of flow divider tubes, the opening of the movable panel is adjusted to change the balance of air volume of suction air exchanging heat with the indoor heat exchanger, so that the flow division of the refrigerant in the flow divider tube having poor flow division is improved. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は空気調和機に係り、特に蒸発器に発生する冷媒の分流悪化を改善した空気調和機に関する。   The present invention relates to an air conditioner, and more particularly, to an air conditioner that improves the deterioration of the refrigerant diversion generated in an evaporator.

従来、空気調和機は、室内機に複数の冷媒の分流管が並列に設けられた室内熱交換器を設け、冷房時、蒸発器となるこの室内熱交換器と室内空気を熱交換し、室内空気を冷却して冷房を行なっている。   Conventionally, an air conditioner is provided with an indoor heat exchanger in which a plurality of refrigerant branch pipes are provided in parallel in an indoor unit, and during cooling, the indoor air is exchanged with the indoor heat exchanger serving as an evaporator, Air is cooled to cool the air.

このような冷房運転時、外気温度、圧縮機の回転数、エアフィルターの目詰まり状態など、運転条件によって分流管に冷媒が不均一に流れるため、早い段階で冷媒が気相化するドライアウト現象が発生して、この分流管は圧力損失により熱交換温度が低下し、吹出口付近に結露が発生したり、冷房能力が低下するなどの問題がある。   During such cooling operation, the refrigerant flows into the diversion pipe unevenly depending on the operating conditions such as outside air temperature, compressor rotation speed, air filter clogging, etc. As a result, there is a problem in that the heat exchange temperature is reduced due to pressure loss in the shunt pipe, and condensation occurs near the air outlet or the cooling capacity is reduced.

そこで、分流管に生じる冷媒の不均一な流れを改善するため、エアフィルターを通過した空気が流入する熱交換器の風上側に、冷房運転時の冷媒の流れ方向における分流管の入口を配置した空気調和装置が提案されている(例えば、特許文献1参照)。   Therefore, in order to improve the non-uniform flow of the refrigerant generated in the shunt pipe, an inlet of the shunt pipe in the flow direction of the refrigerant during cooling operation is arranged on the windward side of the heat exchanger into which the air that has passed through the air filter flows. An air conditioner has been proposed (see, for example, Patent Document 1).

また、冷房運転の室内送風機の回転数が低下すると、室内機の冷風吹出口付近に露付きが発生するため、室内送風機のファン回転数を露付きが発生しない回転数に制御する空気調和機が提案されている(例えば、特許文献2参照)。   Further, when the rotational speed of the indoor blower in the cooling operation is reduced, dew is generated near the cold air outlet of the indoor unit. Therefore, an air conditioner that controls the rotational speed of the fan of the indoor blower to a rotational speed at which dew does not occur is provided. It has been proposed (see, for example, Patent Document 2).

特開2000−213764号公報JP 2000-213764 A 特開平3−207954号公報JP-A-3-207954

しかしながら、特許文献1のものは、分流管の数や組み方を改良したものであり、インバータ装置を用いて圧縮機を負荷に合わせて可変速運転を行ない、空調能力を可変可能とした場合には、定格運転に合わせて分流管や減圧手段の調整を行なっても、定格運転以外の負荷条件における最大能力運転や最小能力運転時に、分流管に流れる冷媒の分流が悪化して、冷房能力が低下する問題がある。   However, the thing of patent document 1 is what improved the number and assembly method of a shunt pipe, and when the variable speed operation | movement is carried out according to a load using an inverter apparatus according to a load, and air-conditioning capability is made variable. Even if the shunt pipe and pressure reducing means are adjusted according to the rated operation, the shunting of the refrigerant flowing in the shunt pipe deteriorates during the maximum capacity operation and the minimum capacity operation under load conditions other than the rated operation, and the cooling capacity decreases. There is a problem to do.

また、特許文献2に記載のものは、露付き防止の制御を行なうため冷房能力が低下してしまうおそれがある。   Moreover, since the thing of patent document 2 performs control of prevention of dew condensation, there exists a possibility that a cooling capability may fall.

本発明は上述した事情を考慮してなされたもので、分流管に流れる冷媒の分流の改善を行い、冷房能力の低下がなく、露付きのない空気調和機を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and an object of the present invention is to provide an air conditioner that improves the flow of refrigerant flowing in the flow dividing pipe, does not decrease the cooling capacity, and has no dew.

