JP2011074953A - Sintered bearing, sizing device for sintered body, and sizing method for sintered bearing - Google Patents

Sintered bearing, sizing device for sintered body, and sizing method for sintered bearing Download PDF

Info

Publication number
JP2011074953A
JP2011074953A JP2009224617A JP2009224617A JP2011074953A JP 2011074953 A JP2011074953 A JP 2011074953A JP 2009224617 A JP2009224617 A JP 2009224617A JP 2009224617 A JP2009224617 A JP 2009224617A JP 2011074953 A JP2011074953 A JP 2011074953A
Authority
JP
Japan
Prior art keywords
peripheral surface
outer peripheral
sintered bearing
sintered
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009224617A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kimura
和広 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2009224617A priority Critical patent/JP2011074953A/en
Publication of JP2011074953A publication Critical patent/JP2011074953A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sintered body securing high dimension accuracy while having an outer circumference shape in which a cross section shape is a non true circle shape by applying accurate sizing even on the sintered body for a sintered bearing or the like having the outer circumference shape. <P>SOLUTION: This sizing device 1 for the sintered bearing includes a die 3 having a holding hole 2 holding the sintered bearing W having the outer circumference shape in which the cross section shape is a non true circle shape, a core shaft 4 inserted in an inner circumference surface of the sintered bearing W held in the holding hole 2, and an upper punch 5 and a lower punch 6 pressing the sintered bearing W held in the holding hole 2 from an up-and-down direction. The die 3 includes a fixed part 7 and a movable pressing part 8. The movable pressing part 8 forms a holding hole 2 and is divided into a plurality of parts in a circumference direction. The holding hole 2 is expanded and contracted by movement of each divided parts. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、焼結軸受等の焼結体のサイジングに関する。   The present invention relates to sizing of a sintered body such as a sintered bearing.

例えば焼結軸受としては、周知のように、円筒形状をなすものが広く利用されており、その内周面を軸受面として、軸のラジアル荷重を支持するようになっている。この種の焼結軸受は、金属粉末粉を圧粉成形した後、焼結することにより製作されるものであるが、通常、所定の寸法精度を得るために、焼結後の焼結軸受にはサイジング装置を用いてサイジングが施される。   For example, as is well known, cylindrical bearings are widely used as sintered bearings, and the inner peripheral surface thereof is used as a bearing surface to support the radial load of the shaft. This type of sintered bearing is manufactured by compacting a metal powder powder and then sintering. Usually, in order to obtain a predetermined dimensional accuracy, Is sized using a sizing device.

かかるサイジング装置としては、ダイと、コア軸と、上パンチと、下パンチとを備え、各構成要素が次のような関係をなすものが一般的である。すなわち、ダイは、焼結軸受を収容する円形状の収容孔を有し、そのダイの収容孔と同軸上に円柱状のコア軸が配置されている。上パンチと下パンチは、それぞれ円筒状をなし、ダイとコア軸との間に上下方向から挿脱自在となっている。   Such a sizing device generally includes a die, a core shaft, an upper punch, and a lower punch, and each component has the following relationship. That is, the die has a circular accommodation hole that accommodates the sintered bearing, and a cylindrical core shaft is arranged coaxially with the accommodation hole of the die. Each of the upper punch and the lower punch has a cylindrical shape, and can be freely inserted and removed between the die and the core shaft in the vertical direction.

そして、ダイの収容孔の内径をサイジング前の焼結軸受の外径よりも僅かに大きく設定し、次のようにして焼結軸受のサイジングを行う。   Then, the inner diameter of the die receiving hole is set slightly larger than the outer diameter of the sintered bearing before sizing, and the sintered bearing is sized as follows.

すなわち、焼結軸受をダイの収容孔に収容すると共に、その焼結軸受の内周にコア軸を挿入した後、上パンチを降下させて、上パンチと下パンチで焼結軸受を押圧して上下方向に圧縮して上下方向寸法をサイジングする。この際に、上下方向に圧縮された焼結軸受を径方向に変形させてダイとコア軸に密着させ、焼結軸受の内外径寸法をサイジングする(例えば、下記の特許文献1参照)。   That is, the sintered bearing is accommodated in the die receiving hole, the core shaft is inserted into the inner periphery of the sintered bearing, the upper punch is lowered, and the sintered bearing is pressed by the upper punch and the lower punch. Compress the vertical dimension to size the vertical dimension. At this time, the sintered bearing compressed in the vertical direction is deformed in the radial direction and brought into close contact with the die and the core shaft, and the inner and outer diameter dimensions of the sintered bearing are sized (see, for example, Patent Document 1 below).

特開平2−149605号公報Japanese Patent Laid-Open No. 2-149605

ところで、メンテナンス性を向上させる目的で、軸から容易に取り外すことができるように、例えば軸直角断面がU字形状をなす焼結軸受が使用される場合があり、このような焼結軸受に対しても、上述の円筒状の焼結軸受と同様に正確なサイジングを施すことが必要となる。   By the way, for the purpose of improving maintainability, for example, a sintered bearing having a U-shaped cross section perpendicular to the axis may be used so that it can be easily removed from the axis. However, it is necessary to perform accurate sizing similarly to the above-described cylindrical sintered bearing.

しかしながら、上記の特許文献1には、軸直角断面がU字形状をなす焼結軸受をサイジングする方法については何ら記載されていない。しかも、仮に上記の特許文献1に開示の手法をU字形状の焼結軸受のサイジングに適用することが可能であったとしても、ダイとコア軸とにより焼結軸受の内外周面のサイジングを正確に行うことは困難となる。これは、上パンチと下パンチとで、当該焼結軸受を上下方向に圧縮したとしても、その圧縮に起因する軸方向と直交する方向の変形が均等に生じ難く、その結果としてサイジングが不十分な箇所が生じてしまうためである。   However, the above Patent Document 1 does not describe any method for sizing a sintered bearing having a U-shaped cross section perpendicular to the axis. Moreover, even if it is possible to apply the technique disclosed in Patent Document 1 to the sizing of a U-shaped sintered bearing, the sizing of the inner and outer peripheral surfaces of the sintered bearing is performed by the die and the core shaft. It is difficult to do accurately. This is because even if the sintered bearing is compressed in the vertical direction with the upper punch and the lower punch, deformation in the direction perpendicular to the axial direction due to the compression hardly occurs, resulting in insufficient sizing. This is because a certain part is generated.

そして、上記の問題は、サイジングを施すべき焼結軸受の外周面形状の複雑性に起因するところが大きい。したがって、上記の問題は、例えば、複数の平面で外周面形状が形成される場合(具体的には、外周面形状が四角形などの多角形をなす場合など)や、平面と曲面とを組み合わせて外周面形状が形成される場合(具体的には、外周面形状が後述するU字形状や、長円形状など)や、曲率の異なる複数の部分円筒面を組み合わせて外周面形状が形成される場合など、断面形状が非真円形状をなす外周面形状を有する焼結体であれば同様に生じ得る。   The above problems are largely caused by the complexity of the outer peripheral surface shape of the sintered bearing to be sized. Therefore, for example, the above problem may occur when an outer peripheral surface shape is formed by a plurality of planes (specifically, when the outer peripheral surface shape is a polygon such as a quadrangle), or by combining a plane and a curved surface. When the outer peripheral surface shape is formed (specifically, the outer peripheral surface shape is a U-shape or an oval shape, which will be described later), or the outer peripheral surface shape is formed by combining a plurality of partial cylindrical surfaces having different curvatures. For example, a sintered body having an outer peripheral surface shape with a non-circular cross-sectional shape can similarly occur.

