JP2011074443A - Steel plate superior in strain-aging resistance with low yield ratio, high strength and high uniform elongation, and manufacturing method therefor - Google Patents

Steel plate superior in strain-aging resistance with low yield ratio, high strength and high uniform elongation, and manufacturing method therefor Download PDF

Info

Publication number
JP2011074443A
JP2011074443A JP2009226705A JP2009226705A JP2011074443A JP 2011074443 A JP2011074443 A JP 2011074443A JP 2009226705 A JP2009226705 A JP 2009226705A JP 2009226705 A JP2009226705 A JP 2009226705A JP 2011074443 A JP2011074443 A JP 2011074443A
Authority
JP
Japan
Prior art keywords
less
temperature
yield ratio
uniform elongation
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009226705A
Other languages
Japanese (ja)
Other versions
JP5532800B2 (en
Inventor
Junji Shimamura
純二 嶋村
Nobuyuki Ishikawa
信行 石川
Nobuo Shikauchi
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009226705A priority Critical patent/JP5532800B2/en
Publication of JP2011074443A publication Critical patent/JP2011074443A/en
Application granted granted Critical
Publication of JP5532800B2 publication Critical patent/JP5532800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel plate which has such superior strain-aging resistance as to be an API 5L X70 grade or lower and has a low yield ratio, high strength and high uniform elongation, and to provide a manufacturing method therefor. <P>SOLUTION: The steel plate superior in strain-aging resistance with the low yield ratio, high strength and high uniform elongation has a component composition including, by mass%, 0.03-0.12% C, 0.01-1.0% Si, 1.2-3.0% Mn, at most 0.015% P, at most 0.005% S, at most 0.08% Al, 0.005-0.05% Nb, 0.10-1.0% Cr, 0.005-0.025% Ti, at most 0.010% N, at most 0.005% O, and the balance Fe with unavoidable impurities. The metal structure is formed of a three-phase structure that includes bainite, polygonal ferrite and island-shaped martensite, in which the island-shaped martensite shall have an area fraction of 3-20% and a circle equivalent diameter of at most 3.0 μm, the polygonal ferrite shall have the area fraction of 10-50% and the circle equivalent diameter of at most 20 μm, and the balance shall be bainite. The steel plate also has the uniform elongation of at most 7% and the yield ratio of at most 85%, before and after the strain-aging treatment at a temperature of at most 250°C for at most 60 min. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、主にラインパイプ分野での使用に好適な、低降伏比高強度高一様伸び鋼板とその製造方法に関するものであり、特に、耐歪時効特性に優れた低降伏比高強度高一様伸び鋼板とその製造方法に関する。   The present invention relates to a low yield ratio, high strength and high uniform stretch steel sheet suitable for use mainly in the field of line pipes and a method for producing the same, and in particular, a low yield ratio, high strength and high strength excellent in strain aging resistance. The present invention relates to a uniformly stretched steel sheet and a manufacturing method thereof.

近年、溶接構造用鋼材においては、高強度、高靱性に加え、耐震性の観点から低降伏比化、高一様伸びが要求されている。たとえば、大変形を受ける可能性がある地震地帯等へ適用されるラインパイプ用鋼材には、低降伏比化に加え高一様伸び性能が要求されることがある。一般に、鋼材の金属組織を、軟質相であるフェライトの中に、ベイナイトやマルテンサイトなどの硬質相が適度に分散した組織にすることで、鋼材の低降伏比化、高一様伸び化が可能であることが知られている。   In recent years, steel materials for welded structures are required to have a low yield ratio and high uniform elongation from the viewpoint of earthquake resistance in addition to high strength and high toughness. For example, a steel product for a line pipe applied to an earthquake zone or the like that may be subjected to large deformation may require a high uniform elongation performance in addition to a low yield ratio. In general, by making the metal structure of steel a structure in which hard phases such as bainite and martensite are moderately dispersed in ferrite, which is a soft phase, it is possible to achieve low yield ratio and high uniform elongation of steel. It is known that

上記のような軟質相の中に硬質相が適度に分散した組織を得る製造方法として、特許文献1には、焼入れ(Q)と焼戻し(T)の中間に、フェライトとオーステナイトの2相域からの焼入れ(Q’)を施す熱処理方法が開示されている。   As a production method for obtaining a structure in which a hard phase is appropriately dispersed in the soft phase as described above, Patent Document 1 discloses that a phase between ferrite and austenite is provided between quenching (Q) and tempering (T). A heat treatment method for quenching (Q ′) is disclosed.

特許文献1に開示されている様な複雑な熱処理を行わずに低降伏比化を達成する技術として、特許文献2には、Ar変態点以上で鋼材の圧延を終了し、その後の加速冷却速度と冷却停止温度を制御することで、針状フェライトとマルテンサイトの2相組織とし、低降伏比化を達成する方法が開示されている。 As a technique for achieving a low yield ratio without performing a complicated heat treatment as disclosed in Patent Document 1, Patent Document 2 discloses that rolling of a steel material is completed at an Ar 3 transformation point or higher, and then accelerated cooling is performed. A method is disclosed in which a two-phase structure of acicular ferrite and martensite is achieved by controlling the speed and cooling stop temperature to achieve a low yield ratio.

さらには、特許文献3には、鋼材の合金元素の添加量を大きく増加させることなく、低降伏比ならびに優れた溶接熱影響部靭性を達成する技術として、Ti/NやCa−O−Sバランスを制御しながら、フェライト、ベイナイト、島状マルテンサイトの3相組織とする方法が開示されている。   Furthermore, Patent Document 3 discloses Ti / N and Ca—O—S balance as a technique for achieving a low yield ratio and excellent weld heat affected zone toughness without greatly increasing the amount of alloying elements added to steel. A method is disclosed in which a three-phase structure of ferrite, bainite, and island martensite is formed while controlling the above.

一方、特許文献4には、Cu、Ni、Moなどの合金元素の添加により、低降伏比かつ高一様伸び性能を達成する技術が開示されている。   On the other hand, Patent Document 4 discloses a technique for achieving a low yield ratio and a high uniform elongation performance by adding an alloy element such as Cu, Ni, and Mo.

一方、ラインパイプに用いられるUOE鋼管やERW鋼管のような溶接鋼管は、鋼板を冷間で管状へ成形して、突き合わせ部を溶接後、通常防食等の観点から鋼管外面にコーティング処理が施されるため、製管時の加工歪みとコーティング処理時の加熱により歪時効が生じ、降伏応力が上昇し、鋼管における降伏比は鋼板における降伏比よりも大きくなってしまうという問題がある。これに対しては、たとえば、特許文献5および6には、TiとMoを含有する複合炭化物の微細析出物、あるいは、Ti、Nb、Vのいずれか2種以上を含有する複合炭化物の微細析出物を活用した、耐歪時効特性に優れた低降伏比高強度高靱性鋼管およびその製造方法が開示されている。   On the other hand, welded steel pipes such as UOE steel pipes and ERW steel pipes used for line pipes are formed by cold forming the steel sheet into a tubular shape and welding the butt, and then the outer surface of the steel pipe is usually coated from the standpoint of corrosion protection. For this reason, there is a problem that strain aging occurs due to processing strain during pipe making and heating during coating treatment, yield stress increases, and the yield ratio in the steel pipe becomes larger than the yield ratio in the steel plate. On the other hand, for example, in Patent Documents 5 and 6, fine precipitation of composite carbide containing Ti and Mo, or fine precipitation of composite carbide containing any two or more of Ti, Nb, and V A low-yield-ratio, high-strength, high-toughness steel pipe excellent in strain aging characteristics using a material and a method for producing the same are disclosed.

特開昭55−97425号公報JP-A-55-97425 特開平1−176027号公報Japanese Patent Laid-Open No. 1-176027 特許4066905号公報Japanese Patent No. 40669905 特開2008−248328号公報JP 2008-248328 A 特開2005−60839号公報JP 2005-60839 A 特開2005−60840号公報Japanese Patent Laid-Open No. 2005-60840

しかしながら、特許文献1に記載の熱処理方法では、二相域焼入れ温度を適当に選択することにより、低降伏比化が達成可能であるが、熱処理工程数が増加するため、生産性の低下、製造コストの増加を招くという問題がある。   However, in the heat treatment method described in Patent Document 1, a low yield ratio can be achieved by appropriately selecting the quenching temperature in the two-phase region, but since the number of heat treatment steps increases, the productivity decreases, the manufacturing There is a problem that the cost increases.

また、特許文献2に記載の技術では、その実施例が示すように、引張強さで490N/mm(50kg/mm )以上の鋼材とするために、鋼材の炭素含有量を高めるか、あるいはその他の合金元素の添加量を増やした成分組成とする必要があるため、素材コストの上昇を招くだけでなく、溶接熱影響部靭性の劣化が問題となる。 Further, if the technique described in Patent Document 2, as the example, in order to 490N / mm 2 (50kg / mm 2) or more steel in tensile strength, increasing the carbon content of the steel, Or since it is necessary to set it as the component composition which increased the additional amount of other alloy elements, not only the cost of a raw material will be raised, but the deterioration of toughness of a welding heat affected zone becomes a problem.

さらに、特許文献3記載の技術では、パイプラインなどに用いられる場合に要求される一様伸び性能についてはミクロ組織の影響など必ずしも明確となっていなかった。   Furthermore, in the technique described in Patent Document 3, the uniform elongation performance required when used in a pipeline or the like has not necessarily been clarified such as the influence of the microstructure.

特許文献4に記載の技術では、合金元素の添加量を増やした成分組成とする必要があるため、素材コストの上昇を招くだけでなく、溶接熱影響部靭性の劣化が問題となる。   In the technique described in Patent Document 4, since it is necessary to obtain a component composition in which the additive amount of the alloy element is increased, not only the material cost is increased, but also the deterioration of the weld heat affected zone toughness becomes a problem.

特許文献5または6に記載の技術では、耐歪時効特性は改善されたものの、パイプラインなどに用いられる場合に要求される一様伸び性能との両立については未解決である。   In the technique described in Patent Document 5 or 6, although the strain aging resistance is improved, the compatibility with the uniform elongation performance required when used in a pipeline or the like is not yet solved.