上述した目的を達成するため、本発明に係る空気調和機は、室内機に、冷媒が流れる複数の分流管が並列に設けられた室内熱交換器と、この室内熱交換器に送風する室内送風機とを備えた空気調和機において、前記複数の分流管に流れる室内空気の流量を制御する可動パネルと、前記複数の分流管の一部に冷媒の分流悪化が発生した場合、前記可動パネルの開度を調整して、前記室内熱交換器と熱交換する吸込空気の風量バランスを変化させ、分流が悪化した分流管の冷媒の分流を改善する制御手段とを設けたことを特徴とする。   In order to achieve the above-described object, an air conditioner according to the present invention includes an indoor heat exchanger in which a plurality of flow-dividing pipes through which a refrigerant flows are provided in parallel in an indoor unit, and an indoor blower that blows air to the indoor heat exchanger And a movable panel for controlling the flow rate of the indoor air flowing through the plurality of branch pipes, and when the refrigerant branch flow deterioration occurs in a part of the plurality of branch pipes, the movable panel is opened. And a control means for improving the diversion of the refrigerant in the diversion pipe whose diversion deteriorates by adjusting the degree of air flow and changing the air volume balance of the intake air that exchanges heat with the indoor heat exchanger.

本発明に係る空気調和機によれば、分流管に流れる冷媒の分流の改善を行い、冷房能力の低下を抑制し、露付きのない空気調和機を提供することができる。   According to the air conditioner according to the present invention, it is possible to improve the diversion of the refrigerant flowing in the diversion pipe, suppress the decrease in cooling capacity, and provide an air conditioner without dew.

本発明の空気調和機に用いる冷凍サイクル図。The refrigerating cycle figure used for the air conditioner of this invention. 本発明の空気調和機に用いる室内機の分流良好状態における縦断面図。The longitudinal cross-sectional view in the branch flow favorable state of the indoor unit used for the air conditioner of this invention. 本発明の空気調和機に用いる室内機の下分流管の分流悪化状態における縦断面図。The longitudinal cross-sectional view in the branch flow deterioration state of the downstream branch pipe of the indoor unit used for the air conditioner of this invention. 本発明の空気調和機に用いる室内機の上分流管の分流悪化状態における縦断面図。The longitudinal cross-sectional view in the branch flow deterioration state of the upper branch pipe of the indoor unit used for the air conditioner of this invention. 本発明の空気調和機に用いる制御ブロック図。The control block diagram used for the air conditioner of this invention. 本発明の空気調和機に用いる可動パネルの開度調整のフローチャート図。The flowchart figure of the opening degree adjustment of the movable panel used for the air conditioner of this invention.

本発明に係る空気調和機の一実施形態について、図面を参照して説明する。   An embodiment of an air conditioner according to the present invention will be described with reference to the drawings.

図1に示すように、本実施形態に係る空気調和機1は、室外機2と室内機3を備える。   As shown in FIG. 1, an air conditioner 1 according to this embodiment includes an outdoor unit 2 and an indoor unit 3.

室外機2には、圧縮機4、四方弁5、室外送風機6、室外熱交換器7および膨張弁8が配管接続されて収容されている。なお、図示していないが、圧縮機はインバータ装置によって空調負荷に応じて可変速運転される。   In the outdoor unit 2, a compressor 4, a four-way valve 5, an outdoor blower 6, an outdoor heat exchanger 7, and an expansion valve 8 are accommodated by pipe connection. Although not shown, the compressor is operated at a variable speed according to the air conditioning load by the inverter device.

また、室内機3には、室内送風機9、室内熱交換器10が収容されている。   The indoor unit 3 houses an indoor blower 9 and an indoor heat exchanger 10.

そして、圧縮機4で圧縮された高温高圧のガス冷媒は、四方弁5を介して凝縮器としての室外熱交換器7に送られ、ここで外気との熱交換により凝縮液化されて高温高圧の液相冷媒とされ、膨張弁8で減圧される。   The high-temperature and high-pressure gas refrigerant compressed by the compressor 4 is sent to an outdoor heat exchanger 7 as a condenser via a four-way valve 5, where it is condensed and liquefied by heat exchange with the outside air. The refrigerant is a liquid phase refrigerant and is decompressed by the expansion valve 8.

さらに、膨張弁8で減圧された冷媒は、冷房時に蒸発器として機能する室内熱交換器10で室内空気と熱交換を行って気化し、低温低圧の気相冷媒となる。   Further, the refrigerant decompressed by the expansion valve 8 is vaporized by exchanging heat with indoor air in the indoor heat exchanger 10 that functions as an evaporator during cooling, and becomes a low-temperature and low-pressure gas-phase refrigerant.

室内空気はこのときの液相冷媒との熱交換により熱を奪われ、室温が低下する。   The room air is deprived of heat by heat exchange with the liquid phase refrigerant at this time, and the room temperature decreases.

室内熱交換器10からの気相冷媒は、再び四方弁5を介して圧縮機4の吸入側に送られ、この圧縮機4で圧縮されて、同様の過程を繰り返す。   The gas-phase refrigerant from the indoor heat exchanger 10 is sent again to the suction side of the compressor 4 through the four-way valve 5, and is compressed by the compressor 4, and the same process is repeated.

室内熱交換器10は、冷媒が流れる複数例えば第1の分流管10A、第2の分流管10Bが並列に設けられる。   The indoor heat exchanger 10 is provided with a plurality of, for example, a first branch pipe 10A and a second branch pipe 10B in parallel, through which a refrigerant flows.

