JP2011074475A - Method for recovering gallium - Google Patents

Method for recovering gallium Download PDF

Info

Publication number
JP2011074475A
JP2011074475A JP2009229380A JP2009229380A JP2011074475A JP 2011074475 A JP2011074475 A JP 2011074475A JP 2009229380 A JP2009229380 A JP 2009229380A JP 2009229380 A JP2009229380 A JP 2009229380A JP 2011074475 A JP2011074475 A JP 2011074475A
Authority
JP
Japan
Prior art keywords
gallium
oil
arsenic
solid
solid residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009229380A
Other languages
Japanese (ja)
Other versions
JP5344376B2 (en
Inventor
Masatoshi Mashima
正利 真嶋
Shinji Inasawa
信二 稲澤
Yoshio Karu
義夫 加留
Hideichiro Kato
秀一郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009229380A priority Critical patent/JP5344376B2/en
Publication of JP2011074475A publication Critical patent/JP2011074475A/en
Application granted granted Critical
Publication of JP5344376B2 publication Critical patent/JP5344376B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique which can recover gallium with high purity from the scrap, polishing waste or the like of a gallium compound. <P>SOLUTION: The method for recovering gallium includes: a solid-liquid separation step of subjecting gallium-arsenic-containing sediment to solid-liquid separation into oil and solid residue by a filter press using an oil resistant filter with an air permeability of ≤18 cc/cm<SP>2</SP>/min; an oil removal step of holding the solid residue after the solid-liquid separation to an inert gas atmosphere in the temperature range higher than the boiling point of the oil and lower than the evaporation temperature of arsenic and controlling the oil contained in the solid residue after the solid-liquid separation to ≤1 wt.%; an arsenic removal step of holding the solid residue after the oil removal to an atmosphere of ≥1,000°C for ≥5 min and removing arsenic; a dissolution step of dissolving the solid residue after the arsenic removal into acid or alkali; an insoluble matter filtration step of filtering a solution and insoluble matter obtained in the dissolution step by a filter; and a gallium recovering step of neutralizing a solution obtained in the insoluble matter filtration step, so as to obtain a gallium oxide. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はガリウム回収方法に関し、特にガリウムヒ素含有澱物からガリウムを回収する方法に関する。   The present invention relates to a method for recovering gallium, and more particularly to a method for recovering gallium from a gallium arsenide-containing starch.

ガリウムは、優れた特性を有する半導体材料であるが、精鉱がほとんど存在しない希少元素であり、主としてアルミニウムや亜鉛の精錬副産物として得られる。このため、不足しがちなガリウム資源を有効に利用し、併せて産業廃棄物の減少を図るべく、IC等の電子部品を製造する際に生じる半導体屑、スクラップあるいはワイヤーソーによる切断時に生じるスラリーや切断後の研磨により生じるスラリー等から、ガリウムを回収することが行われている(例えば、特許文献1、特許文献2)。   Gallium is a semiconductor material having excellent characteristics, but is a rare element with almost no concentrate, and is mainly obtained as a by-product of refining aluminum and zinc. For this reason, in order to effectively use gallium resources that tend to be deficient, and to reduce industrial waste, semiconductor waste generated when manufacturing electronic components such as ICs, slurry generated when cutting with scrap or wire saw, Gallium is collected from a slurry or the like generated by polishing after cutting (for example, Patent Document 1 and Patent Document 2).

しかしながら、特許文献1に示された方法は、ガリウムヒ素化合物から溶媒抽出によりガリウムを濃縮回収する方法であり、有機溶媒を別途用意する必要があるため、プロセスが高価となる問題があった。   However, the method disclosed in Patent Document 1 is a method for concentrating and recovering gallium from a gallium arsenide compound by solvent extraction, and there is a problem that the process becomes expensive because an organic solvent needs to be prepared separately.

そこで、リン化ガリウム等のガリウムを含む化合物の半導体結晶を切断する際に切削屑として発生するガリウムリン化合物含有澱物から、湿式分級による濃縮、液体サイクロンや膜分離による固液分離、酸溶解、濃縮回収という工程を経てガリウムを回収する方法(特許文献2)が開示されている。   Therefore, from the gallium phosphorus compound-containing starch generated as cutting waste when cutting a semiconductor crystal of a compound containing gallium such as gallium phosphide, concentration by wet classification, solid-liquid separation by liquid cyclone or membrane separation, acid dissolution, A method of recovering gallium through a process called concentration recovery (Patent Document 2) is disclosed.

しかし、液体サイクロンや膜分離による固液分離のみでは、分離された固形物に10%程度の切削油が残留することが避けられず、このように有機物(切削油)を含有した状態での酸溶解はガリウム回収時に炭素の混入を招き、回収されたガリウムの純度を低下させるという問題があった。   However, only solid-liquid separation by liquid cyclone or membrane separation inevitably leaves about 10% of the cutting oil in the separated solid, and the acid in such a state containing organic matter (cutting oil) is unavoidable. Dissolution caused carbon contamination during the recovery of gallium, and had a problem of reducing the purity of the recovered gallium.

特開昭61−215214号公報Japanese Patent Laid-Open No. 61-215214 特許第3436304号公報Japanese Patent No. 3436304

このため、ガリウム化合物を切断したり研磨したりした際に生じる切削屑や研磨屑等から、高い純度のガリウムをコストを上昇させることなく回収することが可能な技術の開発が望まれていた。   For this reason, development of the technique which can collect | recover high purity gallium without raising a cost from the cutting waste, the grinding | polishing waste, etc. which arise when a gallium compound is cut | disconnected or grind | polished has been desired.

本発明者は、以下に示す各請求項の発明により、上記課題が解決できることを見出し、本発明を完成するに至った。以下、各請求項の発明を説明する。   The present inventor has found that the above-mentioned problems can be solved by the inventions of the following claims, and has completed the present invention. The invention of each claim will be described below.

