JP2007027096A - Platinum for fuel cell and manufacturing method of platinum-ruthenium alloy catalyst - Google Patents

Platinum for fuel cell and manufacturing method of platinum-ruthenium alloy catalyst Download PDF

Info

Publication number
JP2007027096A
JP2007027096A JP2006158102A JP2006158102A JP2007027096A JP 2007027096 A JP2007027096 A JP 2007027096A JP 2006158102 A JP2006158102 A JP 2006158102A JP 2006158102 A JP2006158102 A JP 2006158102A JP 2007027096 A JP2007027096 A JP 2007027096A
Authority
JP
Japan
Prior art keywords
platinum
catalyst
fine particles
ruthenium
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006158102A
Other languages
Japanese (ja)
Inventor
Masatoki Ito
正時 伊藤
Noriyuki Fujii
敬之 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2006158102A priority Critical patent/JP2007027096A/en
Publication of JP2007027096A publication Critical patent/JP2007027096A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a high-quality catalyst capable of reducing usage of expensive platinum and ruthenium and suitable for a fuel cell by using a simple method. <P>SOLUTION: Platinum nano-particles produced from platinum cations are reduced and implanted into carbon fine particles by gas bubbles by blowing gaseous hydrogen into an aqueous solution containing a platinum salt and the carbon fine particles. An aqueous solution with a ruthenium salt added therein can be used as well. Carbon black, carbon nanotubes or carbon nanohorns can be used for the carbon fine particles and the manufacturing process of this catalyst is extremely simple. The catalyst is high in catalyst activity because of having a structure where nano-particles of the platinum or platinum-ruthenium alloy low in impurity concentration and high in the degree of activity are highly dispersed on the surfaces of the carbon fine particles, and is used as a catalyst for improving power generation efficiency of a fuel cell even if a supported quantity thereof is small. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、OA機器,通信機器,自動車等のモバイル電源やコジェネレーションシステムのオンサイト電源として注目されている燃料電池に好適な白金系触媒を製造する方法に関する。   The present invention relates to a method for producing a platinum-based catalyst suitable for a fuel cell that is attracting attention as an on-site power source for mobile power sources and cogeneration systems of OA equipment, communication equipment, automobiles, and the like.

各種燃料電池の中でも、固体高分子型燃料電池は、室温程度の低温でも起動・発電できる長所から自動車の動力源を始め、各種分野で可動型又は定置型の電気エネルギー供給源として期待されている。固体高分子型燃料電池は、高分子イオン交換膜の両面に触媒電極層を形成し、多孔質カーボン電極で挟んだ膜-電極接合体を一単位とし、多数の膜-電極接合体をスタックすることにより実用可能な電力を取り出している。   Among various types of fuel cells, polymer electrolyte fuel cells are expected to be a movable or stationary electric energy source in various fields, starting with the power source of automobiles due to the advantages of starting and generating electricity even at low temperatures of about room temperature. . In a polymer electrolyte fuel cell, a catalyst electrode layer is formed on both sides of a polymer ion exchange membrane, and a membrane-electrode assembly sandwiched between porous carbon electrodes is used as a unit, and many membrane-electrode assemblies are stacked. Therefore, the electric power which can be practically used is taken out.

燃料電池の性能は、触媒電極層として使用される触媒に大きく影響される。触媒の高性能化は、固体高分子型に限らず他の形式の燃料電池でも重要である。
燃料電池用の白金触媒は、通常、白金塩含有液を含浸させたカーボンブラック等の担体を高温で焼結し、更に高温の水素気流で還元する乾式法で製造されている。乾式法では、焼成時に白金粒子相互の凝集が進行し、比表面積,ひいては触媒活性が低下しやすい。真空又は減圧雰囲気から大気雰囲気に触媒を取り出す際に表面汚染が進みやすいことも、乾式法の欠点である。
The performance of the fuel cell is greatly influenced by the catalyst used as the catalyst electrode layer. Improvement of catalyst performance is important not only for solid polymer type but also for other types of fuel cells.
A platinum catalyst for a fuel cell is usually produced by a dry method in which a carrier such as carbon black impregnated with a platinum salt-containing liquid is sintered at a high temperature and further reduced with a high-temperature hydrogen stream. In the dry method, the aggregation of platinum particles proceeds at the time of firing, and the specific surface area and thus the catalytic activity tends to decrease. It is also a drawback of the dry method that surface contamination tends to proceed when the catalyst is taken out from a vacuum or reduced pressure atmosphere to an air atmosphere.

そこで、金属塩,有機還元剤,担体を含む溶液から白金コロイドを担体表面に析出させる方法(特許文献1),カーボン粉末,白金錯体の水性分散液に還元剤を添加して白金粒子をカーボン粉末に担持させる方法(特許文献2)等、高機能触媒を製造する種々の湿式法が提案されている。コロイド状金属酸化物を含む溶液に水素ガスを吹き込むことにより合金コロイド粒子をカーボンブラック,活性炭等の粉末に担持させることも知られている(特許文献3)。
特開2003-320249号公報 特開2004-335252号公報 特開2002-248350号公報
Therefore, a method of depositing colloidal platinum on the support surface from a solution containing a metal salt, an organic reducing agent, and a carrier (Patent Document 1), adding a reducing agent to an aqueous dispersion of carbon powder and platinum complex to convert platinum particles into carbon powder. Various wet methods for producing a high-performance catalyst, such as a method for supporting the catalyst on the substrate (Patent Document 2), have been proposed. It is also known that alloy colloidal particles are supported on a powder such as carbon black or activated carbon by blowing hydrogen gas into a solution containing a colloidal metal oxide (Patent Document 3).
JP 2003-320249 A JP 2004-335252 A JP 2002-248350 A

白金錯体の還元で白金粒子を担持させる方法では、カーボンブラック等の微粒子に白金粒子を均一に析出させ難く、結果として品質安定性に欠けやすい。燃料電池用触媒としての要求特性を満足させる上で更なる性能向上が必要である。
水溶液の金属塩を金属コロイドに還元する湿式法でも、生成した金属コロイド表面から界面活性剤分子を除去するため、担持物質,金属塩を含む水溶液を濾別した後、真空焼結し、水素雰囲気下で還元することが一般的である。
In the method in which platinum particles are supported by reduction of the platinum complex, it is difficult to uniformly deposit platinum particles on fine particles such as carbon black, and as a result, quality stability tends to be lacking. Further performance improvement is required to satisfy the required characteristics as a fuel cell catalyst.
Even in the wet method in which the metal salt of the aqueous solution is reduced to the metal colloid, in order to remove the surfactant molecules from the surface of the generated metal colloid, the aqueous solution containing the support material and the metal salt is separated by filtration, vacuum-sintered, and hydrogen atmosphere It is common to reduce below.

この方法では沈降,濾過,焼結,還元等、複雑な工程を経るため、電極触媒の製造コストが高くなる。高温での処理中に触媒粒子が凝集して比表面積を下げ、真空又は水素雰囲気から大気に開放されると触媒表面が汚染され反応効率が低下することも欠点である。
水素ガス吹込みによる方法(特許文献3)でも、複数種類の金属塩を含む溶液に酸化剤を添加してコロイド状金属酸化物を形成させる工程,コロイド状金属酸化物を還元した合金コロイド粒子を担体に担持させる工程が必要である。
This method involves complicated steps such as sedimentation, filtration, sintering, and reduction, so that the production cost of the electrode catalyst increases. Another disadvantage is that the catalyst particles aggregate during the treatment at high temperature to lower the specific surface area, and when the catalyst is released from vacuum or hydrogen atmosphere to the atmosphere, the catalyst surface is contaminated and the reaction efficiency is lowered.
Even in the method using hydrogen gas blowing (Patent Document 3), the step of forming a colloidal metal oxide by adding an oxidizing agent to a solution containing a plurality of types of metal salts, the colloidal metal oxide reduced colloidal metal oxide A step of supporting the carrier is necessary.