第1の分流管10Aには、この第1の分流管10A内を流れる冷媒温度Tc−1を検出するための第1の温度センサーSが取付けられ、第2の分流管10Bには、この第2の分流管10B内を流れる冷媒温度Tc−2を検出するための第2の温度センサーSが取付けられている。 A first temperature sensor S 1 for detecting a refrigerant temperature T c-1 flowing in the first branch pipe 10A is attached to the first branch pipe 10A, and a second branch pipe 10B includes a second temperature sensor S 2 for detecting the refrigerant temperature T c-2 flowing in the second distribution pipe 10B is attached.

この室内熱交換器10の前面で室内空気吸込側には、吸込空気温度Tを検出するための第3の温度センサーとしての吸込空気温度センサーSが設けられている。 Room air intake side in front of the indoor heat exchanger 10, the suction air temperature sensor S a as a third temperature sensor for detecting the intake air temperature T a is provided.

図2に示すように、室内機3には吸込口11に対向して室内熱交換器10が収容され、熱交換器10は2個に分割され、第1の分流管10Aが下側熱交換器を構成し、第2の分流管10Bが上側熱交換器を構成する。   As shown in FIG. 2, the indoor unit 3 accommodates an indoor heat exchanger 10 facing the suction port 11, the heat exchanger 10 is divided into two, and the first shunt pipe 10 </ b> A is in the lower heat exchange. The second shunt pipe 10B constitutes the upper heat exchanger.

吸込口11に対向して、可動パネル12が設けられている。   A movable panel 12 is provided to face the suction port 11.

この可動パネル12の上端12bは上進退機構13によって進退され、下端12aは下進退機構14によって上端12bとは独立して進退される。   The upper end 12b of the movable panel 12 is advanced and retracted by the upward / backward moving mechanism 13, and the lower end 12a is advanced / retracted by the downward moving / retracting mechanism 14 independently of the upper end 12b.

上進退機構13は、例えば回転力を直線の動きに変換するラック・アンド・ピニオンからなり、室内機3の側面に取付けられ、ステッピングモータ(パルスモータ)Mによって回転されるピニオン(図示せず)と、このピニオンによって進退され、一端が可動パネル12の上端12bに取付けられた上ラック13rからなる。 The upward / backward moving mechanism 13 is composed of, for example, a rack and pinion that converts a rotational force into a linear motion, and is attached to a side surface of the indoor unit 3 and rotated by a stepping motor (pulse motor) M 1 (not shown). ), And an upper rack 13r attached to the upper end 12b of the movable panel 12 at one end.

同様に、下進退機構14は、ステッピングモータMによって回転されるピニオンと、このピニオンによって進退され、一端が可動パネル12の下端12aに取付けられた下ラック14rからなる。 Similarly, the lower forward and reverse mechanism 14 includes a pinion which is rotated by the stepping motor M 2, the forward and backward by the pinion, one end consisting of the lower rack 14r attached to the lower end 12a of the movable panel 12.

一般に空気調和機の室内熱交換器の分流管に不均一な流れが生じると、早い段階で冷媒が気相化するドライアウト現象が発生して、この分流管に圧力損失が発生し、分流管の温度が低下して結露が発生し、冷房能力が低下する。   Generally, when a non-uniform flow occurs in the shunt pipe of the indoor heat exchanger of an air conditioner, a dry-out phenomenon occurs in which the refrigerant gasifies at an early stage, and pressure loss occurs in the shunt pipe. As the temperature drops, condensation occurs and the cooling capacity decreases.

そこで、本空気調和機1は、可動パネル12の開度調整を行なって、室内熱交換器10(複数の分流管10A、10B)に流れる空気流量のバランスをとって、すなわちドライアウト現象が発生した分流管に流れる空気流量を減じて、分流を改善する。   Therefore, the air conditioner 1 adjusts the opening degree of the movable panel 12 to balance the flow rate of air flowing through the indoor heat exchanger 10 (the plurality of branch pipes 10A and 10B), that is, a dry-out phenomenon occurs. The flow rate of air flowing through the shunt pipe is reduced to improve the shunt flow.

例えば、第1の分流管(下側熱交換器)10Aおよび第2の分流管(上側熱交換器)10Bに分流悪化によるドライアウト現象が発生していない(正常)場合には、可動パネル12は、可動パネル12の上端12bを前進状態、下端12aも前進状態として最も熱交換器に流れる空気量を多くして高効率の運転を行うように制御される。   For example, when the dry-out phenomenon due to the deterioration of the diversion does not occur (normal) in the first diversion pipe (lower heat exchanger) 10A and the second diversion pipe (upper heat exchanger) 10B, the movable panel 12 Is controlled such that the upper end 12b of the movable panel 12 is in the forward state and the lower end 12a is also in the forward state so that the amount of air flowing through the heat exchanger is increased and the highly efficient operation is performed.