請求項1に記載の発明は、
ガリウムヒ素含有澱物からガリウムを回収するガリウム回収方法であって、
前記ガリウムヒ素含有澱物を、透気度18cc/cm/min以下の耐油性フィルターを用いたフィルタープレスにて油分と固形残渣とに固液分離を行う固液分離工程と、
前記固液分離工程で得られた固液分離後の固形残渣を、前記油分の沸点より高く、ヒ素の蒸発温度より低い温度範囲の不活性ガス雰囲気に保持して、前記固液分離後の固形残渣に含有される油分を1重量%以下とする油分除去工程と、
前記油分除去工程で得られた油分除去後の固形残渣を、1000℃以上の大気雰囲気に5分以上保持して、ヒ素を除去するヒ素除去工程と、
前記ヒ素除去工程で得られたヒ素除去後の固形残渣を酸またはアルカリに溶解させる溶解工程と、
前記溶解工程で得られた溶解液および不溶物をフィルターにて濾別する不溶物濾別工程と、
前記不溶物濾別工程で得られた前記溶解液を、中和してガリウム酸化物を得るガリウム回収工程と、
を有していることを特徴とするガリウム回収方法である。
The invention described in claim 1
A method for recovering gallium from a gallium arsenide-containing starch,
A solid-liquid separation step of subjecting the gallium arsenide-containing starch to solid-liquid separation into an oil component and a solid residue with a filter press using an oil-resistant filter having an air permeability of 18 cc / cm 2 / min or less;
The solid residue after solid-liquid separation obtained in the solid-liquid separation step is maintained in an inert gas atmosphere in a temperature range higher than the boiling point of the oil and lower than the evaporation temperature of arsenic, An oil removing step in which the oil contained in the residue is 1% by weight or less;
An arsenic removing step of removing arsenic by holding the solid residue after oil removal obtained in the oil removing step in an air atmosphere of 1000 ° C. or higher for 5 minutes or more;
A dissolution step of dissolving the solid residue after removal of arsenic obtained in the arsenic removal step in an acid or alkali;
An insoluble matter filtering step of filtering the solution and insoluble matter obtained in the dissolving step with a filter;
A gallium recovery step for obtaining a gallium oxide by neutralizing the solution obtained in the insoluble matter separation step;
It is a gallium collection | recovery method characterized by having.

本請求項の発明においては、切削油や研磨油などの油分およびヒ素を除去した後に、ガリウム酸化物の形でガリウムを回収しているため、高い純度のガリウムを効率よく回収することができる。
以下、各工程につき工程順に説明する(図1参照)。
In the present invention, since gallium is recovered in the form of gallium oxide after removing oil and arsenic such as cutting oil and polishing oil, high purity gallium can be recovered efficiently.
Hereinafter, each step will be described in the order of steps (see FIG. 1).

(1)固液分離工程
最初の工程である固液分離工程は、ガリウムヒ素化合物の切断時や研磨時に生じたガリウムヒ素含有澱物(スラリー状であるため、以下「廃スラリー」とも言う。)を、フィルタープレスにて油分と固形残渣とに固液分離する工程である。
(1) Solid-liquid separation step The first step, the solid-liquid separation step, is a gallium arsenide-containing starch produced during cutting or polishing of a gallium arsenide compound (since it is in the form of a slurry, it is also referred to as “waste slurry” hereinafter). Is a process of solid-liquid separation into oil and solid residue with a filter press.

即ち、このガリウムヒ素含有澱物には、ガリウムヒ素化合物、砥粒(通常SiCが使用される)および切削油または研磨油(通常A重油が使用される)が含有されているが、本工程により、ガリウムヒ素化合物および砥粒を含有する固形残渣と油分とに分離される。   That is, this gallium arsenide-containing starch contains a gallium arsenide compound, abrasive grains (usually SiC is used), and cutting oil or polishing oil (usually A heavy oil is used). And a solid residue containing gallium arsenide compound and abrasive grains and an oil component.

本工程においては、フィルタープレスを用いているため、ガリウムヒ素含有澱物に含有されている油分の殆ど(90%以上)を回収することができる。なお、回収された油分は切削油や研磨油として、再使用することができる。   In this step, since a filter press is used, most (90% or more) of the oil contained in the gallium arsenide-containing starch can be recovered. The recovered oil can be reused as cutting oil or polishing oil.

フィルターの透気度が18cc/cm/minを超えると、固形分がフィルターを通過してしまい、後々のGa回収率が下がるため好ましくない。 When the air permeability of the filter exceeds 18 cc / cm 2 / min, the solid content passes through the filter, and the Ga recovery rate is lowered, which is not preferable.

(2)油分除去工程
次の油分除去工程は、固液分離工程において得られた固形残渣を、油分の沸点より高い温度で加熱することにより、固液分離後の固形残渣中に残存している油分を沸騰、蒸発させて、1重量%以下まで減少させる工程である。
(2) Oil component removal step In the oil component removal step, the solid residue obtained in the solid-liquid separation step remains in the solid residue after solid-liquid separation by heating at a temperature higher than the boiling point of the oil component. In this step, the oil is boiled and evaporated to reduce it to 1% by weight or less.

固液分離工程において得られた固形残渣には、少量とはいえ、3wt%程度の油分が残存している。本工程により固液分離後の固形残渣の油分を1重量%以下まで減少させているため、最終的に得られるガリウムに炭素が混入することを抑制することができる。   In the solid residue obtained in the solid-liquid separation step, although it is a small amount, an oil content of about 3 wt% remains. Since the oil content of the solid residue after the solid-liquid separation is reduced to 1% by weight or less by this step, it is possible to suppress carbon from being mixed into the finally obtained gallium.

本工程においては、前記したように、固液分離後の固形残渣を油分の沸点よりも高い温度で加熱するが、加熱温度が高すぎる、具体的には500℃程度を超えると、油分の蒸発に加えて、有害なヒ素も蒸発してくるので好ましくない。従って、加熱温度は、油分の沸点より高く、ヒ素の蒸発温度よりも低く設定する。   In this step, as described above, the solid residue after solid-liquid separation is heated at a temperature higher than the boiling point of the oil component, but if the heating temperature is too high, specifically about 500 ° C., the oil component is evaporated. In addition, harmful arsenic also evaporates, which is not preferable. Accordingly, the heating temperature is set higher than the boiling point of the oil component and lower than the evaporation temperature of arsenic.

