JP2011071159A - Vacuum suction nozzle - Google Patents

Vacuum suction nozzle Download PDF

Info

Publication number
JP2011071159A
JP2011071159A JP2009218532A JP2009218532A JP2011071159A JP 2011071159 A JP2011071159 A JP 2011071159A JP 2009218532 A JP2009218532 A JP 2009218532A JP 2009218532 A JP2009218532 A JP 2009218532A JP 2011071159 A JP2011071159 A JP 2011071159A
Authority
JP
Japan
Prior art keywords
suction nozzle
vacuum suction
electronic component
concave curved
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009218532A
Other languages
Japanese (ja)
Other versions
JP5300674B2 (en
Inventor
Takashi Tanaka
隆 田中
Yuko Yanagida
祐子 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009218532A priority Critical patent/JP5300674B2/en
Publication of JP2011071159A publication Critical patent/JP2011071159A/en
Application granted granted Critical
Publication of JP5300674B2 publication Critical patent/JP5300674B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Manipulator (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum suction nozzle for surely and precisely placing an electronic component at a mounting position on a circuit board, by detecting an accurate position of a suctioned electronic component for the vacuum suction nozzle of a mounting device for moving the electronic component to the circuit board, as is, by detecting the position of the sucked electronic component by applying light from a camera side, and mounting it. <P>SOLUTION: The vacuum suction nozzle 1 includes, in a circumferential direction, a plurality of concave surface, where a conical section or a pyramid section spreads toward an opposite side from a suction surface side for sucking and holding an object to be suctioned by vacuum suction is recessed along an axial side and is spread gradually in width. When a light from the camera side is irradiated and the position of the object to be suctioned is detected, the image input level of the reflected light from the suction nozzle becomes low (low luminance); and since accurate position of the object to be suctioned can be detected, damages due to contact of the vacuum suction nozzle 1 with the already mounted electronic components, as much as possible, are reduced. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、チップコンデンサやチップ抵抗器などのチップ状の電子部品を回路基板に実装するための電子部品装着機に好適に用いられる真空吸着ノズルに関する。   The present invention relates to a vacuum suction nozzle suitably used for an electronic component mounting machine for mounting a chip-shaped electronic component such as a chip capacitor or a chip resistor on a circuit board.

従来、チップコンデンサやチップ抵抗器などのチップ状の電子部品は、電子部品装着機に具備された真空吸着ノズルの先端の吸着面に真空吸引によって吸着された後、そのまま搬送されて回路基板の所定の位置へ実装される。このとき、このチップ状の電子部品の位置の測定は、光を照射して、このチップ状の電子部品によって反射された反射光をCCDカメラで受光し、画像解析装置でチップ状の電子部品の形状や電極の位置を解析することによって行なわれている。   Conventionally, chip-shaped electronic components such as a chip capacitor and a chip resistor are adsorbed by vacuum suction to the suction surface at the tip of a vacuum suction nozzle provided in the electronic component mounting machine, and then transported as they are to obtain a predetermined circuit board. Implemented at the position of. At this time, the position of the chip-shaped electronic component is measured by irradiating light, receiving the reflected light reflected by the chip-shaped electronic component with a CCD camera, and using the image analysis device to detect the chip-shaped electronic component. This is done by analyzing the shape and electrode position.

図7は、真空吸着ノズルを具備した電子部品装着機を用いた、チップ状の電子部品を回路基板に実装する電子部品装着装置の構成を示す概略図である。   FIG. 7 is a schematic diagram showing a configuration of an electronic component mounting apparatus for mounting a chip-shaped electronic component on a circuit board using an electronic component mounting machine equipped with a vacuum suction nozzle.

図7に示す電子部品装着装置50は、電子部品装着機44に具備された真空吸着ノズル31と、電子部品45を並べたトレイ46と、真空吸着ノズル31に吸着された電子部品45に向けて光を照射するライト47と、電子部品45からの反射光を受光するためのCCDカメラ48と、CCDカメラ48で受光した反射光を画像処理するための画像解析装置49とで構成されている。   The electronic component mounting apparatus 50 shown in FIG. 7 is directed toward the vacuum suction nozzle 31 provided in the electronic component mounting machine 44, the tray 46 in which the electronic components 45 are arranged, and the electronic component 45 sucked by the vacuum suction nozzle 31. The light 47 is configured to include a light 47, a CCD camera 48 for receiving reflected light from the electronic component 45, and an image analysis device 49 for processing the reflected light received by the CCD camera 48.

そして、この電子部品装着装置50は、真空吸着ノズル31がトレイ46まで移動し、トレイ46上に並べられた電子部品45を吸着すると、ライト47が真空吸着ノズル31に吸着された電子部品45へ向けて光を照射し、この光が電子部品45の本体や電極に当たって反射する反射光をCCDカメラ48で受光し、CCDカメラ48で受光した画像を基に画像解析装置49によって電子部品45の位置を測定して、そのデータを基に回路基板(図示せず)の所定の位置に電子部品45を吸着した真空吸着ノズル31を移動させて、回路基板上に電子部品45を実装している。   Then, in this electronic component mounting apparatus 50, when the vacuum suction nozzle 31 moves to the tray 46 and sucks the electronic component 45 arranged on the tray 46, the light 47 is transferred to the electronic component 45 sucked by the vacuum suction nozzle 31. The CCD camera 48 receives reflected light that is reflected when the light hits the body or electrodes of the electronic component 45, and the position of the electronic component 45 is detected by the image analyzer 49 based on the image received by the CCD camera 48. The vacuum suction nozzle 31 that sucks the electronic component 45 is moved to a predetermined position on the circuit board (not shown) based on the data, and the electronic component 45 is mounted on the circuit board.

なお、図示していないが、電子部品装着装置50には回路基板上に実装した電子部品45の位置が正確であるかどうかをCCDカメラで撮像して画像解析装置で解析し、任意の実装予定位置より位置ずれが大きい場合には実装した回路基板を製造工程から除去するようになっている。   Although not shown in the drawings, the electronic component mounting device 50 is imaged with a CCD camera to determine whether the position of the electronic component 45 mounted on the circuit board is accurate, and is analyzed with an image analysis device, and an arbitrary mounting schedule is planned. When the positional deviation is larger than the position, the mounted circuit board is removed from the manufacturing process.

図6は、電子部品装着機の保持部材に組み付けられた状態の真空吸着ノズルの構成の一例を示す、(a)は斜視図であり、(b)は縦断面図である。   6A and 6B show an example of the configuration of the vacuum suction nozzle in a state assembled to the holding member of the electronic component mounting machine, where FIG. 6A is a perspective view and FIG. 6B is a longitudinal sectional view.

この真空吸着ノズル31は、真空吸引することによって電子部品を吸着して保持するための吸着面32を先端の端面側に有した円筒部35と、円筒部35の吸着面32と相対する側に円筒部35に向かって先細りの形状で設けられた円錐部34と、円錐部34が吸着面32と相対する根元の端面側に設けた頭部36とを有する構成とされている。そして円筒部35の中心部を貫く内孔は、円錐部34と頭部36とに延設されて吸引孔33とされている。   The vacuum suction nozzle 31 includes a cylindrical portion 35 having a suction surface 32 on the end face side of the tip for suctioning and holding electronic components by vacuum suction, and a side opposite to the suction surface 32 of the cylindrical portion 35. The conical part 34 is provided in a tapered shape toward the cylindrical part 35, and the head part 36 is provided on the end face side of the base where the conical part 34 faces the suction surface 32. An inner hole penetrating through the central portion of the cylindrical portion 35 is extended to the conical portion 34 and the head portion 36 to form a suction hole 33.

また、保持部材40は真空吸着ノズル31の頭部36と嵌合する受け部41を中央に有し、その中心部に吸引孔33と連通するように吸引孔42を有しており、受け部41に真空吸着ノズル31の頭部36を嵌合して電子部品装着機に取り付けられるようにしてある。   Further, the holding member 40 has a receiving portion 41 that fits with the head portion 36 of the vacuum suction nozzle 31 in the center, and has a suction hole 42 at the center portion thereof so as to communicate with the suction hole 33. The head 36 of the vacuum suction nozzle 31 is fitted to 41 so that it can be attached to the electronic component mounting machine.

そして、真空吸着ノズル31の材質としては、耐摩耗性に優れるセラミックスや超硬合金などが用いられている。   As the material of the vacuum suction nozzle 31, ceramics or cemented carbide having excellent wear resistance are used.

さらに、特許文献1には、チップ部品を吸着する吸着ノズルの先端部に耐摩耗性の優れたセラミックスを用いることや、このような吸着ノズルの先端部がカメラで撮影したときにチップ部品よりも画像入力レベルの低い色(濃い色、例えば黒色のセラミックスの色)で構成されることによって、チップ部品の位置検出が行なえることが開示されており、この吸着ノズルは耐摩耗性に優れ、チップ部品をノズルでピックアップした際の画像処理を確実に行なえることが開示されている。   Furthermore, in Patent Document 1, ceramics having excellent wear resistance are used at the tip of the suction nozzle that sucks the chip component, and when the tip of such a suction nozzle is photographed with a camera, the tip part is more than the chip component. It is disclosed that the position of a chip component can be detected by being composed of a color with a low image input level (dark color, for example, a black ceramic color). It is disclosed that image processing can be reliably performed when a component is picked up by a nozzle.

また、特許文献2には、先端に被測定物を吸着保持する平坦な吸着面を有するとともに、該吸着面にまで連通する吸引孔を備えた吸着ノズルを具備してなり、該吸着ノズルの吸引孔より真空吸引して吸着面に被測定物を吸着保持するようにしてなる光学測定用物体保持装置において、上記吸着ノズルの少なくとも先端部を、400〜1000nmの波長光に対する反射率が40%以下であるセラミックスで形成した光学測定用物体保持装置が開示され、併せて、先端に平坦な吸着面を有し、該吸着面に向かって先細り状に形成した略円錐状の吸着ノズルと該吸着ノズルが嵌合する凹部を有する保持部材(フランジ)とからなり、上記吸着ノズルが黒色系のセラミックスで形成されるとともに、保持部材(フランジ)がステンレス,アルミニウム,合金工具鋼材等の金属で形成されたものが開示されている。そして、これによれば、吸着ノズルでの光の反射を抑え、被測定物の外形形状やその一部分を確実に認識して所定位置まで搬送することができるとともに、被測定物の脱着を繰り返したとしても吸着面の摩耗が少ないため長期使用が可能であるというものである。   In addition, Patent Document 2 includes a suction nozzle having a flat suction surface for sucking and holding an object to be measured at the tip and a suction hole communicating with the suction surface. In the object holder for optical measurement, wherein the object to be measured is sucked and held on the suction surface by vacuum suction from the hole, at least the tip of the suction nozzle has a reflectance of 40% or less with respect to light having a wavelength of 400 to 1000 nm. An optical measurement object holding device formed of ceramics is disclosed, and at the same time, a substantially conical suction nozzle having a flat suction surface at the tip and tapered toward the suction surface, and the suction nozzle And a holding member (flange) having a recess into which is fitted, the suction nozzle is made of black ceramic, and the holding member (flange) is made of stainless steel, aluminum, or an alloy tool. Those formed of a metal wood or the like is disclosed. And according to this, reflection of light at the suction nozzle can be suppressed, the outer shape of the object to be measured and a part thereof can be reliably recognized and conveyed to a predetermined position, and the object to be measured is repeatedly attached and detached. However, since the wear of the adsorption surface is small, it can be used for a long time.