本発明の課題は、上記実情に鑑み、断面形状が非真円形状をなす外周面形状を有する焼結軸受等の焼結体に対しも高精度なサイジングを行うことで、当該外周面形状を有しつつも、高い寸法精度が確保された焼結体を提供することを技術的課題とする。   In view of the above situation, the object of the present invention is to perform highly accurate sizing on a sintered body such as a sintered bearing having a non-circular shape in cross-sectional shape, so that the shape of the outer peripheral surface is obtained. An object of the present invention is to provide a sintered body having high dimensional accuracy while having it.

上記課題を解決するために創案された本発明に係る焼結軸受は、断面形状が非真円形状をなす外周面形状を有する焼結軸受であって、前記外周面形状が、円周方向で複数に分割されたプレス面によってサイジングされた加工面を連ねて形成されていることに特徴づけられる。   The sintered bearing according to the present invention, which was created to solve the above problems, is a sintered bearing having an outer peripheral surface shape having a non-circular cross-sectional shape, and the outer peripheral surface shape is circumferential. It is characterized in that it is formed by connecting the processed surfaces sized by a press surface divided into a plurality of portions.

このような構成によれば、断面形状が非真円形状をなす焼結軸受の外周面形状が、円周方向に複数に分割されたプレス面によってサイジングされた加工面を連ねて形成される。そのため、焼結軸受の外周面形状が非真円形状となって複雑化したとしても、分割された個々のプレス面でサイジングする焼結軸受の外周面形状を単純化することができる。すなわち、このように焼結軸受の外周面形状を単純化することにより、個々のプレス面によって焼結軸受の外周面に押圧力を直接かつ均等に作用させることが可能となるので、焼結軸受の内外周面に付与される押圧力が不十分となる箇所が発生し難くなる。したがって、断面形状が非真円形状をなす外周面形状を有する焼結軸受であっても、その外周面形状を上述のように分割されたプレス面によってサイジングされた加工面を連ねて形成すれば、高い寸法精度を確保することができる。   According to such a configuration, the outer peripheral surface shape of the sintered bearing having a non-circular cross-sectional shape is formed by connecting the processed surfaces sized by the press surface divided into a plurality in the circumferential direction. Therefore, even if the outer peripheral surface shape of the sintered bearing becomes complicated by becoming a non-circular shape, the outer peripheral surface shape of the sintered bearing that is sized by the divided press surfaces can be simplified. That is, by simplifying the shape of the outer peripheral surface of the sintered bearing in this way, it becomes possible to apply a pressing force directly and evenly to the outer peripheral surface of the sintered bearing by the individual press surfaces. It becomes difficult to generate a portion where the pressing force applied to the inner and outer peripheral surfaces is insufficient. Therefore, even if it is a sintered bearing having an outer peripheral surface shape with a non-circular cross-sectional shape, if the outer peripheral surface shape is formed by connecting the processed surfaces sized by the press surfaces divided as described above. High dimensional accuracy can be ensured.

上記の構成において、前記外周面形状において、連接する前記加工面の相互間に、前記プレス面の分割位置に倣った線状痕が形成されていてもよい。   In the above configuration, in the shape of the outer peripheral surface, a linear mark following the division position of the press surface may be formed between the processing surfaces connected to each other.

この場合、完成品たる焼結軸受を見れば、その外周面のサイジングが、分割されたプレス面によりなされたものであることが容易に認識可能となる。   In this case, if the sintered bearing which is a finished product is seen, it can be easily recognized that the sizing of the outer peripheral surface is made by the divided press surface.

上記の構成において、前記外周面形状が、U字形状をなしていてもよい。   In the above configuration, the outer peripheral surface shape may be U-shaped.

上記の構成において、焼結軸受は、断面形状が非真円形状をなす外周面形状を有する焼結軸受であって、内周面の表面開口率が5%以上50%未満で、外周面の表面開孔率が20%以上50%以下であり、且つ、外周面の表面開孔率が内周面の表面開孔率よりも大きいことに特徴づけられる。なお、ここでいう表面開口率とは、単位面積当たりに占める、各開孔の面積の総和(総面積)の比率をいい、次の条件で測定されるものである。すなわち、測定器具として、金属顕微鏡:Nikon ECLIPSS ME600、デジタルカメラ:Nikon DXM1200、写真撮影ソフト:Nikon ACT−1 ver.1、及び画像処理ソフト:イノテック製 QUICK GRAINを使用し、写真撮影時のシャッタースピードを0.5秒とし、2値化しきい値を235とした場合の値とする。   In the above configuration, the sintered bearing is a sintered bearing having an outer peripheral surface shape having a non-circular cross-sectional shape, and the surface opening ratio of the inner peripheral surface is not less than 5% and less than 50%. The surface opening ratio is 20% or more and 50% or less, and the surface opening ratio of the outer peripheral surface is larger than the surface opening ratio of the inner peripheral surface. In addition, the surface opening ratio here means the ratio of the sum total (total area) of the area of each opening per unit area, and is measured under the following conditions. That is, as a measuring instrument, metal microscope: Nikon ECLIPSS ME600, digital camera: Nikon DXM1200, photography software: Nikon ACT-1 ver. 1 and image processing software: QUICK GRAIN manufactured by Innotek is used, the shutter speed at the time of photographing is 0.5 seconds, and the binarization threshold value is 235.

このようにすれば、焼結軸受の内外周面の表面開孔率が、断面形状が真円形状をなす内外周面形状を有する焼結軸受のそれと同程度となる。しかも、内周面の表面開孔率よりも外周面の表面開孔率が大きくなるように設定されているので、潤滑油を含浸させた状態で使用したときに次のような利点を享受することができる。すなわち、外周面側の表面開孔率が内周面側の表面開孔率よりも大きくなれば、外周面側に潤滑油を内部に保持できる空間がそれだけ多くなる。そして、この外周面側よりも表面開孔率の小さい内周面側には、多くの潤滑油を保持した外周面側から適量の潤滑油が順次供給され、安定した摺動特性を実現される。なお、仮に、内周面側の表面開孔率が外周面側の表面開孔率よりも大きくすれば、潤滑材を保持する空間が主として内周面側に形成されるので、内周面側に潤滑油が過剰に供給され、安定した摺動特性を実現することが困難となる。   In this way, the surface open area ratio of the inner and outer peripheral surfaces of the sintered bearing is approximately the same as that of the sintered bearing having an inner and outer peripheral surface shape whose cross-sectional shape is a perfect circle. In addition, since the surface aperture ratio of the outer peripheral surface is set to be larger than the surface aperture ratio of the inner peripheral surface, the following advantages are enjoyed when used in a state of being impregnated with lubricating oil. be able to. That is, if the surface opening ratio on the outer peripheral surface side is larger than the surface opening ratio on the inner peripheral surface side, the space in which the lubricating oil can be held inside increases on the outer peripheral surface side. An appropriate amount of lubricating oil is sequentially supplied from the outer peripheral surface side holding a large amount of lubricating oil to the inner peripheral surface side having a smaller surface opening ratio than the outer peripheral surface side, thereby realizing stable sliding characteristics. . In addition, if the surface area ratio on the inner peripheral surface side is larger than the surface area ratio on the outer peripheral surface side, the space for retaining the lubricant is formed mainly on the inner peripheral surface side. In addition, the lubricating oil is excessively supplied, and it becomes difficult to realize stable sliding characteristics.

