JP2011075017A - Vacuum valve - Google Patents

Vacuum valve Download PDF

Info

Publication number
JP2011075017A
JP2011075017A JP2009226836A JP2009226836A JP2011075017A JP 2011075017 A JP2011075017 A JP 2011075017A JP 2009226836 A JP2009226836 A JP 2009226836A JP 2009226836 A JP2009226836 A JP 2009226836A JP 2011075017 A JP2011075017 A JP 2011075017A
Authority
JP
Japan
Prior art keywords
valve
vacuum
vacuum valve
cylindrical hole
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009226836A
Other languages
Japanese (ja)
Inventor
Toshikazu Ogisu
俊和 荻須
Kazuhiro Sugata
和広 菅田
Minoru Ito
稔 伊藤
Yoshiyuki Yamada
芳幸 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CKD Corp
Original Assignee
CKD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CKD Corp filed Critical CKD Corp
Priority to JP2009226836A priority Critical patent/JP2011075017A/en
Publication of JP2011075017A publication Critical patent/JP2011075017A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Valve Housings (AREA)
  • Lift Valve (AREA)
  • Details Of Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum valve capable of increasing conductance without enlarging the total height of the valve. <P>SOLUTION: In the vacuum valve 1 arranged in piping connected to a vacuum vessel and controlling the degree of vacuum in the vacuum vessel by opening and closing of the valve, a body 2 including a valve element 5 therein is a cylindrical shape, a first cylindrical hole part 109 and a second cylindrical hole part 3 are provided on a side surface of the body 2 by the same processing method. A port forming member 104 is connected to the first cylindrical hole part 109, and a closing member 4 closing an opening end surface of the second cylindrical hole part 3 is connected to the second cylindrical hole part 3. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、真空容器に接続される配管上に配設され、弁の開閉により真空容器内の真空度を制御する真空弁に関する。   The present invention relates to a vacuum valve that is disposed on a pipe connected to a vacuum vessel and controls the degree of vacuum in the vacuum vessel by opening and closing the valve.

従来より、例えば、半導体製造工程において、ウエハを配置した真空容器内に、プロセスガスとバージガスとを交互に給気・排気させる真空圧力制御システム等が提案されている。このような真空圧力制御システムには、真空容器と真空ポンプとの間に真空弁が接続されている。この真空弁は、弁の開閉又は弁の開度を変化させて、真空容器内に供給するプロセスガスの真空圧力を制御している(例えば特許文献1参照)。   Conventionally, for example, in a semiconductor manufacturing process, a vacuum pressure control system for alternately supplying and exhausting process gas and barge gas in a vacuum vessel in which a wafer is arranged has been proposed. In such a vacuum pressure control system, a vacuum valve is connected between the vacuum vessel and the vacuum pump. This vacuum valve controls the vacuum pressure of the process gas supplied into the vacuum vessel by opening and closing the valve or changing the opening of the valve (see, for example, Patent Document 1).

図12は、従来の真空弁101の一部断面側面図である。
真空弁101は、チューブ状のボディ102の下端開口部に入力ポート形成部材103が溶接されている。入力ポート形成部材103は、弁座105をボディ102内に突出させるように配置している。ボディ102の側面には、穴が開設され、その穴に塑性加工を施して筒状孔部109を設けている。筒状孔部109には、出力ポート形成部材104が溶接されている。駆動部106は、駆動軸107の下端部をボディ102内へ突出させ、駆動軸107の下端部に連結された弁体108を弁座105に当接又は離間させることにより、入力ポート形成部材103から出力ポート形成部材104へ流れる流体の供給又は遮断を制御している。ベローズ110は、駆動軸107を覆うようにボディ102内に伸縮自在に配置され、大気及び駆動軸107の摺動部から発生するパーティクルがボディ102内へ流出しないようにしている(例えば特許文献2参照)。
FIG. 12 is a partial sectional side view of a conventional vacuum valve 101.
In the vacuum valve 101, an input port forming member 103 is welded to a lower end opening of a tubular body 102. The input port forming member 103 is arranged so that the valve seat 105 protrudes into the body 102. A hole is formed on the side surface of the body 102, and the hole 109 is plastically processed to provide a cylindrical hole 109. An output port forming member 104 is welded to the cylindrical hole 109. The drive unit 106 projects the lower end portion of the drive shaft 107 into the body 102, and causes the valve body 108 connected to the lower end portion of the drive shaft 107 to contact or separate from the valve seat 105, whereby the input port forming member 103. Supply or blocking of the fluid flowing from the output port forming member 104 to the output port forming member 104 is controlled. The bellows 110 is disposed in the body 102 so as to extend and retract so as to cover the drive shaft 107, and prevents particles generated from the atmosphere and the sliding portion of the drive shaft 107 from flowing into the body 102 (for example, Patent Document 2). reference).

特開平9−72458号公報JP-A-9-72458 特開2009−74681号公報JP 2009-74681 A

近年、真空容器が大きくなっており、この容器内の圧力を一気に下げるために、真空弁101のコンダクタンスを大きくすることが望まれている。真空弁101のコンダクタンスを単純に大きくするのなら、真空弁101のバルブ全高を高くして弁ストロークを大きくすれば良いと考えられる。しかし、真空弁101が取り付けられる半導体製造装置等ではコンパクト化及び集積化が進み、設置スペースの関係上、真空弁101の全高を高くすることは難しい。よって、バルブ全高を大きくせずにコンダクタンスを大きくできる真空弁が産業界より求められている。   In recent years, vacuum containers have become larger, and it is desired to increase the conductance of the vacuum valve 101 in order to reduce the pressure in the container at once. If the conductance of the vacuum valve 101 is simply increased, it is considered that the overall valve height of the vacuum valve 101 should be increased to increase the valve stroke. However, in a semiconductor manufacturing apparatus or the like to which the vacuum valve 101 is attached, downsizing and integration have progressed, and it is difficult to increase the overall height of the vacuum valve 101 because of installation space. Therefore, there is a demand from the industry for a vacuum valve that can increase conductance without increasing the overall height of the valve.

本発明は、上記問題点を解決するためになされたものであり、バルブ全高を大きくせずにコンダクタンスを大きくできる真空弁を提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a vacuum valve capable of increasing conductance without increasing the overall valve height.

本発明の構成では、真空容器に接続される配管上に配設され、弁の開閉により前記真空容器内の真空度を制御する真空弁において、弁体を内包するボディが筒状であり、前記ボディの側面に第1筒状孔部と第2筒状孔部が同じ加工方法で設けられ、前記第1筒状孔部にポート形成部材が接続され、前記第2筒状孔部に、前記第2筒状孔部の開口端面を塞ぐ閉鎖部材が接続されている。   In the configuration of the present invention, in a vacuum valve that is disposed on a pipe connected to a vacuum vessel and controls the degree of vacuum in the vacuum vessel by opening and closing the valve, the body containing the valve body is cylindrical, A first cylindrical hole and a second cylindrical hole are provided on the side surface of the body by the same processing method, a port forming member is connected to the first cylindrical hole, and the second cylindrical hole is A closing member for closing the opening end surface of the second cylindrical hole is connected.