例えば、前記したA重油の場合であれば、沸点は240〜250℃であるため、300〜400℃程度で加熱する。   For example, in the case of the A heavy oil described above, the boiling point is 240 to 250 ° C, and thus heating is performed at about 300 to 400 ° C.

そして、この加熱は、油分の蒸気が爆発限界濃度に達しても爆発することを防止するために、不活性ガス雰囲気で行う。例えば、前記A重油の場合の爆発限界濃度は1〜7vol%である。不活性ガスとして例えば窒素ガスを挙げることができる。なお、加熱時間は、残存油分の濃度に対応して、適宜設定すればよいが、1〜5時間程度が好ましい。   This heating is performed in an inert gas atmosphere in order to prevent the oil vapor from exploding even when the explosion limit concentration is reached. For example, the explosion limit concentration in the case of the A heavy oil is 1 to 7 vol%. An example of the inert gas is nitrogen gas. In addition, what is necessary is just to set a heating time suitably according to the density | concentration of residual oil content, However About 1 to 5 hours are preferable.

(3)ヒ素除去工程
次のヒ素除去工程は、前記の油分除去工程により油分が1重量%以下となった固形残渣を1000℃以上の大気雰囲気に5分以上保持することにより、ヒ素を熱分解させて除去する工程である。
(3) Arsenic removal step The next arsenic removal step is the thermal decomposition of arsenic by holding the solid residue whose oil content is 1% by weight or less in the oil removal step in an air atmosphere of 1000 ° C or higher for 5 minutes or longer. It is the process of removing by doing.

即ち、本工程においては、1000℃以上の大気雰囲気に5分以上保持することにより、油分除去後の固形残渣中のガリウムヒ素化合物のヒ素が熱分解されて油分除去後の固形残渣より除去される。具体的には、熱分解されたヒ素が大気中の酸素により酸化されて、昇華することにより、油分除去後の固形残渣より除去される。昇華したヒ素酸化物の蒸気を水トラップにより回収することにより、有毒なヒ素を外部に拡散させることなく、確実に回収することができる。なお、回収されたヒ素酸化物は、適宜還元処理することにより、ヒ素として再利用される。   That is, in this step, by maintaining in an air atmosphere at 1000 ° C. or higher for 5 minutes or longer, arsenic of the gallium arsenide compound in the solid residue after oil removal is thermally decomposed and removed from the solid residue after oil removal. . Specifically, the thermally decomposed arsenic is oxidized by oxygen in the atmosphere and sublimated to be removed from the solid residue after oil removal. By collecting the sublimated arsenic oxide vapor with a water trap, toxic arsenic can be reliably recovered without diffusing outside. Note that the recovered arsenic oxide is reused as arsenic by appropriately reducing it.

本工程においては、前記したように、油分除去後の固形残渣を1000℃以上の温度で加熱する。しかし、加熱温度が高すぎる、具体的には1200℃程度を超えると、研磨剤のSiCが酸化してSiOが生成し、砥粒の再利用が困難となる。従って、加熱温度は、1000〜1200℃程度が好ましく、1150℃が特に好ましい。また、保持時間は、5分以上が好ましく、30分以上であるとより好ましい。 In this step, as described above, the solid residue after oil removal is heated at a temperature of 1000 ° C. or higher. However, if the heating temperature is too high, specifically over about 1200 ° C., the abrasive SiC is oxidized and SiO 2 is generated, making it difficult to reuse the abrasive grains. Therefore, the heating temperature is preferably about 1000 to 1200 ° C, and particularly preferably 1150 ° C. The holding time is preferably 5 minutes or longer, and more preferably 30 minutes or longer.

(4)溶解工程
次の溶解工程は、ヒ素が除去された固形残渣を酸またはアルカリに溶解させる工程である。ヒ素が除去されたヒ素除去後の固形残渣はガリウムおよび砥粒を含有しているが、酸やアルカリと接触させた場合、ガリウムのみが溶解し、砥粒は不溶物として沈殿する。
(4) Dissolution Step The next dissolution step is a step of dissolving the solid residue from which arsenic has been removed in acid or alkali. The solid residue after removal of arsenic from which arsenic has been removed contains gallium and abrasive grains, but when contacted with acid or alkali, only gallium dissolves and the abrasive grains precipitate as insoluble matter.

なお、酸としては、塩酸と硝酸を1:3〜1(体積比)の割合で混合して得られる逆王水が好ましく用いられ、溶解は、例えば、90℃の温度で1時間以上かけて行うことが短時間溶解としては好ましい。また、アルカリとしては、NaOH水溶液やアンモニア水(NHOH)などが好ましく使用される。 As the acid, reverse aqua regia obtained by mixing hydrochloric acid and nitric acid in a ratio of 1: 3 to 1 (volume ratio) is preferably used, and dissolution takes, for example, a temperature of 90 ° C. over 1 hour. Performing for a short time is preferable. As the alkali, such as aqueous NaOH or aqueous ammonia (NH 4 OH) is preferably used.

(5)不溶物濾別工程
次の不溶物濾別工程は、前記の溶解工程で得られた溶解液および不溶物をフィルターにて濾別する工程である。濾別された不溶物の砥粒は、水洗された後再利用される。
(5) Insoluble matter filtering step The next insoluble matter filtering step is a step of filtering the solution and insoluble matter obtained in the above dissolving step with a filter. The insoluble abrasive grains separated by filtration are reused after being washed with water.

ガリウムヒ素化合物の切断時における砥粒としては一般的にSiCが用いられている。この場合、本工程により濾別された不溶物はSiC砥粒であり、水洗後、SiC砥粒として再利用されることとなる。   Generally, SiC is used as the abrasive grains when cutting the gallium arsenide compound. In this case, the insoluble matter filtered off in this step is SiC abrasive grains, which are reused as SiC abrasive grains after washing with water.