このように従来の技術では、生産性を低下させたり、また素材コストを上昇させることなく、優れた溶接熱影響部靭性を備えた高一様伸びを有する低降伏比高強度高靭性鋼板を製造することは困難であった。   Thus, the conventional technology produces low yield ratio, high strength, high toughness steel sheets with high uniform elongation with excellent weld heat affected zone toughness without reducing productivity or raising material costs. It was difficult to do.

そこで、本発明は、このような従来技術の課題を解決し、高製造効率、低コストで製造可能な、API 5L X70グレード以下の耐歪時効特性に優れた低降伏比高強度高一様伸び鋼板及びその製造方法を提供することを目的とする。   Therefore, the present invention solves such problems of the prior art, and can be manufactured at high manufacturing efficiency and low cost, and has a low yield ratio, high strength, and high uniform elongation excellent in strain aging resistance below API 5L X70 grade. It aims at providing a steel plate and its manufacturing method.

本発明者らは上記課題を解決するために、鋼板の製造方法、特に制御圧延及び制御圧延後の加速冷却とその後の再加熱という製造プロセスについて鋭意検討した結果、以下の知見を得た。   In order to solve the above-mentioned problems, the present inventors diligently studied a manufacturing process of a steel sheet, particularly a manufacturing process of controlled rolling and accelerated cooling after controlled rolling, and subsequent reheating, and as a result, obtained the following knowledge.

(a)加速冷却過程でベイナイト変態途中、すなわち未変態オーステナイトが存在する温度領域で冷却を停止し、その後ベイナイト変態終了温度(以下Bf点と呼ぶ)より高い温度から再加熱を行うことにより、鋼板の金属組織を、ベイナイト相中に硬質な島状マルテンサイト(以下MAと呼ぶ)が均一に生成した2相組織とし、低降伏比化が可能である。   (A) In the accelerated cooling process, during the bainite transformation, cooling is stopped in a temperature region where untransformed austenite exists, and then reheating is performed from a temperature higher than the bainite transformation finish temperature (hereinafter referred to as the Bf point). The metal structure is a two-phase structure in which hard island martensite (hereinafter referred to as MA) is uniformly formed in the bainite phase, and a low yield ratio can be achieved.

MAは、たとえば3%ナイタール溶液(nital:硝酸アルコール溶液)でエッチング後、電解エッチングして観察すると、容易に識別可能である。走査型電子顕微鏡(SEM)で鋼板のミクロ組織を観察すると、MAは白く浮き立った部分として観察される。   MA can be easily identified by, for example, etching with a 3% nital solution (nital: nitrate alcohol solution), followed by electrolytic etching and observing. When the microstructure of the steel sheet is observed with a scanning electron microscope (SEM), MA is observed as a white floating part.

(b)Mn、Si、Crなどを適量添加することにより、未変態オーステナイトが安定化するため、Cu、Ni、Mo等の高価な合金元素を多量添加しなくても硬質なMAの生成が可能である。   (B) Untransformed austenite is stabilized by adding appropriate amounts of Mn, Si, Cr, etc., so that it is possible to produce hard MA without adding a large amount of expensive alloy elements such as Cu, Ni, Mo, etc. It is.

(c)オーステナイト未再結晶温度域の900℃以下で50%以上の累積圧下を加えることによりMAを均一微細分散させることができ、低降伏比を維持しながら、一様伸びを向上させることが可能である。   (C) By applying a cumulative reduction of 50% or more at 900 ° C. or less in the austenite non-recrystallization temperature range, MA can be uniformly finely dispersed, and the uniform elongation can be improved while maintaining a low yield ratio. Is possible.

(d)(Ar−100℃)以上Ar温度以下の温度域で加速冷却を開始することにより、面積分率で10〜50%のポリゴナルフェライトを生成させた後、上記(a)の再加熱処理を実施することで、Cの拡散量を増加させ、硬質のMAの生成を促進させることが可能であり、250℃で60分といった長時間の歪時効後の一様伸びの向上や低降伏比の維持が従来鋼と比較して優位となる。 (D) By starting accelerated cooling in a temperature range of (Ar 3 −100 ° C.) to Ar 3 temperature, 10 to 50% polygonal ferrite is generated in area fraction, and then the above (a) By performing the reheating treatment, it is possible to increase the amount of C diffusion and promote the formation of hard MA, and to improve the uniform elongation after prolonged strain aging such as 60 minutes at 250 ° C. Maintaining a low yield ratio is superior to conventional steel.

本発明は上記の知見に更に検討を加えてなされたもので、すなわち、本発明の要旨は、以下の通りである。   The present invention has been made by further studying the above findings. That is, the gist of the present invention is as follows.

第一の発明は、成分組成が、質量%で、C:0.03〜0.12%、Si:0.01〜1.0%、Mn:1.2〜3.0%、P:0.015%以下、S:0.005%以下、Al:0.08%以下、Nb:0.005〜0.05%、Cr:0.10〜1.0%、Ti:0.005〜0.025%、N:0.010%以下、O:0.005%以下を含有し、残部Fe及び不可避的不純物からなり、金属組織がベイナイトとポリゴナルフェライトと島状マルテンサイトとの3相組織からなり、前記島状マルテンサイトの面積分率が3〜20%かつ円相当径が3.0μm以下、前記ポリゴナルフェライトの面積分率が10〜50%かつ円相当径が20μm以下、残部をベイナイトであり、一様伸びが7%以上、降伏比が85%以下であり、さらに250℃以下の温度で60分以下の歪時効処理を施した後においても一様伸びが7%以上、降伏比が85%以下であることを特徴とする耐歪時効特性に優れた低降伏比高強度高一様伸び鋼板である。   In the first invention, the component composition is mass%, C: 0.03 to 0.12%, Si: 0.01 to 1.0%, Mn: 1.2 to 3.0%, P: 0 0.015% or less, S: 0.005% or less, Al: 0.08% or less, Nb: 0.005 to 0.05%, Cr: 0.10 to 1.0%, Ti: 0.005 to 0 0.025%, N: 0.010% or less, O: 0.005% or less, the balance being Fe and inevitable impurities, the metal structure is a three-phase structure of bainite, polygonal ferrite, and island martensite The island-shaped martensite has an area fraction of 3 to 20% and an equivalent circle diameter of 3.0 μm or less, an area fraction of the polygonal ferrite of 10 to 50% and an equivalent circle diameter of 20 μm or less, and the remainder Bainite, having a uniform elongation of 7% or more, a yield ratio of 85% or less, and 25 Low yield ratio with excellent strain aging characteristics, characterized by a uniform elongation of 7% or more and a yield ratio of 85% or less even after a strain aging treatment at a temperature of 0 ° C. or less for 60 minutes or less. It is a high-strength, high-uniform elongation steel plate.

第二の発明は、さらに、質量%で、Cu:0.5%以下、Ni:1%以下、Mo:0.5%以下、V:0.1%以下、Ca:0.0005〜0.003%、B:0.005%以下の中から選ばれる一種または二種以上を含有することを特徴とする第一の発明に記載の耐歪時効特性に優れた低降伏比高強度高一様伸び鋼板である。   In the second invention, Cu is 0.5% or less, Ni is 1% or less, Mo is 0.5% or less, V is 0.1% or less, Ca is 0.0005 to 0. 5% by mass. 00%, B: One or more selected from 0.005% or less, low yield ratio, high strength, and high uniformity excellent in strain aging resistance according to the first invention It is a stretched steel sheet.

第三の発明は、第一または第二の発明のいずれかに記載の成分組成を有する鋼を、1000〜1300℃の温度に加熱し、900℃以下での累積圧下率が50%以上となるようにAr温度以上の圧延終了温度で熱間圧延した後、(Ar−100℃)以上Ar温度以下の温度域で加速冷却を開始し、5℃/s以上の冷却速度で500℃〜680℃まで加速冷却を行い、その後直ちに2.0℃/s以上の昇温速度で550〜750℃まで再加熱を行うことを特徴とする耐歪時効特性に優れた低降伏比高強度高一様伸び鋼板の製造方法である。 3rd invention heats the steel which has the component composition in any one of 1st or 2nd invention to the temperature of 1000-1300 degreeC, and the cumulative reduction rate in 900 degrees C or less becomes 50% or more. after hot-rolled at Ar 3 temperature or more rolling end temperature as, (Ar 3 -100 ° C.) or higher Ar 3 starts accelerated cooling at a temperature below the temperature range, 500 ° C. at 5 ° C. / s or more cooling rate Accelerated cooling to ˜680 ° C., and then immediately reheating to 550 to 750 ° C. at a heating rate of 2.0 ° C./s or more. Low yield ratio and high strength and high strength It is a manufacturing method of a uniformly stretched steel sheet.

本発明によれば、耐歪時効特性を備えた低降伏比高強度高一様伸び鋼板を、溶接熱影響部靭性を劣化させたり、多量の合金元素を添加することなく、低コストで製造することができる。このため主にラインパイプに使用する鋼板を、安価で大量に安定して製造することができ、生産性および経済性を著しく高めることができ産業上極めて有用である。   According to the present invention, a low yield ratio high strength high uniform elongation steel sheet with strain aging resistance is produced at low cost without degrading the weld heat affected zone toughness or adding a large amount of alloying elements. be able to. For this reason, the steel plate mainly used for a line pipe can be stably manufactured in a large amount at a low cost, and the productivity and economy can be remarkably improved, which is extremely useful industrially.

以下に本発明の各構成要件の限定理由について説明する。   The reasons for limiting the respective constituent requirements of the present invention will be described below.

1.成分組成について
はじめに、本発明の鋼の成分組成を規定した理由を説明する。なお、成分%は、すべて質量%を意味する。
1. About component composition First, the reason which prescribed | regulated the component composition of the steel of this invention is demonstrated. In addition, all component% means the mass%.

C:0.03〜0.12%
Cは炭化物として析出強化に寄与し、且つMA生成に重要な元素であるが、0.03%未満の添加ではMAの生成に不十分であり、また十分な強度が確保できない。0.12%を超える添加は母材靭性および溶接熱影響部(HAZ)靭性を劣化させるため、C量は0.03〜0.12%の範囲とする。好ましくは0.05〜0.08%の範囲である。
C: 0.03 to 0.12%
C contributes to precipitation strengthening as a carbide and is an important element for MA formation. However, addition of less than 0.03% is insufficient for formation of MA, and sufficient strength cannot be ensured. Since addition exceeding 0.12% deteriorates the base metal toughness and the weld heat affected zone (HAZ) toughness, the C content is set in the range of 0.03 to 0.12%. Preferably it is 0.05 to 0.08% of range.