図3に示すように、第1の分流管10Aに分流悪化によるドライアウト現象が発生した場合には、第1の分流管10Aと熱交換する空気流量を減じるため、上端12bを前進状態、下端12aを後退状態にするよう制御される。この結果、若干効率が低下するが、第1の分流管10Aでのドライアウト現象が解消できる。   As shown in FIG. 3, when the dry-out phenomenon due to the deterioration of the diversion occurs in the first diversion pipe 10A, the upper end 12b is moved forward to reduce the air flow rate to exchange heat with the first diversion pipe 10A. Control is performed so that 12a is in the reverse state. As a result, the efficiency is slightly reduced, but the dry-out phenomenon in the first branch pipe 10A can be solved.

図4に示すように、第2の分流管10Bに分流悪化によるドライアウト現象が発生した場合には、第2の分流管10Bと熱交換する空気流量を減じるため、上端12bを後退状態、下端12aを前進状態にするよう制御される。この場合は、第2の分流管10Bでのドライアウト現象が解消できる。   As shown in FIG. 4, when the dry-out phenomenon due to the worsening of the diversion occurs in the second diversion pipe 10B, the upper end 12b is in the retracted state and the lower end in order to reduce the air flow rate to exchange heat with the second diversion pipe 10B. Control is performed to bring 12a into a forward state. In this case, the dry-out phenomenon in the second branch pipe 10B can be eliminated.

このように、第1の分流管10A、第2の分流管10Bに発生するドライアウト現象に応じて、第1の分流管10Aおよび第2の分流管10Bに流れる室内空気量のバランスを調整し、ドライアウト現象が解消できる。   In this way, the balance of the amount of indoor air flowing through the first branch pipe 10A and the second branch pipe 10B is adjusted according to the dryout phenomenon that occurs in the first branch pipe 10A and the second branch pipe 10B. The dry-out phenomenon can be eliminated.

図5に示すように、室内機3には、室内制御基板21が設けられ、この室内制御基板21には、室内機3を制御する制御手段である例えば室内機3のMCU(マイクロコントロール・ユニット)22をはじめ各種の回路が取り付けられ、室内機3のMCU22は整流器などを備えた電源回路を介して電源に接続される。   As shown in FIG. 5, the indoor unit 3 is provided with an indoor control board 21. The indoor control board 21 includes, for example, an MCU (micro control unit) of the indoor unit 3 which is a control unit for controlling the indoor unit 3. ) 22 and various other circuits are attached, and the MCU 22 of the indoor unit 3 is connected to a power source through a power circuit having a rectifier and the like.

室内機3のMCU22はCPU、メモリなどを備え、CPUがROM及びRAMとデータのやりとりを行いながら、ROMに記憶されている制御プログラムを実行する。   The MCU 22 of the indoor unit 3 includes a CPU, a memory, and the like, and the CPU executes a control program stored in the ROM while exchanging data with the ROM and the RAM.

また、室内機3のMCU22はシリアル回路が接続され、室外機2に搭載された図1に示す圧縮機4、室外送風機6の運転を制御する室外機制御回路(図示せず)との信号の伝達を行う。室内機3のMCU22は、室温等を検出して空調負荷を算出し、圧縮機4、室外送風機6の回転速度を決定し、このデータ信号をシリアル回路を介して室外機制御回路へと送信する。 インバータ装置を含む室外機制御回路は、整流回路のDC電圧をPWM制御してDCをACに変換して、圧縮機に内蔵された圧縮機モータを室内機3のMCU22から指示される回転速度になるように可変速駆動する。   Further, the MCU 22 of the indoor unit 3 is connected to a serial circuit, and signals from an outdoor unit control circuit (not shown) that controls the operation of the compressor 4 and the outdoor fan 6 shown in FIG. Make a transmission. The MCU 22 of the indoor unit 3 detects the room temperature and the like, calculates the air conditioning load, determines the rotational speed of the compressor 4 and the outdoor blower 6, and transmits this data signal to the outdoor unit control circuit via the serial circuit. . The outdoor unit control circuit including the inverter device performs PWM control of the DC voltage of the rectifier circuit to convert DC into AC, and the compressor motor built in the compressor is set to a rotation speed designated by the MCU 22 of the indoor unit 3. Variable speed drive so that

さらに、MCU22には、室内送風機9を駆動制御する室内ファン駆動回路23が接続され、また、上進退機構13のステッピングモータMを駆動制御する第1のモータ駆動回路24、下進退機構14のステッピングモータMを駆動制御する第2のモータ駆動回路25が接続されている。 Further, an indoor fan drive circuit 23 that drives and controls the indoor blower 9 is connected to the MCU 22, and a first motor drive circuit 24 that drives and controls the stepping motor M 1 of the upward and backward movement mechanism 13, and a downward and backward movement mechanism 14. the second motor drive circuit 25 for driving and controlling the stepping motor M 2 are connected.

