JP2011073105A - ネジのネジ込み量の管理方法および装置 - Google Patents

ネジのネジ込み量の管理方法および装置 Download PDF

Info

Publication number
JP2011073105A
JP2011073105A JP2009228155A JP2009228155A JP2011073105A JP 2011073105 A JP2011073105 A JP 2011073105A JP 2009228155 A JP2009228155 A JP 2009228155A JP 2009228155 A JP2009228155 A JP 2009228155A JP 2011073105 A JP2011073105 A JP 2011073105A
Authority
JP
Japan
Prior art keywords
screw
height
limit value
lower limit
upper limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009228155A
Other languages
English (en)
Inventor
Toru Fujiwara
徹 藤原
Futoshi Okabayashi
太志 岡林
Hiroshi Fujimoto
博 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Peripherals Ltd
Original Assignee
Fujitsu Peripherals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Peripherals Ltd filed Critical Fujitsu Peripherals Ltd
Priority to JP2009228155A priority Critical patent/JP2011073105A/ja
Publication of JP2011073105A publication Critical patent/JP2011073105A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)

Abstract

【課題】ワークの表面に傷をつけることなく、ワークにネジ込まれるネジのネジ込み量の適不適を正確に判断すること。
【解決手段】基台上に順次セットされるワークにネジ込まれる各ネジのネジ込み量を管理する方法であって、各ワークについて、ネジ込み後のネジの高さPを基台の位置を基準として計測し、計測されたネジの高さPのワークに対する移動平均Aを求め、求めた移動平均Aを基準とし、その基準に対する所定範囲である上限値GUおよび下限値GSを定め、計測されたネジの高さPが上限値GUまたは下限値GSを越えたときに不適であると判断する。
【選択図】 図7