(6)ガリウム回収工程
最後のガリウム回収工程は、前記の溶解液を中和してガリウム酸化物を得る工程であり、ガリウム酸化物の形でガリウムを回収する工程である。
(6) Gallium recovery step The final gallium recovery step is a step of obtaining the gallium oxide by neutralizing the solution, and is a step of recovering gallium in the form of gallium oxide.

以上、(1)〜(6)の各工程に示したように、本請求項の発明によれば、油分やヒ素が除去された廃スラリーを酸やアルカリに溶解させてガリウムの回収を行っているため、純度の高いガリウムを回収することができる。また、溶解工程において使用される酸やアルカリ、例えば、逆王水を構成する硝酸や塩酸は、有機溶媒に比べて安価に調達することができるため、コストの上昇を招くことがない。さらに、各工程において、回収された油分やヒ素は再び使用することができるため、この面からもコスト的に好ましい。そして、本請求項の発明によれば、クローズドシステムの回収方法を構築することが可能となるため、環境、安全性の面からも好ましい。   As described above, as shown in each step of (1) to (6), according to the invention of this claim, the waste slurry from which oil and arsenic have been removed is dissolved in acid or alkali to recover gallium. Therefore, high purity gallium can be recovered. In addition, the acid and alkali used in the dissolution step, for example, nitric acid and hydrochloric acid constituting reverse aqua regia can be procured at a lower cost than an organic solvent, so that the cost does not increase. Furthermore, since the recovered oil and arsenic can be used again in each step, this is also preferable from the viewpoint of cost. And according to the invention of this claim, since it becomes possible to construct | assemble the collection | recovery method of a closed system, it is preferable also from the surface of an environment and safety | security.

請求項2に記載の発明は、
前記固液分離工程に先立って、
磁石を用いて、前記廃スラリーから鉄分の除去を行う鉄分除去工程が設けられていることを特徴とする請求項1に記載のガリウム回収方法である。
The invention described in claim 2
Prior to the solid-liquid separation step,
2. The gallium recovery method according to claim 1, wherein an iron content removing step for removing iron content from the waste slurry is provided using a magnet. 3.

廃スラリーには、場合によっては、ワイヤの切片等の鉄分が含まれていることがある。この鉄分が除去されないままであると、回収されたガリウムの純度に影響するため、除去することが好ましい。鉄分の除去を行う具体的な手段としては、磁石を用いることが好ましい。   In some cases, the waste slurry may contain iron such as a wire piece. If this iron content remains unremoved, it affects the purity of the collected gallium, so it is preferably removed. As a specific means for removing iron, a magnet is preferably used.

請求項3に記載の発明は、
前記ヒ素除去工程が、
400℃までの昇温過程において油分が除去された前記油分除去後の固形残渣を、400℃で1時間以上保持してヒ素を酸化させた後、450〜500℃の間を0.5℃/分以下の昇温速度でゆっくりと昇温させ、その後1000℃以上の高温に5分以上保持することにより、酸化ヒ素を気化させる工程であることを特徴とする請求項1または請求項2に記載のガリウム回収方法である。
The invention according to claim 3
The arsenic removal step includes
The solid residue after removal of the oil from which the oil was removed in the temperature raising process up to 400 ° C. was held at 400 ° C. for 1 hour or more to oxidize arsenic, 3. The process of vaporizing arsenic oxide by slowly raising the temperature at a heating rate of less than or equal to a minute and then holding at a high temperature of 1000 ° C. or more for 5 minutes or more. This is a gallium recovery method.

ガリウムヒ素化合物からのガリウムおよびヒ素への熱分解とその後の酸化を行っているため、ヒ素を効率よく除去することができる。   Since thermal decomposition of gallium arsenide compound into gallium and arsenic and subsequent oxidation are performed, arsenic can be efficiently removed.

請求項4に記載の発明は、
前記溶解工程と前記ガリウム回収工程との間に、前記溶解工程で得られた前記溶解液に定電位電解処理を行ってヒ素の選択除去を行う定電位電解工程が設けられていることを特徴とする請求項1ないし請求項3のいずれか1項に記載のガリウム回収方法である。
The invention according to claim 4
A constant potential electrolysis step is provided between the dissolution step and the gallium recovery step, in which a constant potential electrolysis treatment is performed on the solution obtained in the dissolution step to selectively remove arsenic. The gallium recovery method according to any one of claims 1 to 3.

ヒ素除去工程を行った後でも、状況によっては、所定値より高い濃度のヒ素が残存していることがある。この場合には、溶解液に定電位電解処理を行うことにより、ヒ素を選択除去する。その結果、充分にヒ素が除去された状態でガリウム回収を行うことができ、純度の高いが入り有無の回収が可能となる。なお、この定電位電解処理は、溶解工程とガリウム回収工程の間に行えば良く、不溶物濾別工程の前後は問わない。   Even after the arsenic removal step, arsenic having a concentration higher than a predetermined value may remain depending on the situation. In this case, arsenic is selectively removed by subjecting the solution to a constant potential electrolytic treatment. As a result, gallium can be recovered in a state where arsenic has been sufficiently removed, and it is possible to recover the presence or absence of high purity. In addition, this constant potential electrolysis process should just be performed between a melt | dissolution process and a gallium collection | recovery process, and does not ask | require before and after an insoluble matter filtration process.

本発明によれば、ガリウム化合物を切断したり研磨したりした際に生じる切削屑や研磨屑等から、高い純度のガリウムをコストを上昇させることなく回収することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to collect | recover high-purity gallium, without raising a cost from the cutting waste, polishing waste, etc. which arise when a gallium compound is cut | disconnected or grind | polished.