また、MCU22には、第1の温度センサーS、第2の温度センサーSおよび吸込空気温度センサーSが検知した温度情報信号が入力される。 In addition, the MCU 22, the first temperature sensor S 1, temperature information signal a second temperature sensor S 2 and the suction air temperature sensor S a has been detected is input.

さらに、MCU22には、リモコン30から運転操作信号が送られ、この内容に基づき運転が制御される。   Further, a driving operation signal is sent to the MCU 22 from the remote controller 30, and the driving is controlled based on this content.

次にMCU22の処理及び本空気調和機の動作について、図6に示す可動パネルの動作フロー図に沿って説明する。   Next, the processing of the MCU 22 and the operation of the present air conditioner will be described along the operation flow diagram of the movable panel shown in FIG.

ここでは、冷房運転モードを例にとり説明する。   Here, the cooling operation mode will be described as an example.

使用者は、リモコン30の温度設定ボタンを操作して快適に感じる希望温度を設定し、冷房運転ボタンを押して空気調和機を冷房運転モードで運転するように指令することで、リモコン30に設定された温度と冷房運転の指令信号が室内機3のMCU22に送信される。   The user operates the temperature setting button of the remote controller 30 to set a desired desired temperature, and presses the cooling operation button to instruct the air conditioner to operate in the cooling operation mode. The temperature and cooling operation command signals are transmitted to the MCU 22 of the indoor unit 3.

設定温度はMCU22でメモリに記憶される。室内機3に設置された室内温度センサーが、室内機3に吸い込まれる空気の温度を検出し、設定温度との差やその時間変化量に基づき圧縮機4、室外送風機6の回転速度を決定して冷房運転制御を行う。   The set temperature is stored in the memory by the MCU 22. An indoor temperature sensor installed in the indoor unit 3 detects the temperature of the air sucked into the indoor unit 3, and determines the rotational speed of the compressor 4 and the outdoor blower 6 based on the difference from the set temperature and the amount of change over time. Control the cooling operation.

第1の温度センサーSにより、第1の分流管(下側熱交換器)10Aの冷媒温度Tc−1が検知され、第2の温度センサーSにより、第2の分流管(上側熱交換器)10Bの冷媒温度Tc−2が検知され、吸込空気温度センサーSにより、室内空気吸込温度Tが検知され、Tc−1、Tc−2、Tの温度情報信号がMCU22に送信される。 The first temperature sensor S 1, the first distribution pipe (lower heat exchanger) refrigerant temperature T c-1 10A is detected by the second temperature sensor S 2, the second distribution pipe (upper heat exchanger) refrigerant temperature T c-2 and 10B is detected by the suction air temperature sensor S a, the indoor air inlet temperature T a is detected, the temperature information signal T c-1, T c- 2, T a is It is transmitted to the MCU 22.

c−1、Tc−2、Tの温度情報信号を受信したMCU22は、第1の冷媒温度Tc−1が第1の所定温度(第1の閾値)aより低いか否かを判断する(S1)。 T c-1, it receives the temperature information signal T c-2, T a MCU22 is whether the first refrigerant temperature T c-1 is or lower than the first predetermined temperature (first threshold) a Judgment is made (S1).

ここで第1の所定温度aは、室内温度Tに応じた値であり、試験により予め求められている。 The first predetermined temperature a, where is a value corresponding to the indoor temperature T a, is obtained in advance by a test.

冷媒温度Tc−1が第1の所定温度値aより低い場合(S1のYES)、複数(n)個の冷媒温度Tcnの平均温度Tc−ave(ここで、Tc−ave=Tc−n/n)、例えば平均温度Tc−ave=(Tc−1+Tc−2)/2と第1の分流管10Aの冷媒温度Tc−1の差の絶対値が、第2の所定温度(第2の閾値)bより大きいか否か判断する(S2)。 When the refrigerant temperature T c-1 is lower than the first predetermined temperature value a (YES in S1), the average temperature T c-ave of the plurality (n) refrigerant temperatures T cn (where T c-ave = T c−n / n), for example, the absolute value of the difference between the average temperature T c−ave = (T c−1 + T c−2 ) / 2 and the refrigerant temperature T c−1 of the first branch pipe 10A is the second value. It is determined whether the temperature is higher than a predetermined temperature (second threshold value) b (S2).

平均温度Tc−aveと冷媒温度Tc−2の差の絶対値が、第2の所定温度bより高い場合(S2のYES)、冷媒温度Tc−2が第1の所定温度aより低いか否かを判断する(S3)。 When the absolute value of the difference between the average temperature T c-ave and the refrigerant temperature T c-2 is higher than the second predetermined temperature b (YES in S2), the refrigerant temperature T c-2 is lower than the first predetermined temperature a. Whether or not (S3).