Si:0.01〜1.0%
Siは脱酸のため添加するが、0.01%未満の添加では脱酸効果が十分でなく、1.0%を超えて添加すると、靭性や溶接性を劣化させるため、Si量は0.01〜1.0%の範囲とする。好ましくは0.01〜0.3%の範囲である。
Si: 0.01 to 1.0%
Si is added for deoxidation, but if it is added less than 0.01%, the deoxidation effect is not sufficient, and if added over 1.0%, the toughness and weldability are deteriorated, so the amount of Si is 0.1. The range is 01 to 1.0%. Preferably it is 0.01 to 0.3% of range.

Mn:1.2〜3.0%
Mnは強度、靭性向上、更に焼入性を向上しMA生成を促すために添加するが、1.2%未満の添加ではその効果が十分でなく、3.0%を超えて添加すると、靱性ならびに溶接性が劣化するため、Mn量は1.2〜3.0%の範囲とする。成分や製造条件の変動によらず、安定してMAを生成するためには、1.5%以上の添加が望ましい。さらに好適には、1.5〜1.8%である。
Mn: 1.2-3.0%
Mn is added to improve strength and toughness, further improve hardenability and promote MA formation. However, if less than 1.2%, the effect is not sufficient, and if added over 3.0%, toughness is added. In addition, since the weldability deteriorates, the amount of Mn is set in the range of 1.2 to 3.0%. Addition of 1.5% or more is desirable in order to stably produce MA regardless of changes in components and production conditions. More preferably, it is 1.5 to 1.8%.

P:0.015%以下、S:0.005%以下
本発明でP、Sは不可避的不純物であり、その量の上限を規定する。Pは、含有量が多いと中央偏析が著しく、母材靭性が劣化するため、P量は0.015%以下とする。Sは、含有量が多いとMnSの生成量が著しく増加し、母材の靭性が劣化するため、S量は0.005%以下とする。
P: 0.015% or less, S: 0.005% or less In the present invention, P and S are unavoidable impurities and define the upper limit of the amount thereof. When the P content is large, central segregation is remarkable and the base material toughness deteriorates, so the P content is 0.015% or less. If the content of S is large, the amount of MnS produced increases remarkably and the toughness of the base material deteriorates, so the amount of S is made 0.005% or less.

Al:0.08%以下
Alは脱酸剤として添加されるが、0.08%を超えて添加すると鋼の清浄度が低下し、靱性が劣化するため、Al量は0.08%以下とする。好ましくは、0.01〜0.08%の範囲である。
Al: 0.08% or less Al is added as a deoxidizing agent, but if added over 0.08%, the cleanliness of the steel decreases and the toughness deteriorates, so the Al content is 0.08% or less. To do. Preferably, it is 0.01 to 0.08% of range.

Nb:0.005〜0.05%
Nbは組織の微細粒化により靭性を向上させ、さらに固溶Nbの焼入性向上により強度上昇に寄与する元素である。しかし、0.005%未満の添加では効果がなく、0.05%を超えて添加すると溶接熱影響部の靭性が劣化するため、Nb量は0.005〜0.05%の範囲とする。
Nb: 0.005 to 0.05%
Nb is an element that improves toughness by refining the structure and contributes to an increase in strength by improving the hardenability of solid solution Nb. However, the addition of less than 0.005% is ineffective, and if added over 0.05%, the toughness of the weld heat affected zone deteriorates, so the Nb content is in the range of 0.005 to 0.05%.

Cr:0.10〜1.0%
CrはMnと同様に焼入性を向上しMA生成を促すために添加するが、0.10%未満ではその効果が十分でなく、1.0%を超えると靱性および溶接性が劣化するため、Cr量は0.10〜1.0%の範囲とする。なお、溶接熱影響部靭性をさらに向上させる観点からは、Cr量は0.10%以上0.5%未満とすることが好ましい。
Cr: 0.10 to 1.0%
Cr is added to improve hardenability and promote the formation of MA in the same way as Mn. However, if it is less than 0.10%, its effect is not sufficient, and if it exceeds 1.0%, toughness and weldability deteriorate. The Cr content is in the range of 0.10 to 1.0%. From the viewpoint of further improving the weld heat affected zone toughness, the Cr content is preferably 0.10% or more and less than 0.5%.

Ti:0.005〜0.025%
TiはTiNのピニング効果により、スラブ加熱時のオーステナイト粗大化を抑制し、母材靭性を向上させる重要な元素である。その効果は、0.005%以上の添加で発現する。 しかし、0.025%を超える添加は溶接熱影響部靭性の劣化を招くため、Ti量は0.005〜0.025%の範囲とする。溶接熱影響部靭性の観点からは、好ましくは、0.005%以上0.02%未満の範囲である。
Ti: 0.005 to 0.025%
Ti is an important element that suppresses austenite coarsening during slab heating and improves the base material toughness due to the pinning effect of TiN. The effect is manifested by adding 0.005% or more. However, addition exceeding 0.025% leads to deterioration of the weld heat-affected zone toughness, so the Ti content is in the range of 0.005 to 0.025%. From the viewpoint of weld heat affected zone toughness, the range is preferably 0.005% or more and less than 0.02%.

N:0.010%以下
Nは不可避的不純物として扱うが、N量が0.010%を超えると、溶接熱影響部靭性が劣化するため、N量は0.010%以下とする。好ましくは0.007%以下である。
N: 0.010% or less N is treated as an inevitable impurity, but if the N content exceeds 0.010%, the weld heat affected zone toughness deteriorates, so the N content is 0.010% or less. Preferably it is 0.007% or less.

O:0.005%以下
本発明でOは不可避的不純物であり、その量の上限を規定する。Oは粗大で靱性に悪影響を及ぼす介在物の生成の原因となるため、O量は0.005%以下とする。
O: 0.005% or less In the present invention, O is an unavoidable impurity and defines the upper limit of the amount thereof. Since O is coarse and causes inclusions that adversely affect toughness, the amount of O is set to 0.005% or less.

以上が本発明の基本成分であるが、鋼板の強度・靱性をさらに改善し、且つ焼入性を向上させMAの生成を促す目的で、以下に示すCu、Ni、Mo、V、Ca、Bの1種又は2種以上を含有してもよい。   The above are the basic components of the present invention. For the purpose of further improving the strength and toughness of the steel sheet and improving the hardenability and promoting the formation of MA, the following Cu, Ni, Mo, V, Ca, B 1 type (s) or 2 or more types may be contained.

Cu:0.5%以下
Cuは、添加しなくてもよいが、鋼の焼入性向上に寄与するので添加してもよい。しかし、0.5%以上の添加を行うと、靱性劣化が生じるため、Cuを添加する場合は、Cu量は0.5%以下とすることが好ましい。
Cu: 0.5% or less Cu may not be added, but it may be added because it contributes to improving the hardenability of the steel. However, if 0.5% or more is added, toughness deterioration occurs. Therefore, when Cu is added, the amount of Cu is preferably 0.5% or less.

Ni:1%以下
Niは、添加しなくてもよいが、鋼の焼入性向上に寄与し、特に、多量に添加しても靱性劣化を生じないため、強靱化に有効であることから、添加してもよい。しかし、Niは高価な元素であるため、Niを添加する場合は、Ni量は1%以下とすることが好ましい。
Ni: 1% or less Ni does not need to be added, but contributes to improving the hardenability of the steel, and in particular, since it does not cause toughness deterioration even if added in a large amount, it is effective for toughening, It may be added. However, since Ni is an expensive element, when adding Ni, the amount of Ni is preferably 1% or less.

Mo:0.5%以下
Moは、添加しなくてもよいが、焼入性を向上させる元素であり、MA生成やベイナイト相を強化することで強度上昇に寄与する元素であるので添加してもよい。しかし、0.5%を超えて添加すると、溶接熱影響部靭性の劣化を招くことから、添加する場合には、Mo量は0.5%以下とすることが好ましく、溶接熱影響部靭性をさらに向上させる観点からMo量は0.3%以下とすることがさらに好ましい。
Mo: 0.5% or less Mo does not need to be added, but is an element that improves hardenability, and is an element that contributes to strength increase by strengthening MA generation and bainite phase. Also good. However, if added over 0.5%, the weld heat-affected zone toughness deteriorates, so when added, the Mo amount is preferably 0.5% or less, and the weld heat-affected zone toughness is reduced. From the viewpoint of further improvement, the Mo amount is more preferably 0.3% or less.

V:0.1%以下
Vは、添加しなくてもよいが、焼入性を高め、強度上昇に寄与する元素であるので添加してもよい。その効果を得るためには、0.005%以上添加することが好ましいが、0.1%を超えて添加すると溶接熱影響部の靭性が劣化するため、添加する場合は、V量は0.1%以下とすることが好ましい。
V: 0.1% or less V may not be added, but V may be added because it is an element that improves hardenability and contributes to an increase in strength. In order to obtain the effect, it is preferable to add 0.005% or more. However, if added over 0.1%, the toughness of the weld heat affected zone deteriorates. It is preferable to make it 1% or less.

Ca:0.0005〜0.003%
Caは硫化物系介在物の形態を制御して靭性を改善するので添加してもよい。0.0005%以上でその効果が現れ、0.003%を超えると効果が飽和し、逆に清浄度を低下させて靭性を劣化させるため、添加する場合にはCa量は0.0005〜0.003%の範囲とすることが好ましい。
Ca: 0.0005 to 0.003%
Ca may be added because it improves the toughness by controlling the form of sulfide inclusions. The effect appears at 0.0005% or more, and when it exceeds 0.003%, the effect is saturated, and conversely, the cleanliness is lowered and the toughness is deteriorated. It is preferable to set it in the range of 0.003%.

B:0.005%以下
Bは強度上昇、溶接熱影響部靭性改善に寄与する元素であるので添加してもよい。その効果を得るためには、0.0005%以上添加することが好ましいが、0.005%を超えて添加すると溶接性を劣化させるため、添加する場合は、B量は0.005%以下とすることが好ましい。
B: 0.005% or less B may be added because it is an element that contributes to strength increase and weld heat affected zone toughness improvement. In order to obtain the effect, it is preferable to add 0.0005% or more. However, if added over 0.005%, the weldability is deteriorated, so when added, the amount of B is 0.005% or less. It is preferable to do.

なお、Ti量とN量の比であるTi/Nを最適化することで、TiN粒子により溶接熱影響部のオーステナイト粗大化を抑制することでき、良好な溶接熱影響部靭性を得ることが出来るため、Ti/Nは2〜8の範囲とすることが好ましく、2〜5の範囲とすることがさらに好ましい。   In addition, by optimizing Ti / N, which is the ratio of Ti amount and N amount, austenite coarsening of the weld heat affected zone can be suppressed by TiN particles, and good weld heat affected zone toughness can be obtained. Therefore, Ti / N is preferably in the range of 2 to 8, and more preferably in the range of 2 to 5.

本発明の鋼板における上記成分以外の残部は、Feおよび不可避的不純物である。ただし、本発明の作用効果を害さない範囲であれば、上記以外の元素の含有を拒むものではない。たとえば、靱性改善の観点から、Mg:0.02%以下、および/またはREM(希土類金属):0.02%以下を含むことができる。   The remainder other than the said component in the steel plate of this invention is Fe and an unavoidable impurity. However, the content of elements other than those described above is not rejected as long as the effects of the present invention are not impaired. For example, from the viewpoint of improving toughness, Mg: 0.02% or less and / or REM (rare earth metal): 0.02% or less can be included.

次に、本発明の金属組織について説明する。   Next, the metal structure of the present invention will be described.

2.金属組織について
本発明では、ベイナイトに加えて面積分率が3〜20%かつ円相当径3.0μm以下の島状マルテンサイト(MA)と面積分率が10〜50%かつ円相当径20μm以下ポリゴナルフェライトを均一に含む金属組織とする。
2. Regarding the metal structure In the present invention, in addition to bainite, island-shaped martensite (MA) having an area fraction of 3 to 20% and an equivalent circle diameter of 3.0 μm or less and an area fraction of 10 to 50% and an equivalent circle diameter of 20 μm or less are used. A metal structure uniformly containing polygonal ferrite is used.

ベイナイト中にMAおよびポリゴナルフェライトがそれぞれ均一に生成した3相組織、すなわち、軟質な焼戻しベイナイトおよびポリゴナルフェライトに、硬質なMAを含んだ複合組織とすることで、鋼板の低降伏比化、高一様伸び化を達成している。   A three-phase structure in which MA and polygonal ferrite are uniformly formed in bainite, that is, a composite structure containing hard MA in soft tempered bainite and polygonal ferrite, thereby reducing the yield ratio of the steel sheet. High uniform elongation is achieved.

このような、軟質の焼戻しベイナイトおよびポリゴナルフェライトと硬質のMAとの複相組織では、軟質相が変形を担うため、7%以上の高一様伸び化が達成可能である。   In such a multiphase structure of soft tempered bainite and polygonal ferrite and hard MA, since the soft phase bears deformation, a highly uniform elongation of 7% or more can be achieved.

組織中のMAの割合は、MAの面積分率(圧延方向や板幅方向等の鋼板の任意の断面におけるMAの面積の割合から算出)で、3〜20%とする。MAの面積分率が3%未満では低降伏比化を達成するには不十分な場合があり、また20%を超えると母材靱性を劣化させる場合がある。   The ratio of MA in the structure is an area fraction of MA (calculated from the ratio of the area of MA in an arbitrary cross section of the steel sheet in the rolling direction and the sheet width direction), and is 3 to 20%. If the area fraction of MA is less than 3%, it may be insufficient to achieve a low yield ratio, and if it exceeds 20%, the base material toughness may be deteriorated.

また、低降伏比化、高一様伸び化および母材靭性の観点から、MAの面積分率は5〜12%とすることが望ましい。なお、MAの面積分率は、例えばSEM(走査型電子顕微鏡)観察により得られた少なくとも4視野以上のミクロ組織写真を画像処理することによってMAの占める面積率から算出することができる。   Further, from the viewpoint of low yield ratio, high uniform elongation, and base metal toughness, the area fraction of MA is desirably 5 to 12%. Note that the area fraction of MA can be calculated from the area ratio occupied by MA by performing image processing on at least four microscopic microstructure photographs obtained by SEM (scanning electron microscope) observation, for example.

また、母材の靭性確保及び一様伸び向上の観点からMAの円相当径は3.0μm以下とする。なお、MAの円相当径は、SEM観察により得られたミクロ組織を画像処理し、個々のMAと同じ面積の円の直径を個々のMAについて求め、それらの直径の平均値として求めることができる。   Further, from the viewpoint of ensuring the toughness of the base material and improving uniform elongation, the equivalent circle diameter of MA is set to 3.0 μm or less. Note that the equivalent circle diameter of MA can be obtained as an average value of the diameters obtained by subjecting the microstructure obtained by SEM observation to image processing, obtaining the diameter of a circle having the same area as each MA, and obtaining the diameter of each MA. .

一方、組織中のポリゴナルフェライトの割合は、ポリゴナルフェライトの面積分率(圧延方向や板幅方向等の鋼板の任意の断面におけるポリゴナルフェライトの面積の割合から算出)で、10〜50%とする。ポリゴナルフェライトの面積分率が10%未満では低降伏比化を達成するには不十分な場合があり、また50%を超えると母材強度を劣化させる場合がある。   On the other hand, the ratio of polygonal ferrite in the structure is the area fraction of polygonal ferrite (calculated from the ratio of the area of polygonal ferrite in an arbitrary cross section of the steel sheet in the rolling direction and the sheet width direction), and is 10 to 50%. And If the area fraction of polygonal ferrite is less than 10%, it may be insufficient to achieve a low yield ratio, and if it exceeds 50%, the strength of the base material may be deteriorated.

また、低降伏比化、高一様伸び化および母材強度の観点から、ポリゴナルフェライトの面積分率は10〜30%とすることが望ましい。なお、ポリゴナルフェライトの面積分率は、例えばSEM観察により得られた少なくとも4視野以上のミクロ組織写真を画像処理することによってポリゴナルフェライトの占める面積率から算出して求めることで得ることができる。   Further, from the viewpoint of low yield ratio, high uniform elongation, and base metal strength, the area fraction of polygonal ferrite is desirably 10 to 30%. The area fraction of polygonal ferrite can be obtained, for example, by calculating from the area ratio occupied by polygonal ferrite by image processing a microstructure photograph of at least four visual fields obtained by SEM observation. .

また、母材の靭性確保及び一様伸び向上の観点からポリゴナルフェライトの円相当径は20μm以下とする。なお、ポリゴナルフェライトの平均粒径は、SEM観察により得られたミクロ組織を画像処理し、個々のポリゴナルフェライトと同じ面積の円の直径を個々のポリゴナルフェライトについて求め、それらの直径の平均値として求めることができる。   Further, from the viewpoint of securing the toughness of the base material and improving the uniform elongation, the equivalent circle diameter of polygonal ferrite is set to 20 μm or less. The average particle diameter of polygonal ferrite is obtained by image processing of the microstructure obtained by SEM observation, obtaining the diameter of a circle having the same area as each polygonal ferrite for each polygonal ferrite, and calculating the average of the diameters. It can be obtained as a value.

本発明では、Cu、Ni、Mo等の高価な合金元素を多量に添加しなくてもMAを生成させるために、Mn、Si、Crを添加し未変態オーステナイトを安定化させ、再加熱、その後の空冷中のパーライト変態やセメンタイト生成を抑制することが重要である。   In the present invention, in order to produce MA without adding a large amount of expensive alloy elements such as Cu, Ni, and Mo, Mn, Si, and Cr are added to stabilize untransformed austenite, and then reheat, It is important to suppress pearlite transformation and cementite formation during air cooling.

本発明における、MA生成のメカニズムは概略以下の通りである。詳細な製造条件は後述する。   The mechanism of MA generation in the present invention is as follows. Detailed manufacturing conditions will be described later.

スラブを加熱後、オーステナイト領域で圧延を終了し、その後(Ar−100℃)以上Ar変態温度以下の温度域から加速冷却を開始する。これにより、はじめにポリゴナルフェライトを生成させる。 After heating the slab, rolling is finished in the austenite region, and then accelerated cooling is started from a temperature range of (Ar 3 -100 ° C.) or higher and below the Ar 3 transformation temperature. Thereby, polygonal ferrite is first generated.

加速冷却をベイナイト変態途中すなわち未変態オーステナイトが存在する温度域で終了し、その後ベイナイト変態終了温度(Bf点)より高い温度から再加熱を行い、その後冷却する製造プロセスにおいて、そのミクロ組織の変化は次の通りである。   In the manufacturing process in which accelerated cooling is completed during bainite transformation, that is, in a temperature range where untransformed austenite exists, and then reheated from a temperature higher than the bainite transformation finish temperature (Bf point), and then cooled, the change in microstructure is It is as follows.

加速冷却終了時のミクロ組織はポリゴナルフェライト、ベイナイトおよび未変態オーステナイトであり、Bf点より高い温度から再加熱を行うことで未変態オーステナイトからベイナイトへの変態が生じるが、このように比較的高温で生成するベイナイト中のベイニティックフェライトでは、そのC固溶量が少ないため、Cが周囲の未変態オーステナイトへ排出される。この現象は、ポリゴナルフェライトが先に生成している場合には、一層顕著となる。   The microstructures at the end of accelerated cooling are polygonal ferrite, bainite, and untransformed austenite, and transformation from untransformed austenite to bainite occurs by reheating from a temperature higher than the Bf point. In the bainitic ferrite in the bainite produced in step C, the amount of C solid solution is small, so C is discharged into the surrounding untransformed austenite. This phenomenon becomes more prominent when polygonal ferrite has been generated first.

そのため、再加熱時のベイナイト変態の進行に伴い、未変態オーステナイト中のC量が増加する。このとき、オーステナイト安定化元素である、Mn、Si、Cr等が一定以上含有されていると、再加熱終了時でもCが濃縮した未変態オーステナイトが残存し、再加熱後の冷却でMAへと変態し、最終的にベイナイト相の中に、MAが生成した組織となる。   Therefore, as the bainite transformation proceeds during reheating, the amount of C in the untransformed austenite increases. At this time, if Mn, Si, Cr, or the like, which is an austenite stabilizing element, is contained in a certain amount or more, untransformed austenite enriched with C remains even at the end of reheating, and is cooled to MA by cooling after reheating. It transforms and finally becomes a structure in which MA is formed in the bainite phase.

本発明では、加速冷却後、未変態オーステナイトが存在する温度域から再加熱を行うことが重要であり、再加熱開始温度がBf点以下となるとベイナイト変態が完了し未変態オーステナイトが存在しなくなるため、再加熱開始はBf点より高い温度とする必要がある。   In the present invention, after accelerated cooling, it is important to perform reheating from a temperature range in which untransformed austenite exists, and when the reheating start temperature falls below the Bf point, bainite transformation is completed and untransformed austenite does not exist. The reheating start needs to be a temperature higher than the Bf point.

また、再加熱後の冷却については、MAの変態に影響を与えないため特に規定しないが、基本的に空冷とすることが好ましい。本発明では、Mn、Si、Crを一定量添加した鋼を用い、ベイナイト変態途中で加速冷却を停止し、その後直ちに連続的に再加熱を行うことで、製造効率を低下させることなく硬質なMAを生成させることができる。   In addition, the cooling after reheating is not particularly specified because it does not affect the transformation of MA, but basically it is preferably air cooling. In the present invention, by using a steel added with a certain amount of Mn, Si, and Cr, the accelerated cooling is stopped in the middle of the bainite transformation, and then reheating is performed continuously immediately thereafter. Can be generated.

なお、本発明に係る鋼では、金属組織が、ポリゴナルフェライトおよびベイナイト相に一定量のMAを均一に含む組織であるが、本発明の作用効果を損なわない程度で、その他の組織や析出物を含有するものも、本発明の範囲に含む。   In the steel according to the present invention, the metal structure is a structure that uniformly contains a certain amount of MA in the polygonal ferrite and bainite phases, but other structures and precipitates to the extent that the effects of the present invention are not impaired. The thing containing this is also included in the scope of the present invention.

具体的には、パーライトやセメンタイトなどが1種または2種以上混在する場合は、強度が低下する。しかし、ベイナイトおよびMA以外の組織の分率が低い場合は影響が無視できるため、組織全体に対する面積分率で3%以下であれば、ポリゴナルフェライト、ベイナイトおよびMA以外の金属組織を、すなわちパーライトやセメンタイト等を1種または2種以上含有してもよい。   Specifically, when one kind or two or more kinds of pearlite or cementite are mixed, the strength is lowered. However, since the influence is negligible when the fraction of the structure other than bainite and MA is low, if the area fraction of the whole structure is 3% or less, the metal structure other than polygonal ferrite, bainite and MA, that is, pearlite. Or one or more of cementite may be contained.

以上述べた金属組織は、上述した組成の鋼を用いて、以下に述べる方法で製造することにより得ることができる。   The metal structure described above can be obtained by manufacturing the steel having the above-described composition by the method described below.

3.製造条件について
上述した組成を有する鋼を、転炉、電気炉等の溶製手段で常法により溶製し、連続鋳造法または造塊〜分塊法等で常法によりスラブ等の鋼素材とすることが好ましい。なお、溶製方法、鋳造法については上記した方法に限定されるものではない。その後、性能所望の形状に圧延し、圧延後に、冷却および加熱を行う。
3. Manufacturing conditions Steel having the above-described composition is melted by a conventional method using a melting means such as a converter or an electric furnace, and a steel material such as a slab is formed by a conventional method such as a continuous casting method or an ingot-bundling method. It is preferable to do. The melting method and the casting method are not limited to the methods described above. Thereafter, the shape is rolled into a desired shape, and after rolling, cooling and heating are performed.

なお、本発明において、加熱温度、圧延終了温度、冷却終了温度および、再加熱温度等の温度は鋼板の平均温度とする。平均温度は、スラブもしくは鋼板の表面温度より、板厚、熱伝導率等のパラメータを考慮して、計算により求めたものである。また、冷却速度は、熱間圧延終了後、冷却終了温度(500〜680℃)まで冷却に必要な温度差をその冷却を行うのに要した時間で割った平均冷却速度である。   In the present invention, the heating temperature, rolling end temperature, cooling end temperature, reheating temperature, and other temperatures are the average temperature of the steel sheet. The average temperature is obtained by calculation based on the surface temperature of the slab or steel plate, taking into account parameters such as plate thickness and thermal conductivity. Moreover, a cooling rate is an average cooling rate which divided the temperature difference required for cooling to the completion | finish temperature of cooling (500-680 degreeC) after completion | finish of hot rolling by the time required to perform the cooling.

また、昇温速度は、冷却後、再加熱温度(550〜750℃)までの再加熱に必要な温度差を再加熱するのに要した時間で割った平均昇温速度である。以下、各製造条件について詳しく説明する。   The temperature increase rate is an average temperature increase rate obtained by dividing the temperature difference required for reheating up to the reheating temperature (550 to 750 ° C.) by the time required for reheating after cooling. Hereinafter, each manufacturing condition will be described in detail.

なお、Ar温度は、以下の式より計算される値を用いる。
Ar(℃)=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo
As the Ar 3 temperature, a value calculated from the following equation is used.
Ar 3 (° C.) = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo

加熱温度:1000〜1300℃
加熱温度が1000℃未満では炭化物の固溶が不十分で必要な強度が得られず、1300℃を超えると母材靭性が劣化するため、加熱温度は、1000〜1300℃の範囲とする。
Heating temperature: 1000-1300 ° C
If the heating temperature is less than 1000 ° C, the required strength cannot be obtained because the solid solution of the carbide is insufficient, and if the heating temperature exceeds 1300 ° C, the toughness of the base metal deteriorates, so the heating temperature is in the range of 1000 to 1300 ° C.

圧延終了温度:Ar 温度以上
圧延終了温度がAr温度未満であると、その後のフェライト変態速度が低下するため、再加熱時の未変態オーステナイトへのCの濃縮が不十分となりMAが生成しない。そのため圧延終了温度をAr温度以上とする。
Rolling end temperature: Ar 3 temperature or higher If the rolling end temperature is less than Ar 3 temperature, the subsequent ferrite transformation rate decreases, so that the concentration of C into untransformed austenite at the time of reheating becomes insufficient and MA is not generated. . Therefore, the rolling end temperature is set to Ar 3 temperature or higher.

900℃以下の累積圧下率:50%以上
この条件は、本発明において重要な製造条件の一つである。900℃以下という温度域は、オーステナイト未再結晶温度域に相当する。この温度域における累積圧下率を50%以上とすることにより、オーステナイト粒を微細化することができるので、その後、旧オーステナイト粒界に生成するMAの生成サイトが増え、MAの粗大化の抑制に寄与する。
Cumulative rolling reduction of 900 ° C. or less: 50% or more This condition is one of important production conditions in the present invention. The temperature range of 900 ° C. or lower corresponds to the austenite non-recrystallization temperature range. Since the austenite grains can be refined by setting the cumulative rolling reduction in this temperature range to 50% or more, the number of MA production sites generated at the prior austenite grain boundaries increases, and the MA coarsening is suppressed. Contribute.

900℃以下の累積圧下率が50%未満であると、生成するMAの円相当径が3.0μmを超えるため、一様伸びが低下したり母材靭性が低下したりする場合がある。そのため900℃以下の累積圧下率を50%以上とする。   When the cumulative rolling reduction at 900 ° C. or less is less than 50%, the equivalent circle diameter of the produced MA exceeds 3.0 μm, so that the uniform elongation may be reduced or the base metal toughness may be reduced. Therefore, the cumulative rolling reduction at 900 ° C. or less is set to 50% or more.

冷却速度:5℃/s以上、冷却停止温度:500〜680℃
圧延終了後、(Ar−100℃)〜Ar変態温度の温度域から5℃/s以上の冷却速度で冷却する。冷却開始温度が(Ar−100℃)未満の温度ではポリゴナルフェライトの面積分率が50%を超え、母材強度が劣化する。また、冷却開始温度がAr温度より高いとポリゴナルフェライトの面積分率が10%未満となり、ベイナイト相中のMAの生成を促進させる効果が低下してしまう。よって、冷却開始温度は(Ar−100℃)以上、Ar温度以下とする。
Cooling rate: 5 ° C / s or more, cooling stop temperature: 500-680 ° C
After the rolling, cooling is performed at a cooling rate of 5 ° C./s or more from the temperature range of (Ar 3 −100 ° C.) to Ar 3 transformation temperature. When the cooling start temperature is lower than (Ar 3 -100 ° C.), the area fraction of polygonal ferrite exceeds 50%, and the strength of the base material deteriorates. If the cooling start temperature is higher than the Ar 3 temperature, the area fraction of polygonal ferrite becomes less than 10%, and the effect of promoting the formation of MA in the bainite phase is lowered. Therefore, the cooling start temperature is set to (Ar 3 −100 ° C.) or higher and Ar 3 temperature or lower.

冷却速度は5℃/s以上とする。冷却速度が5℃/s未満では冷却時にパーライトを生成するため、十分な強度や低降伏比が得られない。よって、圧延終了後の冷却速度は、5℃/s以上とする。   The cooling rate is 5 ° C./s or more. When the cooling rate is less than 5 ° C./s, pearlite is generated during cooling, so that sufficient strength and low yield ratio cannot be obtained. Therefore, the cooling rate after completion of rolling is set to 5 ° C./s or more.

本発明では、加速冷却によりベイナイト変態領域まで過冷することにより、その後の再加熱時に温度保持することなく、再加熱時のベイナイト変態を完了させることが可能である。   In the present invention, it is possible to complete the bainite transformation during reheating without maintaining the temperature during subsequent reheating by supercooling to the bainite transformation region by accelerated cooling.

冷却停止温度は500〜680℃とする。本プロセスは本発明において、重要な製造条件である。本発明では再加熱後に存在するCの濃縮した未変態オーステナイトがその後の空冷時にMAへと変態する。   Cooling stop temperature shall be 500-680 degreeC. This process is an important production condition in the present invention. In the present invention, C-concentrated untransformed austenite present after reheating is transformed into MA upon subsequent air cooling.

すなわち、ベイナイト変態途中の未変態オーステナイトが存在する温度域で冷却を停止する必要がある。冷却停止温度が500℃未満では、ベイナイト変態が完了するため空冷時にMAが生成せず低降伏比化が達成できない。680℃を超えると冷却中に析出するパーライトにCが消費されMAが生成しないため、加速冷却停止温度を500〜680℃とする。より良好な強度・靱性を与える上で好適なMA面積分率を確保する観点からは、好ましくは550〜660℃である。   That is, it is necessary to stop the cooling in a temperature range where untransformed austenite during the bainite transformation exists. If the cooling stop temperature is less than 500 ° C., the bainite transformation is completed, so MA is not generated during air cooling, and a low yield ratio cannot be achieved. If it exceeds 680 ° C, C is consumed in the pearlite that precipitates during cooling and MA is not generated, so the accelerated cooling stop temperature is set to 500 to 680 ° C. From the viewpoint of securing a suitable MA area fraction for giving better strength and toughness, it is preferably 550 to 660 ° C.

この加速冷却については、任意の冷却設備を用いることが可能である。   Any cooling equipment can be used for this accelerated cooling.

加速冷却後の昇温速度:2.0℃/s以上、再加熱温度:550〜750℃
加速冷却停止後、直ちに2.0℃/s以上の昇温速度で550〜750℃の温度まで再加熱を行う。
Temperature increase rate after accelerated cooling: 2.0 ° C./s or more, reheating temperature: 550 to 750 ° C.
Immediately after the accelerated cooling is stopped, reheating is performed to a temperature of 550 to 750 ° C. at a temperature rising rate of 2.0 ° C./s or more.

ここで、加速冷却停止後、直ちに再加熱するとは、加速冷却停止後、120秒以内に2.0℃/s以上の昇温速度で再加熱することを言う。   Here, reheating immediately after stopping accelerated cooling means reheating at a temperature rising rate of 2.0 ° C./s or more within 120 seconds after stopping accelerated cooling.

本プロセスも本発明において重要な製造条件である。前記加速冷却後の再加熱時に未変態オーステナイトがベイナイトへと変態し、それに伴い、残る未変態オーステナイトへCが排出されることにより、このCが濃化した未変態オーステナイトは、再加熱後の空冷時にMAへと変態する。   This process is also an important production condition in the present invention. The untransformed austenite is transformed into bainite during reheating after the accelerated cooling, and C is discharged to the remaining untransformed austenite. Sometimes transformed into MA.

MAを得るためには、加速冷却後Bf点より高い温度から550〜750℃の温度域まで再加熱する必要がある。   In order to obtain MA, it is necessary to reheat from a temperature higher than the Bf point to a temperature range of 550 to 750 ° C. after accelerated cooling.

昇温速度が2.0℃/s未満では、目的の再加熱温度に達するまでに長時間を要するため製造効率が悪化し、またMAの粗大化を招く場合があり、十分な高一様伸びを得ることができない。この機構は必ずしも明確ではないが、再加熱の昇温速度を2℃/s以上と大きくすることにより、C濃縮領域の粗大化を抑制し、再加熱後の冷却過程で生成するMAの粗大化が抑制されるものと考えられる。   If the heating rate is less than 2.0 ° C./s, it takes a long time to reach the target reheating temperature, so that the production efficiency is deteriorated and MA may be coarsened. Can't get. Although this mechanism is not necessarily clear, by increasing the heating rate of reheating to 2 ° C./s or more, the coarsening of the C-enriched region is suppressed and the coarsening of MA generated in the cooling process after reheating is increased. Is considered to be suppressed.

再加熱温度が550℃未満ではベイナイト変態が十分起こらずCの未変態オーステナイトへの排出が不十分となり、MAが生成せず低降伏比化が達成できない。再加熱温度が750℃を超えるとベイナイトの軟化により十分な強度が得られないため、再加熱の温度域を550〜750℃の範囲とする。   When the reheating temperature is less than 550 ° C., the bainite transformation does not occur sufficiently, and the discharge of C into the untransformed austenite becomes insufficient, MA is not generated, and a low yield ratio cannot be achieved. When the reheating temperature exceeds 750 ° C., sufficient strength cannot be obtained due to the softening of bainite, so the reheating temperature range is set to a range of 550 to 750 ° C.

本発明では、加速冷却後、未変態オーステナイトが存在する温度域から再加熱を行うことが重要であり、再加熱開始温度がBf点以下となるとベイナイト変態が完了し未変態オーステナイトが存在しなくなるため、再加熱開始はBf点より高い温度とする必要がある。   In the present invention, after accelerated cooling, it is important to perform reheating from a temperature range in which untransformed austenite exists, and when the reheating start temperature falls below the Bf point, bainite transformation is completed and untransformed austenite does not exist. The reheating start needs to be a temperature higher than the Bf point.

再加熱時に確実にベイナイト変態中のCを未変態オーステナイトへ濃化させるためには、再加熱開始温度より50℃以上昇温することが望ましい。再加熱温度において、特に温度保持時間を設定する必要はない。   In order to reliably concentrate C during bainite transformation to untransformed austenite during reheating, it is desirable to raise the temperature by 50 ° C. or more from the reheating start temperature. There is no need to set the temperature holding time at the reheating temperature.

本発明の製造方法を用いれば再加熱後直ちに冷却しても、十分なMAが得られるため、低降伏比化、高一様伸び化が達成できる。しかし、よりCの拡散を促進させMA体積分率を確保するために、再加熱時に、30分以内の温度保持を行うことができる。   If the production method of the present invention is used, sufficient MA can be obtained even after cooling immediately after reheating, so that a low yield ratio and a high uniform elongation can be achieved. However, in order to further promote the diffusion of C and secure the MA volume fraction, the temperature can be maintained within 30 minutes during reheating.

30分を超えて温度保持を行うと、ベイナイト相において回復が起こり強度が低下する場合がある。また、再加熱後の冷却速度は基本的には空冷とすることが好ましい。   If the temperature is maintained for more than 30 minutes, recovery may occur in the bainite phase and the strength may decrease. The cooling rate after reheating is preferably basically air cooling.

加速冷却後の再加熱を行うための設備として、加速冷却を行うための冷却設備の下流側に加熱装置を設置することができる。加熱装置としては、鋼板の急速加熱が可能であるガス燃焼炉や誘導加熱装置を用いる事が好ましい。   As equipment for performing reheating after accelerated cooling, a heating device can be installed downstream of the cooling equipment for performing accelerated cooling. As the heating device, it is preferable to use a gas combustion furnace or induction heating device capable of rapid heating of the steel sheet.

以上、述べたように、本発明においては、まず、オーステナイト未再結晶温度域の900℃以下で50%以上の累積圧下を加えることにより、オーステナイト粒の微細化を通じてMA生成サイトを増やし、MAを均一微細分散させることができ、85%以下の低降伏比を維持しながら、一様伸びを7%以上と従来に比べ向上させることができる。さらに、本発明においては、加速冷却後の再加熱の昇温速度を大きくすることにより、MAの粗大化を抑制するので、MAの円相当径を3.0μm以下に微細化することができる。   As described above, in the present invention, first, by applying a cumulative reduction of 50% or more at 900 ° C. or less in the austenite non-recrystallization temperature region, the MA generation sites are increased through the refinement of austenite grains, and the MA is increased. Uniform and fine dispersion can be achieved, and the uniform elongation can be improved to 7% or more as compared with the prior art while maintaining a low yield ratio of 85% or less. Furthermore, in the present invention, since the coarsening of the MA is suppressed by increasing the heating rate of reheating after accelerated cooling, the equivalent circle diameter of the MA can be refined to 3.0 μm or less.

これにより、従来鋼であれば歪時効により特性劣化するような熱履歴を受けても、本発明鋼ではMAの分解が少なく、ベイナイトとポリゴナルフェライトとMAとの3相組織からなる所定の金属組織を維持することが可能となる。その結果、本発明においては、250℃で60分という、一般的な鋼管のコーティング工程では高温かつ長時間に相当する熱履歴を経ても、歪時効による降伏応力(YS)上昇や、これに伴う降伏比の上昇や一様伸びの低下を抑制することができ、従来鋼であれば歪時効により特性劣化するような熱履歴を受けても、本発明鋼では一様伸び:7%以上、降伏比:85%以下を確保することができる。   As a result, even if a conventional steel is subjected to a thermal history that deteriorates characteristics due to strain aging, the steel of the present invention has little MA decomposition, and a predetermined metal comprising a three-phase structure of bainite, polygonal ferrite, and MA. It becomes possible to maintain the organization. As a result, in the present invention, the yield stress (YS) rises due to strain aging and is accompanied by a high temperature and a long heat history in a general steel pipe coating process at 250 ° C. for 60 minutes. It is possible to suppress an increase in yield ratio and a decrease in uniform elongation, and even in the case of a conventional steel, even when subjected to a thermal history that deteriorates characteristics due to strain aging, the present invention steel has a uniform elongation: 7% or more. Ratio: 85% or less can be secured.

表1に示す成分組成の鋼(鋼種A〜J)を連続鋳造法によりスラブとし、板厚20、33mmの厚鋼板(No.1〜16)を製造した。   Steels (steel types A to J) having the component compositions shown in Table 1 were made into slabs by a continuous casting method, and thick steel plates (Nos. 1 to 16) having thicknesses of 20 and 33 mm were produced.

Figure 2011074443
Figure 2011074443

加熱したスラブを熱間圧延により圧延した後、直ちに水冷型の加速冷却設備を用いて冷却を行い、誘導加熱炉またはガス燃焼炉を用いて再加熱を行った。誘導加熱炉は加速冷却設備と同一ライン上に設置した。   After the heated slab was rolled by hot rolling, it was immediately cooled using a water-cooled accelerated cooling facility and reheated using an induction heating furnace or a gas combustion furnace. The induction furnace was installed on the same line as the accelerated cooling equipment.

各鋼板(No.1〜16)の製造条件を表2に示す。なお、加熱温度、圧延終了温度、冷却停止(終了)温度および、再加熱温度等の温度は鋼板の平均温度とした。平均温度は、スラブもしくは鋼板の表面温度より、板厚、熱伝導率等のパラメータを用いて計算により求めた。   Table 2 shows the production conditions of each steel plate (No. 1 to 16). The heating temperature, rolling end temperature, cooling stop (end) temperature, reheating temperature, and other temperatures were the average temperature of the steel sheet. The average temperature was calculated from the surface temperature of the slab or steel plate using parameters such as plate thickness and thermal conductivity.

また、冷却速度は、熱間圧延終了後、冷却停止(終了)温度(460〜630℃)までの冷却に必要な温度差をその冷却を行うのに要した時間で除した平均冷却速度である。また、再加熱速度(昇温速度)は、冷却後、再加熱温度(540〜680℃)までの再加熱に必要な温度差を再加熱するのに要した時間で除した平均昇温速度である。   The cooling rate is an average cooling rate obtained by dividing the temperature difference required for cooling to the cooling stop (end) temperature (460 to 630 ° C.) by the time required for the cooling after the hot rolling is completed. . The reheating rate (temperature increase rate) is the average temperature increase rate divided by the time required to reheat the temperature difference required for reheating up to the reheating temperature (540 to 680 ° C.) after cooling. is there.

Figure 2011074443
Figure 2011074443

以上のようにして製造した鋼板の機械的性質を測定した。測定結果を表3に示す。引張強度は、圧延垂直方向の全厚引張試験片を2本採取し、引張試験を行い、その平均値で評価した。   The mechanical properties of the steel sheet produced as described above were measured. Table 3 shows the measurement results. Tensile strength was evaluated by taking two full thickness tensile test pieces in the vertical direction of rolling, conducting a tensile test, and evaluating the average value.

引張強度517MPa以上(API 5L X60以上)を本発明に必要な強度とした。降伏比、一様伸びは、圧延方向の全厚引張試験片を2本採取し、引張試験を行い、その平均値で評価した。降伏比85%以下、一様伸び7%以上を本発明に必要な変形性能とした。   The tensile strength of 517 MPa or more (API 5L X60 or more) was determined as the strength required for the present invention. Yield ratio and uniform elongation were evaluated by the average value of two tensile test specimens taken in the rolling direction. Yield ratio of 85% or less and uniform elongation of 7% or more were defined as the deformation performance required for the present invention.

母材靭性については、圧延垂直方向のフルサイズシャルピーVノッチ試験片を3本採取し、シャルピー試験を行い、−20℃での吸収エネルギーを測定し、その平均値を求めた。−20℃での吸収エネルギーが200J以上のものを良好とした。   For base metal toughness, three full-size Charpy V-notch test pieces in the vertical direction of rolling were sampled, Charpy test was performed, the absorbed energy at −20 ° C. was measured, and the average value was obtained. The absorption energy at −20 ° C. was determined to be 200 J or more.

溶接熱影響部(HAZ)靭性については、再現熱サイクル装置によって入熱40kJ/cmに相当する熱履歴を加えた試験片を3本採取し、シャルピー試験を行った。そして、−20℃での吸収エネルギーを測定し、その平均値を求めた。−20℃でのシャルピー吸収エネルギーが100J以上のものを良好とした。   For the weld heat affected zone (HAZ) toughness, three specimens with a thermal history corresponding to a heat input of 40 kJ / cm were collected by a reproducible thermal cycle apparatus and subjected to a Charpy test. And the absorbed energy in -20 degreeC was measured and the average value was calculated | required. Those having Charpy absorbed energy at −20 ° C. of 100 J or more were considered good.

なお、製造した鋼板を250℃にて60分間保持して、歪時効処理した後、母材の引張試験およびシャルピー試験、溶接熱影響部(HAZ)のシャルピー試験を同様に実施し、評価した。なお、歪時効処理後の評価基準は、上述した歪時効処理前の評価基準と同一の基準で判定した。   In addition, after hold | maintaining the manufactured steel plate at 250 degreeC for 60 minute (s) and carrying out a strain aging treatment, the tensile test of the base material, the Charpy test, and the Charpy test of the welding heat affected zone (HAZ) were similarly implemented and evaluated. The evaluation criteria after the strain aging treatment were determined based on the same criteria as the evaluation criteria before the strain aging treatment described above.

Figure 2011074443
Figure 2011074443

表3において、発明例であるNo.1〜7はいずれも、成分組成および製造方法が本発明の範囲内であり、250℃にて60分間の歪時効処理前後で、引張強度517MPa以上の高強度で降伏比85%以下、一様伸び7%以上の低降伏比、高一様伸びであり、母材ならびに溶接熱影響部の靭性は良好であった。   In Table 3, all of Nos. 1 to 7 which are invention examples are within the scope of the present invention in the component composition and production method, and before and after strain aging treatment at 250 ° C. for 60 minutes, In terms of strength, the yield ratio was 85% or less, the low yield ratio was 7% or more and the uniform elongation was high, and the toughness of the base metal and the weld heat affected zone was good.

また、鋼板の組織はポリゴナルフェライト及びベイナイトの相にMAが生成した組織であり、ポリゴナルフェライトの面積分率は10〜50%、MAの面積分率は3〜20%の範囲内あった。なお、ポリゴナルフェライト及びMAの面積分率は、走査型電子顕微鏡(SEM)で観察したミクロ組織から画像処理により求めた。   Moreover, the structure of the steel sheet was a structure in which MA was generated in the phase of polygonal ferrite and bainite, and the area fraction of polygonal ferrite was in the range of 10 to 50%, and the area fraction of MA was in the range of 3 to 20%. . The area fraction of polygonal ferrite and MA was determined by image processing from the microstructure observed with a scanning electron microscope (SEM).

一方、比較例であるNo.8〜13は、成分組成は本発明の範囲内であるが、製造方法が本発明の範囲外であるため、鋼板組織中のポリゴナルフェライトの面積分率あるいは円相当径、MAの面積分率あるいは円相当径が本発明の範囲外であり、250℃にて60分間の歪時効処理前後のいずれかで、降伏比、一様伸びが不十分か十分な強度、靭性が得られなかった。   On the other hand, Nos. 8 to 13, which are comparative examples, have a component composition within the scope of the present invention, but the manufacturing method is outside the scope of the present invention, so the area fraction of polygonal ferrite in the steel sheet structure or circle Equivalent diameter, MA area fraction or equivalent circle diameter is outside the scope of the present invention, and yield ratio, uniform elongation is insufficient or sufficient strength either before or after strain aging treatment at 250 ° C. for 60 minutes The toughness was not obtained.

No.14〜16は成分組成が本発明の範囲外であるので、No.14、No.15は降伏比、一様伸びが、何れも発明の範囲外となった。No.16は、HAZ靭性が発明の範囲外となった。   Since No.14-16 has a component composition outside the range of the present invention, No.14 and No.15 were both out of the range of the yield ratio and uniform elongation. In No. 16, the HAZ toughness was out of the scope of the invention.

Claims (3)

成分組成が、質量%で、C:0.03〜0.12%、Si:0.01〜1.0%、
Mn:1.2〜3.0%、P:0.015%以下、S:0.005%以下、Al:0.08%以下、Nb:0.005〜0.05%、Cr:0.10〜1.0%、Ti:0.005〜0.025%、N:0.010%以下、O:0.005%以下を含有し、残部Fe及び不可避的不純物からなり、金属組織がベイナイトとポリゴナルフェライトと島状マルテンサイトとの3相組織からなり、前記島状マルテンサイトの面積分率が3〜20%かつ円相当径が3.0μm以下、前記ポリゴナルフェライトの面積分率が10〜50%かつ円相当径が20μm以下、残部がベイナイトであり、一様伸びが7%以上、降伏比が85%以下であり、さらに250℃以下の温度で60分以下の歪時効処理を施した後においても一様伸びが7%以上、降伏比が85%以下であることを特徴とする耐歪時効特性に優れた低降伏比高強度高一様伸び鋼板。
Ingredient composition is mass%, C: 0.03-0.12%, Si: 0.01-1.0%,
Mn: 1.2 to 3.0%, P: 0.015% or less, S: 0.005% or less, Al: 0.08% or less, Nb: 0.005 to 0.05%, Cr: 0. 10 to 1.0%, Ti: 0.005 to 0.025%, N: 0.010% or less, O: 0.005% or less, and the balance is Fe and inevitable impurities, and the metal structure is bainite. , Polygonal ferrite and island martensite, and the island martensite has an area fraction of 3 to 20% and an equivalent circle diameter of 3.0 μm or less, and the polygonal ferrite has an area fraction of 10-50%, equivalent circle diameter of 20 μm or less, balance is bainite, uniform elongation is 7% or more, yield ratio is 85% or less, and strain aging treatment is performed at a temperature of 250 ° C. or less for 60 minutes or less. Even after application, the uniform elongation is 7% or more and the yield ratio is 8 A low-yield-ratio, high-strength, high-uniform-strength steel sheet excellent in strain aging characteristics, characterized by being 5% or less.
さらに、質量%で、Cu:0.5%以下、Ni:1%以下、Mo:0.5%以下、V:0.1%以下、Ca:0.0005〜0.003%、B:0.005%以下の中から選ばれる一種または二種以上を含有することを特徴とする請求項1に記載の耐歪時効特性に優れた低降伏比高強度高一様伸び鋼板。   Further, in terms of mass%, Cu: 0.5% or less, Ni: 1% or less, Mo: 0.5% or less, V: 0.1% or less, Ca: 0.0005 to 0.003%, B: 0 The low yield ratio, high strength, high uniform stretch steel plate excellent in strain aging resistance according to claim 1, comprising one or more selected from 0.005% or less. 請求項1または請求項2のいずれかに記載の成分組成を有する鋼を、1000〜1300℃の温度に加熱し、900℃以下での累積圧下率が50%以上となるようにAr温度以上の圧延終了温度で熱間圧延した後、(Ar−100℃)以上Ar温度以下の温度域で加速冷却を開始し、5℃/s以上の冷却速度で500℃〜680℃まで加速冷却を行い、その後直ちに2.0℃/s以上の昇温速度で550〜750℃まで再加熱を行うことを特徴とする耐歪時効特性に優れた低降伏比高強度高一様伸び鋼板の製造方法。 The steel having the component composition according to claim 1 or 2 is heated to a temperature of 1000 to 1300 ° C, and Ar 3 temperature or higher so that the cumulative rolling reduction at 900 ° C or lower is 50% or higher. After hot rolling at the rolling finish temperature of, accelerated cooling is started in a temperature range from (Ar 3 -100 ° C.) to Ar 3 temperature, and accelerated cooling to 500 ° C. to 680 ° C. at a cooling rate of 5 ° C./s or more. And then immediately reheating to 550 to 750 ° C. at a temperature rising rate of 2.0 ° C./s or more, and producing a low yield ratio high strength high uniform stretch steel plate excellent in strain aging characteristics Method.
JP2009226705A 2009-09-30 2009-09-30 Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same Active JP5532800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009226705A JP5532800B2 (en) 2009-09-30 2009-09-30 Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009226705A JP5532800B2 (en) 2009-09-30 2009-09-30 Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011074443A true JP2011074443A (en) 2011-04-14
JP5532800B2 JP5532800B2 (en) 2014-06-25

Family

ID=44018724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009226705A Active JP5532800B2 (en) 2009-09-30 2009-09-30 Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP5532800B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049895A (en) * 2011-08-31 2013-03-14 Jfe Steel Corp High-strength welded steel pipe having high uniform elongation characteristic and excellent in weld zone low-temperature toughness and method for manufacturing the same
US20140116578A1 (en) * 2011-06-26 2014-05-01 Baoshan Iron & Steel Co., Ltd. High-strength high-toughness steel plate with yield strength of 700mpa and method of manufacturing the same
JP2014520208A (en) * 2011-09-26 2014-08-21 宝山鋼鉄股▲分▼有限公司 Low yield ratio high toughness steel sheet and manufacturing method thereof
CN105256240A (en) * 2015-11-11 2016-01-20 首钢总公司 Hot-rolled coiled plate and manufacturing method thereof
KR20160129056A (en) 2014-03-31 2016-11-08 제이에프이 스틸 가부시키가이샤 Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
KR20160129875A (en) 2014-03-31 2016-11-09 제이에프이 스틸 가부시키가이샤 Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
CN106801188A (en) * 2016-12-24 2017-06-06 首钢总公司 400Mpa grades of construction(al)steel and production method with excellent corrosive nature
JP2020056066A (en) * 2018-10-01 2020-04-09 日本製鉄株式会社 Steel plate for linepipe
EP3730653A4 (en) * 2017-12-24 2021-03-03 Posco High-strength steel having excellent low-yield-ratio characteristics, and manufacturing method therefor
US11326238B2 (en) 2016-02-03 2022-05-10 Jfe Steel Corporation Steel material for high heat input welding
JP2022550795A (en) * 2019-10-01 2022-12-05 ポスコ High-strength heavy-gauge steel material with excellent cryogenic deformation aging impact toughness in the central part and its manufacturing method
CN116695018A (en) * 2023-05-30 2023-09-05 鞍钢股份有限公司 High-strength-toughness low-yield-ratio longitudinal variable-thickness bridge steel and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048224A (en) * 2003-07-31 2005-02-24 Jfe Steel Kk Method for producing low yield ratio, high strength and high toughness steel plate excellent in weld heat affected zone toughness
JP2007119884A (en) * 2005-10-31 2007-05-17 Jfe Steel Kk Method for producing high strength and high toughness steel material excellent in strength at intermediate temperature zone
JP2007169747A (en) * 2005-12-26 2007-07-05 Jfe Steel Kk Method for producing high-strength and high-toughness steel plate excellent in strength and deformability in middle temperature zone
JP2008248330A (en) * 2007-03-30 2008-10-16 Jfe Steel Kk Low yield ratio high strength high toughness steel pipe and manufacturing method therefor
JP2009057629A (en) * 2007-08-08 2009-03-19 Jfe Steel Kk High strength steel pipe for low temperature use having excellent buckling resistance and weld heat-affected zone toughness, and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048224A (en) * 2003-07-31 2005-02-24 Jfe Steel Kk Method for producing low yield ratio, high strength and high toughness steel plate excellent in weld heat affected zone toughness
JP2007119884A (en) * 2005-10-31 2007-05-17 Jfe Steel Kk Method for producing high strength and high toughness steel material excellent in strength at intermediate temperature zone
JP2007169747A (en) * 2005-12-26 2007-07-05 Jfe Steel Kk Method for producing high-strength and high-toughness steel plate excellent in strength and deformability in middle temperature zone
JP2008248330A (en) * 2007-03-30 2008-10-16 Jfe Steel Kk Low yield ratio high strength high toughness steel pipe and manufacturing method therefor
JP2009057629A (en) * 2007-08-08 2009-03-19 Jfe Steel Kk High strength steel pipe for low temperature use having excellent buckling resistance and weld heat-affected zone toughness, and method for producing the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140116578A1 (en) * 2011-06-26 2014-05-01 Baoshan Iron & Steel Co., Ltd. High-strength high-toughness steel plate with yield strength of 700mpa and method of manufacturing the same
JP2013049895A (en) * 2011-08-31 2013-03-14 Jfe Steel Corp High-strength welded steel pipe having high uniform elongation characteristic and excellent in weld zone low-temperature toughness and method for manufacturing the same
US9683275B2 (en) 2011-09-26 2017-06-20 Baoshan Iron & Steel Co., Ltd. Steel plate with low yield-tensile ratio and high toughness and method of manufacturing the same
JP2014520208A (en) * 2011-09-26 2014-08-21 宝山鋼鉄股▲分▼有限公司 Low yield ratio high toughness steel sheet and manufacturing method thereof
EP2762598A4 (en) * 2011-09-26 2015-11-11 Baoshan Iron & Steel Steel plate with low yield ratio high toughness and manufacturing method thereof
US9771639B2 (en) * 2011-09-26 2017-09-26 Baoshan Iron & Steel Co., Ltd. High-strength and high-toughness steel plate with yield strength of 700 MPa and method of manufacturing the same
KR20160129056A (en) 2014-03-31 2016-11-08 제이에프이 스틸 가부시키가이샤 Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
KR20160129875A (en) 2014-03-31 2016-11-09 제이에프이 스틸 가부시키가이샤 Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
EP3128029A4 (en) * 2014-03-31 2017-09-20 JFE Steel Corporation Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
EP3128030A4 (en) * 2014-03-31 2017-11-29 JFE Steel Corporation Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
US10344362B2 (en) 2014-03-31 2019-07-09 Jfe Steel Corporation Steel material for highly deformable line pipes having superior strain aging resistance and superior HIC resistance, method for manufacturing same, and welded steel pipe
US10465261B2 (en) 2014-03-31 2019-11-05 Jfe Steel Corporation Steel material for highly deformable line pipes having superior strain aging resistance and superior HIC resistance, method for manufacturing same, and welded steel pipe
CN105256240A (en) * 2015-11-11 2016-01-20 首钢总公司 Hot-rolled coiled plate and manufacturing method thereof
CN105256240B (en) * 2015-11-11 2018-05-01 首钢集团有限公司 A kind of hot-rolled coil and its manufacture method
US11326238B2 (en) 2016-02-03 2022-05-10 Jfe Steel Corporation Steel material for high heat input welding
CN106801188A (en) * 2016-12-24 2017-06-06 首钢总公司 400Mpa grades of construction(al)steel and production method with excellent corrosive nature
US11519045B2 (en) 2017-12-24 2022-12-06 Posco High-strength steel having excellent low-yield-ratio characteristics, and manufacturing method therefor
EP3730653A4 (en) * 2017-12-24 2021-03-03 Posco High-strength steel having excellent low-yield-ratio characteristics, and manufacturing method therefor
JP2020056066A (en) * 2018-10-01 2020-04-09 日本製鉄株式会社 Steel plate for linepipe
JP7115200B2 (en) 2018-10-01 2022-08-09 日本製鉄株式会社 Steel plate for line pipe
JP2022550795A (en) * 2019-10-01 2022-12-05 ポスコ High-strength heavy-gauge steel material with excellent cryogenic deformation aging impact toughness in the central part and its manufacturing method
JP7404520B2 (en) 2019-10-01 2023-12-25 ポスコホールディングス インコーポレーティッド High-strength, extra-thick steel material with excellent cryogenic deformation aging impact toughness in the center and its manufacturing method
CN116695018A (en) * 2023-05-30 2023-09-05 鞍钢股份有限公司 High-strength-toughness low-yield-ratio longitudinal variable-thickness bridge steel and manufacturing method thereof

Also Published As

Publication number Publication date
JP5532800B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5821173B2 (en) Low yield ratio high strength high uniform stretch steel sheet and method for producing the same
JP4844687B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP5516784B2 (en) Low yield ratio high strength steel sheet, method for producing the same, and high strength welded steel pipe using the same
JP5516785B2 (en) Low yield ratio high strength steel sheet, method for producing the same, and high strength welded steel pipe using the same
JP5532800B2 (en) Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same
JP5092498B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
JP5903880B2 (en) High-strength steel sheet for line pipes with excellent sour resistance and weld heat-affected zone toughness and method for producing the same
JP2006291349A (en) Line pipe steel sheet having high deformation performance and its manufacturing method
JP2013139628A (en) High strength steel sheet of excellent material uniformity in steel sheet for use in line pipe, and method for producing the same
JP2015189984A (en) Low yield ratio high strength and high toughness steel plate, method for producing low yield ratio high strength and high toughness steel plate, and steel pipe
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP5509654B2 (en) High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same
WO2016056216A1 (en) Steel sheet for line pipe, method for manufacturing same, and steel tube for line pipe
JP2005060840A (en) Steel pipe with low yield ratio, high strength, high toughness and superior strain age-hardening resistance, and manufacturing method therefor
JP5991174B2 (en) High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP4419695B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP2005060837A (en) High-strength steel sheet superior in hic resistance and toughness in weld heat-affected zone for line pipe, and manufacturing method therefor
JP5842577B2 (en) High toughness, low yield ratio, high strength steel with excellent strain aging resistance
JP4507730B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP4742617B2 (en) Manufacturing method of high-strength steel sheet with excellent weld heat-affected zone toughness
JP4412099B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5532800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250