本発明の構成では、真空容器に接続される配管上に配設され、弁の開閉により前記真空容器内の真空度を制御する真空弁において、弁体を内包するボディが筒状であり、前記ボディの側面に第1筒状孔部と第2筒状孔部が同じ加工方法で設けられ、前記第1及び前記第2筒状孔部にポート形成部材が接続されている。   In the configuration of the present invention, in a vacuum valve that is disposed on a pipe connected to a vacuum vessel and controls the degree of vacuum in the vacuum vessel by opening and closing the valve, the body containing the valve body is cylindrical, A first cylindrical hole and a second cylindrical hole are provided on the side surface of the body by the same processing method, and a port forming member is connected to the first and second cylindrical holes.

本発明の構成では、真空容器に接続される配管上に配設され、弁の開閉により前記真空容器内の真空度を制御する真空弁において、弁体を内包するボディが筒状であり、前記ボディの側面に第1筒状孔部と第2筒状孔部が同一形状で設けられ、前記第1筒状孔部にポート形成部材が接続され、前記第2筒状孔部に、前記第2筒状孔部の開口端面を塞ぐ閉鎖部材が接続されている。   In the configuration of the present invention, in a vacuum valve that is disposed on a pipe connected to a vacuum vessel and controls the degree of vacuum in the vacuum vessel by opening and closing the valve, the body containing the valve body is cylindrical, The first cylindrical hole and the second cylindrical hole are provided in the same shape on the side surface of the body, a port forming member is connected to the first cylindrical hole, and the second cylindrical hole is connected to the second cylindrical hole. A closing member for closing the opening end face of the two cylindrical holes is connected.

本発明の構成では、真空容器に接続される配管上に配設され、弁の開閉により前記真空容器内の真空度を制御する真空弁において、弁体を内包するボディが筒状であり、前記ボディの側面に第1筒状孔部と第2筒状孔部が同一形状で設けられ、前記第1及び前記第2筒状孔部にポート形成部材が接続されている。   In the configuration of the present invention, in a vacuum valve that is disposed on a pipe connected to a vacuum vessel and controls the degree of vacuum in the vacuum vessel by opening and closing the valve, the body containing the valve body is cylindrical, The first cylindrical hole and the second cylindrical hole are provided in the same shape on the side surface of the body, and a port forming member is connected to the first and second cylindrical holes.

上記構成の真空弁は、前記第1及び前記第2筒状孔部が玉抜き工法により設けられていることが望ましい。   As for the vacuum valve of the said structure, it is desirable for the said 1st and said 2nd cylindrical hole part to be provided by the ball removal method.

上記構成の真空弁は、筒状のボディの側面に、第1筒状孔部と第2筒状孔部とを同じ加工方法又は同一形状で設け、第1筒状孔部にポート形成部材を接続して、ポート形成部材から流体を出力できるようにする一方、第2筒状孔部に閉鎖部材を接続して第2筒状孔部の開口端面を塞ぎ、弁体とボディとの間に形成される隙間を大きくしている。このような真空弁は、第2筒状孔部側の弁体とボディとの間に流体が流れやすくなり、第2筒状孔部を備えない真空弁と同じ弁ストロークでも、第2筒状孔部を備えない真空弁より吐出流量が増加する。よって、上記構成の真空弁によれば、バルブ全高を大きくせずにコンダクタンスを大きくすることができる。   In the vacuum valve having the above-described configuration, the first cylindrical hole and the second cylindrical hole are provided in the same processing method or the same shape on the side surface of the cylindrical body, and the port forming member is provided in the first cylindrical hole. While connecting to allow the fluid to be output from the port forming member, the closing member is connected to the second cylindrical hole portion to close the open end surface of the second cylindrical hole portion, and between the valve body and the body. The gap formed is increased. In such a vacuum valve, the fluid can easily flow between the valve body on the second cylindrical hole side and the body, and the second cylindrical shape even with the same valve stroke as the vacuum valve not including the second cylindrical hole part. The discharge flow rate increases compared to a vacuum valve without a hole. Therefore, according to the vacuum valve having the above configuration, the conductance can be increased without increasing the overall height of the valve.

上記構成の真空弁は、筒状のボディの側面に、第1筒状孔部と第2筒状孔部とを同じ加工方法又は同一形状で設け、第1及び第2筒状孔部にポート形成部材を接続して、流体を複数の方向に出力する。このような真空弁は、流体が第1及び第2筒状孔部側へ流れてポート形成部材からそのまま吐出されるので、第2筒状孔部を備えない真空弁と同じ弁ストロークでも、第2筒状孔部を備えない真空弁より吐出流量が増加する。よって、上記構成の真空弁によれば、バルブ全高を大きくせずにコンダクタンスを大きくすることができる。   The vacuum valve having the above structure is provided with the first cylindrical hole portion and the second cylindrical hole portion in the same processing method or in the same shape on the side surface of the cylindrical body, and ports are provided in the first and second cylindrical hole portions. Connect the forming members to output fluid in multiple directions. In such a vacuum valve, the fluid flows to the first and second cylindrical hole portions and is discharged as it is from the port forming member. Therefore, even with the same valve stroke as the vacuum valve not including the second cylindrical hole portion, The discharge flow rate increases from a vacuum valve that does not have two cylindrical holes. Therefore, according to the vacuum valve having the above configuration, the conductance can be increased without increasing the overall height of the valve.

上記構成の真空弁では、第1及び第2筒状孔部を玉抜き工法により設けているので、同じ製造設備を利用でき、溶接箇所を少なくして、加工数や製作コストを減らすことができる。   In the vacuum valve having the above configuration, since the first and second cylindrical hole portions are provided by the ball-blowing method, the same manufacturing equipment can be used, the number of welding points can be reduced, and the number of processing and the manufacturing cost can be reduced. .