本発明の一実施の形態におけるガリウムヒ素含有澱物からガリウムを回収する工程の概略を示す図である。It is a figure which shows the outline of the process of collect | recovering gallium from the gallium arsenide containing starch in one embodiment of this invention. GaとAsの1273Kにおける気化分解速度を示すグラフである。It is a graph showing the vaporization rate of degradation in the 1273K of Ga 2 O 3 and As 2 O 3. 熱処理によるAsの分離速度と熱処理温度の関係を示すグラフである。Is a graph showing the As 2 O 3 in relation separation rate and the heat treatment temperature by the heat treatment. 本発明の一実施の形態における熱処理後の固形残渣のSEM像および蛍光X線測定結果を示す図である。It is a figure which shows the SEM image and fluorescent X-ray-measurement result of the solid residue after heat processing in one embodiment of this invention. 本発明の一実施の形態において回収されたSiC粒子のSEM像および蛍光X線測定結果を示す図である。It is a figure which shows the SEM image and fluorescent X-ray-measurement result of the SiC particle collect | recovered in one embodiment of this invention. 本発明の一実施の形態において回収された粒子のGaのSEM像および蛍光X線測定結果を示す図である。Is a diagram showing an SEM image and fluorescent X-ray measurement results of the Ga 2 O 3 of recovered particles in one embodiment of the present invention.

以下、本発明を実施の形態に基づいて説明する。なお、本発明は、以下の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。   Hereinafter, the present invention will be described based on embodiments. Note that the present invention is not limited to the following embodiments. Various modifications can be made to the following embodiments within the same and equivalent scope as the present invention.

本実施の形態は、砥粒としてSiC、切削油としてA重油を用いてGaAs(ヒ化ガリウム)基板を切断した際に生じるスラリー状のガリウムヒ素含有澱物(廃スラリー)からガリウムを回収する方法に関する。以下、図面に基づいて本実施の形態を説明する。   This embodiment is a method for recovering gallium from a slurry-like gallium arsenide-containing starch (waste slurry) produced when a GaAs (gallium arsenide) substrate is cut using SiC as abrasive grains and A heavy oil as cutting oil. About. Hereinafter, the present embodiment will be described with reference to the drawings.

図1は、廃スラリーからGaを回収する工程の概略を示す図である。以下各工程について説明する。   FIG. 1 is a diagram showing an outline of a process for recovering Ga from waste slurry. Each step will be described below.

1.廃スラリーの組成
最初に、本実施の形態における廃スラリーとして、GaAs2wt%、SiC28wt%、A重油70wt%より構成されている廃スラリーを準備した。
1. Composition of Waste Slurry First, as a waste slurry in the present embodiment, a waste slurry composed of 2% by weight of GaAs, 28% by weight of SiC, and 70% by weight of A heavy oil was prepared.

2.廃スラリーからのGaの回収方法
(1)鉄分除去工程
最初に磁石を用いて、ガリウムヒ素含有澱物から鉄分を除去した。
2. Method for recovering Ga from waste slurry (1) Iron content removal step First, iron was removed from a gallium arsenide-containing starch using a magnet.

(2)固液分離工程
次に、鉄分を除去した廃スラリー200kgを、JIS P 8117:1998「紙及び板紙−透気度試験方法−ガーレー試験機法」に準じて測定した透気度が18cc/(cm・min)以下のポリプロピレン製分離膜(膜面積:5m)を用い、フィルタープレスにて0.4MPaの圧力の下、300cc/minの処理速度で加圧濾過した。本工程により、60kgの固形残渣と140kgの分離液(A重油)とを固液分離して得ることができた。
(2) Solid-Liquid Separation Step Next, 200 kg of waste slurry from which iron has been removed was measured according to JIS P 8117: 1998 “Paper and paperboard—Air permeability test method—Gurley test machine method” and the air permeability was 18 cc. / (Cm 2 · min) or less of polypropylene separation membrane (membrane area: 5 m 2 ) and filtered under pressure at a processing rate of 300 cc / min with a filter press under a pressure of 0.4 MPa. By this step, 60 kg of solid residue and 140 kg of separation liquid (A heavy oil) could be obtained by solid-liquid separation.

得られた分離液(A重油)の固形分は1%以下であり、切削油として充分再利用可能であった。   The obtained separated liquid (A heavy oil) had a solid content of 1% or less and could be sufficiently reused as cutting oil.

(3)切削油除去工程
上記の固形残渣について検査したところ、なお3wt%のA重油が含有されていた。次に、熱処理炉を用いてこの固形残渣を、大気圧、300〜400℃の間の温度である390℃の窒素ガス気流中に120分間保持し、固形残渣中に残存しているA重油を沸騰、蒸発させて除去し、固形残渣中のA重油を1wt%以下、具体的には、0.01wt%以下とした。
(3) Cutting oil removal process When the above-mentioned solid residue was inspected, 3 wt% A heavy oil was still contained. Next, this solid residue is kept in a nitrogen gas stream at 390 ° C., which is a temperature between 300 ° C. and 400 ° C., for 120 minutes using a heat treatment furnace, and the heavy oil A remaining in the solid residue is retained. It was removed by boiling and evaporation, and A heavy oil in the solid residue was adjusted to 1 wt% or less, specifically 0.01 wt% or less.

(4)ヒ素除去工程
次に、A重油を除去した後の固形残渣を熱処理炉内に配置し、熱処理炉の一方向から炉内に空気を導入しながら油分除去後の固形残渣を1150℃で60分間加熱した。
(4) Arsenic removal step Next, the solid residue after removal of A heavy oil is placed in a heat treatment furnace, and the solid residue after oil removal is introduced at 1150 ° C. while introducing air into the furnace from one direction of the heat treatment furnace. Heated for 60 minutes.

加熱によるヒ素除去の条件としては、空気量に関して、予め200gのSiC/GaAs(GaAs:3wt%)を用いて、実験を行った。その結果、この200gの例の場合、酸素量として約2.8Lが必要で、また、GaとAsが酸化されてGaおよびAsを生成すると思われる450〜500℃の温度範囲を0.5℃/分で昇温させる必要があることが分かった。即ち、この処理を100分間で行う場合には、酸素流量として、28mL/分(空気換算では、140mL/分)が必要となる。 As a condition for removing arsenic by heating, an experiment was performed using 200 g of SiC / GaAs (GaAs: 3 wt%) in advance with respect to the amount of air. As a result, in the case of this 200 g example, an oxygen amount of about 2.8 L is required, and Ga and As are oxidized to generate Ga 2 O 3 and As 2 O 3 at a temperature of 450 to 500 ° C. It was found that it was necessary to raise the range at 0.5 ° C./min. That is, when this treatment is performed for 100 minutes, an oxygen flow rate of 28 mL / min (140 mL / min in terms of air) is required.

本実施の形態においては、上記の実験結果に基づき、必要量を上回る0.2L/minの空気を導入した。   In the present embodiment, 0.2 L / min of air exceeding the required amount was introduced based on the above experimental results.

本工程は、大気中で油分除去後の固形残渣を加熱した際に生成するGaとAsの気化分解速度の差を利用するものであり、これを図2に示す。図2は、生成したGaおよびAsの1000℃における気化分解率と時間との関係を示すグラフである。図2に示すように、Gaは殆ど気化分解せず不揮発性であるのに対して、Asは昇華、気化分解する。 This step utilizes the difference in vaporization decomposition rate between Ga 2 O 3 and As 2 O 3 produced when the solid residue after oil removal is heated in the atmosphere, and this is shown in FIG. FIG. 2 is a graph showing the relationship between the vapor decomposition rate at 1000 ° C. of the produced Ga 2 O 3 and As 2 O 3 and time. As shown in FIG. 2, Ga 2 O 3 hardly vaporizes and decomposes and is non-volatile, while As 2 O 3 sublimates and vaporizes and decomposes.

また、本工程における加熱温度と加熱時間に関しては、図3に基づき設定した。図3(a)は熱処理時間を一定とした場合におけるAsの油分除去後の固形残渣からの分離量と熱処理温度との関係を示すグラフであり、図3(b)は熱処理温度を一定とした場合におけるAsの油分除去後の固形残渣からの分離量と熱処理時間との関係を示すグラフである。図3(a)から処理時間が30分の場合、処理温度1150℃であればAsの濃度がほぼ0wt%になることが分かり、図3(b)から熱処理温度が1000℃の場合、処理時間5分以上であればAsの濃度が0wt%近くなることが分かる。 Further, the heating temperature and the heating time in this step were set based on FIG. FIG. 3 (a) is a graph showing the relationship between the amount of As 2 O 3 separated from the solid residue after oil removal and the heat treatment temperature when the heat treatment time is constant, and FIG. 3 (b) shows the heat treatment temperature. it is a graph showing the relationship between the amount of separation and the heat treatment time from the solid residue after oil removal of as 2 O 3 in the case of a constant. FIG. 3A shows that when the treatment time is 30 minutes, the As concentration is almost 0 wt% when the treatment temperature is 1150 ° C., and FIG. 3B shows that the treatment time is when the heat treatment temperature is 1000 ° C. It can be seen that the concentration of As is close to 0 wt% if it is 5 minutes or longer.

本工程における加熱温度および加熱時間(1150℃、60分)は、予め得られたこれらの知見に基づき設定されたものである。   The heating temperature and heating time (1150 ° C., 60 minutes) in this step are set based on these findings obtained in advance.

熱処理炉の一方向から空気を導入することにより必要な酸素を支障なく供給することができる。これに対して、双方向から空気を導入した場合には、エアーの乱れが起こり、生成したGaが飛散する恐れがあり、好ましくない。 Necessary oxygen can be supplied without hindrance by introducing air from one direction of the heat treatment furnace. On the other hand, when air is introduced from both directions, the air is disturbed and the generated Ga 2 O 3 may be scattered, which is not preferable.

なお、昇華したAsは、水トラップで捕集して回収した。回収したAsの量は、約1.8kgであった The sublimated As 2 O 3 was collected with a water trap and collected. The amount of As 2 O 3 recovered was about 1.8 kg.

(5)溶解工程
本実施の形態においては、溶解液として、酸である逆王水を使用した。熱処理によりAsを分離除去した後の固形残渣を、ポリプロピレンで内張したSUS製の槽に用意された逆王水(1L)に投入し、90℃の温度で300分間をかけて、逆王水1Lに対しヒ素除去後の固形残渣200g(Gaの溶解濃度に換算すると6g/Lに相当)の割合で溶解させた。なお、このときSiCは逆王水に溶解せず、不溶物として沈殿した。
(5) Dissolution process In this Embodiment, the reverse aqua regia which is an acid was used as a solution. The solid residue after separating and removing As by heat treatment was put into reverse aqua regia (1 L) prepared in a SUS tank lined with polypropylene, and over 300 minutes at a temperature of 90 ° C. The solid residue after removal of arsenic with respect to 1 L was dissolved at a ratio of 200 g (corresponding to 6 g / L in terms of Ga dissolution concentration). At this time, SiC did not dissolve in the reverse aqua regia and precipitated as an insoluble material.

(6)定電位電解工程
イ.熱処理後の固形残渣の調査
前記熱処理によりAsを分離除去した後の固形残渣をSEMで観察し、蛍光X線分析により組成分析を行った結果、微量ではあるがAsが残留していることが分かった(図4参照)。そして、Asが残留している箇所にはFeが検出された。そこで、逆王水への溶解後、定電位電解により残存しているAsを除去した。なお、Feは事前に磁石を用いて取り除いた。
(6) Constant potential electrolysis process a. Investigation of solid residue after heat treatment As a result of observing the solid residue after separating and removing As by the heat treatment with SEM and analyzing the composition by fluorescent X-ray analysis, it was found that As remained, although in a small amount. (See FIG. 4). And Fe was detected in the place where As remained. Therefore, after dissolution in reverse aqua regia, the remaining As was removed by constant potential electrolysis. Note that Fe was removed in advance using a magnet.

ロ.定電位電解
具体的には、ヒ素除去後の固形残渣を溶解させた逆王水中にTi電極を挿入し、銀/塩化銀の参照極に対して正極の電位を0.5Vの定電位に維持しながら、100mA以下の電流で2時間電解し、この間に正極から発生するガス(酸化ヒ素)を回収した。これにより、逆王水中のAs濃度は電解前の620ppmから49ppmと大きく低下した。なお、逆王水に溶解しているGaは、電解前は560ppmであり、電解後は水分が多少減少したこともあり、570ppmであった。
B. Constant-potential electrolysis Specifically, a Ti electrode is inserted into the reverse aqua regia in which the solid residue after arsenic removal is dissolved, and the positive electrode potential is maintained at a constant potential of 0.5 V with respect to the silver / silver chloride reference electrode. While performing electrolysis for 2 hours at a current of 100 mA or less, gas (arsenic oxide) generated from the positive electrode during this period was recovered. Thereby, the As concentration in the reverse aqua regia was greatly reduced from 620 ppm before electrolysis to 49 ppm. In addition, Ga dissolved in the reverse aqua regia was 560 ppm before electrolysis, and was 570 ppm after electrolysis, since water content was somewhat reduced.

なお、前記したように、ヒ素除去後の固形残渣に含まれるAsの濃度が充分に低い場合には、電解処理を行う必要はない。また、電解処理は次のSiCの分離回収後に行ってもよい。   As described above, when the concentration of As contained in the solid residue after arsenic removal is sufficiently low, it is not necessary to perform electrolytic treatment. Further, the electrolytic treatment may be performed after the next SiC separation and recovery.

(7)不溶物濾別工程
前記したように、ヒ素除去後の固形残渣を逆王水に溶解させる際に、SiCは溶解せず沈殿するため、膜フィルター(日本ミリポア社製)を用い減圧ろ過して、不溶物を濾別して、SiCを回収した。回収されたSiC粒子につき、SEM観察および蛍光X線分析を行ったところ、Ga、Asを含まない純粋なSiC粒子であることが確認でき(図5参照)、研磨材として再利用できることが分かった。なお、回収量は、約56kgであった。
(7) Insoluble matter filtration step As described above, when the solid residue after arsenic removal is dissolved in the reverse aqua regia, SiC precipitates without dissolving, so it is filtered under reduced pressure using a membrane filter (Nippon Millipore). Then, insoluble matters were separated by filtration, and SiC was recovered. When the collected SiC particles were subjected to SEM observation and fluorescent X-ray analysis, it was confirmed that they were pure SiC particles containing no Ga or As (see FIG. 5), and it was found that they could be reused as abrasives. . The recovered amount was about 56 kg.

(8)ガリウム回収工程
SiCとAsを除去した逆王水を、NaOHで中和してpHを4〜6に調整することにより、GaをGa(白色粉末)として沈殿させた。得られた沈殿を膜フィルター(日本ミリポア)減圧濾過により濾過した後水洗して回収した。回収量は、Gaとして約1.9kgであり、初期投入量から換算された約2.4kgのGaに対して回収率は83%であった。なお、回収したGaをSEMにより観察し、また蛍光X線分析により組成分析を行ったところ、粒径が0.2〜0.5μmの純粋なGaであることが確認された(図6参照)。
(8) Gallium recovery process The reverse aqua regia from which SiC and As were removed was neutralized with NaOH to adjust the pH to 4-6, thereby precipitating Ga as Ga 2 O 3 (white powder). The obtained precipitate was filtered through a membrane filter (Nippon Millipore) under reduced pressure, washed with water and collected. Recovered amount is about 1.9kg as Ga 2 O 3, the recovery rate versus about 2.4kg of Ga 2 O 3, which is converted from the initial charge amount was 83%. The recovered Ga 2 O 3 was observed with an SEM, and composition analysis was performed by fluorescent X-ray analysis. As a result, it was confirmed to be pure Ga 2 O 3 having a particle size of 0.2 to 0.5 μm. (See FIG. 6).

Claims (4)

ガリウムヒ素含有澱物からガリウムを回収するガリウム回収方法であって、
前記ガリウムヒ素含有澱物を、透気度18cc/cm/min以下の耐油性フィルターを用いたフィルタープレスにて油分と固形残渣とに固液分離を行う固液分離工程と、
前記固液分離工程で得られた固液分離後の固形残渣を、前記油分の沸点より高く、ヒ素の蒸発温度より低い温度範囲の不活性ガス雰囲気に保持して、前記固液分離後の固形残渣に含有される油分を1重量%以下とする油分除去工程と、
前記油分除去工程で得られた油分除去後の固形残渣を、1000℃以上の大気雰囲気に5分以上保持して、ヒ素を除去するヒ素除去工程と、
前記ヒ素除去工程で得られたヒ素除去後の固形残渣を酸またはアルカリに溶解させる溶解工程と、
前記溶解工程で得られた溶解液および不溶物をフィルターにて濾別する不溶物濾別工程と、
前記不溶物濾別工程で得られた前記溶解液を、中和してガリウム酸化物を得るガリウム回収工程と、
を有していることを特徴とするガリウム回収方法。
A method for recovering gallium from a gallium arsenide-containing starch,
A solid-liquid separation step of subjecting the gallium arsenide-containing starch to solid-liquid separation into an oil component and a solid residue with a filter press using an oil-resistant filter having an air permeability of 18 cc / cm 2 / min or less;
The solid residue after solid-liquid separation obtained in the solid-liquid separation step is maintained in an inert gas atmosphere in a temperature range higher than the boiling point of the oil and lower than the evaporation temperature of arsenic, An oil removing step in which the oil contained in the residue is 1% by weight or less;
An arsenic removing step of removing arsenic by holding the solid residue after oil removal obtained in the oil removing step in an air atmosphere of 1000 ° C. or higher for 5 minutes or more;
A dissolution step of dissolving the solid residue after removal of arsenic obtained in the arsenic removal step in an acid or alkali;
An insoluble matter filtering step of filtering the solution and insoluble matter obtained in the dissolving step with a filter;
A gallium recovery step for obtaining a gallium oxide by neutralizing the solution obtained in the insoluble matter separation step;
A gallium recovery method characterized by comprising:
前記固液分離工程に先立って、
磁石を用いて、前記廃スラリーから鉄分の除去を行う鉄分除去工程が設けられていることを特徴とする請求項1に記載のガリウム回収方法。
Prior to the solid-liquid separation step,
The method for recovering gallium according to claim 1, wherein an iron content removing step for removing iron content from the waste slurry is provided using a magnet.
前記ヒ素除去工程が、
400℃までの昇温過程において油分が除去された前記油分除去後の固形残渣を、400℃で1時間以上保持してヒ素を酸化させた後、450〜500℃の間を0.5℃/分以下の昇温速度でゆっくりと昇温させ、その後1000℃以上の高温に5分以上保持することにより、酸化ヒ素を気化させる工程であることを特徴とする請求項1または請求項2に記載のガリウム回収方法。
The arsenic removal step includes
The solid residue after removal of the oil from which the oil was removed in the temperature raising process up to 400 ° C. was held at 400 ° C. for 1 hour or more to oxidize arsenic, 3. The process of vaporizing arsenic oxide by slowly raising the temperature at a heating rate of less than or equal to a minute and then holding at a high temperature of 1000 ° C. or more for 5 minutes or more. Gallium recovery method.
前記溶解工程と前記ガリウム回収工程との間に、前記溶解工程で得られた前記溶解液に定電位電解処理を行ってヒ素の選択除去を行う定電位電解工程が設けられていることを特徴とする請求項1ないし請求項3のいずれか1項に記載のガリウム回収方法。   A constant potential electrolysis step is provided between the dissolution step and the gallium recovery step, in which a constant potential electrolysis treatment is performed on the solution obtained in the dissolution step to selectively remove arsenic. The gallium recovery method according to any one of claims 1 to 3.
JP2009229380A 2009-10-01 2009-10-01 Gallium recovery method Active JP5344376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009229380A JP5344376B2 (en) 2009-10-01 2009-10-01 Gallium recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009229380A JP5344376B2 (en) 2009-10-01 2009-10-01 Gallium recovery method