上記課題を解決するために創案された本発明に係る焼結体のサイジング装置は、断面形状が非真円形状をなす外周面形状を有する焼結体を収容する収容孔を有するダイと、前記収容孔に収容される前記焼結体の内周面に挿入されるコア軸と、前記収容孔に収容される前記焼結体を上下方向から押圧する上パンチ及び下パンチを備えた焼結体のサイジング装置であって、前記ダイは、固定部と可動押圧部とを備え、前記可動押圧部が、前記収容孔を形成すると共に、円周方向で複数に分割され、各分割部分の移動により前記収容孔を拡縮させるように構成されていることに特徴づけられる。   A sizing apparatus for a sintered body according to the present invention, which has been created to solve the above-mentioned problems, includes a die having an accommodation hole that accommodates a sintered body having an outer peripheral surface shape having a non-circular cross-sectional shape; A sintered body comprising a core shaft inserted into an inner peripheral surface of the sintered body accommodated in the accommodation hole, and an upper punch and a lower punch for pressing the sintered body accommodated in the accommodation hole from above and below. The die includes a fixed portion and a movable pressing portion, and the movable pressing portion forms the receiving hole and is divided into a plurality of portions in a circumferential direction. It is characterized by being configured to expand and contract the accommodation hole.

このような構成によれば、円周方向で複数に分割されたダイの可動押圧部を移動させて、収容孔を縮小させることにより、焼結体の外周面をコア軸側に押圧することができる。そのため、従来のように、上パンチと下パンチによる焼結体の上下方向の圧縮のみで、焼結体の内外周面をダイとコア軸に密着させるように変形させる場合よりも、焼結体の外周面に対して直接的且つ均等に押圧力が付与されることになる。したがって、焼結体の内外周面に付与される押圧力が不十分となる箇所が発生し難くなり、結果として高精度なサイジングを行うことが可能となる。   According to such a configuration, the outer peripheral surface of the sintered body can be pressed toward the core shaft side by moving the movable pressing portion of the die divided into a plurality in the circumferential direction and reducing the accommodation hole. it can. Therefore, as compared with the conventional case, the sintered body is deformed so that the inner and outer peripheral surfaces of the sintered body are in close contact with the die and the core shaft only by compressing the sintered body in the vertical direction by the upper punch and the lower punch. A pressing force is directly and evenly applied to the outer peripheral surface of the. Therefore, it becomes difficult to generate a portion where the pressing force applied to the inner and outer peripheral surfaces of the sintered body becomes insufficient, and as a result, highly accurate sizing can be performed.

なお、サイジング後は、円周方向で複数に分割された各可動押圧部を移動させて、収容孔を拡大させることにより、サイジング後の焼結体の外周面と可動押圧部との接触状態を容易に解除することもできる。したがって、この状態で、サイジング後の焼結体をダイの収容孔から取り出せば、収容孔と焼結体との間でかじりが生じることがなくなるので、高精度なサイジングを維持したまま焼結体を取り出すことが可能となる。   In addition, after sizing, the contact state between the outer peripheral surface of the sintered body after sizing and the movable pressing portion is increased by moving each movable pressing portion divided into a plurality in the circumferential direction and expanding the accommodation hole. It can also be released easily. Therefore, in this state, if the sintered body after sizing is taken out from the housing hole of the die, no galling occurs between the housing hole and the sintered body, so that the sintered body is maintained while maintaining high-precision sizing. Can be taken out.

上記の構成において、前記ダイの固定部は下方に向かって前記コア軸に近づく方向の傾斜をもったテーパ面を有し、前記可動押圧部が前記テーパ面に沿って上下移動することにより、前記収容孔が拡縮するようになっていることが好ましい。   In the above configuration, the fixed portion of the die has a tapered surface that is inclined downward toward the core axis, and the movable pressing portion moves up and down along the tapered surface. It is preferable that the accommodation hole is adapted to expand and contract.

このようにすれば、可動押圧部をテーパ面に沿って上下移動させるだけで収容孔が拡縮されるので、焼結体のサイジングを簡単且つ確実に実行すること可能となる。   In this way, since the accommodation hole is expanded and contracted simply by moving the movable pressing portion up and down along the tapered surface, it becomes possible to easily and reliably execute the sizing of the sintered body.

上記の構成において、前記可動押圧部を前記固定部に対して下方から弾性支持する弾性部材を備え、前記可動押圧部が前記弾性部材の弾性力に抗して下方に移動することにより、前記収容孔が縮小するようになっていることが好ましい。   In the above-described configuration, an elastic member that elastically supports the movable pressing portion with respect to the fixed portion from below is provided, and the movable pressing portion moves downward against the elastic force of the elastic member, whereby the accommodation is performed. It is preferable that the hole be reduced.

このようにすれば、可動押圧部をテーパ面に沿って下方へ移動させる力を解除すれば、可動押圧部は弾性部材の弾性力によってテーパ面に沿って自動的に上方へ移動するため、可動押圧部は焼結体の外周面から離間する。したがって、サイジング後の焼結体をダイの収容孔からより簡単に取り出すことが可能となる。   In this way, if the force that moves the movable pressing portion downward along the tapered surface is released, the movable pressing portion automatically moves upward along the tapered surface by the elastic force of the elastic member. The pressing part is separated from the outer peripheral surface of the sintered body. Therefore, the sintered body after sizing can be easily taken out from the accommodation hole of the die.

上記の構成において、前記可動押圧部の下方への移動が、前記上パンチで前記可動押圧部材を下方へ押圧することにより行なわれるようになっていることが好ましい。   In the above configuration, it is preferable that the downward movement of the movable pressing portion is performed by pressing the movable pressing member downward with the upper punch.

このようにすれば、上パンチの上下方向へのストローク量を制御するだけで、焼結体に付与される全ての押圧力を調整することができるため、焼結体に対して高精度なサイジングを施す上でも極めて有利となる。   In this way, all the pressing force applied to the sintered body can be adjusted simply by controlling the stroke amount of the upper punch in the vertical direction. It is extremely advantageous also in applying.

上記の構成において、前記上パンチが、前記焼結体の上面を押圧する第1押圧面と、前記可動押圧部の上面を押圧する第2押圧面とを有するようにしてもよい。   Said structure WHEREIN: You may make it the said upper punch have a 1st press surface which presses the upper surface of the said sintered compact, and a 2nd press surface which presses the upper surface of the said movable press part.

このようにすれば、上パンチの押圧面のうち、可動押圧部の上面を押圧する面と、焼結体の上面を押圧する面とを、別々の面で構成することができる。すなわち、可動押圧部の上面を押圧する面と、焼結体の上面を押圧する面とでは、それぞれ要求される表面性状が異なる場合(通常、焼結体の上面を押圧する面の方が要求される表面性状が厳しくなる)があるため、このように別々の面で構成することで過剰な表面性状を付与するそれぞれの面に適正な表面性状を付与することができるので好ましい。   If it does in this way, the surface which presses the upper surface of a movable press part among the press surfaces of an upper punch, and the surface which presses the upper surface of a sintered compact can be comprised by a separate surface. That is, when the required surface properties are different between the surface pressing the upper surface of the movable pressing portion and the surface pressing the upper surface of the sintered body (usually, the surface pressing the upper surface of the sintered body is more required). Therefore, it is preferable that each surface to be provided with an excessive surface property can be provided with an appropriate surface property.