本発明の実施形態に係る真空弁の一部断面側面図であって、弁閉状態を示す。It is a partial cross section side view of the vacuum valve concerning the embodiment of the present invention, and shows a valve closed state. 図1に示す真空弁の一部断面側面図であって、弁開状態を示す。It is a partial cross section side view of the vacuum valve shown in FIG. 1, Comprising: A valve open state is shown. 図1に示す真空弁の弁部構造を上方から見た概略構成図である。It is the schematic block diagram which looked at the valve part structure of the vacuum valve shown in FIG. 1 from upper direction. 図1に示す真空弁の第1比較例の一部断面側面図である。It is a partial cross section side view of the 1st comparative example of the vacuum valve shown in FIG. 図1に示す真空弁の第2比較例の概略構成図である。It is a schematic block diagram of the 2nd comparative example of the vacuum valve shown in FIG. 図1に示す真空弁の第1変形例の一部断面側面図である。It is a partial cross section side view of the 1st modification of the vacuum valve shown in FIG. 図12に示す従来の真空弁に流れる流体の速度の数値解析結果を示す図である。It is a figure which shows the numerical analysis result of the speed of the fluid which flows into the conventional vacuum valve shown in FIG. 図4に示す第1比較例の真空弁に流れる流体の流速の数値解析結果を示す図である。It is a figure which shows the numerical analysis result of the flow velocity of the fluid which flows into the vacuum valve of the 1st comparative example shown in FIG. 図5に示す第2比較例の真空弁に流れる流体の流速の数値解析結果を示す図である。It is a figure which shows the numerical analysis result of the flow velocity of the fluid which flows into the vacuum valve of the 2nd comparative example shown in FIG. 図1に示す本実施形態の真空弁に流れる流体の流速の数値解析結果を示す図である。It is a figure which shows the numerical analysis result of the flow velocity of the fluid which flows into the vacuum valve of this embodiment shown in FIG. 図6に示す第1変形例の真空弁に流れる流体の流速の数値解析結果を示す図である。It is a figure which shows the numerical analysis result of the flow velocity of the fluid which flows into the vacuum valve of the 1st modification shown in FIG. 従来の真空弁の一部断面側面図である。It is a partial cross section side view of the conventional vacuum valve.

以下に、本発明に係る真空弁の一実施形態について、図面を参照しながら説明する。   Hereinafter, an embodiment of a vacuum valve according to the present invention will be described with reference to the drawings.

図1及び図2は、本発明の実施形態に係る真空弁1の一部断面側面図であり、図1が弁閉状態を示し、図2が弁開状態を示している。図3は、図1に示す真空弁1の弁部構造を上方から見た概略構成図である。
図1及び図2に示す真空弁1は、例えば半導体製造装置の真空圧力制御システムに設けられた真空容器と真空ポンプとを接続する配管上に配設され、弁の開閉により真空容器から真空ポンプへ流れる流体の流量を制御し、真空容器内の真空度を制御する。真空弁1は、ボディ2と弁体5の形状を除き、図12に示す真空弁101と構成が共通している。
FIG.1 and FIG.2 is a partial cross section side view of the vacuum valve 1 which concerns on embodiment of this invention, FIG. 1 shows the valve closed state and FIG. 2 has shown the valve open state. FIG. 3 is a schematic configuration diagram of the valve portion structure of the vacuum valve 1 shown in FIG. 1 as viewed from above.
A vacuum valve 1 shown in FIG. 1 and FIG. 2 is disposed on a pipe connecting a vacuum vessel and a vacuum pump provided in a vacuum pressure control system of a semiconductor manufacturing apparatus, for example, and is opened and closed to open the vacuum pump from the vacuum vessel. The flow rate of fluid flowing into the vacuum vessel is controlled, and the degree of vacuum in the vacuum vessel is controlled. Except for the shapes of the body 2 and the valve body 5, the vacuum valve 1 has the same configuration as the vacuum valve 101 shown in FIG.

図1及び図2に示すように、ボディ2は、SUSなどの金属を筒状に成形したものでり、高真空に耐えうる強度を備える。ボディ2の図中下端開口部には、入力ポート形成部材103が溶接され、ボディ2内に突き出す円筒部上端面により平坦な弁座105が構成されている。ボディ2には、弁座105の近くに筒状孔部109,3が設けられている。ボディ2の側面には、軸線を挟んで対称位置に同一形状の筒状孔部109,3が同じ加工方法で設けられている。筒状孔部109,3は、ボディ2の側面に穴をあけて、その穴を円筒状に塑性加工することにより(玉抜き工法)、継ぎ目なくボディ2と一体に形成されている。筒状孔部109,3は、ボディ2に対して同じ高さで同じ形状に設けられるため、作業者は、加工用装置の設定を変えなくてもボディ2の向きを変えるだけで筒状孔部109,3を形成できる。筒状孔部109,3とボディ2との間には、角を丸くしたRが設けられ、流体が筒状孔部109,3周辺に滞留部や乱流部を形成しにくくしている。   As shown in FIGS. 1 and 2, the body 2 is formed of a metal such as SUS in a cylindrical shape, and has a strength that can withstand high vacuum. An input port forming member 103 is welded to the lower end opening of the body 2 in the drawing, and a flat valve seat 105 is formed by the upper end surface of the cylindrical portion protruding into the body 2. The body 2 is provided with cylindrical holes 109 and 3 near the valve seat 105. On the side surface of the body 2, cylindrical holes 109 and 3 having the same shape are provided in the same position at symmetrical positions with respect to the axis. The cylindrical hole portions 109 and 3 are formed integrally with the body 2 without a seam by making a hole in the side surface of the body 2 and plastically processing the hole into a cylindrical shape (ball-drawing method). Since the cylindrical holes 109 and 3 are provided at the same height and the same shape with respect to the body 2, the operator can change the direction of the body 2 without changing the setting of the processing apparatus. Portions 109 and 3 can be formed. An R having rounded corners is provided between the cylindrical hole portions 109 and 3 and the body 2 to make it difficult for fluid to form a staying portion or a turbulent portion around the cylindrical hole portions 109 and 3.

筒状孔部109(第1筒状孔部の一例)の端面には、出力ポート形成部材104が突き合わされて溶接され、配管接続することができる。一方、筒状孔部3(第2筒状孔部に一例)の端面には、閉鎖部材4が突き合わされて溶接され、筒状孔部3の端面開口部が塞がれている。閉鎖部材4は、一端を閉鎖された円筒形状をなし、図1〜図3に示す図中S1に示すように、筒状孔部3と共にボディ2の内部容積を出力ポート形成部材104(筒状孔部109)と反対側の外向きに広げて、弁体5とボディ2との間の隙間を大きくしている。   The output port forming member 104 is abutted and welded to the end face of the cylindrical hole 109 (an example of the first cylindrical hole), and can be connected to the pipe. On the other hand, a closing member 4 is abutted and welded to an end surface of the cylindrical hole 3 (an example of the second cylindrical hole), and an end surface opening of the cylindrical hole 3 is closed. The closing member 4 has a cylindrical shape with one end closed, and as shown by S1 in the drawings shown in FIGS. 1 to 3, the internal volume of the body 2 together with the cylindrical hole portion 3 is set as an output port forming member 104 (cylindrical shape). The gap between the valve body 5 and the body 2 is increased by expanding outwardly from the hole 109).