Description

本発明は、基台上に順次セットされるワークにネジ込まれる各ネジのネジ込み量を管理する方法および装置に関する。
近年において、携帯電話機はその機能の多様化が進むとともに防水性の要求がますます高まっている。また、パソコン、端末機器、ゲーム機器、音楽機器などのように、小型化が進み、しかも融合し多機能化したこれらの携帯可能な機器においても、防水性の要求が今後拡大すると考えられる。
ところで、一般に、携帯機器のケーシングは、フロントケースとリヤケースとが複数のネジによって互いに締め付けられて構成される。ネジ締め工程においては、例えば、作業者が、仮組みされたケーシングをワークとしてワーク台の上にセットする。セットが完了すると、ネジ締め装置に設けられた電動ドライバーが、ネジ供給機から供給されたネジをその先端部で吸着して保持した後、ワークのネジ穴の真上に移動する。そして、電動ドライバーが回転駆動しながら下降し、ネジをワークのネジ穴にネジ込んで締め付ける。このような動作を繰り返し、全てのネジ穴に対してネジを締め付ける。
ネジ締め工程において、またはネジ締め工程の後に、ネジが正常にネジ込まれたかどうかがチェックされる。これは、ネジが十分にネジ込まれていない浮き状態などの不良品が出荷されないよう管理するためである。特に、防水性が要求される部分でネジの浮きが発生した場合には、防水機能が発揮できないため致命的な故障になることがある。
そのようなネジのチェックでは、ネジの高さ位置が計測され、ネジのネジ込み量が適正であるかどうかについて管理が行われる。
従来において、ネジ込み量のチェックのための装置が提案されている(特許文献1)。特許文献1では、ねじ締め用のボディユニットと一体的に変位センサを設け、被締付け部材の表面に当接して停止するアタッチメントをボディユニットに対して伸縮移動可能に設ける。変位センサによって、ボディユニットに対するアタッチメントの伸縮位置を検出する。検出値と設定値とを比較し、ねじ締めの良否を判定する。
また、摩擦接合システムにおいて、摩擦部材が接合部に接触する際の立ち上がり部分が、上管理限界値と下管理限界値との間に収まっているか否かに基づいてその異常の有無を判断する装置が開示されている(特許文献2)。
特許文献2では、出力信号のうち、摩擦部材の駆動が停止するまでの後続部分について移動平均を算出し、後続部分の出力信号から移動平均を減算して得られる差分信号が設定された閾値を超えるか否かにも基づいて、異常の有無が判断される。
特開2000−94241 特開2009−82951
しかし、特許文献1においては、ネジの高さの検出のために、アタッチメントの先端を被締付け部材の表面に当てるので、これによって被締付け部材の表面に傷がつくおそれがある。表面に傷がつくと商品価値が低下し、出荷不可能となることがある。特に、ファッション性にこだわる携帯電話機などにおいては、わずかな傷がついても商品価値がなくなることがあり、被締付け部材を当たり面とする高さ検出を行うことは問題である。
また、特許文献2では、異常の有無の判断において、摩擦部材の駆動が停止するまでの後続部分について移動平均を算出し、これを用いて差分信号を算出し、この差分信号を予め設定された閾値と比較するようになっている。つまり、そこで用いられる閾値は、予め算出されて設定された固定値であり、センサからの出力信号に基づいてダイナミックに設定されるものではない。
これらの点に鑑みると、ワークの表面に傷をつけないために、ワークを当たり面とすることなくネジの高さを検出する必要がある。そのためには、ワークを載置するワーク台、ワーク台を取り付ける基台、または基台を設置する床面を基準として、つまり基台の位置を基準として、ネジの高さを検出しまたは計測することが考えられる。
ところで、温度や湿度など環境の変化による寸法変化、ワークのロットによる寸法バラツキなどにより、ワークのワーク台に対する高さ位置が変動する。そのため、基台の位置を基準としてネジの高さを計測した場合には、基台の位置に対するワークの高さ位置が、ネジ込み量と関係のない要因によって変化するので、そのままではネジ込み量の適不適を正確に判断することができない。
例えば、ネジ締め工程に最初に流れてくる複数個のサンプルについてネジの高さを計測し、その平均値から基準値を決めて上限値および下限値を設定することが考えられる。しかしその場合には、上限値および下限値は固定的なものであるから、ワークの温度変化やロットの寸法バラツキなどが反映されず、ネジ込み量の適不適が正確に判断されない。
本発明は、上述の問題に鑑みてなされたもので、ワークの表面に傷をつけることなく、ワークにネジ込まれるネジのネジ込み量の適不適を正確に判断することを目的とする。
ここで述べる実施形態の管理方法では、基台上に順次セットされるワークにネジ込まれる各ネジのネジ込み量を管理する方法であって、各ワークについて、ネジ込み後のネジの高さを前記基台の位置を基準として計測し、計測されたネジの高さのワークに対する移動平均を求め、求めた移動平均を基準とし、その基準に対する所定範囲である上限値および下限値を定め、計測されたネジの高さが前記上限値または前記下限値を越えたときに不適であると判断する。
また、ネジのネジ込み量の管理装置では、前記ネジの高さを前記基台の位置を基準として計測するネジ高さ計測部と、計測されたネジの高さのワークに対する移動平均を求める演算部と、求めた移動平均を基準としその基準に対する所定範囲である上限値および下限値を設定する設定部と、計測されたネジの高さが前記上限値または前記下限値を越えたときに不適であると判断する判断部と、を備える。
本発明によると、ワークの表面に傷をつけることなく、ワークにネジ込まれるネジのネジ込み量の適不適を正確に判断することができる。
本実施形態のネジ込み量の管理装置の全体の構成を示す図である。 ワークへのネジ込みおよびネジ高さ計測を行っている状態を示す図である。 総合制御部の構成の例を示すブロック図である。 管理部の機能的な構成の例を示すブロック図である。 ワークの例を示す図である。 計測されたネジの高さについて適不適の例を説明するための図である。 本実施形態によるネジ込み量の管理方法を説明するための図である。 従来におけるネジ込み量の管理方法を説明するための図である。 本実施形態のネジ込み量の管理の処理の概略を示すフローチャートである。 他の実施形態のネジ込み量の管理装置の全体の構成を示す図である。
図1には、ネジのネジ込み量の管理装置1の概略が示されている。
管理装置1は、基台11上に順次セットされるワークWKにネジをネジ込むネジ締め装置3を含み、ネジ締めを行うとともにそのネジ込み量を計測して適不適の管理を行う。
すなわち、図1において、管理装置1は、ネジ締め装置3およびネジ込み量管理部4を備える。
ネジ締め装置3は、基台11、基準台12、ネジ供給装置13、ドライバーユニット14、高さ測定センサ15、Z軸駆動ユニット16、および制御部17を備える。
基台11は、ベッド21、X軸駆動ユニット22、Y軸駆動ユニット23、テーブル24、およびワーク台25を備える。
ベッド21は、水平な床面FL上に設置される。X軸駆動ユニット22およびY軸駆動ユニット23は、ベッド21に取り付けられ、テーブル24を水平面(XY平面)内において任意の位置に移動させ位置決めする。
このようなX軸駆動ユニット22およびY軸駆動ユニット23は、モータおよびボールネジなどを組み合わせて構成される。また、リニアモータを用いることも可能である。X軸駆動ユニット22、Y軸駆動ユニット23、およびテーブル24によって、所謂XYテーブルが構成される。
ワーク台25は、その上にワークWKを載置するものである。ワーク台25は、合成樹脂または金属などを材料として製作することができる。ワーク台25の上面には、ワークWKの表面形状に沿った凹部25aが設けられる。ワーク台25は、テーブル24の上面に取り付けられ、テーブル24と一体的に移動する。
なお、ワークWKは、図5に示されるように、本実施形態では携帯電話機が用いられる。携帯電話機のケーシングCSは、フロントケースとリアケ−スとが合わさったものであり、防水タイプの場合などにはその間にパッキンが装着される。ケーシングCSの4ヵ所にネジ穴NAが設けられ、ネジ穴NAに、ドライバーユニット14によってネジがネジ込まれて一体化される。
基準台12は、高さ測定センサ15による高さ測定の基準となるものであり、金属材料などから製作することができ、その表面は滑らかに仕上げられている。基準台12は、アーム121によってベッド21に取り付けられている。これにより、基準台12は、基台11に対して固定的に設けられている。これにより、高さ測定センサ15により測定されるネジの高さ(ネジ込み量)は、基準台12に対するネジの高さの変化量として得ることができる。
なお、基準台12に対するネジの高さの変化量は、ベッド21、テーブル24、ワーク台25、または床面FLに対するネジの高さの変化量と等価である。したがって、基準台12は、ベッド21、テーブル24、またはワーク台25のいずれにでも取り付けることが可能である。また、基台11とは別個に、床面FL上に独立して設置することも可能である。
ネジ供給装置13は、多数のネジを収容しており、ドライバーユニット14による1回のネジ締めごとに、ドライバーユニット14のネジ吸着ビット141に対してネジを1つずつ供給する。本実施形態では、ネジ供給装置13はテーブル24の上に設置されているが、他の場所に設置することも可能である。
ドライバーユニット14は、オンオフ制御またはインバータ制御されるモータによって回転駆動するドライバー軸14aを有し、その先端にネジ吸着ビット141が設けられている。ネジ吸着ビット141は、減圧エアーによる吸着力でネジを吸着して保持するものである。なお、ドライバーユニット14のドライバー軸が回転している状態でも、ネジ吸着ビット141によるネジの吸着は可能である。
ドライバーユニット14は、Z軸駆動ユニット16によってZ軸方向(垂直方向)に移動可能である。テーブル24がXY平面上を移動し、ワークWKのネジ穴がドライバーユニット14の真下に位置決めされた状態で、Z軸駆動ユニット16の駆動によってドライバーユニット14が下降し、ネジ締めを行う。ネジ締めの前には、ネジ供給装置13がドライバーユニット14の下方に位置し、ネジ吸着ビット141に1つのネジが供給される。
高さ測定センサ15は、ドライバーユニット14と一体で移動するように連結されている。高さ測定センサ15は、伸縮可能な測定ロッド151を持ち、ドライバーユニット14がネジ締めのために下降したときに、測定ロッド151の先端が基準台12の表面に当接し、ドライバーユニット14のZ方向の位置に応じて測定ロッド151が伸縮する。このとき、高さ測定センサ15は、測定ロッド151の伸縮した位置に応じた信号を、ネジ高さ信号S1として出力する。
つまり、図2に示すように、ドライバーユニット14がネジ締めのために下降し、ドライバー軸14aの回転駆動によって、ネジNJがワークWKのネジ穴NAにネジ込まれる。このとき、高さ測定センサ15はドライバーユニット14とともに下降し、測定ロッド151は、その先端が基準台12の表面に当接し、ネジNJのネジ高さ位置に応じて伸縮する。
ドライバーユニット14におけるトルク制御または時間制御などによってネジ締めが終了したときに、高さ測定センサ15がネジ高さ信号S1を出力する。
このように、ネジ高さ信号S1は、ネジ締め時におけるドライバーユニット14の、基準台12つまり基台11に対する高さ位置または高さ変位を示す信号である。ネジ高さ信号S1について、基台11の位置、基準台12の位置、ドライバーユニット14および高さ測定センサ15の位置などに応じて、予めキャリブレーションを行っておけばよい。なお、ネジ高さ信号S1は、例えば分解能を1μm程度とすることができる。
図1に戻って、Z軸駆動ユニット16は、X軸駆動ユニット22およびY軸駆動ユニット23と同様に、モータおよびボールネジなどを組み合わせて構成することができる。また、リニアモータを用いることも可能である。また、エアーシリンダを用いることも可能である。エアーシリンダを用いた場合には、エアーシリンダに供給する圧縮空気を電磁弁により制御し、空気の圧力を上下動の力に変換することによってZ軸方向の駆動を行う。
制御部17は、総合制御部170、X軸制御部171、Y軸制御部172、Z軸制御部173、ドライバー制御部174、エアー制御部175、および管理部176を有する。
X軸制御部171、Y軸制御部172、およびZ軸制御部173は、X軸駆動ユニット22、Y軸駆動ユニット23、およびZ軸駆動ユニット16に対して、移動位置に対応した数のパルスなど、移動位置情報を含んだ信号を出力する。また、Z軸駆動ユニット16がエアー駆動である場合には、電磁弁を切り換える信号を出力して圧縮空気の供給または排気を制御する。
ドライバー制御部174は、ドライバーユニット14のモータを制御するために信号または電力を出力する。
エアー制御部175は、ネジ吸着ビット141に供給する減圧エアー(真空圧)を供給し、またはその供給を制御するための信号を出力する。
管理部176は、ワーク台25の上にセットされた各ワークについて、高さ測定センサ15から出力されるネジ高さ信号S1に基づき、ネジ込み後のネジの高さを計測する。また、計測されたネジの高さのワークWKに対する移動平均を求め、求めた移動平均を基準とし、その基準に対する所定範囲である上限値および下限値を定め、計測されたネジの高さが前記上限値または前記下限値を越えたときに不適であると判断する。また、絶対上限値および絶対下限値を基台11の位置を基準として設定しておき、上限値が絶対上限値を越えまたは下限値が絶対下限値を越えたときに、エラーとして警報を出力する。詳しくは後で述べる。
総合制御部170は、これら各部との間で信号のやり取りを行い、制御部17の全体を制御する。また、総合制御部170には、操作パネル、表示パネル、警報灯、ブザーなどが設けられる。
総合制御部170は、例えば図3に示すように、CPU、ROM、RAM、その他の周辺素子などを備える。ROMまたはRAMに記憶されたプログラムをCPUが実行することにより、各部に対する制御信号を出力する。また、各部から送られた信号またはデータは、RAMなどに記憶され、必要な演算処理が行われる。
例えば、CPUは、管理部176から種々の信号Sを受信する。また、CPUは、ドライバーオン信号、Z軸エアーオン信号、ネジ吸着エアーオン信号、X軸パルス信号、Y軸パルス信号などを各部に出力する。また、図示しない種々のセンサからの信号を受信する。これらの信号は、RS232Cなどのシリアル信号を用いて送信または受信することも可能である。
なお、これらの信号の送受信には、CPUの汎用ポートを利用することが可能であり、また、専用のIOポートを用いることも可能である。
このような総合制御部170として、PLC(Programmable Logic Controller)と呼ばれるコントローラまたはシーケンサを用いてもよい。
図4において、管理部176は、ネジ高さ記憶部181、演算部182、初期値設定部182a、上下限設定部183、範囲設定部184、判断部185、絶対値設定部186、および警報出力部187などを備える。
ネジ高さ記憶部181は、高さ測定センサ15から出力されるネジ高さ信号S1を記憶する。ネジ高さ記憶部181においては、過去において入力された適当数分のネジ高さ信号S1を記憶している。
演算部182は、ネジ高さ記憶部181に記憶されたネジ高さ信号S1(ネジ高さデータ)を用いて、ワークWKに対する移動平均Aを求める。移動平均Aとして、単純移動平均、荷重移動平均、修正移動平均などを用いることができる。移動平均Aを求める際の初期値として、初期値設定部182aに設定された値が用いられる。初期値設定部182aには、ユーザなどによって任意の値の初期値を設定しておくことが可能である。
つまり、例えば、演算部182は、移動平均(単純移動平均)Aとして、次の(2)式、
A(t)=A(t−1)−P〔t−(n−1)〕/n+P/n ……(2)
但し、A :移動平均
n :個数
P :計測されたネジの高さ
で示されるA(t)を求める。
なお、A(t)は今回の移動平均であり、A(t−1)は前回の移動平均である。移動平均Aの初回の演算の際には、前回の移動平均A(t−1)として、初期値設定部182aに設定された初期値を用いる。また、P〔t−(n−1)〕は移動平均Aに含まれるネジの高さのうちの最初に計測されたネジの高さであり、Pは最新に計測されたネジの高さである。これらネジの高さPは、ネジ高さ信号S1に基づく。
また、移動平均(単純移動平均)Aとして、次の(3)式、
A(t)=A(t−1)−A(t−1)/n+P/n ……(3)
但し、A(t) :今回の移動平均
A(t−1):前回の移動平均
n :個数
P :計測されたネジの高さ
で示されるA(t)を求めてもよい。
この場合にも、初回の演算の際には、前回の移動平均A(t−1)として、初期値設定部182aに設定された初期値を用いる。
上の(3)式を用いて移動平均Aを求めた場合には、最初に計測されたネジの高さP〔t−(n−1)〕を用いないため、プログラム上で計算に使用するメモリ容量が少なくて済み、プログラムもすっきりする。また、上の(3)式を用いた場合には、一番古いネジの高さP〔t−(n−1)〕を差し引くのではなく、これにより誤差が発生するが、移動平均の演算に用いる個数nの値を適度に大きくしておくことにより、結果的に誤差の範囲に落ち着く。
上下限設定部183は、演算部182で求めた移動平均Aに対し、範囲設定部184に設定された範囲値α,βを用いて、上限値GUおよび下限値GSを定める。
つまり、上限値GUおよび下限値GSは、次に(4)式、
GU=A+α
GS=A−β ……(4)
で求められる。
判断部185は、上下限設定部183で求められた上限値GUおよび下限値GSと、ネジ高さ記憶部181から得られる最新のネジ高さ信号S1(最新に計測されたネジの高さP)とに基づいて、そのネジの高さPの適不適を判断する。
すなわち、最新のネジの高さPが上限値GUと下限値GSとの間に入っている場合には、そのネジ締めは適正であると判断し、最新のネジの高さPが上限値GUまたは下限値GSを越えたときに不適であると判断する。
判断部185は、最新のネジ締めについて、ネジの高さPの適不適を示す判断信号S2を出力する。
絶対値設定部186は、基台11の位置を基準として、絶対上限値ZUおよび絶対下限値ZSを設定する。絶対上限値ZUおよび絶対下限値ZSは、上下限設定部183で求められた上限値GUおよび下限値GSに対し、その値が適切であるか否かを判断するための限界値である。絶対上限値ZUおよび絶対下限値ZSは、ユーザによって設定することが可能である。
警報出力部187は、上限値GUが絶対上限値ZUを越え、または下限値GSが絶対下限値ZSを越えたときに、エラーとして警報信号S3を出力する。警報出力部187が警報信号S3を出力したときには、ドライバーユニット14の動作が停止するように制御される。
このような管理部176は、図3に示すようにCPUなどを用い、ROMまたはRAMなどに記憶されたコンピュータプログラムをCPUが実行することによりソフト的に実現することができる。したがって、管理部176などは一種のコンピュータとみることが可能である。また、適当なハードウエア回路を用いて実現することも可能であり、ハードウエア回路とソフトウエアとを組み合わせて実現することも可能である。
次に、管理装置1によるネジの高さの管理方法について説明する。
図6には、計測されたネジの高さPについて、従来の基準DAによる場合と本実施形態の移動平均Aによる場合との適不適の例が示されている。
つまり、図6(A)〜(C)において、基準DAは、固定的に設定された値であり、上限値DUおよび下限値DSは固定的な基準DAに基づいて決定された固定的なものである。
これに対し、基準となる移動平均Aは、固定的なものではなく、ワークの温度変化やロットの寸法バラツキなどによるワークWKの表面の高さの通常の変動が反映されたものである。上限値GUおよび下限値GSは、移動平均Aに基づいて決定されており、同様にワークWKの表面の高さの通常の変動が反映されている。
図6(A)では、ワークWKの表面の高さが、基準台12に対して正規の高さ位置である基準位置KLとなっている場合を示す。この場合に、固定的な基準DAおよび移動平均Aのいずれに基づいても、計測されたネジの高さPは上限値GU,DUと下限値GS,DSとの間に入っている。この場合に、本実施形態では、そのネジ締めは適正であると判断される。実際に、図6(A)に示されるように、ネジNJはワークWKに十分にネジ込まれており、正常な状態である。
図6(B)では、図6(A)と同じく、ワークWKの表面の高さが基準台12に対して正規の高さ位置である基準位置KLとなっている場合を示す。この場合に、固定的な基準DAおよび移動平均Aのいずれに基づいても、計測されたネジの高さPが上限値GU,DUを越えているので、このネジ締めは不適であると判断される。実際に、図6(B)に示されるように、ネジNJはワークWKに十分にネジ込まれておらず、異常な状態である。
この場合に、本実施形態において、ドライバーユニット14はその場合で即座に停止するか、または上昇した後で停止する。エラー警報が音または光などで出力される。その後、ユーザなどによってワークWKが取り除かれる。取り除かれたワークWKは、ネジ込まれたネジNJが取り外され、検査を行った上で、再度ネジ締め工程に送られる。
図6(C)では、ワークWKの表面の高さが基準位置KLからずれている場合を示す。この例では、ワークWKの表面の高さが基準位置KLよりも誤差L1だけ高くなっている。
つまり、この原因として、例えば、ワークWKがワーク台25の上に適正にセットされていない場合、温度または湿度の影響でワークWKの表面が高くなった場合、ロットの寸法バラツキなどが考えられる。
図6(C)の例において、計測されたネジの高さPが固定的な基準DAによる上限値DUを越えているので、その場合にはネジ締めは不適であると判断される。しかし、実際には、図6(C)に示されるように、ネジNJはワークWKに十分にネジ込まれており、正常な状態である。
つまり、固定的な基準DAによる場合には、ネジ締めが正常であっても不適であると判断されることとなる。
これに対し、本実施形態による移動平均Aを用いた場合には、過去に計測されたネジの高さPの履歴に応じて移動平均Aも高くなっている。そのため、上限値GUも高くなっており、計測されたネジの高さPは上限値GUを越えることがなく、実際のネジNJの状態に対応してネジ締めは適正であると判断される。
このように、本実施形態における管理部176によると、ワークWKにネジ込まれるネジNJのネジ込み量の適不適を正確に判断することができる。しかも、ドライバーユニット14は、ネジNJをワークWKのネジ穴NAにネジ込むだけであり、従来のネジ締め方法のようにアタッチメントの先端をワークWKの表面に当てないので、ワークWKの表面に傷をつけることがない。
図7には、ネジ締めの回数に応じて、移動平均A、上限値GU、および下限値GSが変動する様子が示されている。また、図8には、固定的な基準DAによる上限値DUおよび下限値DSを用いた場合が示されている。
図7において、ネジの高さPは、1回ごとに異なる値となっており、しかも全体として大きな周期で変動している。ネジの高さPのワークWKに対する移動平均Aは、その大きな周期に沿うように変動しており、上限値GUおよび下限値GSもそれに沿って変動している。
その結果、それぞれの測定におけるネジの高さPは、そのときの上限値GUおよび下限値GSと比較され、適不適が判断される。図7の例では、時々のネジ締めにおいてネジの高さPが不適であると判断されることとなる。したがって、不適であると判断されたときに、そのワークWKを除去し、またはネジ締め状態をユーザがチェックすればよい。
また、不適であると判断されたときに、ユーザがそのネジ締め状態を実際に確認することにより、その上限値GUおよび下限値GSが適正であったかどうかを判断する。もし実際のネジ締め状態が正常であるにも係わらず不適であると判断された場合には、ユーザは範囲値α,βを変更し、これによって上限値GUおよび下限値GSが妥当な値となるように調整すればよい。また、移動平均Aに用いるネジの高さPの個数nを変更して適正な判断が行われるように調整すればよい。なお、個数nとしては、例えば、8、16、32、または他の適当な値を用いることができる。また、個数nを、8、9、10、11、12などのように、1つごとに調整するようにしてもよい。
また、図7には、絶対値設定部186によって設定された絶対上限値ZUおよび絶対下限値ZSが示されている。この例では、上限値GUまたは下限値GSは、いずれも絶対上限値ZUまたは絶対下限値ZSを越えていないので、警報信号S3は出力されない。
この場合に、上限値GUまたは下限値GSが絶対上限値ZUまたは絶対下限値ZSを越えた場合には、警報信号S3が出力される。これは、規格外のワークWKまたはネジNJが混入している場合、ゴミなどが挟まっている場合、ワークWKまたはネジNJのバラツキなどが許容範囲でなくなっていることなどが考えられる。
なお、絶対上限値ZUおよび絶対下限値ZSについても、実際のネジ締め状態を見ながら適正な値となるように実験によって調整すればよい。
これに対して、図8においては、ネジの高さPの変化の大きな周期において、特定の回数の期間における全体が不適となってしまう。つまり、実際にはネジ締め状態が正常であるにも係わらず不適となってしまう。
次に、管理装置1における処理および動作について、フローチャートを参照して説明する。
図9において、制御部17の起動時に初期設定を行う(#11)。初期設定においては、例えば、移動平均A(t−1)の初期値、個数n、範囲値α,β、絶対上限値ZU、絶対下限値ZSなどを設定する。また、移動平均A(t−1)の初期値を、レジスタAregに記憶する。
そして、流れてきたワークWKに対して、ネジ締めを行い、ネジの高さPを計測する(#12)。移動平均Aを演算するために、前回の移動平均A(t−1)として、レジスタAregに記憶された値を用いる(#13)。そして、移動平均Aを演算する(#14)。
求められた移動平均AによってレジスタAregを更新する(#15)。上限値GUおよび下限値GSを算出する(#16)。算出した上限値GUおよび下限値GSが絶対上限値ZUまたは絶対下限値ZSのいずれをも越えていないかどうか比較する(#17)。比較した結果、その条件を満たす場合には(#18でイエス)、計測されたネジの高さPと上限値GUおよび下限値GSとを比較する(#19)。計測されたネジの高さPが上限値GUおよび下限値GSの範囲内であれば、適正であると判断し、次のワークWKのネジ締めを行う(#20でイエス、#12)。
ステップ#17で比較した結果、その条件を満たさない場合には(#18でノー)、エラー処理などを実施する(#21)。計測されたネジの高さPが上限値GUおよび下限値GSの範囲外である場合には、ネジ締めが不適であると判断し、エラー処理などを実施する(#22)。
上に述べたように、本実施形態の管理装置1によると、ワークWKの表面に傷をつけることなくネジ締めを行うことができ、かつ、ワークWKにネジ込まれたネジNJのネジ込み量の適不適を正確に判断することができる。その結果、ネジ締め状態についての誤判定を低減することができ、生産効率の向上が図られる。
上に述べた実施形態の管理装置1では、Y軸駆動ユニット23によってテーブル24をY軸方向にも移動したが、Y軸駆動ユニット23によってドライバーユニット14および高さ測定センサ15を移動させてもよい。
すなわち、図10に示す管理装置1Bのように、テーブル24はX軸駆動ユニット22によってX軸方向にのみ移動させ、ドライバーユニット14および高さ測定センサ15をY軸方向およびZ軸方向に移動させてもよい。
また、図10におけるネジ供給装置13はテーブル24に搭載されているが、テーブル24に搭載しないようにすることも可能である。例えばY軸を延ばすことによって、ネジ供給装置13をベッド21に固定することが可能である。このようにすることにより、テーブル24を軽量化してX軸の動作を速くすることができ、これによりタクトタイムを短縮することも可能となる。
上に述べた実施形態において、図7に示すように、ネジの高さPの各測定値、移動平均A、上限値GU、下限値GS、絶対上限値ZU、絶対下限値ZSなどを表示パネルに表示してもよい。
上に述べた実施形態において、基台11、ドライバーユニット14、高さ測定センサ15、管理部176、制御部17、または管理装置1,1Bの全体または各部の構成、構造、形状、寸法、成形方法、製作方法、配置、個数、材質、位置などは、上に述べた以外に種々変更することができる。
上に述べた例では、ワークWKが携帯電話機である場合について説明したが、その他の形状の携帯電話機、携帯電話機以外の種々の携帯端末機、通信機器、コンピュータ機器、ゲーム機器、その他の電子機器、またはこれら以外の機器などにも、ワークWKとして用いることが可能である。
1 管理装置
11 基台
12 基準台(高さ基準部)
14 ドライバーユニット
15 高さ測定センサ(ネジ高さ計測部、センサ)
17 制御部
24 テーブル
176 管理部
181 ネジ高さ記憶部
182 演算部
182a 初期値設定部
183 上下限設定部(設定部)
184 範囲設定部
185 判断部
186 絶対値設定部
187 警報出力部
WK ワーク
A 移動平均
P ネジの高さ
NJ ネジ
NA ネジ穴

Claims (8)

  1. 基台上に順次セットされるワークにネジ込まれる各ネジのネジ込み量を管理する方法であって、
    各ワークについて、ネジ込み後のネジの高さを前記基台の位置を基準として計測し、
    計測されたネジの高さのワークに対する移動平均を求め、
    求めた移動平均を基準とし、その基準に対する所定範囲である上限値および下限値を定め、
    計測されたネジの高さが前記上限値または前記下限値を越えたときに不適であると判断する、
    ネジのネジ込み量の管理方法。
  2. 絶対上限値および絶対下限値を前記基台の位置を基準として設定しておき、
    前記上限値が前記絶対上限値を越えまたは前記下限値が前記絶対下限値を越えたときに、エラーとして警報を出力する、
    請求項1記載のネジのネジ込み量の管理方法。
  3. 基台上に順次セットされるワークにネジ込まれる各ネジのネジ込み量を管理する装置であって、
    前記ネジの高さを前記基台の位置を基準として計測するネジ高さ計測部と、
    計測されたネジの高さのワークに対する移動平均を求める演算部と、
    求めた移動平均を基準としその基準に対する所定範囲である上限値および下限値を設定する設定部と、
    計測されたネジの高さが前記上限値または前記下限値を越えたときに不適であると判断する判断部と、
    を備えるネジのネジ込み量の管理装置。
  4. 絶対上限値および絶対下限値を前記基台の位置を基準として設定する絶対値設定部と、
    前記上限値が前記絶対上限値を越えまたは前記下限値が前記絶対下限値を越えたときに、エラーとして警報を出力する警報出力部と、
    を備える請求項3記載のネジのネジ込み量の管理装置。
  5. 前記演算部は、移動平均として、次の(1)式、
    A(t)=A(t−1)−A(t−1)/n+P/n ……(1)
    但し、A(t) :今回の移動平均
    A(t−1):前回の移動平均
    n :個数
    P :計測されたネジの高さ
    で示されるA(t)を求めるものであり、
    初回の演算においては、初期値設定部に設定された初期値を前回の移動平均として用いて演算を行う、
    請求項3または4記載のネジのネジ込み量の管理装置。
  6. 前記ネジ高さ計測部は、
    前記ワークにネジをネジ込むドライバユニットと一体にZ軸方向に移動するように設けられたセンサと、
    前記基台の位置に対する高さが変動しないように固定的に設けられた高さ基準部と、を備え、
    前記センサと前記高さ基準部との間の距離に応じた信号に基づいて前記ネジの高さを計測する、
    請求項3ないし5のいずれかに記載のネジのネジ込み量の管理装置。
  7. 前記基台には、X軸またはXY軸に沿ってワークを移動させるテーブルが備えられ、
    前記ドライバユニットは、ワークに設けられたネジ穴に対して位置決めされた状態で、Z軸方向に移動する、
    請求項6記載のネジのネジ込み量の管理装置。
  8. 前記警報出力部が警報を出力したときに、前記ドライバユニットはその動作が停止するように制御されている、
    請求項7記載のネジのネジ込み量の管理装置。
JP2009228155A 2009-09-30 2009-09-30 ネジのネジ込み量の管理方法および装置 Withdrawn JP2011073105A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009228155A JP2011073105A (ja) 2009-09-30 2009-09-30 ネジのネジ込み量の管理方法および装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009228155A JP2011073105A (ja) 2009-09-30 2009-09-30 ネジのネジ込み量の管理方法および装置

Publications (1)

Publication Number Publication Date
JP2011073105A true JP2011073105A (ja) 2011-04-14

Family

ID=44017649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009228155A Withdrawn JP2011073105A (ja) 2009-09-30 2009-09-30 ネジのネジ込み量の管理方法および装置

Country Status (1)

Country Link
JP (1) JP2011073105A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016008993A1 (de) 2015-07-31 2017-02-02 Fanuc Corporation Maschinelle Lernvorrichtung, Verschraubungssystem und Steuervorrichtung hiervon
WO2020090293A1 (ja) * 2018-10-29 2020-05-07 オムロン株式会社 底付き判定基準設定方法
CN114198368A (zh) * 2021-11-22 2022-03-18 东方电气集团科学技术研究院有限公司 一种超高压拉伸泵站的控制方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016008993A1 (de) 2015-07-31 2017-02-02 Fanuc Corporation Maschinelle Lernvorrichtung, Verschraubungssystem und Steuervorrichtung hiervon
WO2020090293A1 (ja) * 2018-10-29 2020-05-07 オムロン株式会社 底付き判定基準設定方法
JP2020071056A (ja) * 2018-10-29 2020-05-07 オムロン株式会社 底付き判定基準設定方法
CN112654847A (zh) * 2018-10-29 2021-04-13 欧姆龙株式会社 触底判定基准设定方法
US11759898B2 (en) 2018-10-29 2023-09-19 Omron Corporation Method for setting bottom-touching-determination standard and non-transitory computer readable storage medium
CN114198368A (zh) * 2021-11-22 2022-03-18 东方电气集团科学技术研究院有限公司 一种超高压拉伸泵站的控制方法

Similar Documents

Publication Publication Date Title
US9370848B2 (en) Device for fastening screw onto workpiece and method of judging loosening of screw
CN101171493B (zh) 尺寸测量探针
US8350713B2 (en) Numerical controller having a function for determining machine abnormality from signals obtained from a plurality of sensors
CN104044273A (zh) 三维打印机的校准方法及其装置
JP2011073105A (ja) ネジのネジ込み量の管理方法および装置
CN105538313A (zh) 一种工业机器人激光轨迹检测装置
CN103576210A (zh) 接近感测方法
CN101349555A (zh) 高度仪
KR20210092276A (ko) 가스압 검지 장치, 가스압 검지 장치를 구비한 로봇 및 그 가스압 검지 방법
US8364441B2 (en) Surface texture measuring device, surface texture measuring method, and program
TWI701101B (zh) 線性傳動裝置以及其辨識方法
TW201348903A (zh) 接觸式運動控制系統及方法
JP2015169582A (ja) 姿勢検出装置
JP6824593B2 (ja) ステージ装置及び複合ステージの制御装置
EP1644716A2 (en) System and method for load sensing using piezoelectric effect
JP2003332792A (ja) 電子回路部品装着ヘッド
KR102182351B1 (ko) 리니어 액추에이터 및 그 식별 방법
US6931302B1 (en) Method for a robot
CN205219118U (zh) 机器人零点校准装置及机器人零点校准系统
CN111113152B (zh) 检测补偿装置、检测补偿方法及计算机可读存储介质
CN109297691B (zh) 一种烟机参数的检测设备及方法
KR20120138339A (ko) Lcd 로봇핸드의 정렬상태 검사장치 및 이를 이용한 로봇핸드의 정렬상태 교정방법
JP7491753B2 (ja) ロボットコントローラ、ロボットシステム及び走行装置の管理方法
JP6741828B1 (ja) リニア伝動装置とリニア伝動装置の識別方法
TW201704920A (zh) 線性滑軌軸承座監控系統

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121204