Publications (2)

Publication Number Publication Date
JP2011074475A true JP2011074475A (en) 2011-04-14
JP5344376B2 JP5344376B2 (en) 2013-11-20

Family

ID=44018754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009229380A Active JP5344376B2 (en) 2009-10-01 2009-10-01 Gallium recovery method

Country Status (1)

Country Link
JP (1) JP5344376B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101539431B1 (en) * 2014-04-01 2015-07-27 주식회사 엔코 A recovery method of gallium from the mo-cvd wastes
CN113896238A (en) * 2021-09-24 2022-01-07 威科赛乐微电子股份有限公司 Method for separating and recovering gallium arsenide in mortar

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270425A (en) * 1987-04-24 1988-11-08 Chiyoda Chem Eng & Constr Co Ltd Method for recovering metallic gallium
JPS644433A (en) * 1987-06-26 1989-01-09 Mitsubishi Metal Corp Method for recovering gallium from gallium-containing scrap
JPH09118937A (en) * 1995-10-24 1997-05-06 Kawasaki Heavy Ind Ltd Production of casting chip briquette
JP2000273558A (en) * 1999-03-19 2000-10-03 Sumitomo Metal Mining Co Ltd Method for concentrating gallium component from precipitate containing gallium comound, abrasive grain and cutting oil
JP2001232234A (en) * 2000-02-25 2001-08-28 Sumitomo Metal Mining Co Ltd Method for concentrating gallium compound from precipitate containing gallium compound, abrasive grain, and cutting oil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270425A (en) * 1987-04-24 1988-11-08 Chiyoda Chem Eng & Constr Co Ltd Method for recovering metallic gallium
JPS644433A (en) * 1987-06-26 1989-01-09 Mitsubishi Metal Corp Method for recovering gallium from gallium-containing scrap
JPH09118937A (en) * 1995-10-24 1997-05-06 Kawasaki Heavy Ind Ltd Production of casting chip briquette
JP2000273558A (en) * 1999-03-19 2000-10-03 Sumitomo Metal Mining Co Ltd Method for concentrating gallium component from precipitate containing gallium comound, abrasive grain and cutting oil
JP2001232234A (en) * 2000-02-25 2001-08-28 Sumitomo Metal Mining Co Ltd Method for concentrating gallium compound from precipitate containing gallium compound, abrasive grain, and cutting oil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101539431B1 (en) * 2014-04-01 2015-07-27 주식회사 엔코 A recovery method of gallium from the mo-cvd wastes
CN113896238A (en) * 2021-09-24 2022-01-07 威科赛乐微电子股份有限公司 Method for separating and recovering gallium arsenide in mortar

Also Published As

Publication number Publication date
JP5344376B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP6612506B2 (en) Disposal of used lithium ion batteries
JP6998241B2 (en) Lithium recovery method
CA2925921C (en) Deriving high value products from waste red mud
TWI388670B (en) Separation of rhodium with platinum and / or palladium
JP5151072B2 (en) Method for recovering metal constituting electrode from lithium battery
US8383070B2 (en) Method for recovering rhenium and other metals from rhenium-bearing materials
WO2006035630A1 (en) System and method for treating dust in gas extracted from cement kiln combustion gas
KR20050053669A (en) Method for clarifying soil
JP3576550B2 (en) Recovery of metal valuables from process residues
JP2007231382A (en) Method for recovering rare earth element
JP5344376B2 (en) Gallium recovery method
JP2011184764A (en) Method for treating waste catalyst
CA2899053C (en) Pretreated gold ore
JP2011089176A (en) Method for refining molybdenum
Borra et al. A brief review on recovery of cerium from glass polishing waste
JP5289833B2 (en) Silicon processing method and recycling method for electronic parts
CA2648491C (en) Precious metal recovery from solution
AU2015234654B2 (en) Method for pre-treating gold ore
US5972073A (en) Recovery of the components of group III-V material aqueous wastes
JP7243749B2 (en) Valuable metal recovery method and recovery device
AU2015234654A1 (en) Method for pre-treating gold ore
WO2022176712A1 (en) Li recovery method and recovery apparatus
JP3967736B2 (en) Separation of In and Sn from scrap
JP3436176B2 (en) Method for concentrating gallium from sediment containing gallium compound, abrasive grains and cutting oil
JP3539200B2 (en) Method for concentrating gallium from sediment containing gallium compound, abrasive grains and cutting oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130722

R150 Certificate of patent or registration of utility model

Ref document number: 5344376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130804

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250