図1及び図2に示すように、弁体5は、駆動軸107の下端に螺合され、駆動軸107に着脱できるようにされている。弁体5は、樹脂やゴムなどの弾性材料からなるOリング7を板状のディスク6により挟持しており、駆動軸107の下端にねじで固定されている。弁体5は、弁座105に対向する面が平坦にされている。弁体5には、駆動軸107を覆うようにボディ2内に配置されたベローズ110の下端部が溶接されている。ベローズ110は、弁体5の動作に従って伸縮し、駆動軸107の摺動部から発生するパーティクルや大気が流路内へ流出するのを防いでいる。   As shown in FIGS. 1 and 2, the valve body 5 is screwed into the lower end of the drive shaft 107 so that it can be attached to and detached from the drive shaft 107. The valve body 5 sandwiches an O-ring 7 made of an elastic material such as resin or rubber by a plate-like disk 6 and is fixed to the lower end of the drive shaft 107 with a screw. The valve body 5 has a flat surface facing the valve seat 105. The valve body 5 is welded with a lower end portion of a bellows 110 disposed in the body 2 so as to cover the drive shaft 107. The bellows 110 expands and contracts in accordance with the operation of the valve body 5 and prevents particles and air generated from the sliding portion of the drive shaft 107 from flowing into the flow path.

このような真空弁1は、図1に示すように、駆動部106が弁体5のOリング7を弁座105に密着させている間は、入力ポート形成部材103から出力ポート形成部材104へ流体が流れない。
一方、図2に示すように、真空弁1は、駆動部106が弁体5を弁座105から離間させると、入力ポート形成部材103から出力ポート形成部材104へ流体が流れる。
As shown in FIG. 1, such a vacuum valve 1 is configured such that the input port forming member 103 is changed to the output port forming member 104 while the driving unit 106 closely contacts the O-ring 7 of the valve body 5 with the valve seat 105. Fluid does not flow.
On the other hand, as shown in FIG. 2, in the vacuum valve 1, when the driving unit 106 moves the valve body 5 away from the valve seat 105, the fluid flows from the input port forming member 103 to the output port forming member 104.

続いて、流体の流速の数値解析について説明する。図4は、真空弁1の第1比較例を示す一部断面側面図である。図5は、真空弁1の第2比較例の概略構成図である。図6は、真空弁1の第1変形例を示す一部断面側面図である。
流速の数値解析は、図12に示す従来の真空弁101、図4に示す第1比較例の真空弁31、図5に示す第2比較例の真空弁21、図1に示す真空弁1、図6に示す第1変形例の真空弁11について、それぞれ行われた。
Next, numerical analysis of the fluid flow velocity will be described. FIG. 4 is a partial cross-sectional side view showing a first comparative example of the vacuum valve 1. FIG. 5 is a schematic configuration diagram of a second comparative example of the vacuum valve 1. FIG. 6 is a partial cross-sectional side view showing a first modification of the vacuum valve 1.
Numerical analysis of the flow velocity includes the conventional vacuum valve 101 shown in FIG. 12, the vacuum valve 31 of the first comparative example shown in FIG. 4, the vacuum valve 21 of the second comparative example shown in FIG. 5, the vacuum valve 1 shown in FIG. This was performed for the vacuum valve 11 of the first modification shown in FIG.

図4に示す第1比較例の真空弁31は、図12に示す従来の真空弁101のボディ102を使用する点を除き、図1に示す真空弁1と構成が共通する。換言すれば、真空弁31は、弁体5を除き、図12に示す従来の真空弁101と構成が共通する。
図5に示す第2比較例の真空弁21は、出力ポート形成部材103と反対側の側面を押し広げて、ボディ21の内壁形状を略楕円にしている点を除き、図1に示す真空弁1と構成が共通する。
図6に示す第1変形例の真空弁11は、出力ポート形成部材104と同一形状の出力ポート形成部材12を筒状孔部3に溶接している点を除き、図1に示す真空弁1と構成が共通する。
The vacuum valve 31 of the first comparative example shown in FIG. 4 has the same configuration as the vacuum valve 1 shown in FIG. 1 except that the body 102 of the conventional vacuum valve 101 shown in FIG. 12 is used. In other words, the vacuum valve 31 has the same configuration as the conventional vacuum valve 101 shown in FIG.
The vacuum valve 21 of the second comparative example shown in FIG. 5 is the vacuum valve shown in FIG. 1 except that the side surface opposite to the output port forming member 103 is expanded to make the inner wall shape of the body 21 substantially elliptical. 1 and the configuration are common.
The vacuum valve 11 of the first modification shown in FIG. 6 is the vacuum valve 1 shown in FIG. 1 except that the output port forming member 12 having the same shape as the output port forming member 104 is welded to the cylindrical hole portion 3. And the configuration is common.

この解析には、市販の解析ソフト「SCRYU(登録商標)」を使用した。解析条件は、各真空弁の弁開度を同じにして30℃の空気を圧縮した圧縮性流体を入力ポート形成部材103に供給すること、及び、入力ポート形成部材103側の圧力を133.32Pa、出力ポート形成部材104側の圧力を0Paとして入出力ポートの差圧を133.32Paとすることである。   For this analysis, commercially available analysis software “SCRYU (registered trademark)” was used. The analysis conditions are that the compressive fluid obtained by compressing air at 30 ° C. with the same valve opening degree of each vacuum valve is supplied to the input port forming member 103, and the pressure on the input port forming member 103 side is 133.32 Pa. The pressure on the output port forming member 104 side is 0 Pa, and the differential pressure of the input / output port is 133.32 Pa.

図7〜図11は、流速の数値解析結果を示す図である。図7は、図12に示す従来の真空弁101に流れる流体の速度の数値解析結果を示す図である。図8は、図4に示す第1比較例の真空弁31に流れる流体の流速の数値解析結果を示す図である。図9は、図5に示す第2比較例の真空弁21に流れる流体の流速の数値解析結果を示す図である。図10は、図1に示す本実施形態の真空弁1に流れる流体の流速の数値解析結果を示す図である。図11は、図6に示す第1変形例の真空弁11に流れる流体の流速の数値解析結果を示す図である。   7 to 11 are diagrams showing the numerical analysis results of the flow velocity. FIG. 7 is a diagram showing a numerical analysis result of the velocity of the fluid flowing through the conventional vacuum valve 101 shown in FIG. FIG. 8 is a diagram showing a numerical analysis result of the flow velocity of the fluid flowing through the vacuum valve 31 of the first comparative example shown in FIG. FIG. 9 is a diagram showing a numerical analysis result of the flow velocity of the fluid flowing through the vacuum valve 21 of the second comparative example shown in FIG. FIG. 10 is a diagram showing a numerical analysis result of the flow velocity of the fluid flowing through the vacuum valve 1 of the present embodiment shown in FIG. FIG. 11 is a diagram showing a numerical analysis result of the flow velocity of the fluid flowing through the vacuum valve 11 of the first modification shown in FIG.

図12に示す従来の真空弁101は、図7に示すように、凸部108aが弁座105側へ突出して弁体108に設けられているため、弁体108とボディ102との間の隙間が小さい。それ故に、流体は、図7のY1,Y2に示すように、弁体108とボディ102との間を流れにくく、弁座105から出力ポート形成部材104へ集中的に流れる。このような真空弁101は、出力ポート形成部材104から吐出する流体の吐出量が、3,125L/minであった。   As shown in FIG. 7, the conventional vacuum valve 101 shown in FIG. 12 has a convex portion 108a that protrudes toward the valve seat 105 and is provided on the valve body 108, so that there is a gap between the valve body 108 and the body 102. Is small. Therefore, as shown by Y1 and Y2 in FIG. 7, the fluid hardly flows between the valve body 108 and the body 102 and flows intensively from the valve seat 105 to the output port forming member 104. In such a vacuum valve 101, the discharge amount of the fluid discharged from the output port forming member 104 was 3,125 L / min.

図4に示す第1比較例の真空弁31は、弁体5の弁座側端面を平坦にしたことにより、従来の真空弁101より弁体5とボディ102との間の隙間が大きい。それ故に、真空弁31は、図8のY12に示すように、流体が弁体5とボディ102との間を流れる流体の流速が従来の真空弁101と殆ど変わらないものの、図中Y11に示すように、弁座105から出力ポート形成部材104へ流れる流体の流速が、従来の真空弁101より広い領域で速くなっている。このような真空弁31は、出力ポート形成部材104から吐出する流体の吐出量が、3,373L/minであり、従来の真空弁101の吐出量の約1.08倍に増加した。よって、真空弁31は、従来の真空弁101より、弁座105から出力ポート形成部材104へ流体が流れやすくなり、コンダクタンスが大きくなった。   The vacuum valve 31 of the first comparative example shown in FIG. 4 has a larger clearance between the valve body 5 and the body 102 than the conventional vacuum valve 101 by flattening the valve seat side end surface of the valve body 5. Therefore, as indicated by Y12 in FIG. 8, the vacuum valve 31 is indicated by Y11 in the drawing although the flow rate of the fluid flowing between the valve body 5 and the body 102 is almost the same as that of the conventional vacuum valve 101. As described above, the flow velocity of the fluid flowing from the valve seat 105 to the output port forming member 104 is higher in a wider area than the conventional vacuum valve 101. In such a vacuum valve 31, the discharge amount of the fluid discharged from the output port forming member 104 is 3,373 L / min, which is about 1.08 times the discharge amount of the conventional vacuum valve 101. Therefore, in the vacuum valve 31, it is easier for the fluid to flow from the valve seat 105 to the output port forming member 104 than in the conventional vacuum valve 101, and the conductance is increased.

図5に示す第2比較例の真空弁21は、図中S2に示すように、ボディ22を押し広げることにより、弁体5の周りの容積を従来の真空弁101より大きくしている。それ故に、真空弁21は、図9のY22に示すように、従来の真空弁101及び第1比較例の真空弁31と比べ、弁体5とボディ22との間を流体が流れやすくなっている。図中Y23に示すように、弁体5とボディ22との間を流れた流体は、弁体5の周りへ回り込み、図中Y21に示すように、出力ポート形成部材104へ流れ込んでいる。このため、図中Y21に示すように、弁座105から出力ポート形成部材104へ流れる流体は、流速が従来の真空弁101や第1比較例の真空弁31より速く、流れやすい。このような真空弁21は、出力ポート形成部材104から吐出する流体の吐出量が、3,746L/minであり、従来の真空弁101の吐出量の約1.2倍に増加すると共に、第1比較例の真空弁31の吐出量の約1.1倍に増加している。よって、真空弁21は、第1比較例の真空弁31及び従来の真空弁101より、流体が弁体5と押し広げ部23との間から出力ポート形成部材104へ流れやすくなり、コンダクタンスが大きくなった。   In the vacuum valve 21 of the second comparative example shown in FIG. 5, the volume around the valve body 5 is made larger than that of the conventional vacuum valve 101 by expanding the body 22 as indicated by S <b> 2 in the figure. Therefore, as shown by Y22 in FIG. 9, the vacuum valve 21 is easier to flow between the valve body 5 and the body 22 than the conventional vacuum valve 101 and the vacuum valve 31 of the first comparative example. Yes. As indicated by Y23 in the figure, the fluid flowing between the valve body 5 and the body 22 turns around the valve body 5, and flows into the output port forming member 104 as indicated by Y21 in the figure. For this reason, as indicated by Y21 in the figure, the fluid flowing from the valve seat 105 to the output port forming member 104 has a higher flow velocity than the conventional vacuum valve 101 and the vacuum valve 31 of the first comparative example, and tends to flow. In such a vacuum valve 21, the discharge amount of the fluid discharged from the output port forming member 104 is 3,746 L / min, which is about 1.2 times the discharge amount of the conventional vacuum valve 101, and The discharge amount of the vacuum valve 31 of one comparative example is increased to about 1.1 times. Therefore, the vacuum valve 21 makes it easier for fluid to flow from between the valve body 5 and the expanding portion 23 to the output port forming member 104 than the vacuum valve 31 of the first comparative example and the conventional vacuum valve 101, and the conductance is large. became.

図1に示す本実施形態の真空弁1は、ボディ2の出力ポート形成部材104(筒状孔部109)と反対側に筒状孔部109と同一形状の筒状孔部3を設け、筒状孔部3を閉鎖部材4で閉鎖することにより、図中S1に示すように、弁体5とボディ2との間の隙間が出力ポート形成部材104と反対側に大きくされている。そのため、真空弁1は、図10のY32に示すように、従来の真空弁101と比べ、流体が弁体5とボディ2との間に流れやすい。図中Y33に示すように、弁体5とボディ2との間を流れた流体は、弁体5の周りを回り込んで、出力ポート形成部材104へ流れる。このため、図中Y31に示すように、真空弁1は、従来の真空弁101と比べ、弁座105から出力ポート形成部材104へ流れる流体の流速が速く、流体が出力ポート形成部材104へ流れやすい。このような真空弁1は、出力ポート形成部材104から吐出する流体の吐出量が、3,700L/minであり、従来の真空弁101の吐出量の約1.11倍に増加している。よって、真空弁1は、従来の真空弁101より、流体が筒状孔部3側の弁体5とボディ2との間から出力ポート形成部材104へ流れやすくなり、コンダクタンスが大きくなった。   The vacuum valve 1 of the present embodiment shown in FIG. 1 is provided with a cylindrical hole 3 having the same shape as the cylindrical hole 109 on the opposite side of the body 2 from the output port forming member 104 (cylindrical hole 109). By closing the hole 3 with the closing member 4, the gap between the valve body 5 and the body 2 is enlarged on the side opposite to the output port forming member 104, as indicated by S 1 in the figure. Therefore, in the vacuum valve 1, as shown by Y <b> 32 in FIG. 10, compared to the conventional vacuum valve 101, the fluid easily flows between the valve body 5 and the body 2. As indicated by Y33 in the figure, the fluid flowing between the valve body 5 and the body 2 flows around the valve body 5 and flows to the output port forming member 104. Therefore, as indicated by Y31 in the figure, the vacuum valve 1 has a higher flow rate of fluid flowing from the valve seat 105 to the output port forming member 104 than the conventional vacuum valve 101, and the fluid flows to the output port forming member 104. Cheap. In such a vacuum valve 1, the discharge amount of the fluid discharged from the output port forming member 104 is 3,700 L / min, which is about 1.11 times the discharge amount of the conventional vacuum valve 101. Therefore, in the vacuum valve 1, the fluid easily flows from the space between the valve body 5 on the cylindrical hole 3 side and the body 2 to the output port forming member 104 and the conductance is larger than the conventional vacuum valve 101.