冷媒温度Tc−2が第1の所定温度aより低くない場合(S3のNO)、第1の分流管10A中間にドライアウト現象が発生していると判断し、図3に示すように、可動パネル12の下端12aを後退状態、上端12bを前進状態にする(S4)。 When the refrigerant temperature Tc-2 is not lower than the first predetermined temperature a (NO in S3), it is determined that a dry-out phenomenon has occurred in the middle of the first branch pipe 10A, and as shown in FIG. The lower end 12a of the movable panel 12 is set in the retracted state, and the upper end 12b is set in the advanced state (S4).

これにより、第1の分流管10Aへ流入する風量を低下させて、第1の分流管10Aに流れる冷媒流量を調整し、第1の分流管10Aの中間でのドライアウト現象を解消し、正常な冷房運転が行われ、希望の室内温度に調節される。   As a result, the amount of air flowing into the first branch pipe 10A is reduced, the flow rate of the refrigerant flowing through the first branch pipe 10A is adjusted, and the dry-out phenomenon in the middle of the first branch pipe 10A is eliminated. The cooling operation is performed and the room temperature is adjusted to a desired value.

第1の分流管10Aへ流入する風量を低下させて、第1の分流管10Aに流れる冷媒流量を調整して、第1の分流管10Aの中間でのドライアウト現象を解消し、分流改善を行う。   The amount of air flowing into the first branch pipe 10A is reduced, the flow rate of the refrigerant flowing through the first branch pipe 10A is adjusted, the dry-out phenomenon in the middle of the first branch pipe 10A is eliminated, and the branch flow is improved. Do.

このような状態で同様のステップを繰り返す。   Similar steps are repeated in this state.

ステップS3において、冷媒温度Tc−2が第1の所定温度aより低い場合(S3のYES)、平均温度Tc−aveと第2の分流管10Bの冷媒温度Tc−2の差の絶対値が、第2の所定温度bより大きいか否か判断する(S5)。 In step S3, when the refrigerant temperature T c-2 is lower than the first predetermined temperature a (YES in S3), the absolute difference between the average temperature T c-ave and the refrigerant temperature T c-2 of the second shunt pipe 10B. It is determined whether or not the value is higher than a second predetermined temperature b (S5).

冷媒温度Tc−2が第2の所定温度bより大きい場合(S5のYES)、第1の分流管10Aおよび第2の分流管10Bの中間にドライアウト現象が発生していると判断する。このような現象は稀に発生するものであり、現状維持し、最終的に冷凍サイクルがバランスして、ドライアウト現象が解消するのを待つ。 When the refrigerant temperature Tc-2 is higher than the second predetermined temperature b (YES in S5), it is determined that a dryout phenomenon has occurred between the first branch pipe 10A and the second branch pipe 10B. Such a phenomenon occurs infrequently, and the current state is maintained, and finally the refrigeration cycle balances and waits for the dryout phenomenon to be resolved.

平均温度Tc−aveと第2の分流管10Bの冷媒温度Tc−2の差の絶対値が、第2の所定温度bより大きくない場合(S5のNO)、第2の分流管10Bの中間にドライアウト現象の発生がないと判断して、ステップS4の動作を継続する。 When the absolute value of the difference between the average temperature T c-ave and the refrigerant temperature T c-2 of the second branch pipe 10B is not greater than the second predetermined temperature b (NO in S5), the second branch pipe 10B It is determined that there is no dryout phenomenon in the middle, and the operation in step S4 is continued.

ステップS1において、冷媒温度Tc−1が第1の所定温度aより低くない場合(S1のNO)、平均温度Tc−aveと冷媒温度Tc−1の差の絶対値が、第2の所定温度bより高くない場合(S2のNO)、冷媒温度Tc−2が第1の所定温度aより低いか否かを判断する(S6)。 In step S1, when the refrigerant temperature T c-1 is not lower than the first predetermined temperature a (NO in S1), the absolute value of the difference between the average temperature T c-ave and the refrigerant temperature T c-1 is the second value. When it is not higher than the predetermined temperature b (NO in S2), it is determined whether or not the refrigerant temperature Tc-2 is lower than the first predetermined temperature a (S6).

冷媒温度Tc−2が第1の所定温度値aより低い場合(S6のYES)、平均温度Tc−aveと第2の分流管10Bの冷媒温度Tc−2の差の絶対値が、第2の所定温度bより大きいか否か判断する(S7)。 When the refrigerant temperature T c-2 is lower than the first predetermined temperature value a (YES in S6), the absolute value of the difference between the average temperature T c-ave and the refrigerant temperature T c-2 of the second shunt pipe 10B is It is determined whether the temperature is higher than the second predetermined temperature b (S7).