本発明者等は、カーボンブラック等の微粒子表面に析出した白金の結晶性,分布状態,表面汚染が触媒の品質安定性に大きな影響を及ぼしているとの想定で、白金の析出手段を種々調査・検討した。その結果、白金塩,カーボン微粒子を含む溶液に水素ガスを直接吹き込むだけの単純な操作で、結晶性,分布状態が良好な白金ナノ粒子がカーボン微粒子に担持されることを見出した。白金塩,カーボン微粒子に加えルテニウム塩を含む溶液では、水素ガス吹込みによりクラスター状の金属白金,金属ルテニウムが生成し、個々の金属ナノ粒子ではなく白金ルテニウム合金ナノ粒子となってカーボン微粒子に担持される。
本発明は、かかる知見をベースとし、従来型触媒に比較し半分程度の白金担持量であっても3割以上も大きな発電性能を示し、CO耐性も改善可能な高品質触媒を極めて簡便な方法で製造することを目的とする。
The present inventors have conducted various investigations on platinum deposition methods on the assumption that the crystallinity, distribution state, and surface contamination of platinum deposited on the surface of fine particles of carbon black and the like have a great influence on the quality stability of the catalyst. ·investigated. As a result, it has been found that platinum nanoparticles having good crystallinity and distribution state are supported on the carbon fine particles by a simple operation in which hydrogen gas is directly blown into a solution containing platinum salts and carbon fine particles. In a solution containing ruthenium salt in addition to platinum salt and carbon fine particles, cluster metal platinum and metal ruthenium are generated by blowing hydrogen gas, and are supported on carbon fine particles as platinum ruthenium alloy nanoparticles instead of individual metal nanoparticles. Is done.
Based on this knowledge, the present invention is a very simple method for producing a high-quality catalyst capable of generating a large power generation performance of 30% or more even if the amount of platinum supported is about half that of a conventional catalyst and improving CO resistance. The purpose is to manufacture with.

本発明の製造方法は、白金塩,カーボン微粒子を含む水溶液に水素ガスを吹き込み、水素ガスによる直接還元反応で白金カチオンから生成した白金ナノ粒子をカーボン微粒子に還元着床させ、白金が着床したカーボン微粒子を濾別することを特徴とする。白金カチオンに加えルテニウムカチオンを含む水溶液も使用でき、この場合には白金ルテニウム合金ナノ粒子がカーボン微粒子に還元着床する。水素ガス吹込みによる還元処理に先立って、水溶液にアルゴン,窒素等の不活性ガスを吹き込み水溶液中の溶存酸素を除去することが好ましい。   In the production method of the present invention, hydrogen gas is blown into an aqueous solution containing platinum salt and carbon fine particles, platinum nanoparticles generated from platinum cations by direct reduction reaction with hydrogen gas are reduced and implanted onto the carbon fine particles, and platinum is deposited. The carbon fine particles are separated by filtration. An aqueous solution containing a ruthenium cation in addition to the platinum cation can also be used. In this case, the platinum ruthenium alloy nanoparticles are reduced and deposited on the carbon fine particles. Prior to the reduction treatment by blowing hydrogen gas, it is preferable to blow in an inert gas such as argon or nitrogen into the aqueous solution to remove dissolved oxygen in the aqueous solution.

白金カチオンの供給源となる白金塩には、塩化白金(II),ヘキサクロロ白金(IV)酸,テトラクロロ白金(II)酸カリウム,ヘキサクロロ白金(IV)酸カリウムの一種又は二種以上が使用される。ルテニウム塩には、塩化ルテニウム(III)がある。カーボン微粒子には、カーボンブラック,カーボンナノチューブ,カーボンナノホーン等がある。   One or more of platinum (II) chloride, hexachloroplatinic (IV) acid, potassium tetrachloroplatinum (II) and potassium hexachloroplatinum (IV) are used as the platinum salt as the source of the platinum cation. The Ruthenium salts include ruthenium (III) chloride. Carbon fine particles include carbon black, carbon nanotube, carbon nanohorn, and the like.

発明の効果及び実施の形態Effects and embodiments of the invention

本発明では、白金塩,カーボン微粒子を含む溶液を水素ガスでバブリングすることにより、白金カチオンを直接水素還元する。還元反応で生成した金属白金は、溶液中に原子状又は金属クラスター状で浮遊するが、溶液に懸濁しているカーボン微粒子に引き寄せられ捕捉される。金属白金の生成とカーボン微粒子による捕捉が繰り返されるため、金属白金が大きな粒径に成長することなく、比表面積の大きな状態(換言すれば、触媒活性の高い高分散状態)のナノ粒子としてカーボン微粒子に担持される。カーボン微粒子に担持された白金が水分子(溶媒)に水和され、溶媒和したナノ粒子間に反発力が発生することも、白金ナノ粒子の成長を抑制する原因と考えられる。   In the present invention, platinum cations are directly reduced by hydrogen by bubbling a solution containing platinum salt and carbon fine particles with hydrogen gas. The platinum metal produced by the reduction reaction floats in the form of atoms or metal clusters in the solution, but is attracted to and captured by the carbon fine particles suspended in the solution. Since the formation of metallic platinum and the capture by carbon fine particles are repeated, the carbon fine particles as nanoparticles with a large specific surface area (in other words, a highly dispersed state with high catalytic activity) without growing into a large particle size. It is carried on. It is also considered that the platinum supported on the carbon fine particles is hydrated with water molecules (solvent) and a repulsive force is generated between the solvated nanoparticles to suppress the growth of the platinum nanoparticles.

白金塩,カーボン微粒子に加えルテニウム塩を使用する場合でも、水素ガス吹込みによりルテニウムカチオンが金属状態に直接還元され、白金ナノ粒子と同様にカーボン微粒子に捕捉される。金属状態のルテニウムナノ粒子は、原子レベルで白金ナノ粒子と混和した固溶状態を維持しながらカーボン微粒子に沈積するため、白金ルテニウム合金となる。この場合にも同様に溶媒和した粒子間に反発力が生じるため、白金ルテニウム合金は大きく成長することなくナノ粒子としてカーボン微粒子に沈積する。ルテニウム及び白金原子は原子サイズが近似しているので、規則的な配列なく完全に混じり合った全率固溶状態を達成でき、一酸化炭素CO耐性に優れた触媒となる。   Even when a ruthenium salt is used in addition to platinum salt and carbon fine particles, the ruthenium cation is directly reduced to a metallic state by blowing hydrogen gas, and is captured by the carbon fine particles in the same manner as the platinum nanoparticles. Since the ruthenium nanoparticles in the metal state are deposited on the carbon fine particles while maintaining a solid solution state mixed with the platinum nanoparticles at the atomic level, a platinum ruthenium alloy is obtained. In this case as well, a repulsive force is generated between the solvated particles, so that the platinum ruthenium alloy is deposited on the carbon fine particles as nanoparticles without growing greatly. Since ruthenium and platinum atoms have similar atomic sizes, they can achieve a complete solid solution state in which they are completely mixed without any regular arrangement, and become a catalyst excellent in carbon monoxide CO resistance.