ここで、隙間S1の開口面積は、隙間S2の開口面積より小さい。しかし、隙間S1は、図3に示すように、閉鎖部材4の中心部において閉鎖部材4と弁体5との距離が最も短く、閉鎖部材4の中心部から図中上下方向へ離れるにつれて、閉鎖部材4と弁体5との間の距離が長くなるように、形成されている。そのため、真空弁1は、弁体5とボディ2との間から隙間S1全体へ流体が流れやすい。これに対して、隙間S2は、図9に示すように、押し広げ部23の中心部において押し広げ部23と弁体5との距離が最も大きく、押し広げ部23の中心部から図中上下方向へ離れるにつれて、押し広げ部23と弁体5との間の距離が短くなるように、形成されている。そのため、第2比較例の真空弁21は、弁体5とボディ22との間から隙間S1の中心部へは流体が流れやすいが、隙間S2の両端へは流体が流れにくい、よって、真空弁1は、隙間S1の開口面積が真空弁21の隙間S2の開口面積より小さくても、隙間S1全体に流体が効率良く流れるため、真空弁21と同程度の吐出量を得ることができる。   Here, the opening area of the gap S1 is smaller than the opening area of the gap S2. However, as shown in FIG. 3, the gap S <b> 1 has the shortest distance between the closing member 4 and the valve body 5 at the center of the closing member 4, and the clearance S <b> 1 is closed as the distance from the center of the closing member 4 increases in the vertical direction in the figure. It forms so that the distance between the member 4 and the valve body 5 may become long. Therefore, in the vacuum valve 1, the fluid easily flows from between the valve body 5 and the body 2 to the entire gap S <b> 1. On the other hand, as shown in FIG. 9, the gap S <b> 2 has the largest distance between the spreading portion 23 and the valve body 5 at the center portion of the spreading portion 23. It forms so that the distance between the expansion part 23 and the valve body 5 may become short as it leaves | separates to a direction. Therefore, in the vacuum valve 21 of the second comparative example, the fluid easily flows from between the valve body 5 and the body 22 to the center of the gap S1, but the fluid does not easily flow to both ends of the gap S2. 1, even if the opening area of the gap S <b> 1 is smaller than the opening area of the gap S <b> 2 of the vacuum valve 21, the fluid efficiently flows through the entire gap S <b> 1.

図6に示す第1変形例の真空弁11は、筒状孔部109の反対側に設けた筒状孔部3に出力ポート形成部材12を溶接している。それ故に、真空弁11は、図11のY41,Y42に示すように、流体がほぼ同じ流速で出力ポート形成部材109,12へ流れている。このような真空弁11は、出力ポート形成部材104から吐出する流体の吐出量が、5,478L/minであり、従来の真空弁101の吐出量の約1.5倍に増加している。よって、真空弁11は、流体を二方向から出力するため、従来の真空弁101及び本実施形態の真空弁1よりコンダクタンスが大きくなった。   The vacuum valve 11 of the first modification shown in FIG. 6 has an output port forming member 12 welded to a cylindrical hole 3 provided on the opposite side of the cylindrical hole 109. Therefore, in the vacuum valve 11, as shown by Y41 and Y42 in FIG. 11, the fluid flows to the output port forming members 109 and 12 at substantially the same flow rate. In such a vacuum valve 11, the discharge amount of the fluid discharged from the output port forming member 104 is 5,478 L / min, which is about 1.5 times the discharge amount of the conventional vacuum valve 101. Therefore, since the vacuum valve 11 outputs the fluid from two directions, the conductance is larger than that of the conventional vacuum valve 101 and the vacuum valve 1 of the present embodiment.

以上の数値解析結果から分かるように、バルブ全高を変えずにコンダクタンスを大きくするには、弁座側端面に凸部を備えない弁体5を使用し、弁体5とボディ2との間の隙間を大きくすると良いことが分かった。   As can be seen from the above numerical analysis results, in order to increase the conductance without changing the overall height of the valve, the valve body 5 having no convex portion is used on the valve seat side end surface, and the valve body 5 and the body 2 are separated from each other. I found that it would be better to increase the gap.

真空弁1,21のコンダクタンスは同程度である。しかし、真空弁21は、筒状孔部109と異なる工法でボディ22の内壁形状を押し広げているため、筒状孔部109と押し広げ部23の加工に異なる装置を用いなければならない。これに対して、真空弁1は、筒状孔部109,3が同一工法により同一形状で設けられるため、筒状孔部109,3の加工に同一装置を使用できる。よって、真空弁1は、真空弁21より簡単な工法で、バルブ全高を高くすることなく弁体5とボディ2との間の隙間を大きくして、コンダクタンスを向上させることができ、真空弁21より優れている。また、配管上許されるならば、真空弁11の方が真空弁1よりも一層優れている。   The conductances of the vacuum valves 1 and 21 are similar. However, since the vacuum valve 21 presses and widens the inner wall shape of the body 22 by a method different from that of the cylindrical hole portion 109, a different device must be used for processing the cylindrical hole portion 109 and the extended portion 23. On the other hand, in the vacuum valve 1, since the cylindrical holes 109 and 3 are provided in the same shape by the same method, the same apparatus can be used for processing the cylindrical holes 109 and 3. Therefore, the vacuum valve 1 can improve the conductance by increasing the gap between the valve body 5 and the body 2 without increasing the overall height of the valve by a simpler method than the vacuum valve 21, and the vacuum valve 21. Better. In addition, the vacuum valve 11 is superior to the vacuum valve 1 if allowed by piping.

以上説明したように、上記真空弁1は、筒状のボディ2の側面に、筒状孔部109,3を同一工法及び同一形状で設け、筒状孔部109に出力ポート形成部材104を接続して、出力ポート形成部材104から流体を出力できるようにする一方、筒状孔部3に閉鎖部材4を接続して筒状孔部3の開口端面を塞ぎ、弁体5とボディ2との間に形成される隙間S1を大きくしている。このような真空弁1は、筒状孔部3側の弁体5とボディ2との間に流体が流れやすくなり、筒状孔部3を備えない真空弁101と同じ弁ストロークでも、真空弁101より吐出流量が増加する。よって、上記真空弁1によれば、バルブ全高を大きくせずにコンダクタンスを大きくすることができる。   As described above, in the vacuum valve 1, the cylindrical holes 109 and 3 are provided in the same manner and in the side surface of the cylindrical body 2, and the output port forming member 104 is connected to the cylindrical hole 109. Thus, while allowing fluid to be output from the output port forming member 104, the closing member 4 is connected to the cylindrical hole portion 3 to close the opening end surface of the cylindrical hole portion 3. The gap S1 formed therebetween is increased. In such a vacuum valve 1, a fluid easily flows between the valve body 5 on the cylindrical hole 3 side and the body 2, and even with the same valve stroke as the vacuum valve 101 without the cylindrical hole 3, The discharge flow rate increases from 101. Therefore, according to the vacuum valve 1, the conductance can be increased without increasing the overall height of the valve.

上記真空弁11は、筒状のボディ2の側面に、筒状孔部109,3を同じ加工方法及び同一形状で設け、筒状孔部109,3に出力ポート形成部材104,12を接続して、流体を2方向に出力する。このような真空弁11は、流体が筒状孔部109,3側へ流れて出力ポート形成部材104,12からそのまま吐出されるので、筒状孔部3を備えない真空弁101と同じ弁ストロークでも、真空弁101より吐出流量が増加する。よって、上記真空弁11によれば、バルブ全高を大きくせずにコンダクタンスを大きくすることができる。   In the vacuum valve 11, the cylindrical holes 109 and 3 are provided on the side surface of the cylindrical body 2 with the same processing method and the same shape, and the output port forming members 104 and 12 are connected to the cylindrical holes 109 and 3. The fluid is output in two directions. In such a vacuum valve 11, the fluid flows to the cylindrical hole portions 109, 3 side and is discharged from the output port forming members 104, 12 as it is, so that the same valve stroke as the vacuum valve 101 without the cylindrical hole portion 3 is provided. However, the discharge flow rate increases from the vacuum valve 101. Therefore, according to the vacuum valve 11, the conductance can be increased without increasing the overall height of the valve.

上記真空弁1,11は、筒状孔部109,3を同じ加工方法で設けているので、筒状孔部109,3を同じ装置で加工し、製作コストを安くできる。
上記真空弁1,11は、ボディ2が、チューブ状素材より加工したものであり、例えば、筒状孔部109から切削工具を挿入してボディ2の内壁を削ったり、筒状孔部109から加圧工具を挿入してボディ2の内壁を加圧してボディ2の側面を変形させることにより、弁体5とボディ2との間の隙間を大きくすることは、実質的に困難でコストもかかる。それに対して、上記真空弁1,11のように、筒状孔部109と同じ玉抜き工法で筒状孔部3をボディ2に設け、筒状孔部3に閉鎖部材4又は出力ポート形成部材12を溶接すれば、弁体5とボディ2との間の隙間を簡単かつ安価に大きくすることができる。
Since the vacuum valves 1 and 11 are provided with the cylindrical holes 109 and 3 by the same processing method, the cylindrical holes 109 and 3 are processed by the same apparatus, and the manufacturing cost can be reduced.
The vacuum valves 1 and 11 are formed by processing the body 2 from a tube-shaped material. For example, a cutting tool is inserted from the cylindrical hole 109 to cut the inner wall of the body 2 or from the cylindrical hole 109. Increasing the gap between the valve body 5 and the body 2 by inserting a pressurizing tool and pressurizing the inner wall of the body 2 to deform the side surface of the body 2 is substantially difficult and costly. . On the other hand, like the vacuum valves 1 and 11, the cylindrical hole portion 3 is provided in the body 2 by the same ball removing method as the cylindrical hole portion 109, and the closing member 4 or the output port forming member is provided in the cylindrical hole portion 3. If 12 is welded, the clearance gap between the valve body 5 and the body 2 can be enlarged easily and cheaply.

上記真空弁1,11では、第2筒状孔部109,3を同じ玉抜き工法により設けているので、同じ製造装置を利用でき、溶接箇所を減らして、加工数や製作コストを減らすことができる。
上記真空弁1(11)は、筒状孔部109,3が同一形状であり、出力ポート形成部材104と閉鎖部材4(出力ポート形成部材12)を筒状孔部109,3の何れにも溶接できるので、組み立てやすい。
In the vacuum valves 1 and 11, since the second cylindrical holes 109 and 3 are provided by the same beading method, the same manufacturing apparatus can be used, the number of welding points can be reduced, and the number of processing and the manufacturing cost can be reduced. it can.
In the vacuum valve 1 (11), the cylindrical holes 109 and 3 have the same shape, and the output port forming member 104 and the closing member 4 (output port forming member 12) are connected to both the cylindrical holes 109 and 3. Easy to assemble because it can be welded.

尚、本発明は、上記実施形態に限定されることなく、色々な応用が可能である。
例えば、上記実施形態では、玉抜き工法により筒状孔部109,3を形成している。これに対して、ボディ2の側面に切削、溶断、打ち抜き等により穴を形成し、各孔に筒状孔部109,3を構成する部材を溶接しても良い。
例えば、上記実施形態では、ボディ2の2箇所に筒状孔部109,3を設けたが、筒状孔部を3箇所以上設けても良い。
例えば、上記実施形態では、閉鎖部材4を一端を閉鎖された円筒形状としたが、閉鎖部材4を板状にして筒状孔部3の端面に溶接するようにしても良い。
例えば、上記実施形態では、真空弁1は、真空容器から真空ポンプへ流れる流体の排気流量を制御することにより真空容器内の真空度を制御する。これに対して、真空弁1は、真空容器に供給する流体の供給流量を制御し、真空容器内の真空度を制御するものであっても良い。また、真空弁1は、真空容器に給排気する流体を制御して、真空容器内の真空度を制御するものであっても良い。
In addition, this invention is not limited to the said embodiment, Various application is possible.
For example, in the above-described embodiment, the cylindrical holes 109 and 3 are formed by a ball removal method. On the other hand, a hole may be formed in the side surface of the body 2 by cutting, fusing, punching, or the like, and members constituting the cylindrical hole portions 109 and 3 may be welded to the holes.
For example, in the above-described embodiment, the cylindrical hole portions 109 and 3 are provided at two locations on the body 2, but three or more cylindrical hole portions may be provided.
For example, in the above embodiment, the closing member 4 has a cylindrical shape with one end closed. However, the closing member 4 may be plate-shaped and welded to the end face of the cylindrical hole portion 3.
For example, in the above embodiment, the vacuum valve 1 controls the degree of vacuum in the vacuum container by controlling the exhaust flow rate of the fluid flowing from the vacuum container to the vacuum pump. On the other hand, the vacuum valve 1 may control the supply flow rate of the fluid supplied to the vacuum vessel and control the degree of vacuum in the vacuum vessel. Moreover, the vacuum valve 1 may control the fluid supplied and exhausted to a vacuum vessel, and may control the vacuum degree in a vacuum vessel.

1,11 真空弁
2 ボディ
3,109 筒状孔部(第1及び第2筒状孔部の一例)
4 閉鎖部材
5 弁体
103 入力ポート形成部材
12,104 出力ポート形成部材(ポート形成部材の一例)
105 弁座
1,11 Vacuum valve 2 Body 3,109 Cylindrical hole (an example of first and second cylindrical holes)
4 Closing member 5 Valve body 103 Input port forming member 12, 104 Output port forming member (an example of port forming member)
105 Valve seat

Claims (5)

真空容器に接続される配管上に配設され、弁の開閉により前記真空容器内の真空度を制御する真空弁において、
弁体を内包するボディが筒状であり、
前記ボディの側面に第1筒状孔部と第2筒状孔部が同じ加工方法で設けられ、
前記第1筒状孔部にポート形成部材が接続され、
前記第2筒状孔部に、前記第2筒状孔部の開口端面を塞ぐ閉鎖部材が接続されている
ことを特徴とする真空弁。
In a vacuum valve disposed on a pipe connected to the vacuum vessel and controlling the degree of vacuum in the vacuum vessel by opening and closing the valve,
The body that contains the valve body is cylindrical,
The first cylindrical hole and the second cylindrical hole are provided on the side surface of the body by the same processing method,
A port forming member is connected to the first cylindrical hole,
A vacuum valve characterized in that a closing member for closing an opening end surface of the second cylindrical hole is connected to the second cylindrical hole.
真空容器に接続される配管上に配設され、弁の開閉により前記真空容器内の真空度を制御する真空弁において、
弁体を内包するボディが筒状であり、
前記ボディの側面に第1筒状孔部と第2筒状孔部が同じ加工方法で設けられ、
前記第1及び前記第2筒状孔部にポート形成部材が接続されている
ことを特徴とする真空弁。
In a vacuum valve disposed on a pipe connected to the vacuum vessel and controlling the degree of vacuum in the vacuum vessel by opening and closing the valve,
The body that contains the valve body is cylindrical,
The first cylindrical hole and the second cylindrical hole are provided on the side surface of the body by the same processing method,
A vacuum valve, wherein a port forming member is connected to the first and second cylindrical holes.
真空容器に接続される配管上に配設され、弁の開閉により前記真空容器内の真空度を制御する真空弁において、
弁体を内包するボディが筒状であり、
前記ボディの側面に第1筒状孔部と第2筒状孔部が同一形状で設けられ、
前記第1筒状孔部にポート形成部材が接続され、
前記第2筒状孔部に、前記第2筒状孔部の開口端面を塞ぐ閉鎖部材が接続されている
ことを特徴とする真空弁。
In a vacuum valve disposed on a pipe connected to the vacuum vessel and controlling the degree of vacuum in the vacuum vessel by opening and closing the valve,
The body containing the valve body is cylindrical,
The first cylindrical hole and the second cylindrical hole are provided in the same shape on the side surface of the body,
A port forming member is connected to the first cylindrical hole,
A vacuum valve, wherein a closing member for closing an opening end surface of the second cylindrical hole is connected to the second cylindrical hole.
真空容器に接続される配管上に配設され、弁の開閉により前記真空容器内の真空度を制御する真空弁において、
弁体を内包するボディが筒状であり、
前記ボディの側面に第1筒状孔部と第2筒状孔部が同一形状で設けられ、
前記第1及び前記第2筒状孔部にポート形成部材が接続されている
ことを特徴とする真空弁。
In a vacuum valve disposed on a pipe connected to the vacuum vessel and controlling the degree of vacuum in the vacuum vessel by opening and closing the valve,
The body that contains the valve body is cylindrical,
The first cylindrical hole and the second cylindrical hole are provided in the same shape on the side surface of the body,
A vacuum valve, wherein a port forming member is connected to the first and second cylindrical holes.
請求項1乃至請求項4の何れか1つに記載する真空弁において、
前記第1及び前記第2筒状孔部が玉抜き工法により設けられている
ことを特徴とする真空弁。
The vacuum valve according to any one of claims 1 to 4,
A vacuum valve characterized in that the first and second cylindrical hole portions are provided by a beading method.
JP2009226836A 2009-09-30 2009-09-30 Vacuum valve Pending JP2011075017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009226836A JP2011075017A (en) 2009-09-30 2009-09-30 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009226836A JP2011075017A (en) 2009-09-30 2009-09-30 Vacuum valve

Publications (1)

Publication Number Publication Date
JP2011075017A true JP2011075017A (en) 2011-04-14

Family

ID=44019220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009226836A Pending JP2011075017A (en) 2009-09-30 2009-09-30 Vacuum valve

Country Status (1)

Country Link
JP (1) JP2011075017A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728973U (en) * 1980-07-25 1982-02-16
JPS58123980U (en) * 1982-02-17 1983-08-23 株式会社日立製作所 stop valve
JPH01116280U (en) * 1988-01-29 1989-08-04
JPH06323467A (en) * 1993-05-11 1994-11-25 Hitachi Electron Eng Co Ltd Vacuum valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728973U (en) * 1980-07-25 1982-02-16
JPS58123980U (en) * 1982-02-17 1983-08-23 株式会社日立製作所 stop valve
JPH01116280U (en) * 1988-01-29 1989-08-04
JPH06323467A (en) * 1993-05-11 1994-11-25 Hitachi Electron Eng Co Ltd Vacuum valve

Similar Documents

Publication Publication Date Title
JP6778752B2 (en) Two-stage electronic expansion valve
EP3623682B1 (en) Fluid flow control devices and systems, and methods of flowing fluids therethrough
JP2012514722A (en) Fluid control valve
JP2012159122A (en) Fluid control valve
JP5896501B2 (en) Continuous flow equipment and continuous flow method
JP2009522526A (en) Welded diaphragm valve
US10047870B2 (en) One way valve assembly
JPWO2017221877A1 (en) Fluid control valve and fluid control valve manufacturing method
WO2019244777A1 (en) Ball non-return valve and diaphragm pump
JP4762222B2 (en) Diaphragm valve
JP2006200429A (en) Bellows pump
JP2011075017A (en) Vacuum valve
EP3913266A1 (en) Spool-type switching valve
JP2007292295A (en) Vacuum valve
JP5275947B2 (en) Four-way selector valve
CN103982663A (en) High capacity control valve
JP2017219015A (en) Bellows pump device
JP6002789B2 (en) Vacuum pressure proportional control valve
JP5602493B2 (en) Vacuum valve
JP4849055B2 (en) Hydraulic control device and transmission
US20220316612A1 (en) Check valve
JP6592803B2 (en) Pressure reducing device for cooling system and cooling system
JP5692288B2 (en) Diaphragm pump
WO2017064796A1 (en) Check valve and refrigeration cycle device
KR102454097B1 (en) Actuator for valve and diaphragm valve having same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205