平均温度Tc−aveと冷媒温度Tc−2の差の絶対値が、第2の所定温度bより高い場合(S7のYES)、第2の分流管10Bの中間にドライアウト現象が発生していると判断し、図4に示すように、可動パネル12の下端12aを前進状態、上端12bを後退状態にする(S8)。 When the absolute value of the difference between the average temperature T c-ave and the refrigerant temperature T c-2 is higher than the second predetermined temperature b (YES in S7), a dryout phenomenon occurs in the middle of the second shunt pipe 10B. As shown in FIG. 4, the lower end 12a of the movable panel 12 is moved forward and the upper end 12b is moved backward (S8).

これにより、第2の分流管10Bへ流入する風量を低下させて、第2の分流管10Bに流れる冷媒流量を調整し、第2の分流管10Bの中間でのドライアウト現象を解消し、正常な冷房運転が行われ、希望の室内温度に調節される。   As a result, the amount of air flowing into the second branch pipe 10B is reduced, the flow rate of the refrigerant flowing through the second branch pipe 10B is adjusted, and the dry-out phenomenon in the middle of the second branch pipe 10B is eliminated. The cooling operation is performed and the room temperature is adjusted to a desired value.

ステップS6において、冷媒温度Tc−2が第2の所定温度bより低くない場合(S6のNO)、およびステップS7において、第2の分流管10Bの冷媒温度Tc−2の差の絶対値が、第2の所定温度bより大きくない場合(S7のNO)、第1の分流管10Aおよび第2の分流管10Bの中間にドライアウト現象が発生していないと判断し、図2に示すように、可動パネル12は、可動パネル12の上端12bを前進状態、下端12aも前進状態を保つ(S9)。 In step S6, when the refrigerant temperature T c-2 is not lower than the second predetermined temperature b (NO in S6), and in step S7, the absolute value of the difference between the refrigerant temperatures T c-2 of the second branch pipe 10B However, when the temperature is not higher than the second predetermined temperature b (NO in S7), it is determined that the dryout phenomenon does not occur between the first branch pipe 10A and the second branch pipe 10B, and is shown in FIG. Thus, the movable panel 12 keeps the upper end 12b of the movable panel 12 in the forward state and the lower end 12a in the forward state (S9).

上記のように、本空気調和機は室内熱交換器において、冷媒温度センサーによる冷媒温度の検知により、冷媒の分流が悪化してドライアウト現象が発生した分流管を早期に検出し、可動パネルの開度を調整することにより、室内熱交換器へ流入する空気の風量バランスを変化させ、複数の分流管への分流改善を行う。   As described above, in the indoor heat exchanger, this air conditioner detects the branch pipe where the refrigerant branch flow deteriorates and the dry-out phenomenon occurs by detecting the refrigerant temperature by the refrigerant temperature sensor at an early stage. By adjusting the opening, the air volume balance of the air flowing into the indoor heat exchanger is changed to improve the diversion to a plurality of diversion pipes.

これにより、分流管のドライアウト現象による圧力損失を防止して、熱交換温度の低下による結露の発生をなくし、冷房能力の低下を防ぐことができる。   Thereby, the pressure loss due to the dry-out phenomenon of the shunt pipe can be prevented, the occurrence of condensation due to the decrease in the heat exchange temperature can be eliminated, and the cooling capacity can be prevented from decreasing.

本実施形態の空気調和機によれば、室内熱交換器の分流管に流れる冷媒の分流の改善を行い、冷房能力の低下を抑制し、露付きのない空気調和機が実現される。   According to the air conditioner of the present embodiment, the flow of the refrigerant flowing in the branch pipe of the indoor heat exchanger is improved, the cooling capacity is prevented from being lowered, and an air conditioner without dew is realized.

なお、上記実施形態では、2個の分流管からなる室内熱交換器と1枚の可動パネルを用いる例で説明したが、本空気調和機は3個以上の分流管からなる室内熱交換器と1枚以上の可動パネルを用いるようにしてもよい。   In the above embodiment, an example in which an indoor heat exchanger composed of two shunt pipes and one movable panel is used has been described. However, the air conditioner includes an indoor heat exchanger composed of three or more shunt pipes, One or more movable panels may be used.

1…空気調和機、2…室外機、3…室内機、4…圧縮機、5…四方弁、6…室外送風機、7…室外熱交換器、8…膨張弁、9…室内送風機、10…室内熱交換器、10A…第1の分流管、10B…第2の分流管、11…吸込口、12…可動パネル、12a…下端、12b…上端、13…上進退機構、13r…上ラック、14…下進退機構、14r…下ラック、21…室内制御基板、22…MCU、23…室内ファン駆動回路、24…第1のモータ駆動回路、25…第2のモータ駆動回路、30…リモコン、M…ステッピングモータ、M…ステッピングモータ、S…第1の温度センサー、S…第2の温度センサー、S…吸込空気温度センサー。 DESCRIPTION OF SYMBOLS 1 ... Air conditioner, 2 ... Outdoor unit, 3 ... Indoor unit, 4 ... Compressor, 5 ... Four-way valve, 6 ... Outdoor fan, 7 ... Outdoor heat exchanger, 8 ... Expansion valve, 9 ... Indoor fan, 10 ... Indoor heat exchanger, 10A ... first shunt tube, 10B ... second shunt tube, 11 ... suction port, 12 ... movable panel, 12a ... lower end, 12b ... upper end, 13 ... up-and-down mechanism, 13r ... upper rack, DESCRIPTION OF SYMBOLS 14 ... Downward movement mechanism, 14r ... Lower rack, 21 ... Indoor control board, 22 ... MCU, 23 ... Indoor fan drive circuit, 24 ... 1st motor drive circuit, 25 ... 2nd motor drive circuit, 30 ... Remote control, M 1 ... stepping motor, M 2 ... stepping motor, S 1 ... first temperature sensor, S 2 ... second temperature sensor, S a ... suction air temperature sensor.

Claims (2)

室内機に、冷媒が流れる複数の分流管が並列に設けられた室内熱交換器と、この室内熱交換器に送風する室内送風機とを備えた空気調和機において、
前記複数の分流管に流れる室内空気の流量を制御する可動パネルと、
前記複数の分流管の一部に冷媒の分流悪化が発生した場合、前記可動パネルの開度を調整して、前記室内熱交換器と熱交換する吸込空気の風量バランスを変化させ、分流が悪化した分流管の冷媒の分流を改善する制御手段とを設けたことを特徴とする空気調和機。
In the indoor unit, an air conditioner including an indoor heat exchanger in which a plurality of shunt pipes through which refrigerant flows is provided in parallel, and an indoor fan that blows air to the indoor heat exchanger,
A movable panel for controlling the flow rate of the indoor air flowing through the plurality of shunt pipes;
When the refrigerant diversion worsens in some of the plurality of diversion pipes, the opening of the movable panel is adjusted to change the air volume balance of the intake air that exchanges heat with the indoor heat exchanger, and the diversion deteriorates. And an air conditioner characterized by comprising control means for improving the flow of the refrigerant in the flow dividing pipe.
前記制御手段は、前記複数の分流管毎に設けた温度センサーにより冷媒温度を検知して、分流が悪化している分流管を検出し、可動パネルの開度調整を行なう制御を実行することを特徴とする請求項1に記載の空気調和機。   The control means detects a refrigerant temperature with a temperature sensor provided for each of the plurality of flow dividing pipes, detects a flow dividing pipe that has deteriorated flow, and executes control for adjusting the opening of the movable panel. The air conditioner according to claim 1, wherein
JP2009223793A 2009-09-29 2009-09-29 Air conditioner Pending JP2011075120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009223793A JP2011075120A (en) 2009-09-29 2009-09-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009223793A JP2011075120A (en) 2009-09-29 2009-09-29 Air conditioner

Publications (1)

Publication Number Publication Date
JP2011075120A true JP2011075120A (en) 2011-04-14

Family

ID=44019302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009223793A Pending JP2011075120A (en) 2009-09-29 2009-09-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP2011075120A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022038922A1 (en) * 2020-08-21 2022-02-24 株式会社デンソー Refrigeration cycle device
WO2023008088A1 (en) * 2021-07-26 2023-02-02 株式会社デンソー Refrigeration cycle apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022038922A1 (en) * 2020-08-21 2022-02-24 株式会社デンソー Refrigeration cycle device
WO2023008088A1 (en) * 2021-07-26 2023-02-02 株式会社デンソー Refrigeration cycle apparatus

Similar Documents

Publication Publication Date Title
JP5674572B2 (en) Air conditioner
JP5056855B2 (en) Air conditioner
EP2447622A2 (en) Heat pump type water heating apparatus
CN100559092C (en) Aircondition
EP2551614B1 (en) Air Conditioner and Control Method Thereof
JP5182358B2 (en) Refrigeration equipment
EP3561396A1 (en) Hot water supply apparatus for combined use of air conditioner
WO2014067129A1 (en) Multi-coupled heat pump air-conditioning system and method of controlling multi-coupled heat pump air-conditioning system
JP2723953B2 (en) Air conditioner
WO2020121411A1 (en) Air conditioner
JP2012141113A (en) Air conditioning/water heating device system
WO2009123190A1 (en) Air conditioner
JP6072424B2 (en) Air conditioner
WO2019053876A1 (en) Air conditioning device
JP2009243832A (en) Air conditioner
WO2016001958A1 (en) Air-conditioning device
KR101045451B1 (en) A multi type air conditioner and method of controlling the same
JP5766061B2 (en) Air conditioner
JP2007046895A (en) Operation control device and method for air conditioner equipped with plural compressors
JP2011075120A (en) Air conditioner
JP2006234295A (en) Multiple air conditioner
JP5056794B2 (en) Air conditioner
JP2006145192A (en) Air conditioner and its operation control method
KR100713827B1 (en) Method for controlling operation of multi type air-conditioner
KR101075299B1 (en) Air conditioner and method of controlling the same