上記課題を解決するために創案された本発明に係る焼結軸受のサイジング方法は、断面形状が非真円形をなす外周面形状を有する焼結軸受のサイジング方法であって、前記焼結軸受の外周面形状を、円周方向に複数に分割されたプレス面によってサイジングすることに特徴づけられる。   A method for sizing a sintered bearing according to the present invention, which has been devised to solve the above problems, is a method for sizing a sintered bearing having an outer peripheral surface shape with a non-circular cross-sectional shape, The outer peripheral surface shape is characterized by sizing by a press surface divided into a plurality in the circumferential direction.

このような方法によれば、断面形状が非真円形状をなす焼結軸受の外周面形状が、円周方向に複数に分割されたプレス面によってサイジングされる。そのため、焼結軸受の外周面形状が非真円形状となって複雑化したとしても、個々の分割されたプレス面によって焼結軸受の外周面形状を単純化することができる。このように焼結軸受の外周面形状を単純化することにより、個々のプレス面によって焼結軸受の外周面に押圧力を直接かつ均等に作用させることが可能となるので、焼結軸受の内外周面に付与される押圧力が不十分となる箇所が発生し難くなる。したがって、断面形状が非真円形状をなす外周面形状を有する焼結軸受であっても、その外周面形状によって高精度なサイジングを施すことができ、高い寸法精度を確保することが可能となる。   According to such a method, the outer peripheral surface shape of the sintered bearing having a non-circular cross-sectional shape is sized by the press surface divided into a plurality in the circumferential direction. For this reason, even if the outer peripheral surface shape of the sintered bearing becomes non-circular and complicated, the outer peripheral surface shape of the sintered bearing can be simplified by the individual divided press surfaces. By simplifying the outer peripheral surface shape of the sintered bearing in this way, it becomes possible to apply a pressing force directly and evenly to the outer peripheral surface of the sintered bearing by the individual press surfaces. It is difficult to generate a portion where the pressing force applied to the peripheral surface is insufficient. Therefore, even with a sintered bearing having a non-circular outer peripheral surface shape in cross-sectional shape, highly accurate sizing can be performed by the outer peripheral surface shape, and high dimensional accuracy can be ensured. .

以上のように、本発明によれば、断面形状が非真円形状をなす外周面形状を有する焼結軸受等の焼結体に対しも高精度なサイジングを行うことができるので、当該外周面形状を有しつつも、高い寸法精度が確保された焼結体を提供することができる。   As described above, according to the present invention, it is possible to perform highly accurate sizing on a sintered body such as a sintered bearing having an outer peripheral surface shape with a non-circular cross-sectional shape. It is possible to provide a sintered body having high shape accuracy while having a shape.

(a)は、本発明の一実施形態に係るサイジング装置の全体構成を示す断面図であって、(b)は、(a)のA−A断面図である。(A) is sectional drawing which shows the whole structure of the sizing apparatus which concerns on one Embodiment of this invention, (b) is AA sectional drawing of (a). 本実施形態に係るサイジング装置を使用した焼結軸受のサイジング工程を説明する図である。It is a figure explaining the sizing process of the sintered bearing using the sizing apparatus which concerns on this embodiment. (a)は、本実施形態に係るサイジング装置を使用した焼結軸受のサイジング工程を説明する図であって、(b)は、(a)のB−B断面図である。(A) is a figure explaining the sizing process of the sintered bearing which uses the sizing apparatus concerning this embodiment, (b) is BB sectional drawing of (a). 本実施形態に係るサイジング装置を使用した焼結軸受のサイジング工程を説明する図である。It is a figure explaining the sizing process of the sintered bearing using the sizing apparatus which concerns on this embodiment. 本実施形態に係るサイジング装置を使用した焼結軸受のサイジング工程を説明する図である。It is a figure explaining the sizing process of the sintered bearing using the sizing apparatus which concerns on this embodiment. 本実施形態に係るサイジング装置でサイジングされた焼結軸受の使用例を示す斜視図である。It is a perspective view which shows the usage example of the sintered bearing sized by the sizing apparatus which concerns on this embodiment. (a)は、本実施形態に係るサイジング装置の変形例を示す図であって、(b)は、そのサイジング装置を使用して焼結軸受を実際にサイジングしている状態を示す図である。(A) is a figure which shows the modification of the sizing apparatus which concerns on this embodiment, (b) is a figure which shows the state which is actually sizing a sintered bearing using the sizing apparatus. .

以下、本発明の実施形態を添付図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1(a),(b)は、本発明の一実施形態に係るサイジング装置の全体構成を例示している。同図に示すように、サイジング装置1は、焼結体としての焼結軸受Wを収容する収容孔2を有するダイ3と、収容孔2に収容された焼結軸受Wの内周面に挿脱可能に上下動するコア軸4と、ダイ3とコア軸4との間に挿脱可能に上下動する上パンチ5と、ダイ3とコア軸4との間に挿脱可能に上下動する下パンチ6とを備えている。なお、本実施形態では、焼結軸受Wとして、図1(b)に示すように、軸直角断面が直線部Waと円弧部WbからなるU字形状をなすものを例にとって説明する。   1A and 1B illustrate the overall configuration of a sizing device according to an embodiment of the present invention. As shown in the figure, the sizing device 1 is inserted into a die 3 having a housing hole 2 for housing a sintered bearing W as a sintered body, and an inner peripheral surface of the sintered bearing W housed in the housing hole 2. The core shaft 4 that moves up and down removably, the upper punch 5 that moves up and down between the die 3 and the core shaft 4, and the up and down movement between the die 3 and the core shaft 4 move up and down. The lower punch 6 is provided. In this embodiment, as the sintered bearing W, as shown in FIG. 1B, an example in which the cross section perpendicular to the axis is a U-shape including a straight portion Wa and an arc portion Wb will be described.

ダイ3は、固定部7と可動押圧部8とを備えている。可動押圧部8は、収容孔2を形成すると共に、円周方向で複数に分割され、各分割部分の移動により収容孔2を拡縮させるように構成されている。詳述すると、可動押圧部8は、図1(b)に示すように、焼結軸受Wの外周面の形状変化の態様が相違する部分毎に分割されている。つまり、可動押圧部8は、焼結軸受Wの直線部Waの外周面を包囲する部分と、焼結軸受Wの円弧部Wbの外周面を包囲する部分とに分割されている。この分割された可動押圧部8の内周面は、サイジング後の焼結軸受Wの外周面が取るべき形状、すなわち、サイジング後の焼結軸受Wの直線部Waと円弧部Wbのそれぞれの外周面が取るべき形状に合致するようになっている。なお、図示例では、焼結軸受Wの円弧部Wbの外周面を包囲する部分で、可動押圧部8がさらに2つに分割されている。付言すれば、可動押圧部8は、焼結軸受Wの外周面の形状変化の態様が相違する部分毎に少なくとも分割されていれば、外周面の形状変化の態様が同一の領域内で、さらに細かく分割されていてもよい。   The die 3 includes a fixed portion 7 and a movable pressing portion 8. The movable pressing portion 8 forms the receiving hole 2 and is divided into a plurality of portions in the circumferential direction, and is configured to expand and contract the receiving hole 2 by moving each divided portion. More specifically, as shown in FIG. 1B, the movable pressing portion 8 is divided for each portion where the shape change mode of the outer peripheral surface of the sintered bearing W is different. That is, the movable pressing portion 8 is divided into a portion surrounding the outer peripheral surface of the linear portion Wa of the sintered bearing W and a portion surrounding the outer peripheral surface of the arc portion Wb of the sintered bearing W. The inner peripheral surface of the divided movable pressing portion 8 has a shape that the outer peripheral surface of the sintered bearing W after sizing should take, that is, the outer periphery of each of the linear portion Wa and the arc portion Wb of the sintered bearing W after sizing. The surface matches the shape to be taken. In the illustrated example, the movable pressing portion 8 is further divided into two at a portion surrounding the outer peripheral surface of the arc portion Wb of the sintered bearing W. In other words, if the movable pressing portion 8 is divided at least for each portion where the shape change mode of the outer peripheral surface of the sintered bearing W is different, the shape change mode of the outer peripheral surface is within the same region. It may be finely divided.

各可動押圧部8は、ダイ3の固定部7に形成されたテーパ面7aに沿って上下方向にスライド可能となっている。各可動押圧部8に対応したテーパ面7aは、下方に向かってコア軸4に近づく方向に傾斜しているため、可動押圧部8をテーパ面7aに沿って上昇させると、収容孔2が拡大してコア軸4との間隔Dが大きくなり、可動押圧部8をテーパ面7aに沿って下降させると、収容孔2が縮小してコア軸4との間隔Dが小さくなるようになっている。   Each movable pressing portion 8 is slidable in the vertical direction along a tapered surface 7 a formed on the fixed portion 7 of the die 3. Since the taper surface 7a corresponding to each movable pressing portion 8 is inclined downward in a direction approaching the core shaft 4, the accommodation hole 2 is enlarged when the movable pressing portion 8 is raised along the taper surface 7a. When the movable pressing portion 8 is lowered along the tapered surface 7a, the accommodation hole 2 is reduced and the distance D from the core shaft 4 is reduced. .

また、各可動押圧部8は、弾性部材としてのダンパー機構9によって下方から弾性支持されている。すなわち、可動押圧部8は、テーパ面7aに沿って下降する方向に外部から力を受けない状態では、図1(a)に示すように、テーパ面7aの上端部に位置し、コア軸4との間隔Dが最大となるようになっている。なお、図1(a)に示した例では、各可動押圧部8の上面は、外部から力を受けない状態では、固定部7の上面と同一平面上に位置するようになっている。   Each movable pressing portion 8 is elastically supported from below by a damper mechanism 9 as an elastic member. That is, the movable pressing portion 8 is positioned at the upper end portion of the tapered surface 7a and is not positioned in the direction of descending along the tapered surface 7a, as shown in FIG. The distance D between the two is maximized. In the example shown in FIG. 1A, the upper surface of each movable pressing portion 8 is positioned on the same plane as the upper surface of the fixed portion 7 in a state where no force is applied from the outside.

コア軸4の外周面は、サイジング後の焼結軸受Wの内周面が取るべき形状に合致している。すなわち、この実施形態では、コア軸4の外周面は、サイジング後の焼結軸受Wの直線部Waと円弧部Wbのそれぞれの内周面に適合する形状となっている。   The outer peripheral surface of the core shaft 4 matches the shape that the inner peripheral surface of the sintered bearing W after sizing should take. That is, in this embodiment, the outer peripheral surface of the core shaft 4 has a shape that matches the respective inner peripheral surfaces of the linear portion Wa and the arc portion Wb of the sintered bearing W after sizing.

上パンチ5は、コア軸4が挿通される貫通孔5aを有する。上パンチ5の下面には、上下方向に高低差を有する押圧面5bが形成されている。下方に突出した押圧面5bの高部面(第1押圧面)5b1は、焼結軸受Wの上面を押圧可能なようにU字形状を呈している。一方、高部面5b1よりも上方に退避した押圧面5bの低部面(第2押圧面)5b2は、ダイ3の可動押圧部8の上面に当接し、その可動押圧部8をダンパー機構9の弾性力に抗してテーパ面7aに沿って下降する方向に押し込むようになっている。   The upper punch 5 has a through hole 5a through which the core shaft 4 is inserted. On the lower surface of the upper punch 5, a pressing surface 5b having a height difference in the vertical direction is formed. A high portion surface (first pressing surface) 5b1 of the pressing surface 5b protruding downward has a U shape so that the upper surface of the sintered bearing W can be pressed. On the other hand, the lower surface (second pressing surface) 5b2 of the pressing surface 5b retracted upward from the high surface 5b1 is in contact with the upper surface of the movable pressing portion 8 of the die 3, and the movable pressing portion 8 is moved to the damper mechanism 9. It pushes in the downward direction along the tapered surface 7a against the elastic force.

下パンチ6は、コア軸4が挿通される貫通孔6aを有する。下パンチ6の上面には、焼結軸受Wの下面を押圧可能なU字形状を呈する押圧面6bが形成されている。   The lower punch 6 has a through hole 6a through which the core shaft 4 is inserted. On the upper surface of the lower punch 6, a pressing surface 6b having a U-shape capable of pressing the lower surface of the sintered bearing W is formed.

なお、本実施形態では、図1(a),(b)に示す状態で、分割された可動押圧部8の内周面と、サイジング前の焼結軸受Wの外周面との間には隙間が形成されている。さらに、焼結軸受Wの外周面(円周方向)に沿って隣接する可動押圧部8の相互間にも、隙間が形成されている。   In this embodiment, in the state shown in FIGS. 1A and 1B, there is a gap between the inner peripheral surface of the divided movable pressing portion 8 and the outer peripheral surface of the sintered bearing W before sizing. Is formed. Further, a gap is also formed between the movable pressing portions 8 adjacent along the outer peripheral surface (circumferential direction) of the sintered bearing W.

また、サイジング前の焼結軸受Wは、下パンチ6の押圧面6b上に載置された状態で、下パンチ6の押圧面6bの外側(ダイ3の可動押圧部8側)に食み出すように、下パンチ6の押圧面6bの寸法形状が規定されている。これは、下パンチ6の押圧面6bと同一形状をなす上パンチ5の高部面5b1についても同様である。すなわち、サイジング前の焼結軸受Wの上面を上パンチ5の高部面5b1に当接させた場合、焼結軸受Wは高部面5b1の外側に食み出すようになっている。   In addition, the sintered bearing W before sizing protrudes to the outside of the pressing surface 6b of the lower punch 6 (on the movable pressing portion 8 side of the die 3) while being placed on the pressing surface 6b of the lower punch 6. Thus, the dimension shape of the pressing surface 6b of the lower punch 6 is defined. The same applies to the high surface 5b1 of the upper punch 5 having the same shape as the pressing surface 6b of the lower punch 6. That is, when the upper surface of the sintered bearing W before sizing is brought into contact with the high portion surface 5b1 of the upper punch 5, the sintered bearing W protrudes outside the high portion surface 5b1.

次に、以上のように構成されたサイジング装置1を使用した焼結軸受Wのサイジング方法について説明する。   Next, a method for sizing the sintered bearing W using the sizing device 1 configured as described above will be described.

まず、図1(a)に示すように、焼結軸受Wの下面を下パンチ6で支持すると共に、その焼結軸受Wの内周面にコア軸4を挿入する。このとき、図1(b)に示すように、ダイ3の可動押圧部8と、焼結軸受Wの外周面との間には隙間が形成されているので、焼結軸受Wをダイ3に圧入しながら収容孔2に収容する必要がなくなるので、焼結軸受Wを下パンチ6の上に容易にセットすることができる。   First, as shown in FIG. 1A, the lower surface of the sintered bearing W is supported by the lower punch 6, and the core shaft 4 is inserted into the inner peripheral surface of the sintered bearing W. At this time, a gap is formed between the movable pressing portion 8 of the die 3 and the outer peripheral surface of the sintered bearing W as shown in FIG. Since it is not necessary to accommodate in the accommodation hole 2 while press-fitting, the sintered bearing W can be easily set on the lower punch 6.

そして、図1(a),(b)に示す状態から上パンチ5を下降させると、図2に示すように、上パンチ5の押圧面5bの低部面5b2が可動押圧部8の上面に当接する。このとき、上パンチ5の押圧面5bのうち、低部面5b2よりも下方に突出した高部面5b1は、可動押圧部8とコア軸4との間に挿入される。   When the upper punch 5 is lowered from the state shown in FIGS. 1A and 1B, the lower surface 5 b 2 of the pressing surface 5 b of the upper punch 5 is placed on the upper surface of the movable pressing portion 8 as shown in FIG. Abut. At this time, of the pressing surface 5 b of the upper punch 5, the high portion surface 5 b 1 protruding downward from the low portion surface 5 b 2 is inserted between the movable pressing portion 8 and the core shaft 4.

その後、上パンチ5を更に下降させると、可動押圧部8が、ダンパー機構9の弾性力に抗してテーパ面7aに沿って下降する方向に押し込まれる。このとき、可動押圧部8は、テーパ面7aに案内されながら、コア軸4との間の間隔Dを縮小するように、コア軸4側に接近する。そして、図3(a),(b)に示すように、隣接する可動押圧部8の間の隙間がなくなるまで、上パンチ5により可動押圧部8を下方に押し込んだ状態で、焼結軸受Wの上下面が上パンチ5と下パンチ6により押圧され、これと同時に焼結軸受Wの内外周面がコア軸4と可動押圧部8により押圧される。すなわち、上パンチ5の下方へのストローク量により、焼結軸受Wに付与される全ての押圧力が調整される。   Thereafter, when the upper punch 5 is further lowered, the movable pressing portion 8 is pushed in the direction of lowering along the tapered surface 7 a against the elastic force of the damper mechanism 9. At this time, the movable pressing portion 8 approaches the core shaft 4 side so as to reduce the distance D between the movable pressing portion 8 and the core shaft 4 while being guided by the tapered surface 7a. Then, as shown in FIGS. 3A and 3B, the sintered bearing W is pressed in a state where the movable pressing portion 8 is pushed downward by the upper punch 5 until there is no gap between the adjacent movable pressing portions 8. The upper and lower surfaces are pressed by the upper punch 5 and the lower punch 6, and at the same time, the inner and outer peripheral surfaces of the sintered bearing W are pressed by the core shaft 4 and the movable pressing portion 8. That is, all the pressing force applied to the sintered bearing W is adjusted by the amount of stroke downward of the upper punch 5.

このようにして焼結軸受Wのサイジングが完了すると、図4に示すように上パンチ5が上昇する。このように上パンチ5が上昇すると、可動押圧部8は、ダンパー機構9による弾性力によりテーパ面7a上を自動的に上昇し、コア軸4との間隔Dが拡大する。その結果、可動押圧部8がサイジング後の焼結軸受Wの外周面から離れ、両者の間に再び隙間が形成される。そして、この状態で下パンチ6が上昇し、図5に示すように、サイジングされた焼結軸受Wがダイ3の上面まで持ち上げられ、ダイ3の上面からサイジングされた焼結軸受Wが取り出される。   When the sizing of the sintered bearing W is completed in this way, the upper punch 5 rises as shown in FIG. When the upper punch 5 is lifted in this way, the movable pressing portion 8 is automatically lifted on the tapered surface 7a by the elastic force of the damper mechanism 9, and the interval D with the core shaft 4 is expanded. As a result, the movable pressing portion 8 is separated from the outer peripheral surface of the sintered bearing W after sizing, and a gap is formed again between them. In this state, the lower punch 6 is raised, and the sized sintered bearing W is lifted up to the upper surface of the die 3 as shown in FIG. 5, and the sized sintered bearing W is taken out from the upper surface of the die 3. .

このようにしてサイジングされた断面U字形状をなす焼結軸受Wは、例えば、図6に示すように、その円弧部Wbの内周面に対応する部分を軸受面として、回転軸Xのスラスト荷重を支持する焼結軸受として使用される。   The sintered bearing W having a U-shaped cross section sized in this way, for example, as shown in FIG. 6, has a portion corresponding to the inner peripheral surface of the arc portion Wb as a bearing surface, and is a thrust shaft of the rotary shaft X. Used as a sintered bearing to support the load.

そして、このように製造された焼結軸受Wであれば、内周面の表面開口率が5%以上50%未満で、外周面の表面開孔率が20%以上50%以下であり、且つ、外周面の表面開孔率が内周面の表面開孔率よりも大きくなるようにすることができる。このようにすれば、焼結軸受Wの内外周面の表面開孔率が、断面形状が真円形状をなす内外周面形状を有する焼結軸受のそれと同程度となる。しかも、内周面の表面開孔率よりも外周面の表面開孔率が大きくなるように設定されているので、潤滑油を含浸させた状態で使用したときに次のような利点を享受することができる。すなわち、外周面側の表面開孔率が内周面側の表面開孔率よりも大きくなれば、外周面側に潤滑油を内部に保持できる空間がそれだけ多くなる。そして、この外周面側よりも表面開孔率の小さい内周面側には、多くの潤滑油を保持した外周面側から適量の潤滑油が順次供給され、安定した摺動特性を実現することが可能となる。   And if it is the sintered bearing W manufactured in this way, the surface opening rate of an inner peripheral surface is 5% or more and less than 50%, the surface open area ratio of an outer peripheral surface is 20% or more and 50% or less, and The surface area ratio of the outer peripheral surface can be made larger than the surface area ratio of the inner peripheral surface. In this way, the surface open area ratio of the inner and outer peripheral surfaces of the sintered bearing W is approximately the same as that of the sintered bearing having an inner and outer peripheral surface shape whose cross-sectional shape is a perfect circle. In addition, since the surface aperture ratio of the outer peripheral surface is set to be larger than the surface aperture ratio of the inner peripheral surface, the following advantages are enjoyed when used in a state of being impregnated with lubricating oil. be able to. That is, if the surface opening ratio on the outer peripheral surface side is larger than the surface opening ratio on the inner peripheral surface side, the space in which the lubricating oil can be held inside increases on the outer peripheral surface side. An appropriate amount of lubricating oil is sequentially supplied from the outer peripheral surface side holding a large amount of lubricating oil to the inner peripheral surface side having a smaller surface opening ratio than the outer peripheral surface side, thereby realizing stable sliding characteristics. Is possible.

また、焼結軸受Wの外周面には、図示しないが、分割された可動押圧部8同士の合わせ面に沿う線状痕が形成されている。   In addition, although not shown, a linear mark is formed on the outer peripheral surface of the sintered bearing W along the mating surfaces of the divided movable pressing portions 8.

以上のように本実施形態に係るサイジング装置1によれば、コア軸4との間隔Dが縮小するようにダイ3の分割された可動押圧部8を移動させることにより、焼結軸受Wが収容された収容孔2が縮小されるので、個々の可動押圧部8により焼結軸受Wの外周面形状を単純化しつつ、直接的にコア軸4側に押圧することが可能となる。そのため、従来のように、上パンチと下パンチによる焼結体の上下方向の圧縮のみで、焼結体の内外周面をダイとコア軸に密着させるように変形させる場合よりも、焼結軸受Wの内外周面に直接的に押圧力が付与されることになる。したがって、焼結軸受Wの内外周面に付与される押圧力が不十分となる箇所が発生し難くなり、結果として高精度なサイジングを行うことが可能となる。   As described above, according to the sizing device 1 according to the present embodiment, the sintered bearing W is accommodated by moving the movable movable portion 8 divided of the die 3 so that the distance D to the core shaft 4 is reduced. Since the accommodation hole 2 thus made is reduced, it becomes possible to directly press the sintered bearing W toward the core shaft 4 side while simplifying the outer peripheral surface shape of the sintered bearing W by the individual movable pressing portions 8. Therefore, as compared with the conventional case, the sintered bearing is more compact than the case where the inner and outer peripheral surfaces of the sintered body are deformed so that the inner and outer peripheral surfaces of the sintered body are brought into close contact with the die and the core shaft by only compressing the sintered body by the upper punch and the lower punch. A pressing force is directly applied to the inner and outer peripheral surfaces of W. Therefore, it becomes difficult to generate a portion where the pressing force applied to the inner and outer peripheral surfaces of the sintered bearing W is insufficient, and as a result, highly accurate sizing can be performed.

また、焼結軸受Wのサイジング完了後には、収容孔2が拡大するように各可動押圧部8が移動するので、可動押圧部8はサイジング後の焼結軸受Wの外周面から自動的に離れる。そのため、図5に示したように、サイジング後の焼結軸受Wを取り出す際に、可動押圧部8と焼結軸受Wの外周面との間にかじりが生じることがなく、焼結軸受Wにサイジング不良が発生する割合を確実に低減することが可能となる。   Further, after the sizing of the sintered bearing W is completed, each movable pressing portion 8 is moved so that the receiving hole 2 is enlarged, so that the movable pressing portion 8 is automatically separated from the outer peripheral surface of the sintered bearing W after sizing. . Therefore, as shown in FIG. 5, when the sintered bearing W after sizing is taken out, no galling occurs between the movable pressing portion 8 and the outer peripheral surface of the sintered bearing W. It is possible to reliably reduce the rate at which sizing defects occur.

なお、本発明は上記の実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施することができる。例えば、上記の実施形態では、軸直角断面がU字形状をなす焼結軸受Wをサイジングする場合を例にとって説明したが、焼結軸受Wは、それ以外でも、複数の平面で外周面形状が形成される場合(具体的には、外周面形状が四角形などの多角形をなす場合など)や、平面と曲面とを組み合わせて外周面形状が形成される場合(具体的には、長円形状(トラック形状)など)や、曲率の異なる複数の部分円筒面を組み合わせて外周面形状が形成される場合などであってもよい。具体的には、図7(a),(b)に示すように、軸直角断面が四角形をなす焼結軸受Wをサイジングする場合では、断面四角形をなす焼結軸受Wの各辺に対応するように可動押圧部8を分割し、その分割した可動押圧部8をコア軸との間隔を拡縮するように移動可能に構成することで、高精度なサイジングを実現できる。また、断面多角形をなす焼結軸受Wについても、各辺に対応するように可動押圧部8を分割すれば、同様に高精度なサイジングを実現できる。   In addition, this invention is not limited to said embodiment at all, In the range which does not deviate from the summary of this invention, it can implement with a various form. For example, in the above-described embodiment, the case where the sintered bearing W whose axial cross section is U-shaped is sized has been described as an example. However, the sintered bearing W may have a plurality of planes and the outer peripheral surface shape. When it is formed (specifically, when the outer peripheral surface is a polygon such as a rectangle), or when the outer peripheral surface is formed by combining a flat surface and a curved surface (specifically, an ellipse shape) (Track shape), etc.) or a case where the outer peripheral surface shape is formed by combining a plurality of partial cylindrical surfaces having different curvatures. Specifically, as shown in FIGS. 7A and 7B, when sizing a sintered bearing W having a quadrangular cross-section at right angles to the axis, it corresponds to each side of the sintered bearing W having a quadrangular cross-section. As described above, the movable pressing portion 8 is divided, and the divided movable pressing portion 8 is configured to be movable so as to expand and contract the distance from the core shaft, whereby high-precision sizing can be realized. Further, with respect to the sintered bearing W having a polygonal cross section, if the movable pressing portion 8 is divided so as to correspond to each side, high-precision sizing can be similarly realized.

1 サイジング装置
2 収容孔
3 ダイ
4 コア軸
5 上パンチ
5a 貫通孔
5b 押圧面
5b1 高部面
5b2 低部面
6 下パンチ
6a 貫通孔
6b 押圧面
7 固定部
7a テーパ面
8 可動押圧部
9 ダンパー機構
W 焼結体
Wa 直線部
Wb 円弧部
DESCRIPTION OF SYMBOLS 1 Sizing apparatus 2 Accommodating hole 3 Die 4 Core shaft 5 Upper punch 5a Through hole 5b Pressing surface 5b1 High part surface 5b2 Low part surface 6 Lower punch 6a Through hole 6b Pressing surface 7 Fixed part 7a Tapered surface 8 Movable pressing part 9 Damper mechanism W Sintered body Wa Linear part Wb Arc part

Claims (10)

断面形状が非真円形状をなす外周面形状を有する焼結軸受であって、
前記外周面形状が、円周方向で複数に分割されたプレス面のそれぞれによってサイジングされた加工面を連ねて形成されていることを特徴とする焼結軸受。
A sintered bearing having an outer peripheral surface shape having a non-circular cross-sectional shape,
A sintered bearing characterized in that the outer peripheral surface shape is formed by connecting together processed surfaces sized by a plurality of press surfaces divided in the circumferential direction.
前記外周面形状において、連接する前記加工面の相互間に、前記プレス面の分割位置に倣った線状痕が形成されている請求項1に記載の焼結軸受。   2. The sintered bearing according to claim 1, wherein in the outer peripheral surface shape, linear marks are formed between the work surfaces connected to each other so as to follow the division position of the press surface. 前記外周面形状が、U字形状をなす請求項1又は2に記載の焼結軸受。   The sintered bearing according to claim 1 or 2, wherein the outer peripheral surface has a U-shape. 内周面の表面開口率が5%以上50%未満で、外周面の表面開孔率が20%以上50%以下であり、且つ、外周面の表面開孔率が内周面の表面開孔率よりも大きい請求項1〜3のいずれか1項に記載の焼結軸受。   The surface opening ratio of the inner peripheral surface is 5% or more and less than 50%, the surface opening ratio of the outer peripheral surface is 20% or more and 50% or less, and the surface opening ratio of the outer peripheral surface is the surface opening of the inner peripheral surface The sintered bearing according to any one of claims 1 to 3, wherein the sintered bearing is larger than the rate. 断面形状が非真円形状をなす外周面形状を有する焼結体を収容する収容孔を有するダイと、前記収容孔に収容される前記焼結体の内周面に挿入されるコア軸と、前記収容孔に収容される前記焼結体を上下方向から押圧する上パンチ及び下パンチを備えた焼結体のサイジング装置であって、
前記ダイは、固定部と可動押圧部とを備え、
前記可動押圧部が、前記収容孔を形成すると共に、円周方向で複数に分割され、各分割部分の移動により前記収容孔を拡縮させるように構成されていることを特徴とする焼結体のサイジング装置。
A die having a housing hole for housing a sintered body having an outer peripheral surface shape having a non-circular cross-sectional shape, a core shaft inserted into an inner circumferential surface of the sintered body housed in the housing hole, A sintered body sizing device comprising an upper punch and a lower punch for pressing the sintered body accommodated in the accommodation hole from above and below,
The die includes a fixed portion and a movable pressing portion,
The movable pressing portion forms the accommodation hole and is divided into a plurality of portions in a circumferential direction, and is configured to expand and contract the accommodation hole by moving each divided portion. Sizing device.
前記ダイの固定部は下方に向かって前記コア軸に近づく方向の傾斜をもったテーパ面を有し、前記可動押圧部が前記テーパ面に沿って上下移動することにより、前記収容孔が拡縮する請求項5に記載の焼結体のサイジング装置。   The fixed portion of the die has a tapered surface inclined in a direction approaching the core axis toward the lower side, and the accommodation hole expands / contracts when the movable pressing portion moves up and down along the tapered surface. The sizing device for a sintered body according to claim 5. 前記可動押圧部を前記固定部に対して下方から弾性支持する弾性部材を備え、前記可動押圧部が前記弾性部材の弾性力に抗して下方に移動することにより、前記収容孔が縮小する請求項6に記載の焼結体のサイジング装置。   An elastic member that elastically supports the movable pressing portion with respect to the fixed portion from below is provided, and the movable pressing portion moves downward against the elastic force of the elastic member, thereby reducing the accommodation hole. Item 7. A sizing apparatus for a sintered body according to Item 6. 前記可動押圧部の下方への移動が、前記上パンチで前記可動押圧部材を下方へ押圧することにより行なわれる請求項5又は6に記載の焼結体のサイジング装置。   The sintered body sizing device according to claim 5 or 6, wherein the movable pressing portion is moved downward by pressing the movable pressing member downward with the upper punch. 前記上パンチが、前記焼結体の上面を押圧する第1押圧面と、前記可動押圧部の上面を押圧する第2押圧面とを有する請求項8に記載の焼結体のサイジング装置。   The sizing device for a sintered body according to claim 8, wherein the upper punch has a first pressing surface that presses the upper surface of the sintered body and a second pressing surface that presses the upper surface of the movable pressing portion. 断面形状が非真円形をなす外周面形状を有する焼結軸受のサイジング方法であって、
前記焼結軸受の外周面形状を、円周方向に複数に分割されたプレス面によってサイジングすることを特徴とする焼結軸受のサイジング方法。
A method for sizing a sintered bearing having an outer peripheral surface shape having a non-circular cross-sectional shape,
A method for sizing a sintered bearing, characterized in that the outer peripheral surface shape of the sintered bearing is sized by a press surface divided into a plurality in the circumferential direction.
JP2009224617A 2009-09-29 2009-09-29 Sintered bearing, sizing device for sintered body, and sizing method for sintered bearing Pending JP2011074953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009224617A JP2011074953A (en) 2009-09-29 2009-09-29 Sintered bearing, sizing device for sintered body, and sizing method for sintered bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009224617A JP2011074953A (en) 2009-09-29 2009-09-29 Sintered bearing, sizing device for sintered body, and sizing method for sintered bearing

Publications (1)

Publication Number Publication Date
JP2011074953A true JP2011074953A (en) 2011-04-14

Family

ID=44019164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009224617A Pending JP2011074953A (en) 2009-09-29 2009-09-29 Sintered bearing, sizing device for sintered body, and sizing method for sintered bearing

Country Status (1)

Country Link
JP (1) JP2011074953A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023505553A (en) * 2019-12-12 2023-02-09 ゲーカーエン シンター メタルズ エンジニアリング ゲーエムベーハー Manufacturing method of sintered parts
JP7509882B2 (ja) 2019-12-12 2024-07-02 ゲーカーエン シンター メタルズ エンジニアリング ゲーエムベーハー 焼結部品の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023505553A (en) * 2019-12-12 2023-02-09 ゲーカーエン シンター メタルズ エンジニアリング ゲーエムベーハー Manufacturing method of sintered parts
JP7509882B2 (ja) 2019-12-12 2024-07-02 ゲーカーエン シンター メタルズ エンジニアリング ゲーエムベーハー 焼結部品の製造方法

Similar Documents

Publication Publication Date Title
US8726515B2 (en) Oil-impregnated sintered bearing and method of producing the same
US5282688A (en) Sintered oil impregnated bearing and its manufacturing method
JP5352978B2 (en) Manufacturing method of sintered bearing
JP6516126B2 (en) Sizing method for ring-like sintered body
WO2018123138A1 (en) Washer and washer manufacturing method
JP2011074953A (en) Sintered bearing, sizing device for sintered body, and sizing method for sintered bearing
CN206988281U (en) Fluid dynamic-pressure bearing device and the motor for possessing the fluid dynamic-pressure bearing device
CN108779803A (en) Hydrodynamic bearing and its manufacturing method
JP2008267394A (en) Method of manufacturing bearing unit
JP2010031909A (en) Sintered bearing and its manufacturing method
JP6487525B1 (en) Helical gear forming equipment
JP2004308683A (en) Manufacturing method for sintered oil retaining bearing and sintered oil retaining bearing
JP2934470B2 (en) Manufacturing method of sintered oil-impregnated bearing
WO2017047697A1 (en) Method for manufacturing green compact and method for manufacturing sintered metal part
JP2000054003A (en) Formation of metallic material
JP2002174246A (en) Oil impregnated sintered bearing and manufacturing method therefor
JP3856363B2 (en) Manufacturing method of bearing
JPH0988962A (en) Manufacture of bearing
JP2005127341A (en) Method for fastening oil-impregnated sintered bearing
JP2007023327A (en) Method and device for producing internal relief bearing
JP3741262B2 (en) Sizing method of shaft hole of sintered bearing
WO2017154775A1 (en) Molding mold, molding method
JP2004360863A (en) Dynamic-pressure bearing manufacturing method
JP2007100803A (en) Method for manufacturing oil impregnated sintered bearing, and sizing pin to be used for the method
JP3602319B2 (en) Manufacturing method of hydrodynamic porous oil-impregnated bearing