白金塩,ルテニウム塩,カーボン微粒子を含む水溶液を水素ガスでバブリングするとき、白金,ルテニウムが原子レベルで混和した状態でカーボン微粒子に沈積し、白金ルテニウム合金ナノ粒子となる。白金塩,ルテニウム塩が共存する水溶液に代え、時間的なズレをもって白金,ルテニウムをカーボン微粒子に順次還元着床させても、同様な白金ルテニウム合金ナノ粒子が生成する。具体的には、K2PtCl4を還元着床させた後で水溶液にRuCl3を導入してルテニウムを還元着床しても、或いは逆の順序でルテニウム,白金を還元着床させても、同様な白金ルテニウム合金のナノ粒子がカーボン微粒子に担持された触媒が得られる。 When an aqueous solution containing platinum salt, ruthenium salt, and carbon fine particles is bubbled with hydrogen gas, platinum and ruthenium are deposited on the carbon fine particles in a state where platinum and ruthenium are mixed at an atomic level, thereby forming platinum ruthenium alloy nanoparticles. Similar platinum ruthenium alloy nanoparticles are formed even when platinum and ruthenium are successively deposited on carbon fine particles with a time shift instead of an aqueous solution in which platinum salt and ruthenium salt coexist. Specifically, after the reductive implantation of K 2 PtCl 4 , RuCl 3 is introduced into the aqueous solution and the ruthenium is reductively implanted, or the ruthenium and platinum are reductively implanted in the reverse order, A catalyst in which nanoparticles of the same platinum ruthenium alloy are supported on carbon fine particles can be obtained.

白金塩には、PtCl2,K2PtCl6,H2PtCl6等の白金酸又は白金酸塩が使用可能であるが、中でも塩化白金酸又はそのアルカリ塩が好適である。ルテニウム塩としては、RuCl3がある。 As the platinum salt, platinum acid or platinum salt such as PtCl 2 , K 2 PtCl 6 , H 2 PtCl 6 can be used, and among them, chloroplatinic acid or its alkali salt is preferable. Ruthenium salts include RuCl 3 .

カーボン微粒子としては、バルカン,ケッチェン等のカーボンブラック,カーボンナノホーン,カーボンナノチューブ等が使用される。カーボン微粒子は、Pd処理等の活性化処理を必要とせず、そのまま水溶液に分散できる。なかでも、カーボンブラックは、微粒子表面にはCO,COOH等の表面酸化物が数多く露出し、白金又は白金ルテニウム合金のナノ粒子が付着しやすい表面状態になっているので、担持物質として好適である。   As the carbon fine particles, carbon black such as Vulcan and Ketjen, carbon nanohorn, carbon nanotube and the like are used. The carbon fine particles can be dispersed in an aqueous solution as they are without requiring an activation treatment such as a Pd treatment. Among these, carbon black is suitable as a supporting material because a large number of surface oxides such as CO and COOH are exposed on the surface of fine particles, and a surface state in which nanoparticles of platinum or platinum ruthenium alloy are easily attached. .

白金塩,ルテニウム塩,カーボン微粒子を純水に分散して水溶液を調製するが、白金カチオン,ルテニウムカチオン,カーボン微粒子の濃度は別段制約されない。しかし、白金塩,ルテニウム塩,カーボン微粒子の過剰添加は、水素ガス吹込みによる還元反応が進行しがたくなるので好ましくない。カーボン微粒子に適量の白金,ルテニウムが着床するように、カーボン微粒子の添加量に比べて過小量又は過剰量の白金塩,ルテニウム塩を添加することも避けるべきである。   An aqueous solution is prepared by dispersing platinum salt, ruthenium salt and carbon fine particles in pure water, but the concentrations of platinum cation, ruthenium cation and carbon fine particles are not particularly limited. However, excessive addition of platinum salt, ruthenium salt, and carbon fine particles is not preferable because the reduction reaction caused by blowing hydrogen gas is difficult to proceed. In order to deposit an appropriate amount of platinum and ruthenium on the carbon fine particles, addition of a platinum salt or ruthenium salt that is too small or excessive in comparison with the amount of carbon fine particles should be avoided.

具体的には、純水:100mlに対する白金塩,ルテニウム塩の合計添加量を10〜100mg,カーボン微粒子の添加量を10〜90mg,(白金塩+ルテニウム塩):カーボン微粒子の質量比を1:(1〜9)の範囲で選定する。純水に添加される白金塩,ルテニウム塩の比によって白金ルテニウム合金の組成を調整できる。燃料電池用触媒の要求特性を満足させる上でPt:Ru=1:1(質量比)の白金ルテニウム合金が好ましく、目標組成に応じ白金塩:ルテニウム塩の質量比を1:(1〜9)の範囲で選定する。   Specifically, the total amount of platinum salt and ruthenium salt added to 100 ml of pure water is 10 to 100 mg, the amount of carbon fine particles added is 10 to 90 mg, (platinum salt + ruthenium salt): the mass ratio of carbon fine particles is 1: Select within the range of (1-9). The composition of the platinum ruthenium alloy can be adjusted by the ratio of platinum salt and ruthenium salt added to pure water. A platinum ruthenium alloy of Pt: Ru = 1: 1 (mass ratio) is preferable for satisfying the required characteristics of the catalyst for fuel cells, and the mass ratio of platinum salt: ruthenium salt is 1: (1-9) according to the target composition. Select within the range.

溶媒に使用される純水には、繰返し蒸留した純水やMili-Q(18.3MΩ)の超純水が使用される。純水や超純水は、通常の蒸留水や工業用水と異なり余分なカチオン,アニオン,有機物分子を含んでいないが、通常、炭酸ガスが溶解している。炭酸ガスは、白金塩の還元反応に悪影響を及ぼさないので除去しなくても支障ない。炭酸を含むことから若干酸性(pH6.0〜6.5)の溶液になるが、還元効率に悪影響を及ぼす低pH値又は高pH値でない限り中性,弱酸性,弱アルカリ性何れの溶液も使用可能である。   Pure water used as a solvent is pure water obtained by repeated distillation or ultrapure water of Mili-Q (18.3 MΩ). Unlike ordinary distilled water or industrial water, pure water or ultrapure water does not contain extra cations, anions, or organic molecules, but carbon dioxide is usually dissolved. Since carbon dioxide gas does not adversely affect the reduction reaction of the platinum salt, there is no problem even if it is not removed. Since it contains carbonic acid, it becomes a slightly acidic solution (pH 6.0 to 6.5), but any neutral, weakly acidic, or weakly alkaline solution can be used as long as the pH is not low or high, which adversely affects the reduction efficiency. is there.

白金塩,ルテニウム塩,カーボン微粒子を含む水溶液は、好ましくは水素ガス吹込みに先立ってArパージされる。水溶液には酸素が溶存しており、このような水溶液に水素ガスを吹き込んで還元処理すると、還元反応で生成した白金や白金ルテニウム合金ナノ粒子の表面が溶存酸素で汚染され、触媒活性の低下が懸念される。溶存酸素によるナノ粒子の汚染は、アルゴンガスの吹込みで水溶液に溶存している酸素を除去することにより防止される。   The aqueous solution containing platinum salt, ruthenium salt, and carbon fine particles is preferably purged with Ar prior to blowing hydrogen gas. Oxygen is dissolved in the aqueous solution. When hydrogen gas is blown into such an aqueous solution and the reduction treatment is performed, the surface of platinum or platinum ruthenium alloy nanoparticles generated by the reduction reaction is contaminated with dissolved oxygen, and the catalytic activity is reduced. Concerned. Contamination of nanoparticles by dissolved oxygen is prevented by removing oxygen dissolved in the aqueous solution by blowing argon gas.

白金塩,ルテニウム塩,カーボン微粒子を含む水溶液に水素ガスを吹き込むと、白金カチオン,ルテニウムカチオンの還元反応で生成した白金又は白金ルテニウム合金ナノ粒子がカーボン微粒子の表面に着床する。Arパージされた水溶液中で還元反応が進行するため、生成したナノ粒子は汚染されることなく清浄状態に保たれる。また、水溶液中で水和した白金カチオン,ルテニウムカチオンが水素分子で直接還元されるので、還元反応自体も容易に進行する。   When hydrogen gas is blown into an aqueous solution containing platinum salt, ruthenium salt, and carbon fine particles, platinum or platinum ruthenium alloy nanoparticles generated by the reduction reaction of the platinum cation and ruthenium cation are deposited on the surface of the carbon fine particles. Since the reduction reaction proceeds in an Ar purged aqueous solution, the produced nanoparticles are kept clean without being contaminated. Further, since the platinum cation and ruthenium cation hydrated in the aqueous solution are directly reduced by hydrogen molecules, the reduction reaction itself easily proceeds.

白金カチオン,ルテニウムカチオンが金属状態に還元される割合は、水溶液中で水素分子が白金カチオン,ルテニウムカチオンに衝突する頻度等によって定まり、ある程度の吹込み量を必要とするものの吹込み量,吹込み時間,吹込み速度,液温等の影響をほとんど受けない。水素ガス吹込み後に水溶液を半日程度機械攪拌し、ナノ粒子の着床を進行させても良い。攪拌中に水素分子と白金カチオン,ルテニウムカチオンとの衝突が期待できるので、白金又は白金ルテニウム合金ナノ粒子への還元効率が高くなる。   The rate at which platinum cations and ruthenium cations are reduced to a metallic state is determined by the frequency of hydrogen molecules colliding with platinum cations and ruthenium cations in an aqueous solution. Little affected by time, blowing speed, liquid temperature, etc. After the hydrogen gas is blown, the aqueous solution may be mechanically stirred for about half a day to advance the nanoparticle implantation. Since collision between hydrogen molecules and platinum cations and ruthenium cations can be expected during stirring, the reduction efficiency to platinum or platinum ruthenium alloy nanoparticles is increased.

白金又は白金ルテニウム合金ナノ粒子が着床したカーボン微粒子は、ガラスフィルタを用いた濾過で水溶液から分離される。得られた白金又は白金ルテニウム合金担持カーボンを超純水で洗浄することにより、純度の高い触媒(カーボン微粒子に担持された白金又は白金ルテニウム合金ナノ粒子)が得られる。洗浄された触媒は比較的低温で乾燥されるが、乾燥温度を高くしすぎると白金ナノ粒子が比表面積の小さな粒子に融合成長する虞があるので加熱温度の上限を150℃に設定する。具体的には、80〜100℃の範囲で1時間以上加熱する乾燥が好ましい。   The carbon fine particles on which the platinum or platinum ruthenium alloy nanoparticles are deposited are separated from the aqueous solution by filtration using a glass filter. By washing the obtained platinum or platinum-ruthenium alloy-supported carbon with ultrapure water, a highly pure catalyst (platinum or platinum-ruthenium alloy nanoparticles supported on carbon fine particles) can be obtained. The washed catalyst is dried at a relatively low temperature, but if the drying temperature is too high, the platinum nanoparticles may be fused and grown into particles having a small specific surface area, so the upper limit of the heating temperature is set to 150 ° C. Specifically, drying by heating in the range of 80 to 100 ° C. for 1 hour or more is preferable.

乾燥後の触媒をTEM観察すると、粒径:2〜5nm程度の白金又は白金ルテニウム合金ナノ粒子がカーボン微粒子の表面に高分散していることが判る。白金又は白金ルテニウム合金ナノ粒子は、100〜200cm2/mgと大きな比表面積をもち、金属原子間距離も縮まっている。
金属原子間距離の短縮は、水素ガスバブル法による白金又は白金ルテニウム合金触媒に見られる特異な現象であり、金属原子の高密度化を意味し、ひいては触媒活性の向上に寄与する。
Observation of the dried catalyst by TEM shows that platinum or platinum ruthenium alloy nanoparticles having a particle size of about 2 to 5 nm are highly dispersed on the surface of the carbon fine particles. Platinum or platinum ruthenium alloy nanoparticles have a large specific surface area of 100 to 200 cm 2 / mg, and the distance between metal atoms is also reduced.
The shortening of the distance between metal atoms is a unique phenomenon found in platinum or platinum ruthenium alloy catalysts by the hydrogen gas bubble method, which means that the density of metal atoms is increased, and thus contributes to the improvement of the catalyst activity.

合成された触媒は、ナノメータサイズの小さな粒径に加え、大きな比表面積,短い原子間距離のため、後述の実施例でも明らかなように、従来の触媒に比較して格段に優れた触媒活性を呈する。高性能触媒が白金塩,ルテニウム塩,カーボン微粒子含有溶液を水素ガスバブルするだけの簡単な操作で得られることは、従来法から予測できない効果であり、製造プロセスの簡略化,触媒コストの低減化にとって極めて有利である。
また、発電性能を損なわずに高価な白金,ルテニウムの使用量を従来法の半分以下にでき低減できること、燃料水素中に含まれる不純物としての一酸化炭素CO濃度が500ppmと高くても発電性能が劣化しないこと等、従来の触媒とは比較にならないほどの優れた性能を呈する。
In addition to the small particle size of nanometer size, the synthesized catalyst has a large specific surface area and a short interatomic distance. Therefore, as will be apparent from the examples described later, the catalyst has much superior catalytic activity compared to conventional catalysts. Present. The fact that a high-performance catalyst can be obtained by simply operating a platinum salt, ruthenium salt, or carbon fine particle-containing solution simply by bubbling hydrogen gas is an effect that cannot be predicted from the conventional method, and for simplifying the manufacturing process and reducing catalyst costs. Very advantageous.
In addition, the amount of expensive platinum and ruthenium used can be reduced to less than half that of the conventional method without impairing the power generation performance, and even if the carbon monoxide CO concentration as an impurity contained in fuel hydrogen is as high as 500 ppm, the power generation performance is high. It exhibits excellent performance that is not comparable to conventional catalysts, such as no deterioration.

−白金触媒の製造−
2PtCl4:20mg,カーボンブラック(一次粒径:40〜60nm):28mgを超純水:100mlに添加し攪拌することにより、白金塩,カーボン微粒子を含む水溶液を調製した。
該水溶液に流量:約0.05リットル/分でアルゴンガスを20分間吹き込んだ後、水溶液を室温に保持し、更に流量:約0.2リットル/分で水素ガスを吹き込んだ。水素ガス吹込みを5分継続した後、水溶液を14時間静置した。次いで、ガラスフィルタを用いた濾過により、白金ナノ粒子を担持したカーボン微粒子を水溶液から分離した。白金担持カーボン微粒子を80℃×3時間で加熱・乾燥し、白金収率:98質量%で白金触媒を得た。
-Production of platinum catalyst-
K 2 PtCl 4 : 20 mg, carbon black (primary particle size: 40 to 60 nm): 28 mg was added to ultrapure water: 100 ml and stirred to prepare an aqueous solution containing platinum salt and carbon fine particles.
After argon gas was blown into the aqueous solution at a flow rate of about 0.05 liter / min for 20 minutes, the aqueous solution was kept at room temperature, and hydrogen gas was blown at a flow rate of about 0.2 liter / min. Hydrogen gas blowing was continued for 5 minutes, and then the aqueous solution was allowed to stand for 14 hours. Next, carbon fine particles carrying platinum nanoparticles were separated from the aqueous solution by filtration using a glass filter. The platinum-supported carbon fine particles were heated and dried at 80 ° C. for 3 hours to obtain a platinum catalyst with a platinum yield of 98% by mass.

得られた白金触媒をTEM観察したところ、粒径が5nm前後に揃った白金ナノ粒子がカーボンブラック上に付着していることが判った(図1)。質量分析の結果、白金ナノ粒子の担持量は25質量%であった。電位電流曲線から推定される白金ナノ粒子の比表面積は100〜200cm2/mgであり、市販白金触媒の約半分の値であった。 When the obtained platinum catalyst was observed with a TEM, it was found that platinum nanoparticles having a particle size of about 5 nm were adhered on the carbon black (FIG. 1). As a result of mass spectrometry, the supported amount of platinum nanoparticles was 25% by mass. The specific surface area of the platinum nanoparticles estimated from the potential-current curve was 100 to 200 cm 2 / mg, which was about half that of a commercially available platinum catalyst.

−白金ルテニウム合金触媒の製造−
2PtCl4:18mg,RuCl3:9mg,カーボンブラック(一次粒径:40〜60nm):20mgを超純水:100mlに添加し攪拌することにより、白金塩,ルテニウム塩,カーボン微粒子を含む水溶液を調製した。
該水溶液をArパージしながら30分攪拌した後、流量:0.2リットル/分で水素ガスを吹き込み、更に12時間機械攪拌した。次いで、水溶液を濾過し、白金ルテニウム合金ナノ粒子を担持したカーボン微粒子を水溶液から濾別し、80℃で3時間乾燥した。
白金ルテニウム合金触媒も、白金ルテニウム合金(Ru:50質量%)のナノ粒子(平均粒径:2nm,比表面積:100〜200cm2/mg)が担持量:36質量%でカーボン微粒子に高分散していた。
-Production of platinum ruthenium alloy catalyst-
K 2 PtCl 4 : 18 mg, RuCl 3 : 9 mg, carbon black (primary particle size: 40-60 nm): 20 mg is added to ultrapure water: 100 ml and stirred to obtain an aqueous solution containing platinum salt, ruthenium salt and carbon fine particles. Was prepared.
The aqueous solution was stirred for 30 minutes while purging with Ar, and then hydrogen gas was blown at a flow rate of 0.2 liter / minute, followed by mechanical stirring for 12 hours. Next, the aqueous solution was filtered, and the carbon fine particles carrying platinum ruthenium alloy nanoparticles were separated from the aqueous solution and dried at 80 ° C. for 3 hours.
The platinum ruthenium alloy catalyst is also highly dispersed in carbon fine particles with a platinum ruthenium alloy (Ru: 50% by mass) nanoparticles (average particle size: 2 nm, specific surface area: 100-200 cm 2 / mg) at a supported amount of 36% by mass. It was.

白金触媒をフッ素樹脂(Nafion 112)と共にホットプレスすることにより膜-電極接合体を作製して固体高分子型燃料電池にセットした。80℃に加温した燃料電池の燃料極側に水素ガス:1.4リットル/分,酸素極側に酸素ガス:2.6リットル/分を送り込み、発生電力を測定した。
図2の測定結果にみられるように、出力密度が1.24W/cm2と高く、電流上昇に伴う電圧降下も緩慢であった。
A membrane-electrode assembly was prepared by hot pressing a platinum catalyst together with a fluororesin (Nafion 112) and set in a polymer electrolyte fuel cell. Hydrogen gas: 1.4 liters / minute was sent to the fuel electrode side of the fuel cell heated to 80 ° C., and oxygen gas: 2.6 liters / minute was sent to the oxygen electrode side, and the generated power was measured.
As can be seen from the measurement results in FIG. 2, the power density was as high as 1.24 W / cm 2 and the voltage drop accompanying the current rise was slow.

図2には、K2PtCl4の他にK2PtCl6,H2PtCl4,PtCl2を白金塩とし、同様な方法で合成した白金触媒の発電性能を併せ示す。K2PtCl4が最も良好な成績を示しているが、K2PtCl6,H2PtCl4,PtCl2等の白金塩にも水素ガス吹込みによる還元処理を十分適用できることが判る。
白金ルテニウム合金ナノ粒子をカーボン微粒子に担持させた触媒を用いた膜-電極接合体でも、0.82W/cm2と高い出力密度を示し、電流上昇に伴う電圧降下も緩慢であった。
In FIG. 2, the K 2 PtCl 6, H 2 PtCl 4, PtCl 2 with the platinum salt in addition to K 2 PtCl 4, showing together the power generation performance of the synthesized platinum catalyst in the same manner. Although K 2 PtCl 4 shows the best results, it can be seen that the reduction treatment by blowing hydrogen gas can be sufficiently applied to platinum salts such as K 2 PtCl 6 , H 2 PtCl 4 , and PtCl 2 .
The membrane-electrode assembly using a catalyst in which platinum ruthenium alloy nanoparticles were supported on carbon fine particles also showed a high power density of 0.82 W / cm 2, and the voltage drop accompanying the current rise was slow.

水素ガスバブルで白金又は白金ルテニウム合金ナノ粒子をカーボン微粒子に還元着床させた触媒では、他の方法で製造された触媒に比較して金属原子間距離が0.4%程度短くなっている。金属原子平面間距離dhklは、X線回折結果(図3,4)の回折角度2θの値からブラッグ式(2dhklsinθ=λ,λは使用されたX線の波長であり、本例ではλ=0.15418nm)に従って計算される。 In a catalyst in which platinum or platinum ruthenium alloy nanoparticles are reduced and implanted into carbon fine particles with hydrogen gas bubbles, the distance between metal atoms is about 0.4% shorter than that of a catalyst produced by other methods. The distance d hkl between the metal atomic planes is the Bragg equation (2d hkl sinθ = λ, λ is the wavelength of the X-ray used, from the value of the diffraction angle 2θ in the X-ray diffraction results (FIGS. 3 and 4). (λ = 0.15418 nm).

白金触媒の(111)面間隔を比較すると、市販触媒(粒径:3nm,担持量:50質量%)では0.2266nm,無電解触媒(粒径:8nm,担持量:50質量%)では0.2257nmに対し、本発明の白金触媒I(粒径:4nm,担持量:24質量%)では0.2260nm,白金触媒II(粒径:1nm,担持量:1質量%)では0.2252nmであった。(図3)
白金ルテニウム合金触媒では、市販触媒(粒径:4nm)では0.2267nm,無電解Pt→Ru触媒I(粒径:5nm)では0.2262nm,無電解Pt→Ru触媒II(粒径:6nm)では0.2260nmに対し、本発明の触媒III(粒径:2nm)では0.2254nmの(111)面間隔であった。(図4)
Comparing the (111) plane spacing of the platinum catalyst, 0.2266 nm for the commercially available catalyst (particle size: 3 nm, supported amount: 50% by mass) and 0.2257 nm for the electroless catalyst (particle size: 8 nm, supported amount: 50% by mass) In contrast, the platinum catalyst I of the present invention (particle size: 4 nm, supported amount: 24% by mass) was 0.2260 nm, and the platinum catalyst II (particle size: 1 nm, supported amount: 1% by mass) was 0.2252 nm. (Figure 3)
The platinum ruthenium alloy catalyst is 0.2267 nm for a commercially available catalyst (particle size: 4 nm), 0.2262 nm for electroless Pt → Ru catalyst I (particle size: 5 nm), and 0.2260 nm for electroless Pt → Ru catalyst II (particle size: 6 nm). In contrast to nm, the catalyst III of the present invention (particle size: 2 nm) had a (111) plane spacing of 0.2254 nm. (Fig. 4)

金属原子間距離の相違は(111)面間隔で0.001nmオーダーであるが、高精度測定では明らかな有意差として現れる。縮んだ金属原子間距離(結晶格子面間距離)は、触媒製造過程で金属表面が全く汚染しないため、表面の再構成(不飽和結合になっている表面原子の配列がより安定な構造に移り変わること)が円滑に進行した結果である。湿式以外の方法で製造される市販の触媒では、酸化等の表面汚染が避けられず結晶格子面間距離の短縮が生じない。
結晶格子が縮んでいる分、金属原子の電子密度が増加する。特に白金ルテニウム合金触媒(図4)で、金属原子間距離の短縮に及ぼす水素ガスバブルの効果が顕著になっている。電子密度の増加は、酸素還元能力の飛躍的な向上をもたらし、発電性能の向上(図2)に寄与する。
The difference in the distance between metal atoms is on the order of 0.001 nm with the (111) plane spacing, but it appears as a clear significant difference in high-precision measurements. The distance between the contracted metal atoms (distance between crystal lattice planes) does not contaminate the metal surface during the catalyst production process, so the surface is reconstructed (the arrangement of the surface atoms that are unsaturated bonds changes to a more stable structure). This is the result of smooth progress. In a commercially available catalyst manufactured by a method other than wet, surface contamination such as oxidation is unavoidable and the distance between crystal lattice planes is not shortened.
As the crystal lattice shrinks, the electron density of metal atoms increases. In particular, in the case of a platinum ruthenium alloy catalyst (FIG. 4), the effect of hydrogen gas bubbles on shortening the distance between metal atoms is remarkable. The increase in electron density brings about a dramatic improvement in oxygen reduction capacity and contributes to the improvement of power generation performance (FIG. 2).

また、溶媒の種類,Arパージが触媒性能に及ぼす影響を調査したところ、白金触媒では白金塩,カーボンブラックを添加したMili-Q(18.3MΩ)の超純水をArパージ後に水素ガスバブルした場合に最も良好な成績が得られた(図5)。図5の結果は、白金塩,カーボン微粒子を含む水溶液の不純物が少ないほど、燃料電池用触媒に使用したとき高出力の白金触媒となることを示している。白金ルテニウム合金触媒でも、不純物の少ない水溶液ほど良好な結果が得られている。   In addition, when investigating the effects of solvent type and Ar purge on catalyst performance, platinum catalyst and Mili-Q (18.3MΩ) ultrapure water added with platinum salt and carbon black was bubbled with hydrogen gas after Ar purge. The best results were obtained (Figure 5). The results in FIG. 5 indicate that the smaller the impurities in the aqueous solution containing platinum salt and carbon fine particles, the higher the output of the platinum catalyst when used as a fuel cell catalyst. Even with a platinum ruthenium alloy catalyst, a better result is obtained with an aqueous solution having fewer impurities.

白金担持量は水溶液の白金濃度及び白金濃度/カーボン微粒子の比率で調節できるが、白金担持量:25質量%で最も高い出力が得られた(図6)。25質量%を境として白金担持量が多すぎても或いは少なすぎても、出力が低下する傾向にあった。更に、白金担持量:25質量%の触媒を市販触媒の半分程度の量で使用した燃料電池の発電性能を調査したところ、半分程度の使用量でも市販触媒より優れた発電性能を示していた(図7)。   The amount of platinum supported can be adjusted by the concentration of platinum in the aqueous solution and the ratio of platinum concentration / carbon fine particles, but the highest output was obtained when the amount of platinum supported was 25% by mass (FIG. 6). When the amount of platinum supported was too much or too little with 25 mass% as a boundary, the output tended to decrease. Furthermore, when investigating the power generation performance of a fuel cell using a catalyst with a platinum loading of 25% by mass in about half the amount of a commercially available catalyst, it showed a power generation performance superior to that of a commercially available catalyst even with about half the amount used ( Fig. 7).

白金ルテニウム合金触媒では、Pt-50質量%Ruの合金を36質量%担持した触媒で最も高い出力が得られた。しかも、燃料電池に送り込む水素燃料の純度と発電性能との関係を調査したところ、水素燃料に含まれている不純物COが500ppmを超える濃度になっても出力の著しい低下が見られなかった(図8)。すなわち、白金ルテニウム合金触媒は、水素燃料に濃度:500ppm程度の一酸化炭素が含まれていても、電池出力に影響を及ぼさない高CO耐性の触媒である。優れたCO耐性は、個々の白金原子の周りにルテニウムが存在する高分散状態であるため、不純物COがルテニウムで選択的にCO2に還元除去され、絶えず汚染COのない活性表面が維持されることに起因する。 With the platinum ruthenium alloy catalyst, the highest output was obtained with a catalyst carrying 36 mass% of an alloy of Pt-50 mass% Ru. Moreover, when the relationship between the purity of the hydrogen fuel fed into the fuel cell and the power generation performance was investigated, the output was not significantly reduced even when the impurity CO contained in the hydrogen fuel exceeded 500 ppm (Fig. 8). That is, the platinum ruthenium alloy catalyst is a high CO-tolerant catalyst that does not affect the battery output even if the hydrogen fuel contains carbon monoxide at a concentration of about 500 ppm. Excellent CO resistance is a highly dispersed state in which ruthenium is present around each platinum atom, so that the impurity CO is selectively reduced and removed to CO 2 by ruthenium, and an active surface free from contaminating CO is maintained constantly. Due to that.

これに対し、市販の触媒では、不純物CO濃度:500ppm以上で発電性能が極端に低下した。
不純物COを含む水素燃料を消費する燃料電池の発電効率が低下しないことは、白金ルテニウム合金ナノ粒子を触媒とした燃料電池がメタノール燃料に好適であるだけでなく、一般的な水素改質ガスを使用する際のガス精製(COガス除去)プロセスが不要で安価なガス燃料が使用可能なことを意味する。
On the other hand, in the case of a commercially available catalyst, the power generation performance was extremely lowered when the impurity CO concentration was 500 ppm or more.
The fact that the power generation efficiency of a fuel cell that consumes hydrogen fuel containing impurity CO does not decrease is not only suitable for a fuel cell using platinum ruthenium alloy nanoparticles as a catalyst, but also for general hydrogen reformed gas. This means that an inexpensive gas fuel can be used without requiring a gas purification (CO gas removal) process.

以上に説明したように、本発明によれば、白金塩,ルテニウム塩,カーボン微粒子を含む水溶液を水素ガスバブルするだけの簡単な操作で白金又は白金ルテニウム合金ナノ粒子が還元析出した触媒が得られる。この触媒は、カーボン微粒子の表面に白金又は白金ルテニウム合金のナノ粒子が極めて高い比表面積で着床した構造をもっており、従来の触媒では達成できなかった高い発電効率の燃料電池が構築される。しかも、高価な白金やルテニウムの使用量を低減でき、長時間の還元や高温加熱を必要としないので、低い製造コストで高品質触媒が製造される。更に、CO耐性に優れた白金ルテニウム合金触媒では、多少の不純物COを含む水素ガスを使用する燃料電池でも十分な触媒活性を維持する。   As described above, according to the present invention, a catalyst in which platinum or platinum ruthenium alloy nanoparticles are reduced and precipitated can be obtained by a simple operation of simply bubbling a hydrogen gas bubble of an aqueous solution containing platinum salt, ruthenium salt and carbon fine particles. This catalyst has a structure in which platinum or platinum ruthenium alloy nanoparticles are deposited on the surface of carbon fine particles with an extremely high specific surface area, and a fuel cell with high power generation efficiency that cannot be achieved by conventional catalysts is constructed. In addition, the amount of expensive platinum and ruthenium used can be reduced, and long-time reduction and high-temperature heating are not required, so that a high-quality catalyst is produced at a low production cost. Furthermore, a platinum ruthenium alloy catalyst having excellent CO resistance maintains sufficient catalytic activity even in a fuel cell using hydrogen gas containing some impurities CO.

実施例で合成した白金担持カーボン微粒子のTEM像TEM image of platinum-supported carbon fine particles synthesized in Examples 白金塩の種類に応じて発電性能を比較したグラフGraph comparing power generation performance according to the type of platinum salt 白金触媒をX線回折(λ:0.15418nm)し、f.c.c.(111)反射の角度が白金触媒の種類に応じて異なることを示したグラフGraph showing that the platinum catalyst is X-ray diffracted (λ: 0.15418 nm) and the angle of f.c.c. (111) reflection varies depending on the type of platinum catalyst. 白金ルテニウム合金触媒をX線回折(λ:0.15418nm)し、f.c.c.(111)反射の角度が白金ルテニウム合金触媒の種類に応じて異なることを示したグラフGraph showing that the platinum ruthenium alloy catalyst is X-ray diffracted (λ: 0.15418 nm) and the angle of f.c.c. (111) reflection varies depending on the type of platinum ruthenium alloy catalyst. 純水の種類,Arパージが発電性能に及ぼす影響を表したグラフGraph showing the effect of pure water type and Ar purge on power generation performance 白金担持量が発電性能に及ぼす影響を表したグラフGraph showing the effect of platinum loading on power generation performance 実施例で作製した触媒と市販触媒との発電性能を比較したグラフA graph comparing the power generation performance of the catalyst prepared in the example and a commercially available catalyst 水素ガスバブル法で製造された白金ルテニウム合金触媒のCO耐性を市販触媒と比較したグラフA graph comparing the CO resistance of platinum ruthenium alloy catalysts produced by the hydrogen gas bubble method with commercial catalysts

Claims (7)

白金塩,カーボン微粒子を含む水溶液に水素ガスを吹き込み、水素ガスによる直接還元反応で白金カチオンから生成した白金ナノ粒子をカーボン微粒子に還元着床させ、白金ナノ粒子が着床したカーボン微粒子を濾別することを特徴とする燃料電池用白金触媒の製造方法。   Hydrogen gas is blown into an aqueous solution containing platinum salt and carbon fine particles, platinum nanoparticles generated from platinum cations by direct reduction reaction with hydrogen gas are reduced and deposited onto carbon fine particles, and the carbon fine particles on which platinum nanoparticles have been deposited are filtered out. A method for producing a platinum catalyst for a fuel cell. 白金塩,ルテニウム塩,カーボン微粒子を含む水溶液に水素ガスを吹き込み、水素ガスによる直接還元反応で白金カチオン,ルテニウムカチオンから生成した白金ルテニウム合金ナノ粒子をカーボン微粒子に還元着床させ、白金ルテニウム合金ナノ粒子が着床したカーボン微粒子を濾別することを特徴とする燃料電池用白金ルテニウム合金触媒の製造方法。   Platinum ruthenium alloy nano particles are formed by reducing and implanting platinum ruthenium alloy nanoparticles generated from platinum cations and ruthenium cations by direct reduction reaction with hydrogen gas into carbon particles. A method for producing a platinum ruthenium alloy catalyst for a fuel cell, comprising filtering carbon fine particles on which the particles are deposited. 塩化白金(II),ヘキサクロロ白金(IV)酸,テトラクロロ白金(II)酸カリウム,ヘキサクロロ白金(IV)酸カリウムの一種又は二種以上を白金カチオン源とする請求項1又は2記載の製造方法。   The production method according to claim 1 or 2, wherein one or more of platinum (II) chloride, hexachloroplatinic (IV) acid, potassium tetrachloroplatinum (II) and potassium hexachloroplatinum (IV) are used as a platinum cation source. . 塩化ルテニウム(III)をルテニウムカチオン源とする請求項2記載の製造方法。   The process according to claim 2, wherein ruthenium (III) chloride is used as a ruthenium cation source. カーボンブラック,カーボンナノチューブ,カーボンナノホーンの一種又は二種以上をカーボン微粒子に使用する請求項1又は2記載の製造方法。   The production method according to claim 1 or 2, wherein one or more of carbon black, carbon nanotube, and carbon nanohorn are used for the carbon fine particles. 水素ガス吹込みに先立ち、水溶液に不活性ガスを吹き込み不純物を除去する請求項1又は2記載の製造方法。   The manufacturing method according to claim 1 or 2, wherein an inert gas is blown into the aqueous solution to remove impurities prior to blowing hydrogen gas. 白金又は白金ルテニウム合金ナノ粒子が着床したカーボン微粒子を濾別後に150℃以下の温度で乾燥する請求項1又は2記載の製造方法。   The production method according to claim 1 or 2, wherein the carbon fine particles on which platinum or platinum ruthenium alloy nanoparticles are deposited are filtered and dried at a temperature of 150 ° C or lower.
JP2006158102A 2005-06-16 2006-06-07 Platinum for fuel cell and manufacturing method of platinum-ruthenium alloy catalyst Pending JP2007027096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006158102A JP2007027096A (en) 2005-06-16 2006-06-07 Platinum for fuel cell and manufacturing method of platinum-ruthenium alloy catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005175868 2005-06-16
JP2006158102A JP2007027096A (en) 2005-06-16 2006-06-07 Platinum for fuel cell and manufacturing method of platinum-ruthenium alloy catalyst

Publications (1)

Publication Number Publication Date
JP2007027096A true JP2007027096A (en) 2007-02-01

Family

ID=37787565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006158102A Pending JP2007027096A (en) 2005-06-16 2006-06-07 Platinum for fuel cell and manufacturing method of platinum-ruthenium alloy catalyst

Country Status (1)

Country Link
JP (1) JP2007027096A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251413A (en) * 2007-03-30 2008-10-16 Gunma Univ Manufacturing method of metal-oxide carrying carbon
JP2011072934A (en) * 2009-09-30 2011-04-14 Hokkaido Univ PtRu/C CATALYST HAVING CONTROLLED ALLOYING DEGREE AND DISPERSIBILITY AND METHOD FOR PRODUCING THE SAME
JPWO2011136186A1 (en) * 2010-04-26 2013-07-18 旭硝子株式会社 Electrode material
KR101395762B1 (en) * 2012-07-06 2014-05-27 (주) 디에이치홀딩스 Platinum/carbon nanotube catalyst and preparation method thereof
JP5701466B1 (en) * 2013-12-27 2015-04-15 昭和電工株式会社 Method for producing electrode catalyst for fuel cell
WO2015098181A1 (en) * 2013-12-27 2015-07-02 昭和電工株式会社 Method for producing electrode catalyst for fuel cells
CN109546168A (en) * 2018-11-22 2019-03-29 龙岩学院 A kind of carbon material supported silver-colored platinum Nanoalloy composite material and preparation method
CN112397731A (en) * 2020-11-13 2021-02-23 安徽大学 Preparation of hollow PdCoP/C alloy electrocatalyst and application thereof in ethanol electrocatalytic oxidation
CN113707889A (en) * 2021-08-09 2021-11-26 清华大学深圳国际研究生院 Carbon-supported platinum nano catalyst, preparation method thereof, catalyst layer and proton exchange membrane fuel cell
DE102022101625A1 (en) 2021-01-27 2022-07-28 Toyota Boshoku Kabushiki Kaisha PROCESSES FOR THE MANUFACTURE OF A SUPPORTED ALLOY FINE PARTICULATE CATALYST, ELECTRODE, FUEL CELL, METHOD FOR THE MANUFACTURE OF ALLOY FINE PARTICLES, SUPPORTED ALLOY FINE PARTICULATE CATALYST, ALLOY FINE PARTICLES, METHOD FOR MANUFACTURE OF A DIAPHRAGM ELECTRODE ASSEMBLY AND METHOD FOR MANUFACTURE OF A FUEL CELL
CN115888697A (en) * 2022-10-27 2023-04-04 中钢集团南京新材料研究院有限公司 Method for preparing platinum-carbon catalyst by ultrasonic-assisted bubbling reduction method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251413A (en) * 2007-03-30 2008-10-16 Gunma Univ Manufacturing method of metal-oxide carrying carbon
JP2011072934A (en) * 2009-09-30 2011-04-14 Hokkaido Univ PtRu/C CATALYST HAVING CONTROLLED ALLOYING DEGREE AND DISPERSIBILITY AND METHOD FOR PRODUCING THE SAME
JPWO2011136186A1 (en) * 2010-04-26 2013-07-18 旭硝子株式会社 Electrode material
KR101395762B1 (en) * 2012-07-06 2014-05-27 (주) 디에이치홀딩스 Platinum/carbon nanotube catalyst and preparation method thereof
US9947940B2 (en) 2013-12-27 2018-04-17 Showa Denko K.K. Method for producing fuel cell electrode catalyst
WO2015098181A1 (en) * 2013-12-27 2015-07-02 昭和電工株式会社 Method for producing electrode catalyst for fuel cells
JP5701466B1 (en) * 2013-12-27 2015-04-15 昭和電工株式会社 Method for producing electrode catalyst for fuel cell
CN109546168A (en) * 2018-11-22 2019-03-29 龙岩学院 A kind of carbon material supported silver-colored platinum Nanoalloy composite material and preparation method
CN112397731A (en) * 2020-11-13 2021-02-23 安徽大学 Preparation of hollow PdCoP/C alloy electrocatalyst and application thereof in ethanol electrocatalytic oxidation
CN112397731B (en) * 2020-11-13 2022-02-11 安徽大学 Preparation of hollow PdCoP/C alloy electrocatalyst and application thereof in ethanol electrocatalytic oxidation
DE102022101625A1 (en) 2021-01-27 2022-07-28 Toyota Boshoku Kabushiki Kaisha PROCESSES FOR THE MANUFACTURE OF A SUPPORTED ALLOY FINE PARTICULATE CATALYST, ELECTRODE, FUEL CELL, METHOD FOR THE MANUFACTURE OF ALLOY FINE PARTICLES, SUPPORTED ALLOY FINE PARTICULATE CATALYST, ALLOY FINE PARTICLES, METHOD FOR MANUFACTURE OF A DIAPHRAGM ELECTRODE ASSEMBLY AND METHOD FOR MANUFACTURE OF A FUEL CELL
CN113707889A (en) * 2021-08-09 2021-11-26 清华大学深圳国际研究生院 Carbon-supported platinum nano catalyst, preparation method thereof, catalyst layer and proton exchange membrane fuel cell
CN115888697A (en) * 2022-10-27 2023-04-04 中钢集团南京新材料研究院有限公司 Method for preparing platinum-carbon catalyst by ultrasonic-assisted bubbling reduction method

Similar Documents

Publication Publication Date Title
JP2007027096A (en) Platinum for fuel cell and manufacturing method of platinum-ruthenium alloy catalyst
Chen et al. Platinum nanoflowers supported on graphene oxide nanosheets: their green synthesis, growth mechanism, and advanced electrocatalytic properties for methanol oxidation
KR101287891B1 (en) Method for manufacturing catalyst for fuel cell
KR100670267B1 (en) Pt/Ru alloy catalyst for fuel cell
KR101001122B1 (en) Platinum and platinum based alloy nanotubes as electrocatalysts for fuel cells
JP5620676B2 (en) Dendritic metal nanostructures for fuel cells and other applications
Almomani et al. A comprehensive review of hydrogen generation by water splitting using 2D nanomaterials: Photo vs electro-catalysis
Li et al. Comparison study of electrocatalytic activity of reduced graphene oxide supported Pt–Cu bimetallic or Pt nanoparticles for the electrooxidation of methanol and ethanol
JP5049791B2 (en) Photocatalytic method for preparing electrocatalytic materials
Li et al. Phosphorus‐based electrocatalysts: black phosphorus, metal phosphides, and phosphates
KR101265075B1 (en) Preparing method of alloy catalyst for fuel cell using silica coating
JP2014018796A (en) Method for manufacturing palladium-platinum core shell catalyst for fuel cell
JPH11250918A (en) Platinum/ruthenium alloy catalyst, its manufacture, gas diffusion electrode, membrane electrode unit, and proton conductive polymer membrane for pem fuel cell
EP2836460B1 (en) Method of producing graphene
JP2010272248A (en) High potential stable carrier for polymer electrolyte fuel cell, and electrode catalyst
JP5204714B2 (en) Alloy fine particles and their production and use
Ribeiro et al. MOF-derived PtCo/Co 3 O 4 nanocomposites in carbonaceous matrices as high-performance ORR electrocatalysts synthesized via laser ablation techniques
Jena et al. A facile approach for morphosynthesis of Pd nanoelectrocatalysts
Yang et al. Platinum lead nanostructures: formation, phase behavior, and electrocatalytic properties
JP2008077999A (en) Catalyst used for electrochemical electrode and its manufacturing method
Kumar et al. One-pot synthesis of Pd20-xAux nanoparticles embedded in nitrogen doped graphene as high-performance electrocatalyst toward methanol oxidation
Liu et al. An etching-assisted route for fast and large-scale fabrication of non-layered palladium nanosheets
Hsieh et al. Electro-oxidation of methanol and formic acid on platinum nanoparticles with different oxidation levels
WO2012053561A1 (en) Electrode material and method for producing same
Zeng et al. Highly ordered and surfactant-free PtxRuy bimetallic nanocomposites synthesized by electrostatic self assembly for methanol oxidation reaction

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070201