特開平2−90700号公報Japanese Patent Laid-Open No. 2-90700 特開平10−117099号公報Japanese Patent Laid-Open No. 10-117099

しかしながら、近年、真空吸着ノズルを高速で移動させてトレイ上の電子部品を吸着し、そのまま電子部品を回路基板まで移動して実装する工程等において、回路基板およびこれに実装する電子部品がますます小型化されて、実装する電子部品の数が増加する傾向にあるため、真空吸着ノズルが電子部品を吸着して回路基板の実装位置に確実に精度良く載置することがさらに求められてきている。特に、電子部品装着装置等を用いて電子部品を真空吸着ノズルで吸着して回路基板に載置するときに、電子部品に光を照射してその反射光をCCDカメラで受光し画像解析装置によって電子部品の位置確認を行なうのであるが、吸着する電子部品が小型化されてきているので、この電子部品からの反射光以外に真空吸着ノズルからの反射光も多く含まれるようになり正確な位置検出が難しくなって、より精度よく実装することが難しくなっている。また、真空吸着ノズルが回路基板上ですでに実装した電子部品に当たって損傷するという問題が生じている。   However, in recent years, there are more and more circuit boards and electronic components to be mounted on them in the process of moving the vacuum suction nozzle at high speed to pick up electronic components on the tray and moving the electronic components to the circuit board as they are for mounting. As the number of electronic components to be mounted tends to increase in size, the vacuum suction nozzle has further been required to accurately and accurately place the electronic components on the circuit board mounting position. . In particular, when an electronic component is picked up by a vacuum suction nozzle using an electronic component mounting device or the like and placed on a circuit board, the electronic component is irradiated with light, and the reflected light is received by a CCD camera. The position of the electronic component is checked, but since the electronic component to be picked up has been miniaturized, the reflected light from the vacuum suction nozzle is included in addition to the reflected light from this electronic component, and the accurate position It is difficult to detect and it is difficult to implement with higher accuracy. Further, there is a problem that the vacuum suction nozzle hits an electronic component already mounted on the circuit board and is damaged.

また、特許文献2の吸着ノズルは先端部を、400〜1000nmの波長光に対する反射率が40%以下であるセラミックスで形成し、吸着面に向かって先細り状に形成した略円錐状の吸着ノズルであって黒色系のセラミックスで形成されて反射光は少なくなってはいるものの、電子部品が小型化されると吸着ノズル全体からの反射光が多くなって、正確な位置検出が難しくなるとともに、真空吸着ノズルが回路基板上ですでに実装した電子部品に当たって損傷するという問題が生じている。   In addition, the suction nozzle of Patent Document 2 is a substantially conical suction nozzle that is formed of ceramics having a reflectance of 40% or less with respect to light having a wavelength of 400 to 1000 nm and tapered toward the suction surface. Although it is made of black ceramics and the reflected light is reduced, when the electronic component is downsized, the reflected light from the entire suction nozzle increases, making accurate position detection difficult and vacuuming. There is a problem that the suction nozzle hits an electronic component already mounted on the circuit board and is damaged.

本発明は、先端に吸着物(電子部品)を真空吸着して移送する際に吸着物を位置精度良く実装でき、回路基板上にすでに実装された電子部品に当たって損傷することの少ない真空吸着ノズルを提供することを目的とする。   The present invention provides a vacuum suction nozzle that can mount an adsorbate with high positional accuracy when the adsorbate (electronic component) is vacuum-adsorbed and transferred to the tip, and is less likely to be damaged by hitting an electronic component already mounted on a circuit board. The purpose is to provide.

本発明の真空吸着ノズルは、真空吸引によって電子部品を吸着して保持するための吸着面を先端に有し、前記吸着面側から反対側に向かって広がっている円錐状部または角錐状部を有する真空吸着ノズルにおいて、前記円錐状部または角錐状部の側面が、前記円錐状部または角錐状部の前記吸着面側から反対側に向かって軸方向側に沿って凹んで次第に幅が広がっている凹曲面を周方向に複数有することを特徴とするものである。   The vacuum suction nozzle of the present invention has a suction surface for sucking and holding an electronic component by vacuum suction at the tip, and has a conical portion or a pyramidal portion that extends from the suction surface side to the opposite side. In the vacuum suction nozzle, the side surface of the conical portion or the pyramid portion is recessed along the axial direction from the suction surface side to the opposite side of the conical portion or the pyramid portion, and the width gradually increases. A plurality of concave curved surfaces are provided in the circumferential direction.

また、本発明の真空吸着ノズルは、上記構成において、前記円錐状部または角錐状部が前記吸着面側に筒部を有することを特徴とするものである。   Moreover, the vacuum suction nozzle of the present invention is characterized in that, in the above configuration, the conical portion or the pyramid-shaped portion has a cylindrical portion on the suction surface side.

また、本発明の真空吸着ノズルは、上記構成において、前記凹曲面を前記筒部にも有していることを特徴とするものである。   Moreover, the vacuum suction nozzle of the present invention is characterized in that, in the above configuration, the concave curved surface is also provided in the cylindrical portion.

また、本発明の真空吸着ノズルは、上記各構成において、前記円錐状部または角錐状部の前記吸着面と反対側の端面に続く台座部を有することを特徴とするものである。   In addition, the vacuum suction nozzle of the present invention is characterized in that, in each of the above-described configurations, a pedestal portion that continues to an end surface opposite to the suction surface of the conical portion or the pyramidal portion is provided.

さらに、本発明の真空吸着ノズルは、上記構成において、前記凹曲面が前記筒部から前記台座部まで続いていることを特徴とするものである。   Furthermore, the vacuum suction nozzle of the present invention is characterized in that, in the above configuration, the concave curved surface continues from the cylindrical portion to the pedestal portion.

さらに、本発明の真空吸着ノズルは、上記構成において、前記凹曲面の前記吸着面の反対側に軸方向に交差する方向の内側面を有しており、該内側面が前記吸着面の反対側に傾斜していることを特徴とするものである。   Furthermore, the vacuum suction nozzle of the present invention has an inner surface in a direction intersecting the axial direction on the opposite side of the suction surface of the concave curved surface in the above configuration, and the inner side surface is the opposite side of the suction surface. It is characterized by being inclined.

本発明の真空吸着ノズルによれば、真空吸引によって電子部品を吸着して保持するための吸着面を先端に有し、この吸着面側から反対側に向かって広がっている円錐状部または角錐状部の側面が、吸着面側から反対側に向かって軸方向側に沿って凹んで次第に幅が広がっている凹曲面を周方向に複数有することから、電子部品に光を照射してその反射光をCCDカメラで受光し画像解析装置によって電子部品の位置確認を行なうときに、照射した光が円錐状部または角錐状部の側面に有する凹曲面によって散乱するので、電子部品からの反射光がより鮮明にCCDカメラに受光されるので電子部品の正確な位置検出ができるようになり精度良く実装することができる。そのために、真空吸着ノズルが回路基板上ですでに実装した電子部品に当たって損傷することが少なくなる。   According to the vacuum suction nozzle of the present invention, the tip has a suction surface for sucking and holding an electronic component by vacuum suction, and a conical portion or a pyramid shape spreading from the suction surface side toward the opposite side Since the side surface of the part has a plurality of concave curved surfaces that are recessed along the axial direction from the suction surface side to the opposite side and gradually increase in width, the light reflected from the electronic component is irradiated with light. When the position of the electronic component is confirmed by a CCD camera and the image analysis apparatus confirms the position of the electronic component, the irradiated light is scattered by the concave curved surface on the side surface of the cone-shaped portion or the pyramid-shaped portion. Since the light is clearly received by the CCD camera, the position of the electronic component can be accurately detected and can be mounted with high accuracy. For this reason, the vacuum suction nozzle is less likely to be damaged by hitting an electronic component already mounted on the circuit board.

また、円錐状部または角錐状部が吸着面側に筒部を有するときには、電子部品を回路基板に実装するときに、実装する電子部品の数が増加して回路基板上で電子部品が密集した状態となっても、円錐状部や角錐状部が載置された電子部品に接触して損傷することが少なくなる。   In addition, when the conical part or the pyramid part has the cylindrical part on the suction surface side, when the electronic component is mounted on the circuit board, the number of electronic parts to be mounted is increased and the electronic parts are densely arranged on the circuit board. Even if it becomes a state, it will reduce that it contacts and damages the electronic component in which the cone-shaped part and the pyramid-shaped part were mounted.

また、円錐状部または角錐状部の側面に有する凹曲面を筒部にも有しているので、電子部品の位置確認を行なうときに、照射した光が円錐状部または角錐状部の側面に有する凹曲面と同様に筒部に有する凹曲面によっても散乱するので、電子部品からの反射光がより鮮明にCCDカメラに受光されて電子部品の正確な位置検出ができるので、真空吸着ノズルが回路基板上ですでに実装した電子部品に当たって損傷することが少なくなる。   In addition, since the cylindrical portion also has a concave curved surface on the side surface of the conical portion or the pyramid portion, the irradiated light is applied to the side surface of the conical portion or the pyramid portion when confirming the position of the electronic component. As the concave curved surface is scattered by the concave curved surface of the cylindrical portion, the reflected light from the electronic component is received by the CCD camera more clearly and the electronic component can be accurately detected. Less damage is caused by hitting electronic components already mounted on the substrate.

また、本発明の真空吸着ノズルによれば、円錐状部または角錐状部の吸着面と反対側の端面に続く台座部を有することから、この真空吸着ノズルを電子部品装着機に取り付けるときには、台座部と保持部材とを接合してから容易に取り付けることができる。そのため、取り扱いが容易になり真空吸着ノズルが電子部品装着機などに接触して角部が欠けて損傷するということが少なくなる。また、保持部材に接合して電子部品装着機に取り付けるので真空吸着ノズルの位置精度がよくなり電子部品に当たって損傷することが少なくなる。   Further, according to the vacuum suction nozzle of the present invention, since the pedestal portion continues to the end surface on the side opposite to the suction surface of the conical portion or the pyramidal portion, when the vacuum suction nozzle is attached to the electronic component mounting machine, the pedestal It can be easily attached after joining the part and the holding member. Therefore, handling becomes easy, and it is less likely that the vacuum suction nozzle comes into contact with an electronic component mounting machine or the like and the corner portion is cut and damaged. Moreover, since it joins to a holding member and it attaches to an electronic component mounting machine, the positional accuracy of a vacuum suction nozzle improves, and it becomes less likely to hit and damage an electronic component.

さらに、本発明の真空吸着ノズルによれば、凹曲面が筒部から台座部まで続いていることから、照射した光がこれら凹曲面によって散乱するので、電子部品からの反射光がより鮮明にCCDカメラに受光されて電子部品の正確な位置検出ができるので、真空吸着ノズルが回路基板上ですでに実装した電子部品に当たって損傷することが少なくなる。   Furthermore, according to the vacuum suction nozzle of the present invention, since the concave curved surface continues from the cylindrical portion to the pedestal portion, the irradiated light is scattered by the concave curved surface, so that the reflected light from the electronic component is more clearly displayed in the CCD. Since the position of the electronic component can be detected by being received by the camera, the vacuum suction nozzle is less likely to be damaged by hitting the electronic component already mounted on the circuit board.

さらに、本発明の真空吸着ノズルによれば、凹曲面の吸着面の反対側に軸方向に交差する方向の内側面を有しており、この内側面が吸着面の反対側に傾斜していることから、照射した光がこの内側面に当たっても反射光が吸着面側に反射することが少ないので、電子部品からの反射光がより鮮明にCCDカメラに受光されて電子部品の正確な位置検出ができるので、真空吸着ノズルが回路基板上ですでに実装した電子部品に当たって損傷することが少なくなる。   Furthermore, according to the vacuum suction nozzle of the present invention, the inner surface of the direction intersecting the axial direction is provided on the opposite side of the suction surface of the concave curved surface, and the inner surface is inclined to the opposite side of the suction surface. Therefore, even if the irradiated light hits this inner side surface, the reflected light is less likely to be reflected to the suction surface side, so that the reflected light from the electronic component is received more clearly by the CCD camera, and accurate position detection of the electronic component is possible. As a result, the vacuum suction nozzle is less likely to be damaged by hitting electronic components already mounted on the circuit board.

本発明の真空吸着ノズルを電子部品装着機の保持部材に組み付けたときの構成の一例を示す、(a)は斜視図であり、(b)は(a)の縦断面図であり、(c)は(a)のA−A′線での断面図であり、(d)は(a)のB−B′線での断面図である。An example of a structure when the vacuum suction nozzle of this invention is assembled | attached to the holding member of an electronic component mounting machine is shown, (a) is a perspective view, (b) is a longitudinal cross-sectional view of (a), (c ) Is a cross-sectional view taken along line AA 'in FIG. 5A, and FIG. 5D is a cross-sectional view taken along line BB' in FIG. 本発明の真空吸着ノズルを具備した電子部品装着機を用いて、チップ状の電子部品を回路基板に実装する電子部品装着装置の構成を示す概略図である。It is the schematic which shows the structure of the electronic component mounting apparatus which mounts a chip-shaped electronic component on a circuit board using the electronic component mounting machine provided with the vacuum suction nozzle of this invention. 本発明の真空吸着ノズルの円錐状部の軸方向に垂直な方向の断面形状の例を示す、(a)は円錐状部の周方向に3つの凹曲面を有した断面図であり、(b)は円錐状部の周方向に4つの凹曲面を有した断面図であり、(c)は円錐状部の周方向に5つの凹曲面を有した断面図であり、(d)は四角錐状部の外周面に4つの凹曲面を有した断面図であり、(e)は四角錐状部の外周面に相対する1対の凹曲面を有した断面図である。The example of the cross-sectional shape of the direction perpendicular | vertical to the axial direction of the cone-shaped part of the vacuum suction nozzle of this invention is shown, (a) is sectional drawing which has three concave curved surfaces in the circumferential direction of a cone-shaped part, (b ) Is a sectional view having four concave curved surfaces in the circumferential direction of the conical portion, (c) is a sectional view having five concave curved surfaces in the circumferential direction of the conical portion, and (d) is a quadrangular pyramid. It is sectional drawing which has four concave curved surfaces in the outer peripheral surface of a shape part, (e) is sectional drawing which has a pair of concave curved surface facing the outer peripheral surface of a quadrangular pyramid-shaped part. 本発明の真空吸着ノズルが円錐状部の吸着面側に有する筒部の例を示す、(a)は円筒状の筒部の斜視図であり、(b)は三角柱状の筒部の斜視図であり、(c)は四角柱状の筒部の斜視図であり、(d)は円筒状の筒部に4つの凹曲面を周方向に有する筒部の斜視図であり、(e)は三角柱状の筒部の外周面に凹曲面を有する筒部の斜視図であり、(f)は四角柱状の筒部の相対する1対の外周面に凹曲面を有する筒部の斜視図である。The vacuum suction nozzle of this invention shows the example of the cylinder part which the adsorption | suction surface side of a cone-shaped part has, (a) is a perspective view of a cylindrical cylinder part, (b) is a perspective view of a triangular column-shaped cylinder part. (C) is a perspective view of a quadrangular columnar cylindrical portion, (d) is a perspective view of a cylindrical portion having four concave curved surfaces in the circumferential direction in the cylindrical cylindrical portion, and (e) is a triangular shape. It is a perspective view of the cylinder part which has a concave curved surface in the outer peripheral surface of a columnar cylinder part, (f) is a perspective view of the cylindrical part which has a concave curved surface in a pair of outer peripheral surface which a square columnar cylinder part opposes. 本発明の真空吸着ノズルを電子部品装着機の保持部材に組み付けたときの構成の一例を示す、(a)は斜視図であり、(b)は(a)の縦断面図であり、(c)は(a)のC−C′線での断面図であり、(d)は(a)のD−D′線での断面図である。An example of a structure when the vacuum suction nozzle of this invention is assembled | attached to the holding member of an electronic component mounting machine is shown, (a) is a perspective view, (b) is a longitudinal cross-sectional view of (a), (c ) Is a cross-sectional view taken along line CC ′ in FIG. 5A, and FIG. 6D is a cross-sectional view taken along line DD ′ in FIG. 従来の電子部品装着機の保持部材に組み付けられた状態の真空吸着ノズルの構成の一例を示す、(a)は斜視図であり、(b)は縦断面図である。An example of a structure of the vacuum suction nozzle of the state assembled | attached to the holding member of the conventional electronic component mounting machine is shown, (a) is a perspective view, (b) is a longitudinal cross-sectional view. 従来の真空吸着ノズルを具備した電子部品装着機を用いた、チップ状の電子部品を回路基板に実装する電子部品装着装置の構成を示す概略図である。It is the schematic which shows the structure of the electronic component mounting apparatus which mounts a chip-shaped electronic component on a circuit board using the electronic component mounting machine provided with the conventional vacuum suction nozzle.

以下、本発明の実施の形態の例を説明する。   Hereinafter, examples of embodiments of the present invention will be described.

図1は本発明の真空吸着ノズルを電子部品装着機の保持部材に組み付けたときの構成の一例を示す、(a)は斜視図であり、(b)は(a)の縦断面図であり、(c)は(a)のA−A′線での断面図であり、(d)は(a)のB−B′線での断面図である。   FIG. 1 shows an example of a configuration when the vacuum suction nozzle of the present invention is assembled to a holding member of an electronic component mounting machine, (a) is a perspective view, and (b) is a longitudinal sectional view of (a). (C) is sectional drawing in the AA 'line of (a), (d) is sectional drawing in the BB' line of (a).

図1に示す真空吸着ノズル1は、真空吸引によって電子部品(図示せず)を吸着して保持するための吸着面2を先端に有し、吸着面2側から反対側に向かって広がっている円錐状部4の側面が、吸着面2側から反対側に向かって軸方向側に沿って凹んで次第に幅が広がっている凹曲面8を周方向に複数有する構成としてある。そして、吸着面2に開口した内孔は、円錐状部4を貫通させて、吸引孔3としてある。なお図1に示す例においては、この真空吸着ノズル1の円錐状部4の周方向には4つの凹曲面8を有するようにしてある。   A vacuum suction nozzle 1 shown in FIG. 1 has a suction surface 2 for sucking and holding an electronic component (not shown) by vacuum suction, and spreads from the suction surface 2 side to the opposite side. The side surface of the conical portion 4 has a plurality of concave curved surfaces 8 that are recessed along the axial direction from the suction surface 2 side toward the opposite side and gradually increase in width in the circumferential direction. The inner hole opened in the suction surface 2 is formed as a suction hole 3 through the conical portion 4. In the example shown in FIG. 1, four concave curved surfaces 8 are provided in the circumferential direction of the conical portion 4 of the vacuum suction nozzle 1.

また、真空吸着ノズル1の吸着面2と反対側の端面と接合する受け部11とを有し、吸引孔3と連通するように吸引孔12を有している保持部材10が、真空吸着ノズル1の吸着面2と反対側の端面と受け部11とを接合させて取り付けられており、この保持部材10を介して真空吸着ノズル1が電子部品装着機(図示せず)に取り付けられるようにしてある。   A holding member 10 having a receiving portion 11 joined to an end surface opposite to the suction surface 2 of the vacuum suction nozzle 1 and having a suction hole 12 so as to communicate with the suction hole 3 is a vacuum suction nozzle. 1 is attached by joining the end surface opposite to the suction surface 2 and the receiving portion 11, and the vacuum suction nozzle 1 is attached to an electronic component mounting machine (not shown) through the holding member 10. It is.

次に、図2に、本発明の真空吸着ノズル1を具備した電子部品装着機を用いて、チップ状の電子部品を回路基板に実装する電子部品装着装置の構成を概略図で示す。   Next, FIG. 2 schematically shows a configuration of an electronic component mounting apparatus for mounting a chip-shaped electronic component on a circuit board using an electronic component mounting machine equipped with the vacuum suction nozzle 1 of the present invention.

図2に示す電子部品装着装置20は、電子部品装着機14に具備した真空吸着ノズル1と、電子部品15を並べたトレイ16と、真空吸着ノズル1に吸着された電子部品15に向けて光を照射するライト17と、ライト17の反射光を受光するためのCCDカメラ18と、CCDカメラ18で受光した反射光(画像)を画像処理するための画像解析装置19とで構成されている。   The electronic component mounting apparatus 20 shown in FIG. 2 is directed toward the vacuum suction nozzle 1 provided in the electronic component mounting machine 14, the tray 16 in which the electronic components 15 are arranged, and the electronic component 15 sucked by the vacuum suction nozzle 1. , A CCD camera 18 for receiving the reflected light of the light 17, and an image analysis device 19 for processing the reflected light (image) received by the CCD camera 18.

そして、この電子部品装着装置20は、真空吸着ノズル1がトレイ16まで移動し、トレイ16上に並べられた電子部品15を吸着すると、ライト17が真空吸着ノズル1に吸着された電子部品15へ向けて光を照射し、この光が電子部品15の本体や電極に当たって反射する反射光をCCDカメラ18で受光し、CCDカメラ18で受光した画像を基に画像解析装置19によって電子部品15の位置を測定して、そのデータを基に回路基板(図示せず)の所定の位置に電子部品15を吸着した真空吸着ノズル1を移動させて、回路基板の表面に電子部品15を実装するものである。なお、図示していないが、電子部品装着装置20には回路基板上に実装した電子部品15の位置が正確であるかどうかをCCDカメラで撮像して画像解析装置で解析し、任意の実装予定位置より位置ずれが大きい場合には実装した回路基板を製造工程から除去するようになっている。   In the electronic component mounting apparatus 20, when the vacuum suction nozzle 1 moves to the tray 16 and sucks the electronic components 15 arranged on the tray 16, the light 17 moves to the electronic component 15 sucked by the vacuum suction nozzle 1. The CCD camera 18 receives the reflected light that is reflected when the light hits the body or electrode of the electronic component 15, and the position of the electronic component 15 is detected by the image analyzer 19 based on the image received by the CCD camera 18. The vacuum suction nozzle 1 that sucks the electronic component 15 is moved to a predetermined position on the circuit board (not shown) based on the data, and the electronic component 15 is mounted on the surface of the circuit board. is there. Although not shown in the figure, the electronic component mounting device 20 is imaged with a CCD camera to determine whether the position of the electronic component 15 mounted on the circuit board is accurate, and is analyzed with an image analysis device. When the positional deviation is larger than the position, the mounted circuit board is removed from the manufacturing process.

そして、本発明の真空吸着ノズル1は、円錐状部(または角錐状部)4の側面が、吸着面2側から反対側に向かって軸方向側に沿って凹んで次第に幅が広がっている凹曲面8を周方向に複数有することが重要である。   In the vacuum suction nozzle 1 of the present invention, the side surface of the conical portion (or pyramid-shaped portion) 4 is recessed along the axial direction from the suction surface 2 side toward the opposite side, and the width gradually increases. It is important to have a plurality of curved surfaces 8 in the circumferential direction.

このような凹曲面8を周方向に複数有することによって、電子部品15に光を照射して、その反射光をCCDカメラ18で受光し、画像解析装置19によって電子部品15の位置確認を行なうときに、照射した光が円錐状部(または角錐状部)4の側面に有する凹曲面8によって散乱する。そして、凹曲面8からの反射光は電子部品15からの反射光とは分離するので電子部品15からの反射光がより鮮明にCCDカメラ18に受光されて、電子部品15の正確な位置検出ができるようになり精度良く実装することができ、真空吸着ノズル1が回路基板上ですでに実装した電子部品15にあたって損傷することが少なくなる。   By providing a plurality of such concave curved surfaces 8 in the circumferential direction, the electronic component 15 is irradiated with light, the reflected light is received by the CCD camera 18, and the position of the electronic component 15 is confirmed by the image analysis device 19 Furthermore, the irradiated light is scattered by the concave curved surface 8 on the side surface of the conical portion (or pyramid-shaped portion) 4. Since the reflected light from the concave curved surface 8 is separated from the reflected light from the electronic component 15, the reflected light from the electronic component 15 is received by the CCD camera 18 more clearly, and accurate position detection of the electronic component 15 can be performed. Thus, the vacuum suction nozzle 1 is less likely to be damaged by the electronic component 15 already mounted on the circuit board.

なお、このような凹曲面8は真空吸着ノズル1の円錐状部4に有するのであるが、真空吸着ノズル1が円錐状部でなく角錐状部を採用するときには、凹曲面8は角錐状部の側面に設ければ良く、その角錐状部の側面の数はいくつであっても構わないが、3〜8角錐程度の角錐状部であることが製作上好ましい。   Such a concave curved surface 8 is provided in the conical portion 4 of the vacuum suction nozzle 1, but when the vacuum suction nozzle 1 adopts a pyramid portion instead of a conical portion, the concave curved surface 8 is a pyramidal portion. The number of side surfaces of the pyramid portion may be any number, but a pyramid portion of about 3 to 8 pyramids is preferable in manufacturing.

また、凹曲面8が周方向に複数有するときには、周方向に隣り合う凹曲面8同士は互いに接触していても離れていても構わないが、電子部品15が小型化して回路基板上のさらに狭い場所に実装することが求められるようになると、真空吸着ノズル1も小型化が求められる。このとき、真空吸着ノズル1の吸着面2の先端側はより細くなるために損傷し易くなるので、凹曲面8同士が離れていると真空吸着ノズル1の強度が向上するので好ましい。   Further, when there are a plurality of concave curved surfaces 8 in the circumferential direction, the concave curved surfaces 8 adjacent in the circumferential direction may be in contact with each other or separated from each other, but the electronic component 15 is reduced in size and becomes narrower on the circuit board. When it is required to be mounted in a place, the vacuum suction nozzle 1 is also required to be downsized. At this time, since the tip side of the suction surface 2 of the vacuum suction nozzle 1 becomes thinner and easily damaged, it is preferable that the concave curved surfaces 8 are separated from each other because the strength of the vacuum suction nozzle 1 is improved.

また、凹曲面8の深さは真空吸着ノズル1が電子部品15を回路基板に実装するときに、実装する電子部品15の数が増加して回路基板上で電子部品15が密集した状態となっても、円錐状部または角錐状部が載置された電子部品15に接触して損傷することが少なくなるように、真空吸着ノズル1自体の強度や吸着物である電子部品15の大きさ、および実装する回路基板上の位置範囲に合わせて適宜選択すればよい。   The depth of the concave curved surface 8 is such that when the vacuum suction nozzle 1 mounts the electronic components 15 on the circuit board, the number of electronic components 15 to be mounted increases and the electronic components 15 are densely packed on the circuit board. However, the strength of the vacuum suction nozzle 1 itself and the size of the electronic component 15 as an adsorbent are reduced so that the electronic component 15 on which the conical portion or the pyramidal portion is placed is less likely to be damaged. Further, it may be appropriately selected according to the position range on the circuit board to be mounted.

次に、図3に、本発明の真空吸着ノズルの円錐状部の軸方向に垂直な方向の断面形状の例を示す、(a)は円錐状部の周方向に3つの凹曲面を有した断面図であり、(b)は円錐状部の周方向に4つの凹曲面を有した断面図であり、(c)は円錐状部の周方向に5つの凹曲面を有した断面図であり、(d)は四角錐状部の外周面に4つの凹曲面を有した断面図であり、(e)は四角錐状部の外周面に相対する1対の凹曲面を有した断面図である。これら(a)〜(e)の断面形状を真空吸着ノズル1が有することによって、電子部品15に光を照射すると、照射した光が円錐状部(または角錐状部)4の周方向に有する凹曲面8によって散乱する。そして、凹曲面8からの反射光は電子部品15からの反射光とは分離するので電子部品15からの反射光は鮮明にCCDカメラ18に受光されて、電子部品15の正確な位置検出ができるようになり精度良く実装することができ、真空吸着ノズル1が回路基板上ですでに実装した電子部品15にあたって損傷することが少なくなる。   Next, FIG. 3 shows an example of a cross-sectional shape in a direction perpendicular to the axial direction of the conical portion of the vacuum suction nozzle of the present invention. FIG. 3A has three concave curved surfaces in the circumferential direction of the conical portion. It is sectional drawing, (b) is sectional drawing which has four concave curved surfaces in the circumferential direction of a cone-shaped part, (c) is sectional drawing which has five concave curved surfaces in the circumferential direction of a cone-shaped part. (D) is sectional drawing which has four concave curved surfaces in the outer peripheral surface of a quadrangular pyramid part, (e) is sectional drawing which has a pair of concave curved surface facing the outer peripheral surface of a quadrangular pyramid part. is there. Since the vacuum suction nozzle 1 has the cross-sectional shapes of (a) to (e), when the electronic component 15 is irradiated with light, the irradiated light has a concave in the circumferential direction of the conical portion (or pyramidal portion) 4. Scattered by the curved surface 8. Since the reflected light from the concave curved surface 8 is separated from the reflected light from the electronic component 15, the reflected light from the electronic component 15 is clearly received by the CCD camera 18 and the electronic component 15 can be accurately detected. Therefore, the vacuum suction nozzle 1 is less likely to be damaged by the electronic component 15 already mounted on the circuit board.

なお、図3の(a),(b)および(c)は円錐状部4の周方向に凹曲面8を有した形状として説明したが、それぞれ三角錐状部,四角錐状部および五角錐状部の外周面に凹曲面8を有した場合としても良い。また、図3(d)は四角錐状部の外周面に凹曲面を有する場合で説明したが、真空吸着ノズル1の円錐状部4の周方向に4つの凹曲面を有した場合と見なしても良い。   3 (a), (b), and (c) are described as having a concave curved surface 8 in the circumferential direction of the conical portion 4, the triangular pyramid portion, the quadrangular pyramid portion, and the pentagonal pyramid, respectively. It is good also as a case where it has the concave curved surface 8 in the outer peripheral surface of a shape part. FIG. 3D illustrates the case where the outer peripheral surface of the quadrangular pyramid has a concave curved surface, but it is considered that the conical portion 4 of the vacuum suction nozzle 1 has four concave curved surfaces in the circumferential direction. Also good.

さらに、本発明の真空吸着ノズル1は、円錐状部4が吸着面2側に筒部5を有することが好ましい。   Furthermore, in the vacuum suction nozzle 1 of the present invention, it is preferable that the conical portion 4 has the cylindrical portion 5 on the suction surface 2 side.

図4は本発明の真空吸着ノズルが円錐状部の吸着面側に有する筒部の例を示す、(a)は円筒状の筒部の斜視図であり、(b)は三角柱状の筒部の斜視図であり、(c)は四角柱状の筒部の斜視図であり、(d)は円筒状の筒部に4つの凹曲面を周方向に有する筒部の斜視図であり、(e)は三角柱状の筒部の外周面に凹曲面を有する筒部の斜視図であり、(f)は四角柱状の筒部の相対する1対の外周面に凹曲面を有する筒部の斜視図である。   FIG. 4 shows an example of a cylindrical part that the vacuum suction nozzle of the present invention has on the suction surface side of the conical part, (a) is a perspective view of the cylindrical cylindrical part, and (b) is a triangular columnar cylindrical part. (C) is a perspective view of a quadrangular columnar cylindrical portion, (d) is a perspective view of a cylindrical portion having four concave curved surfaces in the circumferential direction, and (e) ) Is a perspective view of a cylindrical portion having a concave curved surface on the outer peripheral surface of a triangular columnar cylindrical portion, and (f) is a perspective view of a cylindrical portion having a concave curved surface on a pair of opposed outer peripheral surfaces of the rectangular columnar cylindrical portion. It is.

図4(a),(b)および(c)に示すような筒部5が、図1に示す真空吸着ノズル1の円錐状部(または角錐状部)4の吸着面2側の先端に延設されるようにして、吸着面2をこれら筒部5を延設した真空吸着ノズル1の先端側とすることによって、電子部品15を回路基板に実装するときに精度よく実装できるので、実装する電子部品15の数が増加して回路基板上で電子部品15が密集した状態となっても電子部品15をより狭い範囲に載置でき、円錐状部4が実装された電子部品15に接触して損傷することが少なくなる。   A cylindrical portion 5 as shown in FIGS. 4A, 4B and 4C extends to the tip of the suction surface 2 side of the conical portion (or pyramid portion) 4 of the vacuum suction nozzle 1 shown in FIG. Since the suction surface 2 is set to the tip side of the vacuum suction nozzle 1 in which these cylindrical portions 5 are extended, the electronic component 15 can be mounted with high accuracy when mounted on the circuit board. Even when the number of electronic components 15 increases and the electronic components 15 are densely packed on the circuit board, the electronic components 15 can be placed in a narrower range, and the conical portion 4 is in contact with the mounted electronic component 15. Damage.

また、本発明の真空吸着ノズル1は円錐状部(または角錐状部)4の周方向に有する凹曲面8を筒部5にも有していることが好ましい。   Moreover, it is preferable that the vacuum suction nozzle 1 of this invention also has the concave curved surface 8 which has the circumferential direction of the cone-shaped part (or pyramid-shaped part) 4 also in the cylinder part 5. FIG.

図4(d),(e)および(f)に示すような凹曲面8を有する筒部5が、図1に示す真空吸着ノズル1の円錐状部(または角錐状部)4の吸着面2側に延設されるようにして、吸着面2がこれら筒部5の先端側に有することによって、また、凹曲面8を筒部5の側面の大きさに合わせて有するようにすることによって、電子部品15を吸着して位置確認を行なうときに、照射した光が円錐状部(または角錐状部)4の周方向に有する凹曲面8と同様に筒部5に有する凹曲面8によっても散乱するので、電子部品15からの反射光がより鮮明にCCDカメラ18に受光されて電子部品15の正確な位置検出ができるようになり精度良く実装できるとともに、電子部品15に接触して損傷することが少なくなる。なお、筒部5は円錐状部(または角錐状部)4に延設されることで説明したが、図1で示す真空吸着ノズル1の円錐状部(または角錐状部)4の吸着面2側に、筒部5を接着剤や無機接合剤などを用いて接合したものでも構わない。   The cylindrical portion 5 having the concave curved surface 8 as shown in FIGS. 4D, 4E and 4F is the suction surface 2 of the conical portion (or pyramidal portion) 4 of the vacuum suction nozzle 1 shown in FIG. By extending the suction surface 2 on the distal end side of these cylindrical portions 5 and extending the concave side 8 according to the size of the side surface of the cylindrical portion 5, When the electronic component 15 is attracted and the position is confirmed, the irradiated light is scattered by the concave curved surface 8 in the cylindrical portion 5 as well as the concave curved surface 8 in the circumferential direction of the conical portion (or pyramidal portion) 4. Therefore, the reflected light from the electronic component 15 is received by the CCD camera 18 more clearly, so that the position of the electronic component 15 can be accurately detected and mounted with high accuracy, and the electronic component 15 is touched and damaged. Less. In addition, although the cylindrical part 5 was demonstrated by extending in the cone-shaped part (or pyramid-shaped part) 4, the suction surface 2 of the cone-shaped part (or pyramid-shaped part) 4 of the vacuum suction nozzle 1 shown in FIG. On the side, the cylindrical part 5 may be bonded using an adhesive or an inorganic bonding agent.

また、本発明の真空吸着ノズル1は、円錐状部(または角錐状部)4の吸着面2と反対側の端面に続く台座部6を有することが好ましい。   Moreover, it is preferable that the vacuum suction nozzle 1 of this invention has the base part 6 following the end surface on the opposite side to the suction surface 2 of the cone-shaped part (or pyramid-shaped part) 4. FIG.

図5は本発明の真空吸着ノズルを電子部品装着機の保持部材に組み付けたときの構成の一例を示す、(a)は斜視図であり、(b)は(a)の縦断面図であり、(c)は(a)のC−C′線での断面図であり、(d)は(a)のD−D′線での断面図である。   FIG. 5 shows an example of the configuration when the vacuum suction nozzle of the present invention is assembled to the holding member of the electronic component mounting machine, (a) is a perspective view, and (b) is a longitudinal sectional view of (a). (C) is sectional drawing in the CC 'line of (a), (d) is sectional drawing in the DD' line of (a).

図5に示す真空吸着ノズル1は、真空吸引によって電子部品(図示せず)を吸着して保持するための吸着面2を筒部5の先端に有し、吸着面2側から反対側に向かって広がっている円錐状部(または角錐状部)4の側面が、吸着面2側から反対側に向かって軸方向側に沿って凹んで次第に幅が広がっている凹曲面8を周方向に複数有する構成として、吸着面2に開口した内孔は、円錐状部(または角錐状部)4を貫通して台座部6に延設して台座部6の表面7に開口させて吸引孔3としてある。そして、筒部5の側面にも凹曲面8を有している。   The vacuum suction nozzle 1 shown in FIG. 5 has a suction surface 2 for sucking and holding an electronic component (not shown) by vacuum suction at the tip of the cylindrical portion 5, and is directed from the suction surface 2 side to the opposite side. The side surface of the conical portion (or the pyramid-shaped portion) 4 spreading in the circumferential direction is a plurality of concave curved surfaces 8 that are recessed along the axial direction from the suction surface 2 side toward the opposite side and gradually widen in the circumferential direction. As an arrangement, the inner hole opened in the suction surface 2 extends through the conical portion (or pyramid-shaped portion) 4 to the pedestal portion 6 and opens on the surface 7 of the pedestal portion 6 to form the suction hole 3. is there. And the side surface of the cylinder part 5 also has the concave curved surface 8.

また、真空吸着ノズル1の台座部6と接合する受け部11を有し、吸引孔3と連通するように吸引孔12を有している保持部材10が、真空吸着ノズル1の台座部6の表面7と受け部11とを接合させて取り付けられており、この保持部材10を介して真空吸着ノズル1が電子部品装着機(図示せず)に取り付けられるようにしてある。   A holding member 10 having a receiving part 11 joined to the base part 6 of the vacuum suction nozzle 1 and having a suction hole 12 so as to communicate with the suction hole 3 is provided on the base part 6 of the vacuum suction nozzle 1. The front surface 7 and the receiving part 11 are joined and attached, and the vacuum suction nozzle 1 is attached to an electronic component mounting machine (not shown) via the holding member 10.

このような台座部6を設けることによって、真空吸着ノズル1の円錐状部(または角錐状部)4の側面のエッジが欠けることを防止できる。とくに、保持部材10を介して真空吸着ノズル1が電子部品装着機(図示せず)に取り付けられるようにしてあるが、この保持部材10との接合時に円錐状部(または角錐状部)4の端面のエッジが欠けることが防止できる。また、保持部材10に接合して真空吸着ノズル1を電子部品装着機に取り付けるので、保持部材10が電子部品装着機に取り付けられたときに位置が正確にきちんと固定されるので、電子部品15の実装開始や、実装途中での清掃のための脱着によって位置がずれないので電子部品15に接触して損傷するということが少なくなる。   By providing such a base portion 6, it is possible to prevent the edge of the side surface of the conical portion (or pyramid-shaped portion) 4 of the vacuum suction nozzle 1 from being lost. In particular, the vacuum suction nozzle 1 is attached to an electronic component mounting machine (not shown) via the holding member 10, and the conical portion (or pyramid-like portion) 4 is joined to the holding member 10. It can prevent that the edge of an end surface is missing. Further, since the vacuum suction nozzle 1 is attached to the electronic component mounting machine by being joined to the holding member 10, the position is accurately fixed when the holding member 10 is attached to the electronic component mounting machine. Since the position does not shift due to the start of mounting or attachment / detachment for cleaning in the middle of mounting, contact with the electronic component 15 is less likely to be damaged.

そして、本発明の真空吸着ノズル1は、凹曲面8が筒部5から台座部6まで続いていることが好ましい。   In the vacuum suction nozzle 1 of the present invention, it is preferable that the concave curved surface 8 continues from the cylindrical portion 5 to the pedestal portion 6.

図5の真空吸着ノズル1は台座部6を有しているので、台座部6の円錐状部(または角錐状部)4側の内側面9は電子部品15の方向に向いている。このとき、電子部品15に光を照射して、その反射光をCCDカメラ18で受光し、画像解析装置19によって電子部品15の位置確認を行なうと、照射した光が台座部6の円錐状部(または角錐状部)4側の内側面9に当たって反射し、CCDカメラ18で受光することになるので、電子部品15の正確な位置検出ができなくなり、正確な位置精度が得られなくなって真空吸着ノズル1が回路基板上の電子部品15に接触して損傷することが起こる。台座部6の円錐状部(または角錐状部)4側の内側面9が凹曲面8を有すると、凹曲面8に当たって反射した反射光は散乱することになるので、電子部品15からの反射光が鮮明にCCDカメラ18に受光されて電子部品15の正確な位置検出ができるようになり、回路基板上に真空吸着ノズル1が移動したときにすでに実装した電子部品15に接触して損傷することが少なくなる。   Since the vacuum suction nozzle 1 of FIG. 5 has the pedestal portion 6, the inner side surface 9 of the pedestal portion 6 on the conical portion (or pyramid shape) 4 side faces the direction of the electronic component 15. At this time, when the electronic component 15 is irradiated with light, the reflected light is received by the CCD camera 18, and the position of the electronic component 15 is confirmed by the image analysis device 19, the irradiated light is conical. (Or pyramid-shaped part) Since it hits the inner side surface 9 on the 4 side and is reflected and received by the CCD camera 18, accurate position detection of the electronic component 15 cannot be performed, and accurate position accuracy cannot be obtained and vacuum suction is performed. The nozzle 1 contacts the electronic component 15 on the circuit board and is damaged. If the inner side surface 9 on the conical portion (or pyramid-shaped portion) 4 side of the pedestal portion 6 has the concave curved surface 8, the reflected light that is reflected by the concave curved surface 8 will be scattered, so that the reflected light from the electronic component 15 is scattered. Is clearly received by the CCD camera 18 so that the position of the electronic component 15 can be accurately detected, and when the vacuum suction nozzle 1 moves on the circuit board, the electronic component 15 already mounted is touched and damaged. Less.

さらに、この凹曲面8の吸着面2の反対側に軸方向に交差する方向の内側面9を有しており、該内側面9が吸着面2の反対側に傾斜していることが好ましい。   Further, it is preferable that the concave curved surface 8 has an inner side surface 9 in the direction intersecting the axial direction on the opposite side of the suction surface 2, and the inner side surface 9 is inclined to the opposite side of the suction surface 2.

内側面9が吸着面2の反対側に向かって傾斜していると、照射された光は傾斜した内側面9に当たって反射しても内側面9が傾斜していることによってCCDカメラ18へは受光しないので電子部品15の正確な位置検出ができるようになる。さらに、この内側面9が凹曲面8を有するとさらに確実に、照射された光が凹曲面8に当たって、反射光は吸着された電子部品15と違った方向に散乱されるので、電子部品15からの反射光が鮮明にCCDカメラ18に受光されて電子部品15の正確な位置検出ができるようになり、回路基板上に真空吸着ノズル1が移動したときにすでに実装した電子部品15に接触して損傷することが少なくなる。   If the inner side surface 9 is inclined toward the opposite side of the suction surface 2, the irradiated light hits the inclined inner side surface 9 and is reflected by the CCD camera 18 because the inner side surface 9 is inclined even if it is reflected. Therefore, the position of the electronic component 15 can be detected accurately. Further, when the inner side surface 9 has the concave curved surface 8, the irradiated light strikes the concave curved surface 8 and the reflected light is scattered in a different direction from the adsorbed electronic component 15. The reflected light is clearly received by the CCD camera 18 so that the position of the electronic component 15 can be accurately detected. When the vacuum suction nozzle 1 moves on the circuit board, the electronic component 15 contacts the already mounted electronic component 15. Less damage.

また、吸着面2の径は0.7mm以下とするのが好ましい。長辺が1mm以下の矩形状の電子部品15を吸着して高密度に実装される回路基板に実装するときに、吸着面2や筒部5が先に実装してある電子部品や周囲に実装してある部品に接触して欠けるという問題が生じにくくするためである。吸着面2の径が0.7mmを超えると、長辺が1mm以下の矩形状の電子部品15を吸着して高密度に実装される回路基板に実装しようとすると、吸着面2や筒部5が実装箇所の周囲にある部品と接触して破損しやすくなる。例えば、電子部品15が0603タイプ(寸法が0.6mm×0.3mm)のチップ部品である場合には、回路基板に実装された部品の間隔が約0.1mmとなる箇所もあるために、電子部品15が吸着面2に吸着されたときに僅かに位置がずれただけでも、実装時に吸着面2や筒部5が実装箇所の周囲にある部品に接触し破損する危険がある。   The diameter of the suction surface 2 is preferably 0.7 mm or less. When a rectangular electronic component 15 with a long side of 1 mm or less is picked up and mounted on a circuit board that is mounted with high density, it is mounted on the electronic component on which the suction surface 2 and the cylindrical part 5 are mounted first, and the surrounding area. This is to make it difficult to cause the problem of chipping in contact with a certain part. If the diameter of the suction surface 2 exceeds 0.7 mm, the suction surface 2 and the cylindrical portion 5 are not attached to the circuit board that is mounted with high density by sucking the rectangular electronic component 15 having a long side of 1 mm or less. Contact with the parts around the mounting location will easily cause damage. For example, when the electronic component 15 is a 0603 type chip component (dimensions: 0.6 mm × 0.3 mm), the interval between the components mounted on the circuit board may be about 0.1 mm. Even if the position is slightly shifted when the suction surface 2 is attracted to the suction surface 2, there is a risk that the suction surface 2 or the cylindrical portion 5 may come into contact with components around the mounting location and be damaged during mounting.

また、真空吸着ノズル1は、吸着面2にセラミックスを用いることが好ましい。吸着面2にセラミックスを用いると、例えば吸着物として電子部品15を用いて着脱を繰り返しても、早期に吸着面2が摩耗したり損傷したりすることが少ない。このようなセラミックスとしては、例えばアルミナセラミックス,ジルコニアセラミックス,あるいは窒化珪素セラミックスや炭化珪素セラミックスなどを好適に用いることができる。なお、吸着面2に限らず、筒部5や円錐状部(または角錐状部)4および台座部6などを各々セラミックスからなるもの、あるいは真空吸着ノズル1全体をセラミックスからなるものとすれば、摩耗や損傷の低減に対してより有効となる。このときジルコニアセラミックスを用いるならば、ジルコニアの平均結晶粒子径は3μm以下のものが好ましい。平均結晶粒子径を3μm以下とすることで、真空吸着ノズル1の作製や補修の際に吸着面2に対して研削加工や鏡面加工をするときに、結晶粒子が脱落しにくくなることから吸着面2に欠けが生じにくくなる。さらに、ジルコニアの平均結晶粒径は、0.3〜0.8μmの範囲であることがより好ましい。セラミックス製の小型の真空吸着ノズルは、一般的にインジェクション成形法により作製するが、インジェクション成形法を用いて成形体を作製しようとすると、金型に原料を投入する入り口に余分な部分(ゲート痕)が残り、これを焼結後に研削加工して除去することが必要となる。そのため、ジルコニアの平均結晶粒径が0.3μm未満であると、結晶粒子が小さいために焼結体の強度が上がり、ゲート痕を削除するための加工時間が増加することになりやすい。また、真空吸着ノズル1は、ますます小型化が求められてくる中で機械強度も求められている。これらの点からより優れた機械強度を有するには、平均結晶粒径は0.8μm以下が好ましい。   The vacuum suction nozzle 1 preferably uses ceramics for the suction surface 2. When ceramics are used for the suction surface 2, for example, even if the electronic component 15 is used as an adsorbent and the attachment and detachment is repeated, the suction surface 2 is less likely to be worn or damaged at an early stage. As such ceramics, for example, alumina ceramics, zirconia ceramics, silicon nitride ceramics, silicon carbide ceramics, or the like can be suitably used. Not only the suction surface 2 but also the cylindrical part 5, the conical part (or pyramidal part) 4 and the pedestal part 6 are made of ceramics respectively, or the entire vacuum suction nozzle 1 is made of ceramics. This is more effective for reducing wear and damage. If zirconia ceramics are used at this time, the average crystal particle diameter of zirconia is preferably 3 μm or less. By making the average crystal particle diameter 3 μm or less, the suction surface is less likely to fall off when the suction surface 2 is ground or mirror-finished when the vacuum suction nozzle 1 is manufactured or repaired. 2 is less likely to be chipped. Furthermore, the average crystal grain size of zirconia is more preferably in the range of 0.3 to 0.8 μm. Ceramic small vacuum suction nozzles are generally manufactured by the injection molding method. However, if a molded body is to be manufactured using the injection molding method, an extra portion (gate traces) is introduced at the entrance of the raw material into the mold. ) Remain and must be removed by grinding after sintering. For this reason, when the average crystal grain size of zirconia is less than 0.3 μm, the crystal grains are small, so that the strength of the sintered body is increased, and the processing time for removing the gate trace tends to increase. Further, the vacuum suction nozzle 1 is required to have a mechanical strength as the size of the vacuum suction nozzle 1 is increasingly required. In view of these points, the average grain size is preferably 0.8 μm or less in order to have better mechanical strength.

さらに、本発明の真空吸着ノズル1に用いるセラミックスは導電性付与剤を含むのが好ましい。   Furthermore, the ceramic used for the vacuum suction nozzle 1 of the present invention preferably contains a conductivity imparting agent.

真空吸着ノズル1に用いるセラミックスに導電性付与剤を含むものを用いると、単体では絶縁性のセラミックスであっても、導電性付与剤を含ませることによって所望の適度な抵抗値を有する真空吸着ノズル1を作製することができる。   If the ceramic used for the vacuum suction nozzle 1 contains a conductivity-imparting agent, even if it is a single insulating ceramic, the vacuum suction nozzle has a desired appropriate resistance value by including the conductivity-imparting agent. 1 can be produced.

本発明の真空吸着ノズル1は、半導電性を有する場合には、例えば真空吸着ノズル1の先端と後端との間の抵抗値を10〜1011Ωとすれば、真空吸着ノズル1が高速で移動して空気との摩擦で発生する静電気により帯電したとしても、この静電気は保持部材10と電子部品装着機20とを通してアース(除電)できるために、真空吸着ノズル1から周囲の電子部品15などに静電気が急速に放電して周囲の電子部品15が放電破壊するのを防止することができる。また、真空吸着ノズル1が電子部品15に近付いても、真空吸着ノズル1の静電気は除電されているので、静電気の反発力で電子部品15が吹き飛ぶという現象が発生しないようにすることができる。この抵抗値が10Ω未満になると、真空吸着ノズル1の周囲にある部品などに静電気が帯電しているとそれらから放電されやすくなり、吸着している電子部品15を静電破壊してしまうという問題が生じるおそれがある。また、1011Ωを超えると、真空吸着ノズル1に発生した静電気を帯電しやすくなり、真空吸着ノズル1が電子部品15に近付くと静電気の反発力により電子部品15が吹き飛ぶという現象が発生するようになるおそれがある。 When the vacuum suction nozzle 1 of the present invention has semiconductivity, for example, if the resistance value between the front end and the rear end of the vacuum suction nozzle 1 is 10 3 to 10 11 Ω, the vacuum suction nozzle 1 Even if it moves at high speed and is charged by static electricity generated by friction with air, this static electricity can be grounded (static elimination) through the holding member 10 and the electronic component mounting machine 20, so that the surrounding electronic components from the vacuum suction nozzle 1 It is possible to prevent the surrounding electronic component 15 from being damaged due to discharge of static electricity to 15 or the like. Even if the vacuum suction nozzle 1 approaches the electronic component 15, the static electricity of the vacuum suction nozzle 1 is removed, so that the phenomenon that the electronic component 15 blows off due to the repulsive force of static electricity can be prevented. If this resistance value is less than 10 3 Ω, if the static electricity is charged in the parts around the vacuum suction nozzle 1, it is easy to be discharged from them, and the adsorbed electronic parts 15 are electrostatically destroyed. There is a risk of problems. Further, if it exceeds 10 11 Ω, it becomes easy to charge static electricity generated in the vacuum suction nozzle 1, and when the vacuum suction nozzle 1 approaches the electronic component 15, the phenomenon that the electronic component 15 blows off due to the repulsive force of static electricity may occur. There is a risk of becoming.

このような半導電性を有するセラミックスとして、例えば、アルミナセラミックスは絶縁性のセラミックスであるが、安価で耐摩耗性が優れているという特長があり、炭化チタンや窒化チタンなどの導電性付与材を添加すれば適度な導電性を有するものとなるので、これを用いることによって、耐摩耗性に優れ、適度な導電性も有する真空吸着ノズル1を作製することができる。同様に、ジルコニアセラミックスは強度の高い材料であり、酸化鉄,酸化チタン,酸化亜鉛などの導電性付与材を添加すれば適度な導電性を有するものとなるので、これを用いることによって、細い形状でも折れにくくなり、適度な導電性も有する真空吸着ノズル1を作製することができる。また、炭化珪素セラミックスは、炭素を添加することで抵抗値を調整した真空吸着ノズル1を作製することができる。   As such semiconductive ceramics, for example, alumina ceramics is an insulating ceramic, but it has a feature that it is inexpensive and has excellent wear resistance, and a conductivity imparting material such as titanium carbide or titanium nitride is used. If it is added, it will have moderate conductivity, and by using this, it is possible to produce a vacuum suction nozzle 1 that is excellent in wear resistance and also has moderate conductivity. Similarly, zirconia ceramics is a high-strength material. By adding a conductivity-imparting material such as iron oxide, titanium oxide, or zinc oxide, it has moderate conductivity. However, it is difficult to break, and the vacuum suction nozzle 1 having appropriate conductivity can be produced. Moreover, the silicon carbide ceramics can produce the vacuum suction nozzle 1 which adjusted the resistance value by adding carbon.

さらに、本発明の真空吸着ノズル1に用いるセラミックスは黒色系セラミックスであることが好ましい。   Furthermore, the ceramic used for the vacuum suction nozzle 1 of the present invention is preferably a black ceramic.

真空吸着ノズル1に黒色系セラミックスを用いると、真空吸着ノズル1で吸着した電子部品15をライト17で照射してCCDカメラ18で撮影したときに、電子部品15はライト17の反射光で鮮明に写るが、電子部品15の背景は真空吸着ノズル1が黒色系セラミックスであるために暗い状態となり、電子部品15の輪郭は明瞭になる。そのため、画像解析装置19は真空吸着ノズル1に吸着された電子部品15の形状を認識しやすくなるので、回路基板に実装する際の装着精度が高くなるという利点がある。   When black ceramics are used for the vacuum suction nozzle 1, when the electronic component 15 sucked by the vacuum suction nozzle 1 is irradiated with the light 17 and photographed with the CCD camera 18, the electronic component 15 is clearly reflected by the reflected light of the light 17. As shown, the background of the electronic component 15 becomes dark because the vacuum suction nozzle 1 is made of black ceramics, and the outline of the electronic component 15 becomes clear. For this reason, the image analysis device 19 can easily recognize the shape of the electronic component 15 sucked by the vacuum suction nozzle 1, so that there is an advantage that the mounting accuracy when mounting on the circuit board is increased.

黒色系セラミックスとしては、黒色系の導電性付与材を添加したジルコニア,アルミナおよび炭化珪素などがある。また、茶色系や青色系など他の色調を有するセラミックスでも、濃い色調とすることにより黒色系セラミックスと同様の効果を得ることができる。   Examples of black ceramics include zirconia, alumina, and silicon carbide to which a black conductivity imparting material is added. Further, even with ceramics having other color tones such as brown and blue, the same effects as black ceramics can be obtained by making the color tone darker.

例えば、アルミナセラミックスに添加する黒色系あるいは茶色系や青色系であっても濃い色調として用いることができる導電性付与材としては、酸化鉄,酸化ニッケル,炭化チタン,窒化チタンなどが挙げられ、中でも酸化鉄,炭化チタンが黒色系セラミックスを得られる導電性付与材として好ましい。ジルコニアセラミックスに添加する黒色系あるいは茶色系や青色系であっても濃い色調として用いることができる導電性付与材としては、酸化鉄,酸化チタン,酸化コバルト,酸化クロム,酸化ニッケルなどが挙げられ、中でも酸化鉄が黒色系セラミックスを得られる導電性付与材として好ましい。炭化珪素セラミックスは、炭素を含有させて導電性を付与したものが黒色系セラミックスとして好ましい。   For example, as a conductivity imparting material that can be used as a dark color tone that is black or brown or blue added to alumina ceramics, iron oxide, nickel oxide, titanium carbide, titanium nitride and the like can be mentioned. Iron oxide and titanium carbide are preferable as the conductivity imparting material from which black ceramics can be obtained. Examples of the conductivity imparting material that can be used as a dark color tone added to zirconia ceramics, such as black, brown or blue, include iron oxide, titanium oxide, cobalt oxide, chromium oxide, nickel oxide, Among these, iron oxide is preferable as a conductivity imparting material from which black ceramics can be obtained. As the silicon carbide ceramics, those containing carbon and imparting conductivity are preferable as the black ceramics.

なお、真空吸着ノズル1の反射光の測定には、光源に波長が400〜750nmの白色LEDを用いて、吸着面2との距離が20〜40mm,照射角度が45°となるようにセットし、さらに、汎用CCDカメラ(KEYENCE社製 倍速白黒カメラ 型式CV−020)を真空吸着ノズル1と向かい合わせでセットして、256階調で画像処理を行なうようにすればよい。   For the measurement of the reflected light from the vacuum suction nozzle 1, a white LED having a wavelength of 400 to 750 nm is used as the light source, and the distance from the suction surface 2 is set to 20 to 40 mm and the irradiation angle is set to 45 °. Furthermore, a general-purpose CCD camera (double speed monochrome camera model CV-020 manufactured by KEYENCE) may be set facing the vacuum suction nozzle 1 to perform image processing with 256 gradations.

次に、本発明の真空吸着ノズル1の製造方法をセラミックスを材料として作製する場合で説明する。   Next, the manufacturing method of the vacuum suction nozzle 1 of the present invention will be described in the case of producing ceramics as a material.

本発明の真空吸着ノズル1を構成するセラミックスとしては、炭化珪素,アルミナ,安定化剤を含むジルコニアなど公知の材料を用いることができる。   As ceramics which comprise the vacuum suction nozzle 1 of this invention, well-known materials, such as silicon carbide, an alumina, and the zirconia containing a stabilizer, can be used.

例えば、炭化珪素を95質量%に焼結助剤としてアルミナを5質量%の割合で混合した原料をボールミルに投入して所定の粒度まで粉砕してスラリーを作製し、スプレードライヤーを用いて噴霧乾燥して顆粒を形成する。   For example, a raw material in which 95% by mass of silicon carbide and 5% by mass of alumina as a sintering aid are mixed into a ball mill and pulverized to a predetermined particle size to produce a slurry, which is then spray dried using a spray dryer To form granules.

次に、この顆粒と熱可塑性樹脂とをニーダに投入して加熱しながら混練して得られた坏土をペレタイザーに投入すれば、インジェクション成形(射出成形)用の原料となるペレットを得ることができる。なお、ニーダに投入する熱可塑性樹脂としては、エチレン酢酸ビニル共重合体やポリスチレンやアクリル系樹脂などをセラミックスの質量に対して10〜25質量%程度添加すればよく、ニーダを用いて混練中の加熱温度は140〜180℃に設定すればよい。また、混練の条件はセラミックスの種類や粒度、および熱可塑性樹脂の種類に応じて適宜設定すればよい。   Next, if the kneaded material obtained by putting the granules and the thermoplastic resin into a kneader and kneading while heating is put into a pelletizer, pellets as a raw material for injection molding (injection molding) can be obtained. it can. In addition, as a thermoplastic resin thrown into the kneader, an ethylene vinyl acetate copolymer, polystyrene, an acrylic resin, or the like may be added in an amount of about 10 to 25% by mass with respect to the mass of the ceramic. The heating temperature may be set to 140 to 180 ° C. The kneading conditions may be appropriately set according to the type and particle size of ceramics and the type of thermoplastic resin.

そして、作製しようとする真空吸着ノズル1が得られる形状の射出成形用金型を搭載したインジェクション成形機(射出成形機)に、得られたペレットを投入して射出成形すれば、真空吸着ノズル1となる成形体が得られる。このとき、得られた成形体には通常は射出成形したときの余分な原料が冷えて固まったランナが付随しているので、脱脂する前に切断しておく。   Then, if the obtained pellets are put into an injection molding machine (injection molding machine) equipped with an injection mold having a shape capable of obtaining the vacuum suction nozzle 1 to be manufactured, the vacuum suction nozzle 1 is obtained. A molded body is obtained. At this time, the obtained molded body is usually accompanied by a runner in which excess raw materials obtained by injection molding are cooled and solidified, and therefore, they are cut before degreasing.

炭化珪素の焼成条件としては、真空雰囲気中またはアルゴンやヘリウムなどの不活性ガス雰囲気中で焼成すればよく、最高温度は1900〜2200℃とし、最高温度での保持時間を1〜5時間とすればよい。   The silicon carbide may be fired in a vacuum atmosphere or in an inert gas atmosphere such as argon or helium. The maximum temperature is 1900-2200 ° C., and the holding time at the maximum temperature is 1-5 hours. That's fine.

さらにまた、本発明の真空吸着ノズル1を構成するセラミックスとして、安定化剤を含むジルコニアセラミックス,アルミナセラミックスなどを用いる場合には、導電性付与材としては、酸化鉄,酸化コバルト,酸化クロムおよび酸化ニッケルの少なくとも1種か、または炭化チタンや窒化チタンを含むものを用いることができる。   Furthermore, when using zirconia ceramics or alumina ceramics containing a stabilizer as the ceramics constituting the vacuum suction nozzle 1 of the present invention, as the conductivity imparting material, iron oxide, cobalt oxide, chromium oxide and oxidation are used. At least one of nickel, or one containing titanium carbide or titanium nitride can be used.

例えば、安定化剤としてイットリアを含むジルコニアを65質量%に対して酸化鉄を35質量%の割合で混合し、この原料をボールミルに投入して所定の粒度まで粉砕してスラリーを作製し、スプレードライヤーを用いて噴霧乾燥して顆粒を形成し、インジェクション成形機に投入して上述と同様の方法で射出成形すれば、真空吸着ノズル1となる成形体が得られる。   For example, zirconia containing yttria as a stabilizer is mixed in an amount of 35% by mass with 65% by mass of iron oxide, and this raw material is put into a ball mill and pulverized to a predetermined particle size to produce a slurry. If a granule is formed by spray-drying using a dryer, and then injected into an injection molding machine and injection-molded by the same method as described above, a molded body to be the vacuum suction nozzle 1 is obtained.

ジルコニアセラミックス,アルミナセラミックスの焼成条件としては、導電性付与材が酸化鉄,酸化コバルト,酸化クロムおよび酸化ニッケルの少なくとも1種の場合には、大気雰囲気中での焼成で最高温度を1300〜1500℃の範囲として、最高温度での保持時間を1〜5時間とすればよい。また、導電性付与材が炭化チタンの場合には、最高温度を1400〜1800℃の範囲として、最高温度での保持時間を1〜5時間とし、真空雰囲気中またはアルゴンなどの不活性ガス雰囲気中で焼成すればよい。また、導電性付与材が窒化チタンの場合には、これら真空雰囲気中または不活性雰囲気中に加えて、窒素ガス雰囲気中で焼成してもよい。これにより、セラミックス製の真空吸着ノズル1に適度な導電性を付与することができる。   As the firing conditions for zirconia ceramics and alumina ceramics, when the conductivity imparting material is at least one of iron oxide, cobalt oxide, chromium oxide and nickel oxide, the maximum temperature is 1300-1500 ° C when fired in an air atmosphere. In this range, the holding time at the maximum temperature may be 1 to 5 hours. When the conductivity imparting material is titanium carbide, the maximum temperature is in the range of 1400 to 1800 ° C., the holding time at the maximum temperature is 1 to 5 hours, in a vacuum atmosphere or an inert gas atmosphere such as argon. Can be fired. Further, when the conductivity imparting material is titanium nitride, in addition to the vacuum atmosphere or the inert atmosphere, firing may be performed in a nitrogen gas atmosphere. Thereby, moderate electroconductivity can be provided to the vacuum suction nozzle 1 made of ceramics.

そして、焼成後の真空吸着ノズル1は、バレル加工などで研磨してセラミックスの面状態を一様にしておいてもよく、平滑な吸着面2が必要ならば平面研削盤を用いて加工してもよい。   The vacuum suction nozzle 1 after firing may be polished by barrel processing or the like to make the surface state of the ceramic uniform, and if a smooth suction surface 2 is required, it is processed using a surface grinder. Also good.

なお、本発明の真空吸着ノズル1の説明として、セラミックスを用いる場合として説明してきたが、本発明はこれに限らず、例えば金属を用いて真空吸着ノズル1を作製した場合も本発明の範囲内である。金属を用いて真空吸着ノズル1を作製するには、金属ブロックから一般的に金属の加工方法として用いられる放電加工や研削加工を用いるか、鋳造などの方法を用いて作製すればよい。   The description of the vacuum suction nozzle 1 according to the present invention has been made on the case of using ceramics. However, the present invention is not limited to this, and the case where the vacuum suction nozzle 1 is manufactured using metal, for example, is within the scope of the present invention. It is. In order to produce the vacuum suction nozzle 1 using metal, electric discharge machining or grinding generally used as a metal machining method from a metal block may be used, or a method such as casting may be used.

また、本発明の真空吸着ノズル1が円錐状部4を有することで主に説明してきたが、真空吸着ノズル1が角錐状部を有していても同様であることは言うまでもない。   Although the vacuum suction nozzle 1 of the present invention has been mainly described by having the conical portion 4, it goes without saying that the same is true even if the vacuum suction nozzle 1 has a pyramidal portion.

さらに、本発明の真空吸着ノズル1は吸着物が電子部品15であって回路基板に実装する場合について説明してきたが、電子部品15の吸着に限るものでは無く、単にチップ状の部品を分別するなどの吸着物を移送するための手段に用いる場合であってもよい。   Furthermore, the vacuum suction nozzle 1 of the present invention has been described with respect to the case where the adsorbed material is the electronic component 15 and is mounted on the circuit board. However, the present invention is not limited to the suction of the electronic component 15 but simply separates the chip-shaped components. It may be a case where it is used as a means for transferring an adsorbate.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

セラミックスの主成分は,安定化剤としてイットリアを3モル%含むジルコニアを選択し、これに酸化鉄,酸化クロム,酸化コバルトおよび酸化ニッケルをそれぞれイットリアを3モル%含むジルコニア59質量部に対して、導電性付与材が41質量部となるように酸化鉄が36質量部,酸化コバルトが2質量部,酸化クロムが2質量部および酸化ニッケルが1質量部となるように秤量した。そしてこれらの原料に水を加えてボールミルで粉砕・混合してスラリーを作製し、このスラリーをスプレードライヤーを用いて噴霧乾燥し、顆粒を作製した。そして、この顆粒100質量部に対してエチレン酢酸ビニル共重合体,ポリスチレン,アクリル系樹脂を合計20質量部加えてニーダに投入し、約150℃の温度に保ちながら混練して坏土を作製した。次に、得られた坏土をペレタイザーに投入してインジェクション成形用の原料となるペレットを作製した。そして、このペレットを公知のインジェクション成形機に投入し、図1に示す真空吸着用ノズル1と保持部材10となる成形体をそれぞれ作製し、これらの成形体を乾燥機に入れて乾燥した後、酸化雰囲気である大気雰囲気中での焼成で最高温度を1400±50℃の範囲とし、最高温度での保持時間を1〜5時間としてそれぞれ焼成して焼結体とした。そして、真空吸着ノズル1と保持部材10の焼結体をバレル研磨し、吸着面2を研削加工して後、真空吸着ノズル1と保持部材10とを接着剤で接合して試料1とした。   The main component of ceramics is zirconia containing 3 mol% yttria as a stabilizer, and 59 parts by mass of zirconia containing 3 mol% yttria of iron oxide, chromium oxide, cobalt oxide and nickel oxide, respectively. Weighing was performed so that the conductivity imparting material was 41 parts by mass, iron oxide was 36 parts by mass, cobalt oxide was 2 parts by mass, chromium oxide was 2 parts by mass, and nickel oxide was 1 part by mass. Then, water was added to these raw materials and pulverized and mixed with a ball mill to prepare a slurry, and this slurry was spray-dried using a spray dryer to prepare granules. Then, a total of 20 parts by mass of ethylene vinyl acetate copolymer, polystyrene and acrylic resin was added to 100 parts by mass of these granules, and the mixture was put into a kneader and kneaded while maintaining a temperature of about 150 ° C. to prepare a clay. . Next, the obtained kneaded material was put into a pelletizer to produce pellets as raw materials for injection molding. Then, the pellets are put into a known injection molding machine, and the molded bodies to be the vacuum suction nozzle 1 and the holding member 10 shown in FIG. 1 are produced, and these molded bodies are put into a dryer and dried. The sintered body was fired in an air atmosphere, which is an oxidizing atmosphere, with a maximum temperature in the range of 1400 ± 50 ° C. and a holding time at the maximum temperature of 1 to 5 hours. Then, the sintered body of the vacuum suction nozzle 1 and the holding member 10 was barrel-polished, the suction surface 2 was ground, and the vacuum suction nozzle 1 and the holding member 10 were joined with an adhesive to obtain a sample 1.

次に、同様にして、円錐状部4の軸方向に垂直な方向の断面形状が図3の(a),(c),(d)および(e)に示す形状となる本発明の真空吸着ノズル1と保持部材10となる成形体をそれぞれ作製し、試料1と同様にして真空吸着ノズル1と保持部材10とを接着した試料を用意し、それぞれ順に試料No.2,試料No.3,試料No.4および試料No.5とした。さらに、試料1の真空吸着ノズル1に図4の(a),(d)の筒部5を有したものを順に試料No.6,試料No.7、さらに、試料No.2に図4の(b)および(e)の筒部5を有したものを順に試料No.8,試料No.9とし、さらに、円錐状部4の吸着面2側の断面形状と筒部5の吸着面2の形状とが同じである図5に示す内側面9が平坦な真空吸着ノズル1と保持部材10の試料No.10、内側面9が凹曲面8を有した試料No.11および内側面9が吸着面2の反対側に向かって傾斜して凹曲面8を有している試料No.12を作製した。このほか図6に示す従来の真空吸着ノズル1を試料No.13として作製し比較例とした。   Next, in the same manner, the vacuum suction of the present invention in which the cross-sectional shape in the direction perpendicular to the axial direction of the conical portion 4 becomes the shape shown in (a), (c), (d) and (e) of FIG. Molded bodies to be the nozzle 1 and the holding member 10 were respectively prepared, and samples in which the vacuum suction nozzle 1 and the holding member 10 were bonded in the same manner as the sample 1 were prepared. 2, sample no. 3, Sample No. 4 and sample no. It was set to 5. Further, the vacuum suction nozzle 1 of the sample 1 having the cylindrical portion 5 of FIGS. 6, Sample No. 7 and sample no. 2 having the cylindrical portion 5 of (b) and (e) of FIG. 8, sample no. 9 and the suction surface 2 side cross-sectional shape of the conical portion 4 and the shape of the suction surface 2 of the cylindrical portion 5 are the same. Sample No. 10. Sample No. with inner surface 9 having concave curved surface 8 Sample No. 11 and the inner surface 9 are inclined toward the opposite side of the adsorption surface 2 and have a concave curved surface 8. 12 was produced. In addition, the conventional vacuum suction nozzle 1 shown in FIG. 13 was prepared as a comparative example.

そして、これらの試料No.1〜12と比較例である試料No.13の真空吸着ノズルとを用いて電子部品装着装置20の電子部品装着機14に取り付けて稼動させ、0603タイプ(寸法が0.6mm×0.3mm)の電子部品15を用いて回路基板上への実装テストを行ない、各試料および比較例の真空吸着ノズルが損傷するまでの個数を比較した。また、電子部品装着装置20に付属の電子部品15の位置精度を確認するための装置を稼働し、それぞれの試料および比較例の真空吸着ノズルを用いて電子部品15を700万個実装する実装テストを行ない、CCDカメラで撮像して、さらにこれを画像解析装置で解析し、任意の実装予定位置より位置ずれが大きい場合には実装した回路基板を製造工程から除去して、その回路基板の数をそれぞれ比較した。   These sample Nos. Sample Nos. 1 to 12 and Comparative Example. Mounted on the electronic component mounting machine 14 of the electronic component mounting apparatus 20 using the 13 vacuum suction nozzles and operated, and mounted on the circuit board using the 0603 type (0.6 mm x 0.3 mm) electronic component 15 A test was performed, and the number of each sample and the vacuum suction nozzle of the comparative example until the damage was compared. In addition, the device for checking the positional accuracy of the electronic component 15 attached to the electronic component mounting device 20 is operated, and a mounting test for mounting 7 million electronic components 15 using each sample and the vacuum suction nozzle of the comparative example. The image is picked up by a CCD camera and further analyzed by an image analysis device. When the positional deviation is larger than an arbitrary mounting position, the mounted circuit board is removed from the manufacturing process, and the number of the circuit boards is determined. Were compared.

その結果、本発明の真空吸着ノズル1の試料No.1は電子部品15を1800万個実装したところで損傷が見られたものの、比較例である試料No.13は1200万個であった。さらに、試料No.2および3も試料No.1と同様に1800万個の結果ではあった。試料No.4は1700万個、試料No.5は1600万個でやや劣ったが、いずれも、比較例である試料No.13の1200万個に比べて良好であった。さらに、試料No.6〜12の実装テストを行なったところ、真空吸着ノズルに損傷が見られた実装個数は、試料No.6から順に2100万個,2200万個,2100万個,2200万個,2400万個,2600万個,2800万個であった。いずれも比較例である試料No.13よりも多くの個数の実装を行なうことができ良好であった。また、筒部5を有した真空吸着ノズル1は筒部5を有さないものより良好であり、さらに筒部5に凹曲面8を有した真空吸着ノズル1はより良好であった。また、台座部6を有した試料No.10〜12はさらに良好で、台座部6の内側面9に凹曲面8を有した試料No.11およびNo.12は順により良好であった。   As a result, the sample No. of the vacuum suction nozzle 1 of the present invention was measured. No. 1 was damaged when 18 million electronic components 15 were mounted, but sample No. 1 was a comparative example. 13 was 12 million. Furthermore, sample no. Sample Nos. 2 and 3 are As with 1, the result was 18 million. Sample No. 4 is 17 million pieces, sample No. No. 5 was slightly inferior with 16 million pieces. Compared to 13 million 12 in 13. Furthermore, sample no. When the mounting tests of 6 to 12 were performed, the number of mountings in which the vacuum suction nozzle was damaged was the sample number. In order from 6, there were 21 million, 22 million, 21 million, 22 million, 24 million, 26 million, and 28 million. Sample No. which is a comparative example. It was good because it was possible to mount more than 13. Moreover, the vacuum suction nozzle 1 having the cylindrical portion 5 was better than the one having no cylindrical portion 5, and the vacuum suction nozzle 1 having the concave curved surface 8 in the cylindrical portion 5 was better. In addition, the sample No. having the pedestal portion 6 was used. Samples Nos. 10 to 12 were more favorable, and had sample surfaces No. 8 having a concave curved surface 8 on the inner surface 9 of the pedestal 6. 11 and No. 12 were in order better.

さらに、電子部品15をそれぞれの真空吸着ノズルの試料で700万個用い、回路基板に実装して位置ずれの大きい回路基板の数を比較するテストでは、試料No.1〜12は順に、8枚,8枚,8枚,9枚,10枚,7枚,6枚,7枚,6枚,5枚,4枚,3枚であり、前述の真空吸着ノズルの損傷の結果と同様に良好であった。これらに比べ比較例である試料No.13では12枚となり、本発明の真空吸着ノズル1がいずれも良好である結果となった。   Further, in a test in which 7 million electronic components 15 were used for each vacuum suction nozzle sample and mounted on the circuit board to compare the number of circuit boards with large positional deviation, the sample No. 1 to 12 are 8 sheets, 8 sheets, 8 sheets, 9 sheets, 10 sheets, 7 sheets, 6 sheets, 7 sheets, 6 sheets, 5 sheets, 4 sheets, and 3 sheets in this order. As good as the result of the damage. In comparison with these, sample No. In 13, the number was 12 and the vacuum suction nozzle 1 of the present invention was satisfactory.

以上のように、本発明の真空吸着ノズル1によれば、先端に吸着物(電子部品)を真空吸着して移送する際に吸着物を位置精度良く実装でき、回路基板上にすでに実装された電子部品に当たって損傷することの少ない真空吸着ノズルを提供することができる。   As described above, according to the vacuum suction nozzle 1 of the present invention, when the adsorbate (electronic component) is vacuum adsorbed to the tip and transferred, the adsorbate can be mounted with high positional accuracy and has already been mounted on the circuit board. It is possible to provide a vacuum suction nozzle that is less likely to be damaged by hitting an electronic component.

1:真空吸着ノズル
2:吸着面
3:吸引孔
4:円錐状部(または角錐状部)
5:筒部
6:台座部
7:表面(台座部の)
8:凹曲面
9:内側面(台座部の)
10:保持部材
11:受け部
14:電子部品装着機
15:電子部品(吸着物)
16:トレイ
19:画像解析装置
20:電子部品装着装置
1: Vacuum suction nozzle 2: Suction surface 3: Suction hole 4: Conical part (or pyramidal part)
5: Tube portion 6: Pedestal portion 7: Surface (of the pedestal portion)
8: Concave surface 9: Inner surface (of pedestal)
10: Holding member
11: Receiver
14: Electronic component mounting machine
15: Electronic components (adsorbent)
16: Tray
19: Image analyzer
20: Electronic component mounting device

Claims (6)

真空吸引によって電子部品を吸着して保持するための吸着面を先端に有し、前記吸着面側から反対側に向かって広がっている円錐状部または角錐状部を有する真空吸着ノズルにおいて、前記円錐状部または角錐状部の側面が、前記円錐状部または角錐状部の前記吸着面側から反対側に向かって軸方向側に沿って凹んで次第に幅が広がっている凹曲面を周方向に複数有することを特徴とする真空吸着ノズル。 A vacuum suction nozzle having a conical portion or a pyramid-shaped portion having a suction surface at the tip for sucking and holding an electronic component by vacuum suction and extending from the suction surface side toward the opposite side; A plurality of concave curved surfaces in the circumferential direction in which the side surface of the conical portion or the pyramid portion is recessed along the axial direction from the suction surface side to the opposite side of the conical portion or the pyramid portion and gradually widens. A vacuum suction nozzle comprising: 前記円錐状部または角錐状部が前記吸着面側に筒部を有することを特徴とする請求項1に記載の真空吸着ノズル。 The vacuum suction nozzle according to claim 1, wherein the conical part or the pyramid part has a cylindrical part on the suction surface side. 前記凹曲面を前記筒部にも有していることを特徴とする請求項2に記載の真空吸着ノズル。 The vacuum suction nozzle according to claim 2, wherein the cylindrical surface also has the concave curved surface. 前記円錐状部または角錐状部の前記吸着面と反対側の端面に続く台座部を有することを特徴とする請求項1〜3のいずれかに記載の真空吸着ノズル。 The vacuum suction nozzle according to any one of claims 1 to 3, further comprising a pedestal portion continuing from an end surface of the conical portion or the pyramid portion on the opposite side to the suction surface. 前記凹曲面が前記筒部から前記台座部まで続いていることを特徴とする請求項4に記載の真空吸着ノズル。 The vacuum suction nozzle according to claim 4, wherein the concave curved surface continues from the cylindrical portion to the pedestal portion. 前記凹曲面の前記吸着面の反対側に軸方向に交差する方向の内側面を有しており、該内側面が前記吸着面の反対側に傾斜していることを特徴とする請求項5に記載の真空吸着ノズル。 6. The concave surface has an inner surface in a direction intersecting the axial direction on the opposite side of the adsorption surface, and the inner surface is inclined to the opposite side of the adsorption surface. The vacuum suction nozzle described.
JP2009218532A 2009-09-24 2009-09-24 Vacuum suction nozzle Expired - Fee Related JP5300674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009218532A JP5300674B2 (en) 2009-09-24 2009-09-24 Vacuum suction nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009218532A JP5300674B2 (en) 2009-09-24 2009-09-24 Vacuum suction nozzle

Publications (2)

Publication Number Publication Date
JP2011071159A true JP2011071159A (en) 2011-04-07
JP5300674B2 JP5300674B2 (en) 2013-09-25

Family

ID=44016190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009218532A Expired - Fee Related JP5300674B2 (en) 2009-09-24 2009-09-24 Vacuum suction nozzle

Country Status (1)

Country Link
JP (1) JP5300674B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218697A (en) * 1990-01-24 1991-09-26 Matsushita Electric Ind Co Ltd Electronic component suction holding device
JPH09309086A (en) * 1996-05-27 1997-12-02 Matsushita Electric Ind Co Ltd Nozzle
JPH10163695A (en) * 1996-11-29 1998-06-19 Matsushita Electric Ind Co Ltd Illumination device for recognizing transmission and component mounting apparatus provided with it
JP2003198199A (en) * 2001-12-28 2003-07-11 Fuji Mach Mfg Co Ltd Suction nozzle tip position detection method and chip, and auxiliary tool set for suction nozzle tip position detection
JP2006100800A (en) * 2004-09-06 2006-04-13 Shibaura Mechatronics Corp Pickup device and packaging apparatus for chip parts
WO2009091061A1 (en) * 2008-01-18 2009-07-23 Kyocera Corporation Vacuum holding nozzle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218697A (en) * 1990-01-24 1991-09-26 Matsushita Electric Ind Co Ltd Electronic component suction holding device
JPH09309086A (en) * 1996-05-27 1997-12-02 Matsushita Electric Ind Co Ltd Nozzle
JPH10163695A (en) * 1996-11-29 1998-06-19 Matsushita Electric Ind Co Ltd Illumination device for recognizing transmission and component mounting apparatus provided with it
JP2003198199A (en) * 2001-12-28 2003-07-11 Fuji Mach Mfg Co Ltd Suction nozzle tip position detection method and chip, and auxiliary tool set for suction nozzle tip position detection
JP2006100800A (en) * 2004-09-06 2006-04-13 Shibaura Mechatronics Corp Pickup device and packaging apparatus for chip parts
WO2009091061A1 (en) * 2008-01-18 2009-07-23 Kyocera Corporation Vacuum holding nozzle

Also Published As

Publication number Publication date
JP5300674B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
JP5404889B2 (en) Vacuum suction nozzle assembly
JP2009154217A (en) Vacuum suction nozzle
JP5864244B2 (en) Vacuum suction nozzle assembly
JP5053391B2 (en) Vacuum suction nozzle
WO2009107581A1 (en) Vacuum suction nozzle
US6170116B1 (en) Abrasive member and cleaning device for probe needle for probe card
US20100037456A1 (en) Vacuum Suction Nozzle and Electric Component Mounting Apparatus
JP6039353B2 (en) Adsorption nozzle assembly
TW200815267A (en) Work conveying device and electronic-component conveying device
JP2014032035A (en) Probe cleaning device and method of the same
JP2011071370A (en) Vacuum suction nozzle
JP5300674B2 (en) Vacuum suction nozzle
EP3231556A1 (en) Burr removal device and burr removal method
JP5501887B2 (en) Vacuum suction nozzle
CN107206595B (en) Suction nozzle
KR20110046258A (en) Chip-type electronic component characteristic inspection classification device
JP5595052B2 (en) Vacuum suction nozzle
JP5111351B2 (en) Vacuum suction nozzle
JP5188455B2 (en) Vacuum suction nozzle assembly
JP2006266694A (en) Inspection method and inspection device
JP5153573B2 (en) Vacuum suction nozzle assembly
JPH1199426A (en) Electronic parts sucking nozzle
JP2008263175A (en) Vacuum adsorption nozzle
JP2019140353A (en) Backup pin, backup pin assembly, and component mounting machine
KR200299223Y1 (en) Ceramic nozzle tip using vacuum absorption

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130618

R150 Certificate of patent or registration of utility model

Ref document number: 5300674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees