JP2011072934A - PtRu/C CATALYST HAVING CONTROLLED ALLOYING DEGREE AND DISPERSIBILITY AND METHOD FOR PRODUCING THE SAME - Google Patents

PtRu/C CATALYST HAVING CONTROLLED ALLOYING DEGREE AND DISPERSIBILITY AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP2011072934A
JP2011072934A JP2009228054A JP2009228054A JP2011072934A JP 2011072934 A JP2011072934 A JP 2011072934A JP 2009228054 A JP2009228054 A JP 2009228054A JP 2009228054 A JP2009228054 A JP 2009228054A JP 2011072934 A JP2011072934 A JP 2011072934A
Authority
JP
Japan
Prior art keywords
catalyst
ptru
heat treatment
temperature
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009228054A
Other languages
Japanese (ja)
Other versions
JP5471252B2 (en
Inventor
Toshiro Yamanaka
俊朗 山中
Tatsuya Takeguchi
竜弥 竹口
Wataru Ueda
渉 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Original Assignee
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC filed Critical Hokkaido University NUC
Priority to JP2009228054A priority Critical patent/JP5471252B2/en
Publication of JP2011072934A publication Critical patent/JP2011072934A/en
Application granted granted Critical
Publication of JP5471252B2 publication Critical patent/JP5471252B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Powder Metallurgy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a PtRu/C catalyst for fuel cell anodes, which has the CO tolerance better than those of the conventional PtRu/C catalysts and to provide a method for producing the PtRu/C catalyst for fuel cell anodes. <P>SOLUTION: The method for producing the PtRu/C catalyst comprises: a Ru deposition step of depositing ruthenium on a platinum catalyst obtained by depositing platinum on a carrier comprising a carbon material; and a heat treatment step of heat-treating an object, which is to be treated and is obtained at the Ru deposition step, in the presence of hydrogen gas to obtain the PtRu/C catalyst. At the heat treatment step, the temperature of the object to be treated is adjusted so that the maximum temperature thereof is within 750-1,000°C and the time when the temperature thereof is ≥750°C is within 15-300 seconds. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、固体高分子形燃料電池のアノードに使用される触媒に関し、より詳しくは炭素材料からなる担体と、これに担持された白金及びルテニウムとを含有し、優れた一酸化炭素耐性を有するPtRu/C触媒及びその製造方法に関する。   The present invention relates to a catalyst used for an anode of a polymer electrolyte fuel cell. More specifically, the present invention contains a support made of a carbon material, platinum and ruthenium supported on the support, and has excellent carbon monoxide resistance. The present invention relates to a PtRu / C catalyst and a method for producing the same.

固体高分子形燃料電池は、従来の発電技術と比較して高いエネルギー効率を達成し得ることから、環境負荷の少ない電力発生源としてその実用化が期待されている。固体高分子形燃料電池のアノード(燃料極)に対して水素を供給し、カソード(空気極)に対して空気を供給すると、下記の反応が生じる。すなわち、アノード触媒の働きにより燃料極において水素イオン(プロトン)が生じ、電解質膜を通過したプロトンと酸素が結合して空気極において水が生じる。
燃料極:H→2H+2e
空気極:1/2O+2H+2e→H
The polymer electrolyte fuel cell can achieve high energy efficiency as compared with the conventional power generation technology, and thus is expected to be put to practical use as a power generation source with a low environmental load. When hydrogen is supplied to the anode (fuel electrode) of the polymer electrolyte fuel cell and air is supplied to the cathode (air electrode), the following reaction occurs. That is, hydrogen ions (protons) are generated in the fuel electrode by the action of the anode catalyst, and protons and oxygen that have passed through the electrolyte membrane are combined to generate water in the air electrode.
Fuel electrode: H 2 → 2H + + 2e
Air electrode: 1 / 2O 2 + 2H + + 2e → H 2 O

燃料となる水素は、天然ガスを水蒸気改質して生成されることが多い。この方法で作られた水素は微量の一酸化炭素(CO)を含んでおり、COがアノード触媒に吸着して触媒活性を下げることが知られている。そのため、CO耐性の高いアノード触媒の開発に向けて様々な取り組みがなされている。   Hydrogen as a fuel is often produced by steam reforming natural gas. Hydrogen produced by this method contains a trace amount of carbon monoxide (CO), and it is known that CO is adsorbed on the anode catalyst to lower the catalytic activity. Therefore, various efforts are being made toward the development of an anode catalyst with high CO resistance.

これまでに開発された触媒の中では、カーボン微粒子に白金及びルテニウムを担持した触媒(PtRu/C触媒)が最も優れたCO耐性を有するものとして知られている(特許文献1−4及び非特許文献1を参照)。特許文献1には熱処理によりPtとRuを合金化させる合金触媒の製造方法が記載されている。特許文献2,3では金属粒子のサイズとCO耐性との関係が検討され、特許文献4及び非特許文献1ではPtとRuの組成比とCO耐性との関係が検討されている。   Among the catalysts developed so far, a catalyst in which platinum and ruthenium are supported on carbon fine particles (PtRu / C catalyst) is known to have the most excellent CO resistance (Patent Documents 1-4 and non-patent documents). Reference 1). Patent Document 1 describes a method for producing an alloy catalyst in which Pt and Ru are alloyed by heat treatment. Patent Documents 2 and 3 examine the relationship between the size of metal particles and CO resistance, and Patent Document 4 and Non-Patent Document 1 discuss the relationship between the composition ratio of Pt and Ru and CO resistance.

特許第3839961号公報Japanese Patent No. 3839961 米国特許第6066410号明細書US Pat. No. 6,664,410 米国特許第6007934号明細書US Pat. No. 6,0079,34 米国特許第6339038号明細書US Pat. No. 6,339,038

多田ら、「熱拡散白金ルテニウム合金触媒の組成比が耐一酸化炭素被毒特性へ与える影響」、電気化学会誌、2008年、76,No.11、p.813−823Tada et al., “Effect of Composition Ratio of Thermally Diffused Platinum Ruthenium Alloy Catalyst on Carbon Monoxide Toxic Properties”, Journal of the Electrochemical Society, 2008, 76, No. 11, p. 813-823

しかし、従来のPtRu/C触媒は、CO耐性が未だ十分ではなく、固体高分子形燃料電池の実用化に向け、より一層のCO耐性の向上が求められている。本発明は、上記実情に鑑みてなされたものであり、従来のPtRu/C触媒と比較して優れたCO耐性を有するPtRu/C触媒及びその製造方法を提供することを目的とする。   However, the conventional PtRu / C catalyst is not yet sufficient in CO resistance, and further improvement in CO resistance is required for practical use of the polymer electrolyte fuel cell. This invention is made | formed in view of the said situation, and it aims at providing the PtRu / C catalyst which has the CO tolerance outstanding compared with the conventional PtRu / C catalyst, and its manufacturing method.

本発明に係るPtRu/C触媒の製造方法は、炭素材料からなる担体に白金が担持された白金触媒にルテニウムを更に担持するRu担持工程と、水素ガスの存在下、Ru担持工程を経て得られた被処理物を熱処理してPtRu/C触媒を得る熱処理工程とを備え、熱処理工程において、被処理物が到達する最高温度が750〜1000℃であり且つ当該被処理物の温度が750℃以上となる時間が15〜300秒となるように温度調整をすることを特徴とする。   The method for producing a PtRu / C catalyst according to the present invention is obtained through a Ru supporting step of further supporting ruthenium on a platinum catalyst in which platinum is supported on a support made of a carbon material, and a Ru supporting step in the presence of hydrogen gas. A heat treatment step of obtaining a PtRu / C catalyst by heat treatment of the treated material, wherein the maximum temperature reached by the treated material is 750 to 1000 ° C. and the temperature of the treated material is 750 ° C. or higher. The temperature is adjusted so as to be 15 to 300 seconds.

上記製造方法によれば、熱処理工程における最高温度を750〜1000℃に調整することで、PtとRuの合金化度を制御することができる。また、被処理物の温度が750℃以上となる時間を15〜300秒に制限することで、Pt粒子、Ru粒子及びこれらの合金粒子が凝集して大きくなることを十分に抑制できる。これにより、金属粒子の高い分散性を達成できる。本発明においては、金属粒子の高い分散性が優れたCO耐性に寄与しているものと推察される。   According to the said manufacturing method, the alloying degree of Pt and Ru can be controlled by adjusting the maximum temperature in a heat treatment process to 750-1000 degreeC. Moreover, it can fully suppress that Pt particle | grains, Ru particle | grains, and these alloy particle | grains aggregate and become large by restrict | limiting time for the temperature of a to-be-processed object to 750 degreeC or more to 15 to 300 second. Thereby, high dispersibility of the metal particles can be achieved. In the present invention, it is presumed that the high dispersibility of the metal particles contributes to excellent CO resistance.

上記熱処理工程は、より優れたCO耐性を実現する観点から、次のような(1)昇温ステップ、(2)最高温度保持ステップ及び(3)降温ステップを少なくとも一つ有することが好ましい。これらのステップを適宜組み合せて被処理物の熱処理を実施することがより好ましい。
(1)30〜90℃/分の加熱速度で昇温するステップ。
(2)被処理物の温度を最高温度に一定時間にわたって保持するステップ。
(3)5〜80℃/分の冷却速度で降温するステップ。
上記(2)最高温度保持ステップは60秒未満であることが好ましい。この時間を60秒未満とすることによって、金属粒子の小さい粒子径を維持することができ、より一層高いCO耐性が達成される。
The heat treatment step preferably includes at least one of the following (1) heating step, (2) maximum temperature holding step, and (3) cooling step from the viewpoint of realizing superior CO resistance. It is more preferable to perform a heat treatment of the workpiece by appropriately combining these steps.
(1) A step of raising the temperature at a heating rate of 30 to 90 ° C./min.
(2) A step of maintaining the temperature of the object to be processed at the maximum temperature for a certain period of time.
(3) A step of lowering the temperature at a cooling rate of 5 to 80 ° C / min.
The (2) maximum temperature holding step is preferably less than 60 seconds. By setting this time to less than 60 seconds, the small particle diameter of the metal particles can be maintained, and even higher CO resistance can be achieved.

本発明に係るPtRu/C触媒は、炭素材料からなる担体と、この担体に担持された白金及びルテニウムとを含むものであって、当該触媒のメタノール酸化特性を赤外吸収法で測定したとき、電位0.2Vにおいて測定される赤外スペクトルが二酸化炭素の生成を示す吸収ピークを有することを特徴とする。   The PtRu / C catalyst according to the present invention includes a support made of a carbon material and platinum and ruthenium supported on the support, and when the methanol oxidation characteristics of the catalyst are measured by an infrared absorption method, The infrared spectrum measured at a potential of 0.2 V has an absorption peak indicating the generation of carbon dioxide.

上記PtRu/C触媒によれば、従来のPtRu/C触媒と比較して優れたCO耐性を達成できる。これは当該触媒の優れた酸化性能によるものと推察される。すなわち、本発明に係るPtRu/C触媒は、赤外吸収法によってメタノール酸化特性を測定すると、電位0.2Vにおいてメタノールから一酸化炭素のみならず二酸化炭素も生成する。これに対し、従来のPtRu/C触媒には電位0.2Vにおいてメタノールを一酸化炭素に酸化できても、二酸化炭素にまで酸化できるものは存在しない。   According to the PtRu / C catalyst, excellent CO resistance can be achieved as compared with the conventional PtRu / C catalyst. This is presumably due to the excellent oxidation performance of the catalyst. That is, the PtRu / C catalyst according to the present invention generates methanol as well as carbon monoxide from methanol at a potential of 0.2 V when measuring methanol oxidation characteristics by an infrared absorption method. On the other hand, even if the conventional PtRu / C catalyst can oxidize methanol to carbon monoxide at a potential of 0.2 V, there is no catalyst that can oxidize to carbon dioxide.

本発明によれば、従来のPtRu/C触媒と比較して優れたCO耐性を有するPtRu/C触媒を製造できる。このPtRu/C触媒は固体高分子形燃料電池のアノード触媒として有用である。   According to the present invention, it is possible to produce a PtRu / C catalyst having superior CO resistance as compared with a conventional PtRu / C catalyst. This PtRu / C catalyst is useful as an anode catalyst for a polymer electrolyte fuel cell.

触媒のメタノール酸化特性を測定するための装置の構成を示す図である。It is a figure which shows the structure of the apparatus for measuring the methanol oxidation characteristic of a catalyst. 図1の装置が備える試料電極の先端部及びプリズムの構成を示す図である。It is a figure which shows the structure of the front-end | tip part of a sample electrode with which the apparatus of FIG. 1 is equipped, and a prism. 実施例1及び比較例2〜4に係る触媒のX線回折スペクトルである。It is a X-ray diffraction spectrum of the catalyst which concerns on Example 1 and Comparative Examples 2-4. 実施例1,2及び比較例1に係る触媒のX線回折スペクトルである。2 is an X-ray diffraction spectrum of catalysts according to Examples 1 and 2 and Comparative Example 1. FIG. (a),(b)は実施例1に係る触媒のSTEM画像であり、(c)はその金属粒子径の分布を示すグラフである。(A), (b) is a STEM image of the catalyst which concerns on Example 1, (c) is a graph which shows distribution of the metal particle diameter. (a),(b)は比較例1に係る触媒のSTEM画像であり、(c)はその金属粒子径の分布を示すグラフである。(A), (b) is a STEM image of the catalyst which concerns on the comparative example 1, (c) is a graph which shows distribution of the metal particle diameter. 実施例3に係る触媒のメタノール酸化特性を示す赤外スペクトルである。3 is an infrared spectrum showing methanol oxidation characteristics of the catalyst according to Example 3. 市販触媒のメタノール酸化特性を示す赤外スペクトルである。It is an infrared spectrum which shows the methanol oxidation characteristic of a commercial catalyst. 実施例3に係る触媒及び市販触媒のメタノール酸化特性(電圧0.2V)を示す赤外スペクトルである。It is an infrared spectrum which shows the methanol oxidation characteristic (voltage 0.2V) of the catalyst which concerns on Example 3, and a commercially available catalyst. 純水素を燃料として使用した場合の燃料電池のIV特性を示すグラフである。It is a graph which shows the IV characteristic of a fuel cell at the time of using pure hydrogen as a fuel. 一酸化炭素を含有する水素を燃料として使用した場合の燃料電池のIV特性を示すグラフである。It is a graph which shows the IV characteristic of a fuel cell at the time of using hydrogen containing carbon monoxide as a fuel.

<PtRu/C触媒の製造方法>
本実施形態に係るPtRu/C触媒の製造方法は、炭素材料からなる担体に白金が担持された白金触媒(Pt/C触媒)にルテニウムを更に担持するRu担持工程と、水素ガスの存在下、Ru担持工程を経て得られた被処理物を熱処理してPtRu/C触媒を得る熱処理工程とを備える。
<Method for producing PtRu / C catalyst>
The method for producing a PtRu / C catalyst according to the present embodiment includes a Ru supporting step of further supporting ruthenium on a platinum catalyst (Pt / C catalyst) in which platinum is supported on a support made of a carbon material, and in the presence of hydrogen gas. A heat treatment step of obtaining a PtRu / C catalyst by heat-treating an object to be treated obtained through the Ru loading step.

Ru担持工程は、Pt/C触媒にルテニウムを更に担持する工程である。Pt/C触媒は、例えば白金化合物水溶液にカーボン微粒子を加えて混合するとともに、アルコール等の還元剤を用いて白金化合物を還元することによって得ることができる。なお、市販のPt/C触媒を購入してそのまま用いてもよい。   The Ru supporting step is a step of further supporting ruthenium on the Pt / C catalyst. The Pt / C catalyst can be obtained, for example, by adding and mixing carbon fine particles to an aqueous platinum compound solution and reducing the platinum compound using a reducing agent such as alcohol. A commercially available Pt / C catalyst may be purchased and used as it is.

白金化合物水溶液としては、例えばジニトロジアミン白金硝酸水溶液や塩化白金酸水溶液などを用いることができる。担体としては、例えばカーボンブラックを用いることができる。Pt/C触媒において、担体の質量を基準としたPt担持量は20〜60質量%が好ましく、より好ましくは30〜50質量%である。白金化合物水溶液の濃度は上述の好ましいPt担持量となるように調整すればよい。   As the platinum compound aqueous solution, for example, dinitrodiamine platinum nitric acid aqueous solution or chloroplatinic acid aqueous solution can be used. As the carrier, for example, carbon black can be used. In the Pt / C catalyst, the amount of Pt supported based on the mass of the carrier is preferably 20 to 60% by mass, more preferably 30 to 50% by mass. What is necessary is just to adjust the density | concentration of platinum compound aqueous solution so that it may become the above-mentioned preferable Pt carrying amount.

上記Pt/C触媒をルテニウム化合物水溶液に加えて混合するとともに、アルコール等の還元剤を用いてルテニウム化合物を還元することによってPt/C触媒上にルテニウムを担持する。ルテニウム化合物水溶液は、例えば塩化ルテニウム(RuCl)などのルテニウム塩化物やルテニウム硝酸物、ルテニウム錯体の水溶液を用いることができる。還元剤としてはアルコールが好ましく、メチルアルコール、エチルアルコール、プロピルアルコールなどを用いることができる。 The Pt / C catalyst is added to the ruthenium compound aqueous solution and mixed, and the ruthenium compound is supported on the Pt / C catalyst by reducing the ruthenium compound using a reducing agent such as alcohol. As the ruthenium compound aqueous solution, for example, an aqueous solution of ruthenium chloride such as ruthenium chloride (RuCl 3 ), ruthenium nitrate, or ruthenium complex can be used. As the reducing agent, alcohol is preferable, and methyl alcohol, ethyl alcohol, propyl alcohol, and the like can be used.

上記ルテニウム化合物水溶液の濃度は、担持されるPtとRuのモル比に応じて調整することができる。Ptの担持量をAモル、Ruの担持量をBモルとすると、PtとRuの担持量のモル比(A/B)は2/10〜10/10が好ましく、3/10〜8/10がより好ましく、5/10〜7/10がさらに好ましい。   The concentration of the ruthenium compound aqueous solution can be adjusted according to the molar ratio of supported Pt and Ru. When the supported amount of Pt is A mole and the supported amount of Ru is B mole, the molar ratio (A / B) of the supported amounts of Pt and Ru is preferably 2/10 to 10/10, and 3/10 to 8/10. Is more preferable, and 5/10 to 7/10 is more preferable.

熱処理工程は、上述のRu担持工程を経て得られた被処理物を、水素ガスの存在下にて熱処理してPtRu/C触媒を得る工程である。熱処理工程は、炉内の空気を他のガスに置換可能な加熱炉を用いて実施でき、アルゴンなどの不活性ガスと水素ガスの混合ガス雰囲気下にて行うことが好ましい。水素ガスの濃度は3〜20体積%程度とすればよい。水素ガスの存在下で熱処理を行うことで、Pt及びRuの酸化を抑制できる。   The heat treatment step is a step of obtaining a PtRu / C catalyst by heat-treating an object to be processed obtained through the Ru supporting step described above in the presence of hydrogen gas. The heat treatment step can be performed using a heating furnace capable of replacing the air in the furnace with another gas, and is preferably performed in a mixed gas atmosphere of an inert gas such as argon and hydrogen gas. The concentration of hydrogen gas may be about 3 to 20% by volume. By performing the heat treatment in the presence of hydrogen gas, oxidation of Pt and Ru can be suppressed.

熱処理工程においては、被処理物が到達する最高温度が750〜1000℃となるように加熱炉内の温度を調整する。熱処理工程における最高温度を750〜1000℃に調整することで、PtとRuの合金化度を制御することができる。最高温度が750℃未満であると、PtとRuの合金化が不十分となる。他方、最高温度が1000℃を越えると、Pt粒子、Ru粒子及びこれらの合金粒子(以下、単に「金属粒子」という。)が凝集して粒径が大きくなり、触媒活性が不十分となる。被処理物が到達する最高温度は、好ましくは800〜950℃であり、より好ましくは850〜920℃であり、さらに好ましくは880〜910℃である。   In the heat treatment step, the temperature in the heating furnace is adjusted so that the maximum temperature reached by the workpiece is 750 to 1000 ° C. By adjusting the maximum temperature in the heat treatment step to 750 to 1000 ° C., the degree of alloying of Pt and Ru can be controlled. When the maximum temperature is less than 750 ° C., alloying of Pt and Ru becomes insufficient. On the other hand, when the maximum temperature exceeds 1000 ° C., Pt particles, Ru particles and their alloy particles (hereinafter simply referred to as “metal particles”) are aggregated to increase the particle size, resulting in insufficient catalytic activity. The maximum temperature reached by the workpiece is preferably 800 to 950 ° C, more preferably 850 to 920 ° C, and further preferably 880 to 910 ° C.

また、熱処理工程においては、被処理物が750℃以上の温度で加熱される時間が15〜300秒となるように加熱炉内の温度条件を設定する。被処理物の温度が750℃以上となる時間を制限することで、金属粒子が凝集して大きくなることを十分に抑制できるとともに、金属粒子が高度に分散した触媒を得ることができる。750℃以上の熱処理時間が15秒未満であると、PtとRuの合金化が不十分となる。他方、この時間が300秒を超えると、金属粒子が凝集して粒径が大きくなり、触媒活性が不十分となる。被処理物が750℃以上の温度で加熱される時間は好ましくは15〜120秒であり、より好ましくは15〜60秒であり、もっとも好ましくは20〜40秒である。   In the heat treatment step, the temperature condition in the heating furnace is set so that the time during which the workpiece is heated at a temperature of 750 ° C. or higher is 15 to 300 seconds. By limiting the time during which the temperature of the object to be processed is 750 ° C. or higher, it is possible to sufficiently suppress the metal particles from aggregating and becoming large, and it is possible to obtain a catalyst in which the metal particles are highly dispersed. When the heat treatment time at 750 ° C. or higher is less than 15 seconds, alloying of Pt and Ru becomes insufficient. On the other hand, if this time exceeds 300 seconds, the metal particles are aggregated to increase the particle size, resulting in insufficient catalytic activity. The time during which the workpiece is heated at a temperature of 750 ° C. or higher is preferably 15 to 120 seconds, more preferably 15 to 60 seconds, and most preferably 20 to 40 seconds.

上記熱処理工程は、より優れたCO耐性を実現する観点から、以下の(1)昇温ステップ、(2)最高温度保持ステップ及び(3)降温ステップを少なくとも一つ有することが好ましい。これらのステップを適宜組み合せて被処理物の熱処理を実施することがより好ましい。   The heat treatment step preferably includes at least one of the following (1) heating step, (2) maximum temperature holding step, and (3) cooling step from the viewpoint of realizing superior CO resistance. It is more preferable to perform a heat treatment of the workpiece by appropriately combining these steps.

(1)昇温ステップ
室温から最高温度までの加熱は、急速加熱が好ましく、上記熱処理工程は30〜90℃/分の加熱速度で昇温するステップを備えることが好ましい。このような上記昇温ステップを備えることにより、金属粒子が凝集して粒径が大きくなることをより確実に抑制できる。加熱速度が30℃/分未満であると、金属粒子の凝集が生じやすくなる。他方、加熱速度が90℃/分を超えると、炉内の温度が不均一となりやすい。加熱速度は45〜90℃/分がより好ましく、さらに好ましくは60〜90℃/分であり、もっとも好ましくは75〜90℃/分である。
(1) Heating step Heating from room temperature to the maximum temperature is preferably rapid heating, and the heat treatment step preferably includes a step of heating at a heating rate of 30 to 90 ° C / min. By providing such a temperature raising step, it is possible to more reliably suppress the aggregation of the metal particles and the increase in the particle size. When the heating rate is less than 30 ° C./min, aggregation of metal particles tends to occur. On the other hand, when the heating rate exceeds 90 ° C./min, the temperature in the furnace tends to be non-uniform. The heating rate is more preferably 45 to 90 ° C./min, still more preferably 60 to 90 ° C./min, and most preferably 75 to 90 ° C./min.

(2)最高温度保持ステップ
熱処理工程は、被処理物の温度を最高温度に一定時間にわたって保持するステップを備えたものであってもよい。保持時間は60秒未満であることが好ましく、40秒未満がより好ましく、20秒未満がさらに好ましい。この時間を60秒未満とすることによって、金属粒子の小さい粒子径を維持することができ、より一層高いCO耐性が達成される。なお、加熱炉の設定温度が最高温度に到達すると同時に昇温ステップから降温ステップに移行してもよい。このように被処理物が最高温度にて熱処理される時間を短くすることで、担体上の金属粒子の凝集が抑制され、高い分散性を維持できる。これにより、優れた一酸化炭素耐性を有するPtRu/C触媒を得ることができる。
(2) Maximum temperature holding step The heat treatment step may include a step of holding the temperature of the object to be processed at the maximum temperature for a certain period of time. The holding time is preferably less than 60 seconds, more preferably less than 40 seconds, and even more preferably less than 20 seconds. By setting this time to less than 60 seconds, the small particle diameter of the metal particles can be maintained, and even higher CO resistance can be achieved. Note that the temperature raising step may be shifted to the temperature lowering step at the same time when the set temperature of the heating furnace reaches the maximum temperature. By shortening the time during which the object to be treated is heat-treated at the maximum temperature in this way, aggregation of metal particles on the carrier is suppressed and high dispersibility can be maintained. Thereby, the PtRu / C catalyst which has the outstanding carbon monoxide tolerance can be obtained.

(3)降温ステップ
最高温度から室温までの冷却は、急速冷却が好ましく、上記熱処理工程は5〜80℃/分の冷却速度で降温するステップを備えることが好ましい。このような上記降温ステップを備えることにより、金属粒子が凝集して粒径が大きくなることをより確実に抑制できる。降温速度が5℃/分未満であると、金属粒子の凝集が生じやすくなる。他方、降温速度が80℃/分を超えると、加熱炉が損傷するおそれがある。降温速度は10〜80℃/分がより好ましく、さらに好ましくは15〜80℃/分であり、もっとも好ましくは20〜80℃/分である。
(3) Temperature drop step Cooling from the maximum temperature to room temperature is preferably rapid cooling, and the heat treatment step preferably includes a step of cooling at a cooling rate of 5 to 80 ° C / min. By providing such a temperature lowering step, it is possible to more reliably suppress the metal particles from agglomerating and increasing the particle size. When the temperature lowering rate is less than 5 ° C./min, aggregation of metal particles tends to occur. On the other hand, if the temperature lowering rate exceeds 80 ° C./min, the heating furnace may be damaged. The temperature lowering rate is more preferably 10 to 80 ° C./min, further preferably 15 to 80 ° C./min, and most preferably 20 to 80 ° C./min.

<PtRu/C触媒>
上記の製造方法によって調製されたPtRu/C触媒のメタノール酸化特性を赤外吸収法(IR)によって評価したところ、当該触媒は従来のPtRu/C触媒と比較して優れた酸化能力を有することが判明した。すなわち、PtRu/C触媒を含有する試料薄膜を先端に塗布した試料電極をHClO(0.1mol/L)+メタノール(0.5mol/L)水溶液中に設置し、参照電極に電位をかけるとメタノールが酸化され二酸化炭素等が発生する。この二酸化炭素等に赤外線を照射することによって吸収スペクトルを測定する。赤外吸収法に用いる分光装置としては、フーリエ変換型赤外分光(FTIR)装置を使用できる。本発明でいうメタノール酸化特性とは、FTIR装置の試料測定チャンバー内に図1に示す構成の装置を組み入れたシステムで測定したものを意味する。
<PtRu / C catalyst>
When the methanol oxidation characteristic of the PtRu / C catalyst prepared by the above production method was evaluated by an infrared absorption method (IR), it was found that the catalyst had an excellent oxidation ability as compared with the conventional PtRu / C catalyst. found. That is, when a sample electrode coated with a sample thin film containing a PtRu / C catalyst is placed in a HClO 4 (0.1 mol / L) + methanol (0.5 mol / L) aqueous solution and a potential is applied to the reference electrode, Methanol is oxidized to generate carbon dioxide and the like. The absorption spectrum is measured by irradiating the carbon dioxide or the like with infrared rays. As a spectroscopic device used for the infrared absorption method, a Fourier transform infrared spectroscopic (FTIR) device can be used. The methanol oxidation characteristic referred to in the present invention means that measured by a system in which an apparatus having the configuration shown in FIG. 1 is incorporated in a sample measurement chamber of an FTIR apparatus.

図1の装置は、金からなる試料電極1、参照電極2及び対電極3が挿入されたセル4並びにCaFからなるプリズム5を有する。セル4にはガス導入管7及び排気管8が形成され、その内部に液体(HClO(0.1mol/L)+メタノール(0.5mol/L)水溶液)9を収容できるようになっている。測定装置は、3枚の金平面ミラー12a,12b,12c及び1枚の金球面鏡11(R=100mm)を備える。赤外光20は光源部(図示せず)から照射され、試料電極1の先端部で反射し、金平面ミラー12a,12b,12c及び金球面鏡11の表面で反射を繰り返し検出部(図示せず)にて検出される。なお、測定はFTIR装置のチャンバー内をNガスで充填した状態で行う。 The apparatus of FIG. 1 includes a sample electrode 1 made of gold, a cell 4 in which a reference electrode 2 and a counter electrode 3 are inserted, and a prism 5 made of CaF 2 . The cell 4 is formed with a gas introduction pipe 7 and an exhaust pipe 8, in which a liquid (HClO 4 (0.1 mol / L) + methanol (0.5 mol / L) aqueous solution) 9 can be accommodated. . The measuring device includes three gold flat mirrors 12a, 12b, 12c and one gold spherical mirror 11 (R = 100 mm). Infrared light 20 is emitted from a light source (not shown), reflected at the tip of the sample electrode 1, and repeatedly reflected on the surfaces of the gold flat mirrors 12a, 12b, 12c and the gold spherical mirror 11 (not shown). ). The measurement is performed in a state where the chamber of the FTIR apparatus is filled with N 2 gas.

図2は試料電極1の先端部を示す図である。試料電極1の先端部とプリズム5の底面との間に厚さ数μmの試料薄膜6を配置する。試料薄膜6は次のようにして形成する。すなわち、エタノールにナフィオンを少量加えたものにPtRu/C触媒を加え、この液を試料電極1の上面上に注射器を用いて滴下し、その後1時間程度乾燥させる。乾燥後、セル内の液体(HClO(0.1mol/L)+メタノール(0.5mol/L)水溶液)を挟んでプリズム5を押し付けて試料薄膜6を形成する。 FIG. 2 is a view showing the tip of the sample electrode 1. A sample thin film 6 having a thickness of several μm is disposed between the tip of the sample electrode 1 and the bottom surface of the prism 5. The sample thin film 6 is formed as follows. That is, a PtRu / C catalyst is added to a solution obtained by adding a small amount of Nafion to ethanol, and this solution is dropped on the upper surface of the sample electrode 1 using a syringe and then dried for about 1 hour. After drying, the sample thin film 6 is formed by pressing the prism 5 with the liquid in the cell (HClO 4 (0.1 mol / L) + methanol (0.5 mol / L) aqueous solution) interposed therebetween.

試料電極1の上面の法線に対して60°の角度で赤外光20を入射させる。赤外光20の一部は、試料薄膜6に含まれる触媒の酸化能によって生じる二酸化炭素、一酸化炭素等によって吸収される。赤外光の波数を横軸に、吸光度を縦軸にとった吸収スペクトルにより対象物質を特定することができる。波数2300〜2400cm−1の範囲に現れるピークはメタノールから二酸化炭素が生成したことを示すものであり、波数2000〜2100cm−1の範囲に現れるピークはメタノールから一酸化炭素が生成したことを示すものである(図7〜9参照)。 Infrared light 20 is incident at an angle of 60 ° with respect to the normal line of the upper surface of the sample electrode 1. A part of the infrared light 20 is absorbed by carbon dioxide, carbon monoxide or the like generated by the oxidizing ability of the catalyst contained in the sample thin film 6. The target substance can be specified by an absorption spectrum having the wave number of infrared light on the horizontal axis and the absorbance on the vertical axis. Peak appearing in the range of wave numbers 2300~2400Cm -1 is intended to indicate that the generated carbon dioxide from methanol, the peak appearing in the range of wave numbers 2000~2100Cm -1 is an indication that the generated carbon monoxide from methanol (See FIGS. 7 to 9).

PtRu/C触媒に担持された金属粒子の粒径は、走査透過電子顕微鏡(STEM)により測定することができる。粒径が小さいほど担体上で金属粒子が高分散するので触媒活性を向上させることができる。本実施形態に係るPtRu/C触媒は、金属粒子の粒径が2〜6nmが好ましく、より好ましくは2〜5nmであり、さらに好ましくは2〜4nmである(図5参照)。   The particle size of the metal particles supported on the PtRu / C catalyst can be measured with a scanning transmission electron microscope (STEM). As the particle size is smaller, the metal particles are highly dispersed on the support, so that the catalytic activity can be improved. In the PtRu / C catalyst according to the present embodiment, the particle size of the metal particles is preferably 2 to 6 nm, more preferably 2 to 5 nm, and further preferably 2 to 4 nm (see FIG. 5).

上記実施形態に係る製造方法によれば、従来のPtRu/C触媒と比較して金属粒子が高度に分散したPtRu/C触媒を製造することができる。このPtRu/C触媒は優れたCO耐性を有するため、固体高分子形燃料電池のアノード触媒として有用である。   According to the manufacturing method according to the above embodiment, it is possible to manufacture a PtRu / C catalyst in which metal particles are highly dispersed as compared with a conventional PtRu / C catalyst. Since this PtRu / C catalyst has excellent CO resistance, it is useful as an anode catalyst for polymer electrolyte fuel cells.

以下、実施例により本発明を説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.

(実施例1)
本発明に係るPtRu/C触媒を製造するため、まず市販のPt/C触媒(Pt担持量40質量%)を1.25g、RuCl・nHOを2g、メタノール50cc及び水200ccを準備した。これらを混合し、80〜90℃で8時間保持し還流させRuをPt/C触媒上に担持させ、洗浄し乾燥させた(Ru担持工程)。本実施例においては、PtとRuの比率(モル比)が1:3となるように調整した。
Example 1
In order to produce the PtRu / C catalyst according to the present invention, first, 1.25 g of a commercially available Pt / C catalyst (Pt loading 40 mass%), 2 g of RuCl 3 · nH 2 O, 50 cc of methanol and 200 cc of water were prepared. . These were mixed, held at 80 to 90 ° C. for 8 hours, refluxed, and Ru was supported on the Pt / C catalyst, washed and dried (Ru supporting step). In this example, the ratio (molar ratio) of Pt and Ru was adjusted to 1: 3.

上記Ru担持工程で得られた被処理物を、水素とアルゴンの混合ガス(水素濃度5体積%)が60SCCM(cc/min)の流量で流れる室温環境下に1時間おいた。その後、被処理物を100V用管状炉内に設置しスライダック(可変電圧器)でAC100Vを120Vに上げ、100V用管状炉に120Vかけ室温から900℃まで14分で急速加熱した。温度が900℃に到達した瞬間に管状炉の電源を切り、約18分で500℃まで温度を下げ、500℃で管状炉の蓋を開け約1時間で500℃から40℃にまで温度を下げた(熱処理工程)。このようにして、PtRu/C触媒を得た。   The object to be processed obtained in the Ru loading step was placed in a room temperature environment in which a mixed gas of hydrogen and argon (hydrogen concentration: 5% by volume) flows at a flow rate of 60 SCCM (cc / min) for 1 hour. Thereafter, the object to be treated was placed in a 100V tubular furnace, and AC100V was raised to 120V with a slidac (variable voltage device). The 100V tubular furnace was rapidly heated from room temperature to 900 ° C. in 14 minutes by applying 120V. When the temperature reaches 900 ° C, the tubular furnace is turned off, the temperature is lowered to 500 ° C in about 18 minutes, the lid of the tubular furnace is opened at 500 ° C, and the temperature is lowered from 500 ° C to 40 ° C in about 1 hour. (Heat treatment process). In this way, a PtRu / C catalyst was obtained.

(実施例2)
室温から900℃まで昇温する時間を14分とする代わりに30分としたことの他は、実施例1と同様にしてPtRu/C触媒を得た。
(Example 2)
A PtRu / C catalyst was obtained in the same manner as in Example 1 except that the time for raising the temperature from room temperature to 900 ° C. was 30 minutes instead of 14 minutes.

(実施例3)
RuCl・nHOを2g使用する代わりに1g使用して、PtとRuの比率(モル比)が2:3となるように調整したことの他は、実施例1と同様にしてPtRu/C触媒を得た。
(Example 3)
Instead of using 2 g of RuCl 3 .nH 2 O, 1 g was used and the Pt and Ru ratio (molar ratio) was adjusted to be 2: 3. C catalyst was obtained.

(比較例1)
急速加熱及び急速冷却をしなかったことの他は、実施例1と同様にしてPtRu/C触媒を得た。すなわち、本比較例においては、Ru担持工程を経て得た被処理物を9時間かけて900℃まで加熱し1時間900℃に保ち、その後電源を切り炉の蓋を開けずに約5時間かけて自然冷却した。
(Comparative Example 1)
A PtRu / C catalyst was obtained in the same manner as in Example 1 except that rapid heating and rapid cooling were not performed. That is, in this comparative example, the object to be processed obtained through the Ru loading process was heated to 900 ° C. over 9 hours and maintained at 900 ° C. for 1 hour, and then the power was turned off and the furnace cover was not opened for about 5 hours. And cooled naturally.

(比較例2)
熱処理工程において、最高温度を900℃に設定する代わりに450℃に設定したことの他は、実施例1と同様にしてPtRu/C触媒を得た。
(Comparative Example 2)
In the heat treatment step, a PtRu / C catalyst was obtained in the same manner as in Example 1 except that the maximum temperature was set to 450 ° C. instead of 900 ° C.

(比較例3)
熱処理工程において、最高温度を900℃に設定する代わりに250℃に設定したことの他は、実施例1と同様にしてPtRu/C触媒を得た。
(Comparative Example 3)
In the heat treatment step, a PtRu / C catalyst was obtained in the same manner as in Example 1 except that the maximum temperature was set to 250 ° C. instead of 900 ° C.

(比較例4)
熱処理工程において、最高温度を900℃に設定する代わりに25℃に設定したことの他は、実施例1と同様にしてPtRu/C触媒を得た。
(Comparative Example 4)
In the heat treatment step, a PtRu / C catalyst was obtained in the same manner as in Example 1 except that the maximum temperature was set to 25 ° C. instead of 900 ° C.

(比較例5)
現時点でCO耐性が最も高いとされる市販のPtRu/C触媒(Pt:Ru=2:3(モル比))を用意した。
(Comparative Example 5)
A commercially available PtRu / C catalyst (Pt: Ru = 2: 3 (molar ratio)), which is considered to have the highest CO resistance at the present time, was prepared.

<XRDによる分析>
熱処理工程における最高温度と合金化度の関係をX線回折法(XRD)によって評価した。実施例1(最高温度900℃)及び比較例2〜4(最高温度:450℃、250℃、25℃)で調製したPtRu/C触媒のX線回折スペクトルを図3に示す。図3に示す通り、熱処理工程における最高温度が高いほどピークの位置が高角にずれ、合金化が進行する。すなわち、熱処理工程の最高温度を調整することによって合金化度を制御することが可能である。
<Analysis by XRD>
The relationship between the maximum temperature and the degree of alloying in the heat treatment process was evaluated by X-ray diffraction (XRD). FIG. 3 shows X-ray diffraction spectra of the PtRu / C catalyst prepared in Example 1 (maximum temperature 900 ° C.) and Comparative Examples 2 to 4 (maximum temperatures: 450 ° C., 250 ° C., 25 ° C.). As shown in FIG. 3, the higher the maximum temperature in the heat treatment step, the higher the peak position shifts and the alloying proceeds. That is, it is possible to control the degree of alloying by adjusting the maximum temperature of the heat treatment process.

また、熱処理工程における急加熱・急冷却が金属粒子の粒径に与える影響をXRDによって評価した。実施例1,2及び比較例1で調製したPtRu/C触媒のX線回折スペクトルを図4に示す。図4に示す通り、加熱・冷却時間が短いほどピークがブロードであり、これは金属粒子の粒径が小さいことを示す。すなわち、昇温・降温速度を調整することによって金属粒子の粒径を制御することが可能である。なお、昇温・降温速度を変更しても合金化度はあまり変化がなかった。   Further, the effect of rapid heating / cooling in the heat treatment process on the particle size of the metal particles was evaluated by XRD. The X-ray diffraction spectra of the PtRu / C catalysts prepared in Examples 1 and 2 and Comparative Example 1 are shown in FIG. As shown in FIG. 4, the shorter the heating / cooling time, the broader the peak, indicating that the particle size of the metal particles is small. That is, the particle size of the metal particles can be controlled by adjusting the temperature increase / decrease rate. Note that the degree of alloying did not change much even when the temperature increase / decrease rate was changed.

<STEMによる分析>
実施例1及び比較例1で調製したPtRu/C触媒の金属粒子の粒径をSTEMによって評価した結果を図5及び図6にそれぞれ示す。図5に示す通り、高温かつ短時間で熱処理された実施例1のPtRu/C触媒は平均粒子径が3.42nmと小さく、微細な金属粒子がカーボン担体上に高分散している。一方、比較例1のPtRu/C触媒は平均粒子径が9.55nmと大きい(図6参照)。
<Analysis by STEM>
The result of having evaluated the particle size of the metal particle of the PtRu / C catalyst prepared in Example 1 and Comparative Example 1 by STEM is shown in FIGS. 5 and 6, respectively. As shown in FIG. 5, the PtRu / C catalyst of Example 1 that was heat-treated at a high temperature for a short time had an average particle size as small as 3.42 nm, and fine metal particles were highly dispersed on the carbon support. On the other hand, the PtRu / C catalyst of Comparative Example 1 has a large average particle size of 9.55 nm (see FIG. 6).

<IR分析によるメタノール酸化特性の評価>
実施例3で調製したPtRu/C触媒及び比較例5の市販PtRu/C触媒のメタノール酸化特性のIR分析結果を図7及び図8にそれぞれ示す。図7に示す通り、実施例3に係るPtRu/C触媒は、電位を0.2Vにしたときの赤外線スペクトルが2300〜2400cm−1の間に吸収ピークを有することから、電位0.2Vでもメタノールを酸化しCOが生成する酸化能を有することが確認できた。
<Evaluation of methanol oxidation characteristics by IR analysis>
IR analysis results of methanol oxidation characteristics of the PtRu / C catalyst prepared in Example 3 and the commercially available PtRu / C catalyst of Comparative Example 5 are shown in FIGS. 7 and 8, respectively. As shown in FIG. 7, the PtRu / C catalyst according to Example 3 has an absorption peak between 2300 and 2400 cm −1 when the potential is 0.2 V, and therefore methanol even at a potential of 0.2 V. It was confirmed that it has an oxidizing ability to oxidize and produce CO 2 .

一方、図8に示す通り、市販のPtRu/C触媒は、電位を0.2Vにしたときの赤外線スペクトルが2300〜2400cm−1の間に吸収ピークが存在せず、電位0.2VではメタノールからCOを生成させるまでの酸化能を有していない。図9は実施例3で調製した触媒及び市販触媒の電圧0.2Vにおけるメタノール酸化特性のスペクトルを対比しやすく示したものである。図9に示す通り、これら二つの触媒はメタノール酸化能の点において明確に相違する。 On the other hand, as shown in FIG. 8, the commercially available PtRu / C catalyst has no absorption peak between 2300 and 2400 cm −1 when the potential is 0.2 V, and from the methanol at a potential of 0.2 V. It does not have the ability to oxidize until CO 2 is produced. FIG. 9 shows a spectrum of methanol oxidation characteristics of the catalyst prepared in Example 3 and a commercially available catalyst at a voltage of 0.2 V for easy comparison. As shown in FIG. 9, these two catalysts are clearly different in terms of methanol oxidation ability.

<CO耐性評価>
本発明に係るPtRu/C触媒のCO耐性を評価するため、実施例及び比較例で調製した触媒をアノード触媒として用いて固体高分子形燃料電池を製造した。具体的には、実施例1,3及び比較例1,5の触媒をそれぞれ用いて4種類の燃料電池を組み立てた。
<CO resistance evaluation>
In order to evaluate the CO resistance of the PtRu / C catalyst according to the present invention, a polymer electrolyte fuel cell was manufactured using the catalysts prepared in Examples and Comparative Examples as anode catalysts. Specifically, four types of fuel cells were assembled using the catalysts of Examples 1 and 3 and Comparative Examples 1 and 5, respectively.

(作動試験1)
上記4種類の燃料電池の燃料極にCOを含有しない純水素をそれぞれ供給して燃料電池を作動させた。各燃料電池のIV特性を図10に示す。図10に示す通り、純水素を燃料として燃料電池を作動させた場合のIV特性は、実施例1,3及び比較例1,5の触媒に大きな差はなかった。
(Operation test 1)
The fuel cells were operated by supplying pure hydrogen not containing CO to the fuel electrodes of the four types of fuel cells. The IV characteristics of each fuel cell are shown in FIG. As shown in FIG. 10, the IV characteristics when the fuel cell was operated using pure hydrogen as a fuel were not significantly different between the catalysts of Examples 1 and 3 and Comparative Examples 1 and 5.

(作動試験2)
上記4種類の燃料電池の燃料極にCOを含有する水素(CO濃度2040ppm)をそれぞれ供給して燃料電池を作動させた。各燃料電池のIV特性を図11に示す。図11に示す通り、実施例1,3の触媒を用いた燃料電池は、純水素を供給した場合と比較すれば電圧低下が認められるものの、比較例1,5の触媒と比べて高い電圧が得られCO耐性に優れていることが確認できた。
(Operation test 2)
Hydrogen containing CO (CO concentration 2040 ppm) was supplied to the fuel electrodes of the four types of fuel cells, respectively, to operate the fuel cells. The IV characteristics of each fuel cell are shown in FIG. As shown in FIG. 11, the fuel cells using the catalysts of Examples 1 and 3 have a higher voltage than the catalysts of Comparative Examples 1 and 5, although a decrease in voltage is recognized as compared with the case where pure hydrogen is supplied. It was confirmed that the obtained CO resistance was excellent.

<COによる電圧降下の評価>
燃料として純水素を使用した場合を基準にして、水素燃料に含まれる一酸化炭素によって電圧がどの程度降下するか評価した。表1にアノード触媒として実施例1,3及び比較例1,5の触媒をそれぞれ用いた燃料電池の電流密度0.2A/cmにおける電圧の測定結果を示す。
<Evaluation of voltage drop due to CO>
Based on the case of using pure hydrogen as a fuel, it was evaluated how much the voltage drops due to carbon monoxide contained in the hydrogen fuel. Table 1 shows the measurement results of voltage at a current density of 0.2 A / cm 2 for fuel cells using the catalysts of Examples 1 and 3 and Comparative Examples 1 and 5 as anode catalysts.

表1に示す通り、実施例1,3の触媒を用いた燃料電池では2040ppmという高濃度のCOを含む水素燃料を使用した場合であっても、比較例1,5の触媒と比較して電圧の降下が小さく、優れたCO耐性を有する。   As shown in Table 1, in the fuel cells using the catalysts of Examples 1 and 3, even when hydrogen fuel containing CO at a high concentration of 2040 ppm was used, the voltage was higher than that of the catalysts of Comparative Examples 1 and 5. Has a small drop and excellent CO resistance.

1…試料電極、2…参照電極、3…対電極、4…セル、5…プリズム、6…試料薄膜、7…ガス導入管、8…排気管、9…液体(HClO(0.1mol/L)+メタノール(0.5mol/L)水溶液)、11…金球面鏡、12a〜12c…金平面ミラー、20…赤外光
1 ... sample electrode, 2 ... reference electrode, 3 ... counter electrode, 4 ... cell, 5 ... prism, 6 ... sample film, 7 ... gas inlet, 8 ... exhaust pipe, 9 ... Liquid (HClO 4 (0.1 mol / L) + methanol (0.5 mol / L) aqueous solution), 11 ... gold spherical mirror, 12a to 12c ... gold flat mirror, 20 ... infrared light

Claims (5)

炭素材料からなる担体に白金が担持された白金触媒にルテニウムを更に担持するRu担持工程と、
水素ガスの存在下、前記Ru担持工程を経て得られた被処理物を熱処理してPtRu/C触媒を得る熱処理工程を備え、
前記熱処理工程において、前記被処理物が到達する最高温度が750〜1000℃であり且つ当該被処理物の温度が750℃以上となる時間が15〜300秒となるように温度調整をすることを特徴とするPtRu/C触媒の製造方法。
A Ru supporting step of further supporting ruthenium on a platinum catalyst in which platinum is supported on a carrier made of a carbon material;
A heat treatment step of obtaining a PtRu / C catalyst by heat-treating the workpiece obtained through the Ru loading step in the presence of hydrogen gas;
In the heat treatment step, adjusting the temperature so that the maximum temperature reached by the object to be processed is 750 to 1000 ° C. and the time for which the temperature of the object to be processed is 750 ° C. or more is 15 to 300 seconds. A method for producing a characteristic PtRu / C catalyst.
前記熱処理工程は、30〜90℃/分の加熱速度で昇温するステップを有することを特徴とする、請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the heat treatment step includes a step of increasing the temperature at a heating rate of 30 to 90 ° C./min. 前記熱処理工程において、前記最高温度に保持する時間が60秒未満であることを特徴とする、請求項1又は2に記載の製造方法。   The manufacturing method according to claim 1 or 2, wherein, in the heat treatment step, the time for maintaining the maximum temperature is less than 60 seconds. 前記熱処理工程は、5〜80℃/分の冷却速度で降温するステップを有することを特徴とする、請求項1〜3のいずれか一項に記載の製造方法。   The said heat treatment process has a step which falls at a cooling rate of 5-80 degree-C / min, The manufacturing method as described in any one of Claims 1-3 characterized by the above-mentioned. 炭素材料からなる担体と、前記担体に担持された白金及びルテニウムとを含むPtRu/C触媒であって、
当該触媒のメタノール酸化特性を赤外吸収法で測定したとき、電位0.2Vにおいて測定される赤外スペクトルが二酸化炭素の生成を示す吸収ピークを有することを特徴とするPtRu/C触媒。
A PtRu / C catalyst comprising a support made of a carbon material and platinum and ruthenium supported on the support,
A PtRu / C catalyst characterized in that when the methanol oxidation characteristics of the catalyst are measured by an infrared absorption method, the infrared spectrum measured at a potential of 0.2 V has an absorption peak indicating the generation of carbon dioxide.
JP2009228054A 2009-09-30 2009-09-30 PtRu / C catalyst with controlled degree of alloying and dispersibility and method for producing the same Expired - Fee Related JP5471252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009228054A JP5471252B2 (en) 2009-09-30 2009-09-30 PtRu / C catalyst with controlled degree of alloying and dispersibility and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009228054A JP5471252B2 (en) 2009-09-30 2009-09-30 PtRu / C catalyst with controlled degree of alloying and dispersibility and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011072934A true JP2011072934A (en) 2011-04-14
JP5471252B2 JP5471252B2 (en) 2014-04-16

Family

ID=44017509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009228054A Expired - Fee Related JP5471252B2 (en) 2009-09-30 2009-09-30 PtRu / C catalyst with controlled degree of alloying and dispersibility and method for producing the same

Country Status (1)

Country Link
JP (1) JP5471252B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5967548B2 (en) * 2011-03-25 2016-08-10 国立大学法人北海道大学 Catalyst for anode for fuel cell and method for producing the same
CN111193043A (en) * 2020-01-07 2020-05-22 北京化工大学 Anode catalyst for proton exchange membrane fuel cell and synthetic method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024798A (en) * 2001-05-05 2003-01-28 Omg Ag & Co Kg Noble metal-containing supported catalyst and process for its preparation
JP2005246380A (en) * 2005-03-14 2005-09-15 Hitachi Maxell Ltd Platinum based catalyst and methanol fuel cell using it
JP2006253147A (en) * 2005-03-09 2006-09-21 Samsung Sdi Co Ltd Manufacturing method of electrocatalyst for cation exchange membrane fuel cell
JP3839961B2 (en) * 1998-06-16 2006-11-01 田中貴金属工業株式会社 Method for producing catalyst for solid polymer electrolyte fuel cell
JP2007027096A (en) * 2005-06-16 2007-02-01 Keio Gijuku Platinum for fuel cell and manufacturing method of platinum-ruthenium alloy catalyst
WO2009060019A1 (en) * 2007-11-09 2009-05-14 Basf Se Method for producing a catalyst and use as an electrocatalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3839961B2 (en) * 1998-06-16 2006-11-01 田中貴金属工業株式会社 Method for producing catalyst for solid polymer electrolyte fuel cell
JP2003024798A (en) * 2001-05-05 2003-01-28 Omg Ag & Co Kg Noble metal-containing supported catalyst and process for its preparation
JP2006253147A (en) * 2005-03-09 2006-09-21 Samsung Sdi Co Ltd Manufacturing method of electrocatalyst for cation exchange membrane fuel cell
JP2005246380A (en) * 2005-03-14 2005-09-15 Hitachi Maxell Ltd Platinum based catalyst and methanol fuel cell using it
JP2007027096A (en) * 2005-06-16 2007-02-01 Keio Gijuku Platinum for fuel cell and manufacturing method of platinum-ruthenium alloy catalyst
WO2009060019A1 (en) * 2007-11-09 2009-05-14 Basf Se Method for producing a catalyst and use as an electrocatalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5967548B2 (en) * 2011-03-25 2016-08-10 国立大学法人北海道大学 Catalyst for anode for fuel cell and method for producing the same
CN111193043A (en) * 2020-01-07 2020-05-22 北京化工大学 Anode catalyst for proton exchange membrane fuel cell and synthetic method thereof
CN111193043B (en) * 2020-01-07 2021-06-01 北京化工大学 Anode catalyst for proton exchange membrane fuel cell and synthetic method thereof

Also Published As

Publication number Publication date
JP5471252B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP4656576B2 (en) Method for producing Pt / Ru alloy catalyst for fuel cell anode
US8709969B2 (en) Nanocatalysts structure, process for the preparation and use thereof
CN105229834A (en) Electrode for fuel cell and manufacture method thereof
EP3057161B1 (en) Fuel-cell electrode catalyst, and production method therefor
JP4954530B2 (en) Platinum colloid-supporting carbon and method for producing the same
JP6976427B2 (en) Method for Producing Supported Platinum Particles
KR20080067554A (en) Pt/ru alloy supported catalyst, manufacturing method thereof, and fuel cell using the same
JP2008041253A (en) Electrocatalyst and power generation system using the same
JP2018097976A (en) Electrode catalyst for fuel cell
JP2010102889A (en) Electrode catalyst for fuel cell
dos Reis et al. Electrochemical alcohol oxidation: a comparative study of the behavior of methanol, ethanol, propanol, and butanol on carbon-supported PtSn, PtCu, and Pt nanoparticles
Leontyev et al. Characterization of the electrocatalytic activity of carbon-supported platinum-based catalysts by thermal gravimetric analysis
JP2008210572A (en) Electrocatalyst and power generation system using it
Habibi et al. Electrooxidation of formic acid and formaldehyde on the Fe3O4@ Pt core-shell nanoparticles/carbon-ceramic electrode
JP7097375B2 (en) Catalysts for polymer electrolyte fuel cells and their manufacturing methods
JP5471252B2 (en) PtRu / C catalyst with controlled degree of alloying and dispersibility and method for producing the same
Armenta-González et al. Comparative study of carbon-supported Pd and PdAg catalysts synthesised by the polyol process and reverse micelles methods
JP2009117287A (en) Catalyst for direct type alcohol fuel cell electrode, and manufacturing method of catalyst for that electrode
Rohwer et al. Microwave activation of palladium nanoparticles for enhanced ethanol electrocatalytic oxidation reaction in alkaline medium
JP5755124B2 (en) Method for producing cathode catalyst for polymer electrolyte fuel cell
JPH04141235A (en) Electrode catalyst for an anode pole
WO2012133017A2 (en) Fuel cell anode catalyst and manufacturing method therefor
JP2012000612A (en) Platinum colloid-carrying carbon
JP2009283254A (en) Catalyst for polymer electrolyte fuel cell
JP2004230223A (en) Co oxidation catalyst and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Ref document number: 5471252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees