JP2011069287A - Valve opening/closing timing control device - Google Patents

Valve opening/closing timing control device Download PDF

Info

Publication number
JP2011069287A
JP2011069287A JP2009220652A JP2009220652A JP2011069287A JP 2011069287 A JP2011069287 A JP 2011069287A JP 2009220652 A JP2009220652 A JP 2009220652A JP 2009220652 A JP2009220652 A JP 2009220652A JP 2011069287 A JP2011069287 A JP 2011069287A
Authority
JP
Japan
Prior art keywords
phase
rotating member
side rotating
relative
retarded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009220652A
Other languages
Japanese (ja)
Other versions
JP5382440B2 (en
Inventor
Masaki Kobayashi
昌樹 小林
Kenji Nonaka
健司 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2009220652A priority Critical patent/JP5382440B2/en
Priority to EP10002953A priority patent/EP2302177B1/en
Priority to US12/748,518 priority patent/US20110073055A1/en
Priority to CN2010101476197A priority patent/CN102032009A/en
Publication of JP2011069287A publication Critical patent/JP2011069287A/en
Application granted granted Critical
Publication of JP5382440B2 publication Critical patent/JP5382440B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L2001/0478Torque pulse compensated camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34483Phaser return springs

Abstract

<P>PROBLEM TO BE SOLVED: To provide a valve opening/closing timing control device which effectively achieves retention at an intermediate phase without being affected by existence of foreign matter and the like, but does not easily fail due to a simple mechanism. <P>SOLUTION: This device includes: a driving side rotational member 1 synchronously rotatable with a crankshaft; a driven side rotational member 2 rotatable with a camshaft 3 as one body; a phase converting mechanism displacing a relative phase between the driving side rotational member 1 and the driven side rotational member 2 to an advanced angle phase side or a retarded angle phase side by supplying and discharging an operating fluid to each of two kinds of pressure chambers, the volume of which is complementarily varied by a movable partition 5; and biasing members S1, S2 biasing the relative phase toward a predetermined phase suitable for a start-up of an internal combustion engine except for a most advanced angle phase and a most retarded angle phase. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関のクランクシャフトに対して同期回転する駆動側回転部材と、駆動側回転部材に対して同軸上に配置され、内燃機関の吸気弁及び排気弁の少なくとも一方を開閉するカムシャフトに対して一体回転する従動側回転部材と、駆動側回転部材と従動側回転部材の間の相対位相を、可動する仕切りによって容積が相補に可変する2種類の圧力室のそれぞれに対する作動流体の給排によって変位させる位相変換機構とを有する弁開閉時期制御装置に関する。   The present invention relates to a drive-side rotating member that rotates synchronously with a crankshaft of an internal combustion engine, and a camshaft that is arranged coaxially with respect to the drive-side rotating member and opens and closes at least one of an intake valve and an exhaust valve of the internal combustion engine. The working fluid is supplied to each of the two types of pressure chambers whose volumes can be complementarily varied by a movable partition with respect to the driven side rotating member that rotates integrally with the driven side rotating member and the relative phase between the driving side rotating member and the driven side rotating member. The present invention relates to a valve opening / closing timing control device having a phase conversion mechanism that is displaced by exhaust.

この種の弁開閉時期制御装置に関連する先行技術文献情報として下記に示す特許文献1がある。この特許文献1に記された弁開閉時期制御装置は、必要に応じて相対位相を内燃機関の始動に適した中間位相にロックすることの可能なロック機構を備えている。このロック機構は、従動側回転部材に形成されたロック溝と、このロック溝に対して係入可能なように駆動側回転部材に移動可能に支持されたロックピンとを有し、ロックピンはロック溝に係入する方向にバネによって付勢されている。両回転部材の相対位相が中間位相に達すると、ロックピンは同バネの付勢力によって自動的にロック溝に入り込むように構成されている。内燃機関の始動完了後は、一般に、ロック機構によるロックをオイルポンプなどで供給されるオイルの圧力によって解除し、やはりオイルの圧力によって中間位相から進角側へ変位させる操作が行われる。   As prior art document information related to this type of valve opening / closing timing control device, there is Patent Document 1 shown below. The valve opening / closing timing control device described in Patent Document 1 includes a lock mechanism capable of locking the relative phase to an intermediate phase suitable for starting the internal combustion engine as necessary. The lock mechanism includes a lock groove formed on the driven side rotation member, and a lock pin supported movably on the drive side rotation member so as to be engageable with the lock groove. It is biased by a spring in the direction of engaging with the groove. When the relative phase of both rotating members reaches an intermediate phase, the lock pin is configured to automatically enter the lock groove by the biasing force of the spring. After the start of the internal combustion engine is completed, generally, an operation of releasing the lock by the lock mechanism by the oil pressure supplied by an oil pump or the like and displacing from the intermediate phase to the advance side by the oil pressure is also performed.

また、一般に、弁開閉時期制御装置では、吸気弁や排気弁のバルブスプリングから受けるカム反力により、従動側回転部材が駆動側回転部材に対して遅れがちになる傾向を抑制するための手段として、相対位相を中間位相の方向へ付勢するトーションバネなどの付勢機構が設けられている場合が多い。特に、特許文献1に記された弁開閉時期制御装置のトーションバネは、その付勢機能が中間位相より遅角位相方向側に位置する中間規制位相と最遅角位相の間に限定されており、進角位相と中間位相の間の領域では付勢機能が効かないので、進角位相から中間位相や中間規制位相への変位操作が、カム反力およびポンプによる油圧力によって迅速に行われる。   Further, in general, in the valve opening / closing timing control device, as a means for suppressing the tendency that the driven side rotating member tends to be delayed with respect to the driving side rotating member due to the cam reaction force received from the valve spring of the intake valve or the exhaust valve. In many cases, a biasing mechanism such as a torsion spring that biases the relative phase toward the intermediate phase is provided. In particular, the torsion spring of the valve opening / closing timing control device described in Patent Document 1 has an urging function limited between the intermediate restriction phase and the most retarded angle phase, which are located on the retarded phase direction side of the intermediate phase. Since the urging function does not work in the region between the advance angle phase and the intermediate phase, the displacement operation from the advance angle phase to the intermediate phase or the intermediate regulation phase is quickly performed by the cam reaction force and the oil pressure by the pump.

特開2009−074384号公報(0009、0029段落、図1、図2、図3)JP 2009-074384 (0009, paragraph 0029, FIG. 1, FIG. 2, FIG. 3)

しかし、特許文献1に記された弁開閉時期制御装置では、中間位相へのロック操作は、中間位相に達した際のロックピンの進入動作に依存しているため、例えばオイル内などに存在する異物によってロックピンの動きが妨げられるとロックピンがロック溝に確実に係入されず、中間位相へのロックが十分に行われない虞があった。   However, in the valve opening / closing timing control device described in Patent Document 1, the locking operation to the intermediate phase depends on the operation of entering the lock pin when the intermediate phase is reached, and therefore exists in, for example, oil. If the movement of the lock pin is hindered by a foreign object, the lock pin is not surely engaged with the lock groove, and there is a possibility that the lock to the intermediate phase is not sufficiently performed.

また、中間位相での内燃機関の始動完了後、相対位相を進角位置へ移行させるために中間位相から脱出させるには、ロックピンをロック溝から押出すためにオイルを供給するなどの機構が必要なため、弁開閉時期制御装置がより大型化し、複雑化する傾向があった。   In addition, after the start of the internal combustion engine in the intermediate phase, in order to escape from the intermediate phase in order to shift the relative phase to the advanced position, a mechanism such as supplying oil to push the lock pin out of the lock groove is used. Since it is necessary, the valve timing control device tends to be larger and complicated.

そこで、本発明の目的は、上に例示した従来技術による弁開閉時期制御装置が与える課題に鑑み、異物の存在などに左右されることなく中間位相への保持が有効に実現される弁開閉時期制御装置を提供することにある。また、本発明の別の目的は、機構的により単純で故障し難く、しかも小型化し易い弁開閉時期制御装置を提供することにある。   Accordingly, an object of the present invention is to provide a valve opening / closing timing at which an intermediate phase can be effectively maintained without being affected by the presence of foreign matter, in view of the problems given by the conventional valve opening / closing timing control device exemplified above. It is to provide a control device. Another object of the present invention is to provide a valve opening / closing timing control device that is mechanically simpler, less likely to fail, and easy to downsize.

本発明による弁開閉時期制御装置の第1の特徴構成は、
内燃機関のクランクシャフトに対して同期回転する駆動側回転部材と、
前記駆動側回転部材に対して同軸上に配置され、前記内燃機関の吸気弁及び排気弁の少なくとも一方を開閉するカムシャフトに対して一体回転する従動側回転部材と、
前記駆動側回転部材と前記従動側回転部材の間の相対位相を、可動する仕切りによって容積が相補に可変する2種類の圧力室のそれぞれに対する作動流体の給排によって進角位相側または遅角位相側に変位させる位相変換機構と、
前記相対位相を最進角位相及び最遅角位相を除く前記内燃機関の始動に適した所定位相に向けて付勢する付勢部材と、を有する点にある。
The first characteristic configuration of the valve opening / closing timing control device according to the present invention is:
A drive-side rotating member that rotates synchronously with the crankshaft of the internal combustion engine;
A driven-side rotating member that is coaxially disposed with respect to the driving-side rotating member and rotates integrally with a camshaft that opens and closes at least one of an intake valve and an exhaust valve of the internal combustion engine;
The relative phase between the driving side rotating member and the driven side rotating member is set to an advance phase phase or a retard angle phase depending on supply / discharge of working fluid to / from each of the two types of pressure chambers whose volumes are complementarily variable by a movable partition. A phase conversion mechanism to be displaced to the side,
And an urging member that urges the relative phase toward a predetermined phase suitable for starting the internal combustion engine excluding the most advanced angle phase and the most retarded angle phase.

すなわち、本発明の第1の特徴構成による弁開閉時期制御装置では、一方の回転部材に形成されたロック溝と、他方の回転部材に支持されたロックピンなどで構成されたロック機構を備えず、代わりに、相対位相を最進角位相及び最遅角位相を除く内燃機関の始動に適した所定位相(始動最適位相)に向けて付勢する付勢部材を有する。したがって、作動油からの力のない状態では、相対位相が付勢部材の働きによって始動最適位相に変位される。したがって、オイル内の異物によってロックピンの動きが妨げられる等の問題がないため、付勢部材によって始動最適位相への保持が常に安定的に実現される。   That is, the valve opening / closing timing control device according to the first characteristic configuration of the present invention does not include a lock mechanism formed by a lock groove formed on one rotating member and a lock pin supported on the other rotating member. Instead, it has a biasing member that biases the relative phase toward a predetermined phase (starting optimum phase) suitable for starting the internal combustion engine excluding the most advanced angle phase and the most retarded angle phase. Therefore, in a state where there is no force from the hydraulic oil, the relative phase is displaced to the optimum starting phase by the action of the biasing member. Therefore, since there is no problem that the movement of the lock pin is hindered by foreign matter in the oil, the urging member can always stably hold the start phase optimally.

また、ロック機構が、一方の回転部材に形成されたロック溝と、他方の回転部材に支持されたロックピンなどではなく、駆動側回転部材と従動側回転部材との間に介装された付勢部材で構成されているので、機構的に単純で故障し難い弁開閉時期制御装置が得られ、また、弁開閉時期制御装置を小型化し易くなる。
さらに、ロック溝への係入と離脱を交互に行うロックピンによるロック機構を備えないので、内燃機関の始動時にロック機構による異音が生じない。
In addition, the lock mechanism is not a lock groove formed on one rotating member and a lock pin supported on the other rotating member, but is attached between the driving side rotating member and the driven side rotating member. Since it is composed of a biasing member, a valve opening / closing timing control device that is mechanically simple and difficult to break down can be obtained, and the valve opening / closing timing control device can be easily downsized.
Further, since there is no lock mechanism using a lock pin that alternately engages and disengages from the lock groove, no noise is generated by the lock mechanism when the internal combustion engine is started.

本発明の他の特徴構成は、前記付勢部材は、前記相対位相を進角位相方向へ付勢する第1付勢部材と前記相対位相を遅角位相方向へ付勢する第2付勢部材とを有し、さらに、
前記第1付勢部材による付勢力を前記所定位相と最遅角位相の間に限定する第1規制部と、前記第2付勢部材による付勢力を前記所定位相と最進角位相の間に限定する第2規制部とを備えている点にある。
In another aspect of the present invention, the biasing member includes a first biasing member that biases the relative phase in the advance phase direction and a second biasing member that biases the relative phase in the retard phase direction. And,
A first restricting portion that limits an urging force by the first urging member between the predetermined phase and the most retarded phase; and an urging force by the second urging member between the predetermined phase and the most advanced angle phase. It is in the point provided with the 2nd control part to restrict.

最進角位相側から最遅角位相側までの領域において相対位相を所定位相に向けて付勢する付勢部材は、例えば、外力が働かない状況で相対位相を所定位相に付勢する1本のトーションバネ(付勢部材)などによっても構成することが可能である。しかし、この構成では、付勢部材の付勢力は同所定位相の近傍において最も弱くなるために、所定位相への安定的な保持が困難となり易い。また、所定位相から最進角位相側または最遅角位相側へと離れるに従って付勢部材の復元力は高まるので、付勢部材の付勢力に抗して相対位相を変位させるために大きな油圧力が必要となり、エネルギー損失が大きくなり易い。   The biasing member that biases the relative phase toward the predetermined phase in the region from the most advanced angle phase side to the most retarded angle phase side is, for example, one that biases the relative phase to the predetermined phase when no external force is applied. The torsion spring (biasing member) can also be used. However, in this configuration, since the urging force of the urging member becomes the weakest in the vicinity of the predetermined phase, it is difficult to stably hold the predetermined phase. In addition, since the restoring force of the urging member increases as it moves away from the predetermined phase toward the most advanced phase or the most retarded phase, a large hydraulic pressure is used to displace the relative phase against the urging force of the urging member. Is required, and energy loss tends to increase.

しかし、本構成のように、互いに付勢する向きが逆の2つの付勢部材とし、2つの付勢部材からの作用力が協働して相対位相を所定位相に付勢する構成とすれば、例えば、前述の1本のトーションバネ(付勢部材)などを設ける構成に比して、安定して所定位相に保持できる。   However, as in this configuration, if two biasing members having opposite biasing directions are used, and the acting force from the two biasing members cooperates, the relative phase is biased to a predetermined phase. For example, as compared with the configuration in which the one torsion spring (biasing member) described above is provided, the phase can be stably maintained at a predetermined phase.

また、本構成では、油圧操作などによって相対位相を前記所定位相から遅角位相側または進角位相側に操作する際に、例えば、遅角位相側に操作する際には第2付勢部材の付勢力は第2規制部によって所定位相と最進角位相の間に限定されているという具合に、常に一方の付勢部材の付勢力のみが作用するだけなので、比較的小さな油圧力で変位させることができる。   Further, in this configuration, when the relative phase is operated from the predetermined phase to the retarded phase side or the advanced phase side by hydraulic operation or the like, for example, when operated to the retarded phase side, the second biasing member Since the urging force is limited between the predetermined phase and the most advanced angle phase by the second restricting portion, only the urging force of one of the urging members always acts, so that the urging force is displaced with a relatively small hydraulic pressure. be able to.

さらに、本構成では、各規制部によって、第1付勢部材による付勢力は所定位相と最遅角位相の間に限定され、第2付勢部材による付勢力は所定位相と最進角位相の間に限定されるので、相対位相を変位操作するための油圧などがない状態では、前記所定位相が、第1付勢部材による所定位相よりも進角位相側への付勢力が第1規制部によって規制され、第2付勢部材による所定位相よりも遅角位相側への付勢力が第2規制部によって規制された状態で実現される。その結果、付勢部材の製作精度の誤差などによって2つの付勢力が均等でない場合でも、相対位相が同誤差によって遅角位相側または進角位相側にずれることなく、当初の所定位相に制御され易い。   Further, in this configuration, the urging force by the first urging member is limited between the predetermined phase and the most retarded angle phase by each restricting portion, and the urging force by the second urging member is between the predetermined phase and the most advanced angle phase. Therefore, in the state where there is no hydraulic pressure for displacing the relative phase, the predetermined phase is such that the biasing force toward the advance phase side from the predetermined phase by the first biasing member is the first restricting portion. This is realized in a state where the urging force to the retarded phase side from the predetermined phase by the second urging member is regulated by the second regulating unit. As a result, even if the two biasing forces are not equal due to errors in the manufacturing accuracy of the biasing member, the relative phase is controlled to the initial predetermined phase without shifting to the retarded phase side or the advanced phase side due to the same error. easy.

本発明の他の特徴構成は、前記付勢部材が、前記カムシャフトのトルク変動に基づき前記従動側回転部材に作用する変位力に対抗する付勢力を有する点にある。   Another feature of the present invention is that the urging member has an urging force that opposes a displacement force that acts on the driven-side rotating member based on a torque fluctuation of the camshaft.

本構成であれば、付勢部材の付勢力が、カムシャフトのトルク変動に基づき従動側回転部材に作用する変位力を相殺する傾向になるので、付勢部材による相対位相の所定位相への保持精度が高められ、さらに、油圧による相対位相の制御精度が向上する。   With this configuration, the biasing force of the biasing member tends to cancel the displacement force acting on the driven side rotation member based on the torque fluctuation of the camshaft, so that the relative phase is maintained at the predetermined phase by the biasing member. The accuracy is increased, and the relative phase control accuracy by hydraulic pressure is improved.

本発明の他の特徴構成は、前記付勢部材が前記駆動側回転部材と前記従動側回転部材との間に配置されたスプリングである点にある。   Another characteristic configuration of the present invention is that the biasing member is a spring disposed between the driving side rotating member and the driven side rotating member.

本構成であれば、互いに隣接配置した駆動側回転部材と従動側回転部材の間に、トーションスプリング、ゼンマイバネなどのスプリングを配置するという簡単な構成の付勢部材によって本発明を実施することができ、弁開閉時期制御装置の組み立て作業が容易となり、小型化も容易となる。   With this configuration, the present invention can be implemented by a biasing member having a simple configuration in which a spring such as a torsion spring or a spring spring is disposed between the driving side rotating member and the driven side rotating member that are arranged adjacent to each other. As a result, the assembly operation of the valve opening / closing timing control device is facilitated, and the miniaturization is facilitated.

本発明による弁開閉時期制御装置の第5の特徴構成は、
内燃機関のクランクシャフトに対して同期回転する駆動側回転部材と、
前記駆動側回転部材に対して同軸上に配置され、前記内燃機関の吸気弁及び排気弁の少なくとも一方を開閉するカムシャフトに対して一体回転する従動側回転部材と、
前記駆動側回転部材と前記従動側回転部材とにより形成され、容積が拡大することにより前記駆動側回転部材に対する前記従動側回転部材の相対位相を遅角方向に移動させる遅角室、及び、容積が拡大することにより前記相対位相を進角方向に移動させる進角室と、
前記相対位相を最進角位相及び最遅角位相を除く所定位相に向けて付勢する付勢部材と、を有する点にある。
A fifth characteristic configuration of the valve timing control device according to the present invention is as follows.
A drive-side rotating member that rotates synchronously with the crankshaft of the internal combustion engine;
A driven-side rotating member that is coaxially disposed with respect to the driving-side rotating member and rotates integrally with a camshaft that opens and closes at least one of an intake valve and an exhaust valve of the internal combustion engine;
A retarding chamber formed by the drive-side rotating member and the driven-side rotating member, and moving the relative phase of the driven-side rotating member with respect to the driving-side rotating member in the retarding direction by increasing the volume, and a volume An advance chamber that moves the relative phase in the advance direction by expanding
And an urging member that urges the relative phase toward a predetermined phase excluding the most advanced angle phase and the most retarded angle phase.

すなわち、本発明の第5の特徴構成による弁開閉時期制御装置では、一方の回転部材に形成されたロック溝と、他方の回転部材に支持されたロックピンなどで構成されたロック機構を備えず、代わりに、相対位相を最進角位相及び最遅角位相を除く所定位相に向けて付勢する付勢部材を有する。したがって、作動油からの力のない状態では、相対位相が付勢部材の働きによって所定位相に変位される。したがって、オイル内の異物によってロックピンの動きが妨げられる等の問題がないため、付勢部材によって所定位相(例えば始動最適位相)への保持が常に安定的に実現される。   That is, the valve timing control apparatus according to the fifth characteristic configuration of the present invention does not include a lock mechanism formed by a lock groove formed on one rotary member and a lock pin supported on the other rotary member. Instead, it has a biasing member that biases the relative phase toward a predetermined phase excluding the most advanced angle phase and the most retarded angle phase. Therefore, in a state where there is no force from the hydraulic oil, the relative phase is displaced to a predetermined phase by the action of the urging member. Accordingly, there is no problem that the movement of the lock pin is hindered by the foreign matter in the oil, so that the holding to the predetermined phase (for example, the optimum starting phase) is always stably realized by the biasing member.

本発明の他の特徴構成は、前記付勢部材は、前記相対位相を最遅角位相よりも進角位相方向側に位置する第1所定位相へ付勢する第1付勢部材と前記相対位相を最進角位相よりも遅角位相方向側に位置する第2所定位相へ付勢する第2付勢部材とを有し、
前記第1付勢部材は、前記相対位相を最遅角位相から前記第1所定位相まで付勢すると共に前記第1所定位相から最進角位相までは付勢せず、
前記第2付勢部材は、前記相対位相を最進角位相から前記第2所定位相まで付勢すると共に前記第2所定位相から最遅角位相までは付勢しない点にある。
According to another characteristic configuration of the present invention, the biasing member includes a first biasing member that biases the relative phase to a first predetermined phase located on the advance phase direction side of the most retarded phase and the relative phase. And a second biasing member that biases the second predetermined phase located on the retarded phase direction side of the most advanced phase,
The first biasing member biases the relative phase from the most retarded phase to the first predetermined phase and does not bias from the first predetermined phase to the most advanced angle phase,
The second biasing member is in a point that biases the relative phase from the most advanced angle phase to the second predetermined phase and does not bias from the second predetermined phase to the most retarded phase.

最進角位相側から最遅角位相側までの領域において相対位相を所定位相に向けて付勢する付勢部材は、例えば、1本のトーションバネなどによっても構成することが可能である。しかし、この構成では、付勢部材の付勢力は同所定位相の近傍において最も弱くなるために、所定位相への安定的な保持が困難となり易い。また、所定位相から最進角位相側または最遅角位相側へと離れるに従って付勢部材の復元力は高まるので、付勢部材の付勢力に抗して相対位相を変位させるために大きな油圧力が必要となり、エネルギー損失が大きくなり易い。   The urging member that urges the relative phase toward the predetermined phase in the region from the most advanced angle phase side to the most retarded angle phase side can be configured by, for example, a single torsion spring. However, in this configuration, since the urging force of the urging member becomes the weakest in the vicinity of the predetermined phase, it is difficult to stably hold the predetermined phase. In addition, since the restoring force of the urging member increases as it moves away from the predetermined phase toward the most advanced phase or the most retarded phase, a large hydraulic pressure is used to displace the relative phase against the urging force of the urging member. Is required, and energy loss tends to increase.

本構成のように、互いに付勢する向きが逆の2つの付勢部材とし、2つの付勢部材からの作用力が協働して相対位相を所定位相に付勢する構成とすれば、例えば、前述の1本のトーションバネなどを設ける構成に比して、安定して所定位相に保持できる。   As in this configuration, if two biasing members having opposite biasing directions are used, and the acting force from the two biasing members cooperates to bias the relative phase to a predetermined phase, for example, Compared to the configuration in which the one torsion spring or the like is provided, the predetermined phase can be stably maintained.

また、本構成では、油圧操作などによって相対位相を前記所定位相から遅角位相側または進角位相側に操作する際に、例えば、遅角位相側に操作する際には第2付勢部材の付勢力は第2規制部によって所定位相と最進角位相の間に限定されているという具合に、常に一方の付勢部材の付勢力のみが作用するだけなので、比較的小さな油圧力で変位させることができる。   Further, in this configuration, when the relative phase is operated from the predetermined phase to the retarded phase side or the advanced phase side by hydraulic operation or the like, for example, when operated to the retarded phase side, the second biasing member Since the urging force is limited between the predetermined phase and the most advanced angle phase by the second restricting portion, only the urging force of one of the urging members always acts, so that the urging force is displaced with a relatively small hydraulic pressure. be able to.

さらに、本構成では、相対位相を変位操作するための油圧などが働かない状態では、第1付勢部は第1所定位相から最進角位相までは所定位相を付勢せず、第2付勢部材は第2所定位相から最遅角位相側までは所定位相を付勢しない。その結果、付勢部材の製作精度の誤差などによって2つの付勢力が均等でない場合でも、相対位相が同誤差によって遅角位相側または進角位相側にずれることなく、当初の所定位相に制御され易い。   Further, in this configuration, when the hydraulic pressure for operating the relative phase is not operated, the first urging unit does not urge the predetermined phase from the first predetermined phase to the most advanced angle phase. The biasing member does not bias the predetermined phase from the second predetermined phase to the most retarded phase side. As a result, even if the two biasing forces are not equal due to errors in the manufacturing accuracy of the biasing member, the relative phase is controlled to the initial predetermined phase without shifting to the retarded phase side or the advanced phase side due to the same error. easy.

第1実施形態による弁開閉時期制御装置の全体構成を示す破断断面図である。It is a fractured sectional view showing the whole composition of the valve timing control device by a 1st embodiment. 弁開閉時期制御装置の所定位相状態における図1のII−II断面図である。It is the II-II sectional view of Drawing 1 in the predetermined phase state of a valve timing control device. 図2の状態におけるIIIa−IIIa、IIIb−IIIb断面図である。It is IIIa-IIIa in the state of FIG. 2, IIIb-IIIb sectional drawing. 弁開閉時期制御装置の最遅角位相における図1のII−II断面図である。It is the II-II sectional view of Drawing 1 in the most retarded angle phase of a valve timing control device. 図4の状態におけるIIIa−IIIa、IIIb−IIIb断面図である。It is IIIa-IIIa and IIIb-IIIb sectional drawing in the state of FIG. 弁開閉時期制御装置の最進角位相における図1のII−II断面図である。It is the II-II sectional view of Drawing 1 in the most advance angle phase of a valve timing control device. 図6の状態におけるIIIa−IIIa、IIIb−IIIb断面図である。It is IIIa-IIIa in the state of FIG. 6, IIIb-IIIb sectional drawing. 第1実施形態による弁開閉時期制御装置の要部の分解斜視図である。It is a disassembled perspective view of the principal part of the valve timing control apparatus by 1st Embodiment. 第2実施形態による弁開閉時期制御装置の図3に対応する図である。It is a figure corresponding to FIG. 3 of the valve timing control apparatus by 2nd Embodiment. 第2実施形態による弁開閉時期制御装置の図5に対応する図である。It is a figure corresponding to FIG. 5 of the valve timing control apparatus by 2nd Embodiment. 第2実施形態による弁開閉時期制御装置の図7に対応する図である。It is a figure corresponding to FIG. 7 of the valve timing control apparatus by 2nd Embodiment. 第2実施形態による弁開閉時期制御装置の要部の分解斜視図である。It is a disassembled perspective view of the principal part of the valve timing control apparatus by 2nd Embodiment. 第3実施形態による弁開閉時期制御装置の全体構成の破断断面図である。It is a fractured sectional view of the whole composition of the valve timing control device by a 3rd embodiment. 所定位相状態における図13のXIVa−XIVa、XIVb−XIVb断面図である。FIG. 14 is a cross-sectional view taken along lines XIVa-XIVa and XIVb-XIVb in FIG. 13 in a predetermined phase state. 第4実施形態による弁開閉時期制御装置の要部の分解斜視図である。It is a disassembled perspective view of the principal part of the valve timing control apparatus by 4th Embodiment. 第5実施形態による弁開閉時期制御装置の要部の作用図である。It is an effect | action figure of the principal part of the valve timing control apparatus by 5th Embodiment.

以下に本発明を実施するための形態について図面を参照しながら説明する。
(第1実施形態)
〔基本構成〕
図1に示すように、エンジン(内燃機関)のクランクシャフト(図示せず)と同期回転する駆動側回転部材としての外部ロータ1と、エンジンの燃焼室の吸気弁又は排気弁を開閉するためのカムシャフト3と同軸で一体回転する従動側回転部材としての内部ロータ2と、流体制御弁機構Vとを備えて弁開閉時期制御装置が構成されている。
EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated, referring drawings.
(First embodiment)
[Basic configuration]
As shown in FIG. 1, an external rotor 1 as a drive side rotating member that rotates synchronously with a crankshaft (not shown) of an engine (internal combustion engine), and an intake valve or an exhaust valve for opening and closing an engine combustion chamber A valve opening / closing timing control device is configured by including an internal rotor 2 as a driven side rotating member that rotates coaxially and integrally with the camshaft 3 and a fluid control valve mechanism V.

この弁開閉時期制御装置は、外部ロータ1(駆動側回転部材)に対して、内部ロータ2(従動側回転部材)を嵌め込んだ構成を有している。これにより外部ロータ1と内部ロータ2とが、回転軸芯Xを中心として所定の相対回転位相の範囲内で相対回転自在となる。外部ロータ1と内部ロータ2との間には流体圧室が形成され、図2に示すように、この流体圧室は、内部ロータ2の外周に支持された仕切りとしてのベーン5によって遅角室11と進角室12とに仕切られている。
ベーン5は内部ロータ2の外周に形成されたベーン溝に挿入され、板バネなどにより突出方向に付勢されている。これにより、外部ロータ1と内部ロータ2との相対位相に関わらず、ベーン5の外端は常に流体圧室内で外部ロータの内面に摺接保持される。
This valve opening / closing timing control device has a configuration in which an internal rotor 2 (driven side rotating member) is fitted into an external rotor 1 (driving side rotating member). As a result, the outer rotor 1 and the inner rotor 2 are rotatable relative to each other within a predetermined relative rotation phase with the rotation axis X as the center. A fluid pressure chamber is formed between the outer rotor 1 and the inner rotor 2, and as shown in FIG. 2, this fluid pressure chamber is retarded by a vane 5 as a partition supported on the outer periphery of the inner rotor 2. 11 and the advance chamber 12 are partitioned.
The vane 5 is inserted into a vane groove formed on the outer periphery of the inner rotor 2 and is urged in a protruding direction by a leaf spring or the like. Thus, regardless of the relative phase between the outer rotor 1 and the inner rotor 2, the outer end of the vane 5 is always held in sliding contact with the inner surface of the outer rotor in the fluid pressure chamber.

回転軸芯Xと同軸芯に前述したカムシャフト3が配置され、このカムシャフト3は、連結ボルト4によって内部ロータ2に連結されている。外部ロータ1の一方の面にフロントプレート6が配置され、この外部ロータ1の他方の面にリヤプレート7が配置され、これらは複数の固定ボルト8によって外部ロータ1に固定されている。内部ロータ2はフロントプレート6とリヤプレート7の間に配置されている。   The above-described camshaft 3 is disposed coaxially with the rotary shaft X and this camshaft 3 is connected to the internal rotor 2 by a connecting bolt 4. A front plate 6 is disposed on one surface of the external rotor 1, and a rear plate 7 is disposed on the other surface of the external rotor 1, and these are fixed to the external rotor 1 by a plurality of fixing bolts 8. The internal rotor 2 is disposed between the front plate 6 and the rear plate 7.

リヤプレート7の外周には、タイミングスプロケット7Sが一体的に形成されている。このタイミングスプロケット7Sとエンジンのクランクシャフトに取り付けられたギアとの間にはタイミングチェーンやタイミングベルト等の動力伝達部材(図示せず)が架設される。   A timing sprocket 7 </ b> S is integrally formed on the outer periphery of the rear plate 7. A power transmission member (not shown) such as a timing chain or a timing belt is installed between the timing sprocket 7S and a gear attached to the crankshaft of the engine.

この構成から、エンジンの稼働時にはクランクシャフトの回転駆動力が動力伝達部材を介してタイミングスプロケット7Sに伝達され、外部ロータ1が図2等に示す回転方向Tに回転駆動する。この回転と連係して内部ロータ2が回転方向Tと同方向に回転することによりカムシャフト3が回転し、カムシャフト3に設けられたカム(図示せず)の駆動回転によりエンジンの吸気弁又は排気弁の開閉作動が行われる。   With this configuration, when the engine is in operation, the rotational driving force of the crankshaft is transmitted to the timing sprocket 7S via the power transmission member, and the external rotor 1 is rotationally driven in the rotational direction T shown in FIG. In conjunction with this rotation, the internal rotor 2 rotates in the same direction as the rotation direction T, whereby the camshaft 3 rotates, and the drive valve of a cam (not shown) provided on the camshaft 3 rotates the intake valve or the engine. The exhaust valve is opened and closed.

エンジンの稼働時に、進角室12に作動油が供給されるとベーン5に作用する圧力で進角室12の容積が拡大するので、外部ロータ1に対して内部ロータ2が矢印T1に移動する。これにより外部ロータ1と内部ロータ2との相対回転位相が進角方向に移動する。
これとは逆に、遅角室11に作動油が供給されるとベーン5に逆向きに作用する圧力で遅角室11の容積が拡大するので、外部ロータ1に対して内部ロータ2が矢印T2に移動する。これにより外部ロータ1と内部ロータ2との相対回転位相が遅角方向に移動する。このようにクランク軸の回転位相に対するカムシャフト3の回転位相を変化させて吸気弁又は排気弁の開閉時期の制御が実現される。
When hydraulic oil is supplied to the advance chamber 12 during operation of the engine, the volume of the advance chamber 12 expands due to the pressure acting on the vanes 5, so that the internal rotor 2 moves in the direction of the arrow T <b> 1 with respect to the external rotor 1. . As a result, the relative rotational phase between the outer rotor 1 and the inner rotor 2 moves in the advance direction.
On the contrary, when the hydraulic oil is supplied to the retarding chamber 11, the volume of the retarding chamber 11 is expanded by the pressure acting on the vane 5 in the opposite direction. Move to T2. As a result, the relative rotational phase between the outer rotor 1 and the inner rotor 2 moves in the retard direction. In this way, the opening / closing timing of the intake valve or the exhaust valve is controlled by changing the rotation phase of the camshaft 3 with respect to the rotation phase of the crankshaft.

作動油としてはエンジンオイルが利用され、弁開閉時期制御装置には、外部ロータ1と内部ロータ2との間の相対的な回転位相をエンジンの始動に適した始動最適位相(中間位相とも呼ばれ、所定位相の一例)に保持する保持機構Mが設けられている。この保持機構Mはエンジンの始動直後の作動油の圧力が非常に低い状況において外部ロータ1と内部ロータ2とを設定された相対回転位相に保持することで、クランクシャフトの回転位相に対するカムシャフト3の回転位相を始動最適位相に保持し、エンジンの安定的な始動を現出する。   Engine oil is used as the hydraulic oil, and the valve timing control apparatus determines the relative rotational phase between the external rotor 1 and the internal rotor 2 as the optimum starting phase (also called intermediate phase) suitable for starting the engine. , An example of a predetermined phase) is provided. The holding mechanism M holds the outer rotor 1 and the inner rotor 2 at a set relative rotational phase in a situation where the pressure of the hydraulic oil immediately after the engine is started is very low, so that the camshaft 3 with respect to the rotational phase of the crankshaft. The engine rotation phase is maintained at the optimum starting phase, and the engine starts stably.

従来の弁開閉時期制御装置における一般的な保持機構は、内部ロータに形成されたロック溝と、このロック溝に対して出退自在となるように外部ロータに支持されたロックピンなどで構成されている。
しかし、本発明による保持機構Mは、外部ロータ1(駆動側回転部材)と、内部ロータ2(従動側回転部材)との間に互いに逆向きの付勢力を作用させる2つのゼンマイバネS1,S2(渦巻きバネ)によって構成されている。第1のゼンマイバネS1は相対位相を進角側に付勢し、第2のゼンマイバネS2は相対位相を遅角側に付勢する。2つのゼンマイバネS1,S2はフロントプレート6に設けられた凹部6aに収納され、ゼンマイバネS1,S2の間には円板状のスペーサ15が介装されている。凹部6aは円板状のカバー9によって覆われている。ゼンマイバネS1,S2の働きの詳細については後述する。
A general holding mechanism in a conventional valve opening / closing timing control device includes a lock groove formed in an internal rotor, and a lock pin supported by an external rotor so as to be able to move in and out of the lock groove. ing.
However, the holding mechanism M according to the present invention has two mainspring springs S1 and S2 (which apply urging forces in opposite directions to each other between the outer rotor 1 (driving side rotating member) and the inner rotor 2 (driven side rotating member). A spiral spring). The first spring S1 biases the relative phase toward the advance side, and the second spring S2 biases the relative phase toward the retard side. The two springs S1, S2 are accommodated in a recess 6a provided in the front plate 6, and a disc-like spacer 15 is interposed between the springs S1, S2. The recess 6a is covered with a disc-shaped cover 9. Details of the operation of the springs S1 and S2 will be described later.

図1及び図2に示すように、内部ロータ2には、複数の遅角室11に対する作動油の給排を行う遅角室側油路11aと、複数の進角室12に対する作動の給排を行う進角室側油路12aとが貫通形成されている。保持機構としてロックピンを設けていないので、ロック溝から同ロックピンを押出すためのロック解除用油路なども形成されていない。   As shown in FIGS. 1 and 2, the internal rotor 2 includes a retard chamber side oil passage 11 a that supplies and discharges hydraulic oil to and from the plurality of retard chambers 11, and a supply and exhaust of operation to the plurality of advance chambers 12. The advance angle chamber side oil passage 12a is formed penetratingly. Since no lock pin is provided as a holding mechanism, an unlocking oil passage or the like for extruding the lock pin from the lock groove is not formed.

図1及び図2に示すように、カムシャフト3に対して相対回転自在に外嵌するブッシュ18を備え、このブッシュ18の供給油路18aからカムシャフト3の内部油路3aと、内部ロータ2の内部油路2aとに順次作動油を供給する油路系が形成されている。この油路系により供給油路18aに対して油圧ポンプPから供給される作動油を内部ロータ2の円筒状空間2Sに供給する。
また、円筒状空間2Sに供給された作動油は、外部ロータ1及び内部ロータ2に対して相対回転自在に支持された流体制御弁機構Vを介して、前述した遅角室側油路11aや進角室側油路12aに供給され、また、遅角室側油路11aと進角室側油路12aとから排出される。
As shown in FIGS. 1 and 2, a bush 18 that is externally fitted to the camshaft 3 so as to be rotatable relative to the camshaft 3 is provided. From the supply oil passage 18 a of the bush 18 to the internal oil passage 3 a of the camshaft 3 and the internal rotor 2. An oil passage system for sequentially supplying hydraulic oil to the internal oil passage 2a is formed. The hydraulic fluid supplied from the hydraulic pump P to the supply oil passage 18a is supplied to the cylindrical space 2S of the internal rotor 2 by this oil passage system.
In addition, the hydraulic oil supplied to the cylindrical space 2S passes through the fluid control valve mechanism V supported so as to be rotatable relative to the outer rotor 1 and the inner rotor 2, and the above-described retarded chamber side oil passage 11a and It is supplied to the advance chamber side oil passage 12a and is discharged from the retard chamber side oil passage 11a and the advance chamber side oil passage 12a.

〔流体制御弁機構〕
流体制御弁機構Vは、図1に示すように、スプールバルブ22を有した作動油制御部Vaと、作動油の給排を行うように円柱状の作動油給排部Vbとを一体的に備えたハウジング28を有している。スプールバルブ22は、作動油制御部Vaの上端に配置された電磁ソレノイド21によって図の上下に摺動操作される。作動油給排部Vbは内部ロータ2の円筒状空間2Sに回転自在に挿入されている。
[Fluid control valve mechanism]
As shown in FIG. 1, the fluid control valve mechanism V integrally includes a hydraulic oil control unit Va having a spool valve 22 and a cylindrical hydraulic oil supply / discharge unit Vb so as to supply and discharge hydraulic oil. A housing 28 is provided. The spool valve 22 is slid up and down in the figure by an electromagnetic solenoid 21 disposed at the upper end of the hydraulic oil control unit Va. The hydraulic oil supply / discharge portion Vb is rotatably inserted into the cylindrical space 2S of the internal rotor 2.

作動油給排部Vbの中心には、前述した内部油路2aからの作動油を受け入れる主油路23が貫通形成され、その内部には円筒状空間2Sに向かう流体の流れを阻止するチェック弁Cが備えられている。スプールバルブ22は有底の円筒形状を有する。
ハウジング28はエンジンのフロントカバー等に固定されており、内部ロータ2は作動油給排部Vbを介して回転自在に支持されている。
A main oil passage 23 that receives the hydraulic oil from the internal oil passage 2a is formed in the center of the hydraulic oil supply / discharge portion Vb, and a check valve that prevents the flow of fluid toward the cylindrical space 2S in the inside thereof. C is provided. The spool valve 22 has a bottomed cylindrical shape.
The housing 28 is fixed to an engine front cover or the like, and the internal rotor 2 is rotatably supported via a hydraulic oil supply / discharge portion Vb.

作動油給排部Vbの外周には、スプールバルブ22によって作動油の給排が制御される2つのポート24、25が環状の溝として形成されている。作動油給排部Vbの外周には第1ポート24、第2ポート25の作動油の漏出を抑制するオイルシール27が外嵌設置されている。第1ポート24は遅角室連通孔11aと常時連通し、第2ポート25は進角室連通孔12aと常時連通している。   On the outer periphery of the hydraulic oil supply / discharge portion Vb, two ports 24 and 25, which are controlled to supply and discharge hydraulic oil by the spool valve 22, are formed as annular grooves. On the outer periphery of the hydraulic oil supply / discharge part Vb, an oil seal 27 is installed so as to prevent leakage of hydraulic oil from the first port 24 and the second port 25. The first port 24 is always in communication with the retard chamber communication hole 11a, and the second port 25 is always in communication with the advance chamber communication hole 12a.

スプールバルブ22とハウジング28の底面との間にはスプールバルブ22を図の上向きに付勢する圧縮スプリング29が設置されている。図1の状態でソレノイド21に通電すると、ソレノイド21から下方に突出した操作ロッド30が、スプールバルブ22を下方位置に移動させる。通電を停止すると、操作ロッド30はソレノイド21の側に引退し、スプールバルブ22は圧縮スプリング29の付勢力によりロッド22の動きに追従して図1に示す上方位置に復帰する。   A compression spring 29 is installed between the spool valve 22 and the bottom surface of the housing 28 to urge the spool valve 22 upward in the figure. When the solenoid 21 is energized in the state of FIG. 1, the operation rod 30 protruding downward from the solenoid 21 moves the spool valve 22 to the lower position. When the energization is stopped, the operation rod 30 is retracted toward the solenoid 21, and the spool valve 22 returns to the upper position shown in FIG. 1 following the movement of the rod 22 by the urging force of the compression spring 29.

スプールバルブ22の外周面には、いずれも環状の排出溝22a、22bと供給溝22cが形成されている。排出溝22a、22bには、内部の中空部に貫通する貫通孔23a、23bが夫々設けられている。
排出溝22a、22b及び供給溝22cの位置関係は、ソレノイド21の非通電時には、図1に示すように、供給溝22cが主油路23及び進角室連通孔12aと連通し、且つ、排出溝22bが遅角側流路11aと連通するよう設定されている。そして、ソレノイド21の通電時には、供給溝22cが主油路23及び遅角側流路11aと連通し、且つ、排出溝22aが進角側流路12aと連通するよう設定してある。
On the outer peripheral surface of the spool valve 22, annular discharge grooves 22a and 22b and a supply groove 22c are formed. The discharge grooves 22a and 22b are respectively provided with through holes 23a and 23b penetrating through the hollow portions inside.
As shown in FIG. 1, when the solenoid 21 is not energized, the positional relationship between the discharge grooves 22a and 22b and the supply groove 22c is such that the supply groove 22c communicates with the main oil passage 23 and the advance chamber communication hole 12a. The groove 22b is set so as to communicate with the retard side flow path 11a. When the solenoid 21 is energized, the supply groove 22c communicates with the main oil passage 23 and the retard side flow path 11a, and the discharge groove 22a communicates with the advance side flow path 12a.

この弁開閉時期制御装置では、内部ロータ2とフロントプレート6との間、及び、内部ロータ2とリヤプレート7との間に作動油が僅かにリークする程度の隙間が形成されており、この他の可動部分を介しても作動油が僅かにリークする。そして、リークした作動油はオイルパン36で回収される。   In this valve opening / closing timing control device, gaps are formed between the inner rotor 2 and the front plate 6 and between the inner rotor 2 and the rear plate 7 so that the hydraulic oil slightly leaks. The hydraulic oil slightly leaks even through the movable part. The leaked hydraulic oil is collected by the oil pan 36.

(弁開閉時期制御装置の動作)
図1に示すごとく、相対回転位相を進角方向T1へ変位させる場合には、油圧ポンプPの駆動中にソレノイド21を非通電状態にする。すると、スプールバルブ22は、圧縮スプリング29の付勢力によりソレノイド21のロッド30と共に、ソレノイド21寄りの上方位置に配置される。流体ポンプPからカムシャフト8の主油路23に供給された作動油は、図1に示すように、円筒状空間2S、主油路23、供給溝22c、進角側流路12a、第2ポート25を経て、各進角室12へと圧送される。この圧送によってベーン5が進角方向T1に移動して、各遅角室11の作動油は排出される。遅角室11から排出された作動油は、第1ポート24、遅角側流路11a、排出溝22b、ドレン流路32を介してオイルパン36に排出される。
(Operation of valve timing control device)
As shown in FIG. 1, when the relative rotational phase is displaced in the advance direction T1, the solenoid 21 is deenergized while the hydraulic pump P is being driven. Then, the spool valve 22 is disposed at an upper position near the solenoid 21 together with the rod 30 of the solenoid 21 by the urging force of the compression spring 29. As shown in FIG. 1, the hydraulic oil supplied from the fluid pump P to the main oil passage 23 of the camshaft 8 has a cylindrical space 2S, a main oil passage 23, a supply groove 22c, an advance side passage 12a, a second It is pumped to each advance chamber 12 via the port 25. By this pumping, the vane 5 moves in the advance direction T1, and the hydraulic oil in each retard chamber 11 is discharged. The hydraulic oil discharged from the retard chamber 11 is discharged to the oil pan 36 through the first port 24, the retard side channel 11 a, the discharge groove 22 b, and the drain channel 32.

一方、相対回転位相を遅角方向T2へ変位させる場合には、油圧ポンプPの駆動中にソレノイド21への通電を行う。すると、スプールバルブ22は、ソレノイド21のロッド22に押されて、下方位置に配置される。流体ポンプPからカムシャフト8の主油路23に供給された作動油は、円筒状空間2S、主油路23、供給溝22c、遅角側流路11a、第1ポート24を経て、各遅角室11へと圧送される。この圧送によってベーン5が遅角方向T2に移動して、各進角室12の作動油は排出される。進角室12から排出された作動油は、第2ポート25、進角側流路12a、排出溝22a、ドレン流路32を介してオイルパン36に排出される。   On the other hand, when the relative rotational phase is displaced in the retard direction T2, the solenoid 21 is energized while the hydraulic pump P is being driven. Then, the spool valve 22 is pushed by the rod 22 of the solenoid 21 and arranged at the lower position. The hydraulic oil supplied from the fluid pump P to the main oil passage 23 of the camshaft 8 passes through the cylindrical space 2S, the main oil passage 23, the supply groove 22c, the retard side flow passage 11a, and the first port 24, and then is It is pumped to the corner chamber 11. By this pressure feeding, the vane 5 moves in the retarding direction T2, and the hydraulic oil in each advance chamber 12 is discharged. The hydraulic oil discharged from the advance chamber 12 is discharged to the oil pan 36 through the second port 25, the advance side flow path 12a, the discharge groove 22a, and the drain flow path 32.

〔制御系の概要〕
図面には示していないが、弁開閉時期制御装置の制御系は、エンジンのクランクシャフトの回転角を検出するクランク角センサと、カムシャフト3の回転角を検出するカムシャフト角センサと、流体制御弁機構Vを制御するECU(図示せず)とを備えている。
ECUには、イグニッションキーのON/OFF情報、エンジンオイルの油温を検出する油温センサからの情報等を取得する信号系が形成されており、不揮発性メモリ内にエンジンの運転状態に応じた最適の相対回転位相の制御情報を記憶している。
[Outline of control system]
Although not shown in the drawings, the control system of the valve timing control device includes a crank angle sensor that detects the rotation angle of the crankshaft of the engine, a camshaft angle sensor that detects the rotation angle of the camshaft 3, and a fluid control. ECU (not shown) which controls the valve mechanism V is provided.
The ECU is formed with a signal system for acquiring information such as ignition key ON / OFF information, information from an oil temperature sensor that detects the oil temperature of the engine oil, and the like in the nonvolatile memory according to the operating state of the engine. The control information of the optimal relative rotational phase is stored.

そして、ECUは、前述したクランク角センサとカムシャフト角センサとの検出結果から外部ロータ1と内部ロータ2との相対位相を検出する。そして、この相対位相の情報と運転状態(エンジン回転数、冷却水温など)の情報とに基づいて、流体制御弁機構Vを操作することで遅角室11と進角室12とに対する作動油の給排を行い、外部ロータ1と内部ロータ2との相対回転位相を制御する。これにより、最遅角位相(遅角室11の容積が最大となる相対回転位相)と最進角位相(進角室12の容積が最大となる相対回転位相)との間で位相制御を実現する。   Then, the ECU detects the relative phase between the external rotor 1 and the internal rotor 2 from the detection results of the crank angle sensor and the camshaft angle sensor described above. Then, based on the information on the relative phase and the information on the operation state (engine speed, cooling water temperature, etc.), the fluid control valve mechanism V is operated to supply the hydraulic oil to the retard chamber 11 and the advance chamber 12. Supply and discharge are performed, and the relative rotation phase between the outer rotor 1 and the inner rotor 2 is controlled. This realizes phase control between the most retarded phase (relative rotational phase where the volume of the retarded chamber 11 is maximized) and the most advanced phase (relative rotational phase where the volume of the advanced chamber 12 is maximized). To do.

エンジンを停止させる操作が行われると、ECUが流体制御弁機構Vによって遅角室11及び進角室12に対する作動油の給排は停止され、ベーン5に対していずれの向きの作動油圧も作用しない状態になり、これにより、外部ロータ1と内部ロータ2との相対位相は、前述したゼンマイバネS1,S2の付勢作用により、次回の始動に適した始動最適位相に変位された状態でエンジンが停止する。そして、この停止の後にエンジンを始動させた際には、安定的にエンジンが始動する。   When the operation for stopping the engine is performed, the ECU stops the supply and discharge of the hydraulic oil to and from the retard chamber 11 and the advance chamber 12 by the fluid control valve mechanism V, and the hydraulic pressure in any direction acts on the vane 5. As a result, the relative phase between the external rotor 1 and the internal rotor 2 is shifted to the optimal start phase suitable for the next start by the urging action of the springs S1 and S2 described above. Stop. When the engine is started after this stop, the engine is stably started.

尚、前述したゼンマイバネS1,S2は互いに協働して、外部ロータ1に対して内部ロータ2が始動最適位相より遅角側の領域にある場合に、吸気弁や排気弁のバルブスプリングから受ける反力と抗うように、内部ロータ2に対して始動最適位相の方向に付勢力を作用させる機能を有している。具体的には、相対位相を進角側に付勢するゼンマイバネS1付勢力を遅角側に付勢するゼンマイバネS2よりも高めに設定してある。従って、カムシャフト3と一体回転する内部ロータ2の相対位相が、吸気弁や排気弁のバルブスプリングから受ける反力のために、外部ロータ1の回転に対し遅れ傾向になる不都合や、遅角室11及び進角室12から作動油が排出された時に、始動最適位相よりも遅角側に保持される傾向が抑制される。   The springs S1 and S2 described above cooperate with each other to react to the outer rotor 1 from the valve springs of the intake valve and the exhaust valve when the inner rotor 2 is in a region retarded from the optimum start phase. In order to resist the force, the internal rotor 2 has a function of applying a biasing force in the direction of the optimum starting phase. Specifically, the spring spring S1 biasing force for biasing the relative phase toward the advance side is set higher than the spring spring S2 biasing toward the retard side. Accordingly, the relative phase of the internal rotor 2 that rotates integrally with the camshaft 3 tends to be delayed with respect to the rotation of the external rotor 1 due to the reaction force received from the valve springs of the intake valve and the exhaust valve, and the retardation chamber. When hydraulic oil is discharged from 11 and the advance chamber 12, the tendency to be held on the retard side from the optimum start phase is suppressed.

エンジンの始動後には、ECUが流体制御弁機構Vによって遅角室11及び進角室12に対する作動油の給排を行うことで、外部ロータ1と内部ロータ2との相対位相を変更し、ECUによる吸気弁、排気弁の開閉時期の制御が行われる。
過大な負荷がエンジンに作用したためにエンジンストップの状態に陥った場合には、外部ロータ1に対して内部ロータ2が最遅角位相に達していることもある。このような状況でエンジンを始動した場合には、安定的なエンジン始動を行うために、ECUは、外部ロータ1に対する内部ロータの位相を早期に始動最適位相に移動させる制御を行う。
After the engine is started, the ECU changes the relative phase between the external rotor 1 and the internal rotor 2 by supplying and discharging hydraulic oil to and from the retard chamber 11 and the advance chamber 12 by the fluid control valve mechanism V. The opening / closing timing of the intake valve and the exhaust valve is controlled by.
When the engine stops due to an excessive load acting on the engine, the internal rotor 2 may reach the most retarded angle phase with respect to the external rotor 1. When the engine is started in such a situation, the ECU performs control to move the phase of the internal rotor with respect to the external rotor 1 to the optimal start phase at an early stage in order to start the engine stably.

具体的な制御形態として、ECUの制御により流体制御弁機構Vは、遅角室11の作動油を排出すると共に、進角室12に作動油を供給することで、外部ロータ1に対して内部ロータ2を始動最適位相の方向に移動させる。尚、最遅角位相のうち内部ロータ2が最も遅角側にある回転位相を最遅角位相と称する。   As a specific control form, the fluid control valve mechanism V discharges the hydraulic oil in the retard chamber 11 and supplies the hydraulic oil to the advance chamber 12 by controlling the ECU, whereby the fluid control valve mechanism V is internal to the external rotor 1. The rotor 2 is moved in the direction of the optimum starting phase. The rotational phase in which the internal rotor 2 is located on the most retarded side among the most retarded phase is referred to as the most retarded phase.

しかしながら、上記の制御によると、内部ロータ2が最遅角位相にある状態においてエンジンを始動した場合に、相対回転位相が始動最適位相に達するまでに時間を要することになり、エンジンの始動が円滑に行われない。特に、寒冷地でのエンジン停止時に低温であることから作動油の粘性が高く、遅角室11、進角室12に対する作動油の給排が円滑に行われず、この理由からもエンジンの始動が円滑に行われない。このような不都合を改善するため、前述したゼンマイバネS1,S2の強弱差が外部ロータ1と内部ロータ2との始動最適位相方向への相対移動をアシストして始動最適位相に達するまでの時間の短縮を図っている。   However, according to the above control, when the engine is started in a state where the internal rotor 2 is in the most retarded phase, it takes time until the relative rotational phase reaches the optimum start phase, and the engine starts smoothly. Not done. In particular, since the temperature of the engine oil is low when the engine is stopped in a cold region, the viscosity of the hydraulic oil is high, and the hydraulic oil is not smoothly supplied to and discharged from the retard chamber 11 and the advance chamber 12. Not smoothly. In order to improve such an inconvenience, the difference between the strengths of the springs S1 and S2 described above assists the relative movement of the outer rotor 1 and the inner rotor 2 in the optimum starting phase direction and shortens the time required to reach the optimum starting phase. I am trying.

〔ゼンマイバネ〕
図3〜図8に示すように、第1ゼンマイバネS1は、外部ロータ1に対する内部ロータ2の回転位相を、最遅角位相から始動最適位相までの遅角領域Aにて始動最適位相の方向に付勢する働きをする。逆に、第2ゼンマイバネS2は、外部ロータ1に対する内部ロータ2の回転位相を、最進角位相から始動最適位相までの進角領域Bにて始動最適位相の方向に付勢する働きをする。
図8に示すように、これらのゼンマイバネS1,S2は帯状のバネ材を渦巻き状に成形したもののため、トーションバネのようにコイル部を備えたものと比較すると厚み(回転軸芯X方向での寸法)を小さくでき、図1に示すように2つのゼンマイバネS1,S2を設けた場合でも、回転軸芯Xの方向で大きいスペースを必要とせず、弁開閉時期制御装置の小型化を実現する。
[Spring spring]
As shown in FIGS. 3 to 8, the first main spring S <b> 1 causes the rotational phase of the inner rotor 2 relative to the outer rotor 1 to be in the direction of the optimum starting phase in the retarded region A from the most retarded phase to the optimum starting phase. It works to energize. Conversely, the second spring spring S2 functions to bias the rotational phase of the internal rotor 2 with respect to the external rotor 1 in the direction of the optimum starting phase in the advance angle region B from the most advanced angle phase to the optimum starting phase.
As shown in FIG. 8, these springs S1 and S2 are formed by spirally forming a belt-shaped spring material, and therefore have a thickness (in the direction of the rotation axis X) compared to that having a coil portion such as a torsion spring. 1), even when two springs S1 and S2 are provided as shown in FIG. 1, a large space is not required in the direction of the rotation axis X, and the valve opening / closing timing control device can be downsized.

図3に示すように、各ゼンマイバネS1,S2は、渦巻き状のバネ本体30を備え、その内径側の端部には内部ロータ2と係合される内側係合部31が径方向内向きに折曲げ加工により形成され、その外径側の端部には外部ロータ1に固定される外側係合部32が径方向外向きに折曲げ加工により形成されている。
このようなゼンマイバネS1,S2の形状と対応するように、内部ロータ2の軸状部10の外周の一箇所には、内側係合部31を係止可能な係合凹部10Gが形成されている。他方、外部ロータ1に連結されたフロントプレート6の内面の一箇所には、外側係合部32を係止可能な係合凹部6Tが形成されている。
As shown in FIG. 3, each of the springs S <b> 1 and S <b> 2 includes a spiral spring body 30, and an inner engagement portion 31 that engages with the inner rotor 2 is radially inward at an inner diameter end thereof. An outer engagement portion 32 fixed to the outer rotor 1 is formed radially outwardly by bending at an outer diameter side end portion formed by bending.
An engagement recess 10G that can lock the inner engagement portion 31 is formed at one location on the outer periphery of the shaft-shaped portion 10 of the inner rotor 2 so as to correspond to the shape of the springs S1 and S2. . On the other hand, an engagement recess 6T capable of locking the outer engagement portion 32 is formed at one place on the inner surface of the front plate 6 connected to the external rotor 1.

ゼンマイバネS1,S2をセットする際には、先ず、外側係合部32を外部ロータ1の係合凹部6Tに係止固定した後、直線状に復帰しようとするゼンマイバネS1,S2の付勢力に抗うように、言い換えれば内側係合部31をバネ本体30が軸心X回りで内径方向に巻き込まれる方向に所定回数だけ回転させた上で、内側係合部31を係合凹部10Gに係止固定する。上記セットを実施する際における内側係合部31の回転操作方向は、図2において第1ゼンマイバネS1では反時計回り、第2ゼンマイバネS2では時計回りとなる。   When setting the springs S1 and S2, first, the outer engagement portion 32 is locked and fixed to the engagement recess 6T of the outer rotor 1, and then resists the urging force of the springs S1 and S2 trying to return to the linear shape. In other words, after the inner engagement portion 31 is rotated a predetermined number of times in the direction in which the spring body 30 is wound around the axis X in the inner diameter direction, the inner engagement portion 31 is locked and fixed to the engagement recess 10G. To do. The rotational operation direction of the inner engagement portion 31 when performing the above setting is counterclockwise in the first mainspring S1 and clockwise in the second mainspring S2 in FIG.

以上の要領でセットすることにより、ゼンマイバネS1,S2の両端が外部ロータ1と内部ロータ2とにそれぞれ確実に相対移動不能に固定されると共に、第1ゼンマイバネS1の内側係合部31が内部ロータ2を進角側(図2の時計方向)に付勢し、第2ゼンマイバネS2の内側係合部31が内部ロータ2を遅角側(図2の反時計方向)に付勢する構成が実現される。
尚、2つのゼンマイバネS1,S2のいずれか一方のみをフロントプレート6に設けられた凹部6aに配置し、他方をリヤプレート7に形成した凹部に配置してもよく、この場合は円板状のスペーサ15が不要となる。
By setting in the above manner, both ends of the springs S1, S2 are securely fixed to the outer rotor 1 and the inner rotor 2 so as not to move relative to each other, and the inner engagement portion 31 of the first spring S1 is fixed to the inner rotor. 2 is urged toward the advance side (clockwise in FIG. 2), and the inner engagement portion 31 of the second spring spring S2 urges the inner rotor 2 toward the retard side (counterclockwise in FIG. 2). Is done.
Only one of the two springs S1, S2 may be disposed in the recess 6a provided in the front plate 6, and the other may be disposed in the recess formed in the rear plate 7. In this case, The spacer 15 becomes unnecessary.

〔運転制御〕
前述したように、通常のエンジン始動時には、遅角室11及び進角室12に対する作動油の給排は停止されているので、図2及び図3に示すように、ゼンマイバネS1,S2の付勢作用により、外部ロータ1と内部ロータ2との相対位相は最遅角位相と最進角位相の間にある始動最適位相に保持されている。したがって、安定的にエンジンを始動できる。イグニッションキーのON操作によりエンジンの始動が指令されると、セルモータによるクランキングが実施され、エンジンが始動し、油圧ポンプPが回転し、遅角室11及び進角室12への作動油の供給が可能となる。
(Operation control)
As described above, when the engine is started normally, the supply and discharge of the hydraulic oil to and from the retard chamber 11 and the advance chamber 12 are stopped. Therefore, as shown in FIGS. 2 and 3, the springs S1 and S2 are energized. As a result, the relative phase between the outer rotor 1 and the inner rotor 2 is maintained at the optimum starting phase between the most retarded angle phase and the most advanced angle phase. Therefore, the engine can be started stably. When engine start is commanded by turning on the ignition key, cranking is performed by the cell motor, the engine is started, the hydraulic pump P is rotated, and hydraulic oil is supplied to the retard chamber 11 and the advance chamber 12. Is possible.

エンジンの始動後は一般に、ECUの制御により流体制御弁機構Vによって遅角室11に作動油を供給することで、相対回転位相を始動最適位相よりも少し遅角位相側の中間規制位相に変位させる。中間規制位相はエミッションの改善や、低温時のトルクアップに適した位相であり、一般に暖気運転中は同位相に保持させる。尚、図4及び図5は、中間規制位相を超えた最遅角位相の状態を示す。   In general, after the engine is started, hydraulic fluid is supplied to the retarded angle chamber 11 by the fluid control valve mechanism V under the control of the ECU, so that the relative rotational phase is shifted to the intermediate restriction phase slightly behind the optimum start phase. Let The intermediate regulation phase is a phase suitable for improving emissions and increasing torque at a low temperature, and is generally kept at the same phase during warm-up operation. 4 and 5 show the state of the most retarded phase exceeding the intermediate regulation phase.

遅角室11への作動油の供給による始動最適位相から中間規制位相など遅角位相側への変位操作は、図4及び図5における内部ロータ2の反時計方向の相対回転操作を伴うので、第1ゼンマイバネS1の付勢力に抗して、すなわち第1ゼンマイバネS1の更なる引き絞りを伴って行われる。他方、第2ゼンマイバネS2は、十分に引き絞られた状態でセットされているので、始動最適位相から遅角位相側への変位に際しては、単に始動最適位相での状態よりも弛められるのみで、実質的に相対回転位相を進角向きに移動させる付勢力を発揮することはない。暖気運転期間を過ぎると、ECUが通常の運転制御に移行させる。   The displacement operation from the optimum starting phase to the retarding phase side such as the intermediate restriction phase by supplying hydraulic oil to the retarding chamber 11 is accompanied by the counterclockwise relative rotation operation of the internal rotor 2 in FIGS. 4 and 5. This is performed against the biasing force of the first mainspring S1, that is, with further drawing of the first mainspring S1. On the other hand, since the second main spring S2 is set in a sufficiently narrowed state, the displacement from the optimum starting phase to the retarded phase is merely relaxed compared to the optimum starting phase. The biasing force that substantially moves the relative rotational phase in the advance direction is not exhibited. After the warm-up operation period, the ECU shifts to normal operation control.

他方、通常の運転制御において、始動最適位相よりも進角側に変位操作する際には、図6及び図7における内部ロータ2の時計方向の相対回転操作を伴うので、第2ゼンマイバネS2の付勢力に抗して、すなわち第2ゼンマイバネS2の引き絞りを伴って行われる。他方、第1ゼンマイバネS2は、十分に引き絞られた状態でセットされているので、始動最適位相から進角側への変位に際しては、単に始動最適位相での状態よりも弛められるのみで、実質的に相対回転位相を遅角向きに移動させる付勢力を発揮することはない。尚、図6及び図7は最進角位相の状態を示す。   On the other hand, in the normal operation control, when the displacement operation is performed on the advance side from the optimum starting phase, the relative rotation operation of the inner rotor 2 in the clockwise direction in FIGS. 6 and 7 is accompanied by the rotation of the second spring S2. This is performed against the force, that is, with the drawing of the second spring spring S2. On the other hand, since the first main spring S2 is set in a sufficiently narrowed state, the displacement from the optimum starting phase to the advance side is merely relaxed compared to the optimum starting phase. The biasing force that substantially moves the relative rotational phase in the retarded direction is not exhibited. 6 and 7 show the state of the most advanced angle phase.

(第2実施形態)
以下、本発明の第2の実施の形態を図面に基づいて説明する。
第2実施形態でも、第1実施形態と同様に、外部ロータ1と内部ロータ2との間の相対的な回転位相をエンジンの始動に適した始動最適位相に保持する保持機構Mとして、互いに逆向きの付勢力を発揮付勢する2つのゼンマイバネS1,S2を備えている。
(Second Embodiment)
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings.
In the second embodiment, as in the first embodiment, the holding mechanisms M that hold the relative rotational phase between the outer rotor 1 and the inner rotor 2 at the optimum starting phase suitable for starting the engine are opposite to each other. Two springs S1 and S2 are provided to exert the biasing force in the direction.

第2実施形態の構成上の第1の特徴は、図9から図12に示すように、内部ロータ2の係合凹部10Gの周方向の幅が、ゼンマイバネS1,S2の内側係合部31の厚みよりも十分大きく形成されている点である。この構成により、係合凹部10Gに係止された各内側係合部31が係合凹部10G内で周方向に沿って移動可能となっている。   As shown in FIGS. 9 to 12, the first feature of the configuration of the second embodiment is that the circumferential width of the engaging recess 10G of the inner rotor 2 is the same as that of the inner engaging portion 31 of the spring springs S1 and S2. The point is that it is sufficiently larger than the thickness. With this configuration, each inner engagement portion 31 locked to the engagement recess 10G is movable along the circumferential direction in the engagement recess 10G.

第2実施形態の構成上の第2の特徴は、フロントプレート6に、第1ゼンマイバネS1の内側係合部31に接当可能な第1規制片33Aが立設され、同様に、第2ゼンマイバネS2の内側係合部31に接当可能な第2規制片33Bが立設されている点である。第1規制片33Aは、第1ゼンマイバネS1の内側係合部31の進角領域Bの方向への変位を規制し、第2規制片33Bは、第2ゼンマイバネS2の内側係合部31の遅角領域Aの方向への変位を規制する。   The second structural feature of the second embodiment is that the front plate 6 is provided with a first restriction piece 33A that can come into contact with the inner engagement portion 31 of the first spring spring S1, and similarly, the second spring spring. The second restriction piece 33B that can contact the inner engagement portion 31 of S2 is erected. The first restricting piece 33A restricts the displacement of the inner engagement portion 31 of the first mainspring spring S1 in the direction of the advance angle region B, and the second restricting piece 33B is the delay of the inner engagement portion 31 of the second mainspring spring S2. The displacement in the direction of the corner area A is restricted.

その結果、図10(a)に示すように、第1ゼンマイバネS1は、外部ロータ1に対する内部ロータ2の回転位相を、最遅角位相から第1規制片33Aが規定する第1所定位相(始動最適位相に相当)までの遅角領域Aにて始動最適位相の方向に付勢する働きをする。逆に、第2ゼンマイバネS2は、図11(b)に示すように、外部ロータ1に対する内部ロータ2の回転位相を、最進角位相から第1規制片33Bが規定する第2所定位相(始動最適位相に相当)までの進角領域Bにて始動最適位相の方向に付勢する働きをする。   As a result, as shown in FIG. 10A, the first main spring S1 has a first predetermined phase (starting) in which the first regulating piece 33A defines the rotational phase of the inner rotor 2 relative to the outer rotor 1 from the most retarded phase. It works to urge in the direction of the optimum starting phase in the retarded region A (corresponding to the optimum phase). On the contrary, as shown in FIG. 11B, the second spring spring S2 has a second predetermined phase (starting) in which the first regulating piece 33B defines the rotational phase of the inner rotor 2 relative to the outer rotor 1 from the most advanced angle phase. Energizes in the direction of the optimum starting phase in the advance angle region B (corresponding to the optimum phase).

図10(b)に示すように、最遅角位相から始動最適位相までの遅角領域Aでは、第2ゼンマイバネS2の内側係合部31は第2規制片33Bによって係止されることで、幅広の係合凹部10G内で進角方向に相対移動して最早内部ロータ2に作用し得ない。そのため、第1ゼンマイバネS1の付勢力のみが回転位相に作用し、第2ゼンマイバネS2からは回転位相に付勢力が作用しない。   As shown in FIG. 10B, in the retarded angle region A from the most retarded phase to the optimum starting phase, the inner engaging portion 31 of the second spring S2 is locked by the second restricting piece 33B. It can no longer act on the inner rotor 2 by relatively moving in the advance direction within the wide engaging recess 10G. Therefore, only the urging force of the first spring S1 acts on the rotational phase, and the urging force does not act on the rotational phase from the second spring S2.

逆に、図11(a)に示すように、最進角位相から始動最適位相までの進角領域Bでは、第1ゼンマイバネS1の内側係合部31は第1規制片33Aによって係止されることで、幅広の係合凹部10G内で遅角方向に相対移動して最早内部ロータ2に作用し得ない。そのため、第2ゼンマイバネS2の付勢力のみが回転位相に作用し、第1ゼンマイバネS1からは回転位相に付勢力が作用しない。   Conversely, as shown in FIG. 11A, in the advance angle region B from the most advanced angle phase to the optimum starting phase, the inner engagement portion 31 of the first spring S1 is locked by the first restricting piece 33A. As a result, it can no longer act on the inner rotor 2 by relatively moving in the retarding direction within the wide engaging recess 10G. For this reason, only the urging force of the second spring spring S2 acts on the rotational phase, and no urging force acts on the rotational phase from the first spring spring S1.

その結果、各ゼンマイバネS1,S2の内側係合部31による内部ロータ2に対する付勢操作位置が第1、第2規制片33A,33Bの各位置までに限定されるので、遅角室11及び進角室12に対する作動油の給排が停止されると、図9に示すように、各ゼンマイバネS1,S2の付勢力のバランスが長期間の使用などにより当初の状態から崩れた場合でも、回転位相が前記バランスの崩れによってずれることなく始動最適位相に精度よく保持することが可能となる。   As a result, the urging operation positions of the main springs S1, S2 with respect to the inner rotor 2 by the inner engaging portions 31 are limited to the positions of the first and second restricting pieces 33A, 33B. When the supply and discharge of the hydraulic oil to and from the corner chamber 12 is stopped, as shown in FIG. 9, even when the balance of the urging forces of the mainsprings S1 and S2 collapses from the initial state due to long-term use, the rotational phase However, it is possible to accurately maintain the optimum starting phase without shifting due to the loss of balance.

(第3実施形態)
第3実施形態は図13及び図14に例示するように、相対位相を始動最適位相に保持する付勢部材として、ゼンマイバネではなく2本のトーションバネS1,S2を用いた形態といえる。ここでは、相対位相を進角側に付勢する第1トーションバネS1はフロントプレート6の凹部6aに収納されているのに対して、遅角側に付勢する第2トーションバネS2はリヤプレート7の凹部7aに収納されている。
(Third embodiment)
As illustrated in FIGS. 13 and 14, the third embodiment can be said to use two torsion springs S <b> 1 and S <b> 2 instead of the mainspring as an urging member that maintains the relative phase at the optimum starting phase. Here, the first torsion spring S1 that biases the relative phase toward the advance side is housed in the recess 6a of the front plate 6, whereas the second torsion spring S2 that biases toward the retard side is the rear plate. 7 is housed in the recess 7a.

図14は始動最適位相における各トーションバネS1,S2の状態を示す。
トーションバネS1,S2の外側端部32は外部ロータ1に連結されたフロントプレート6の内面の係合凹部6Tに相対移動不能に係止されている。しかし、トーションバネS1,S2の内側端部31は、内側端部31の外径よりも十分に長く切り取られた幅広の係合凹部10Gに相対移動可能に係止されている。
そして、フロントプレート6の底部からは、トーションバネS1,S2の内側端部31と係合可能な規制片33A,33Bが立設されている。
幅広の係合凹部10Gと規制片33A,33Bとによって、第2実施形態と同様に以下の作用効果が奏される。
FIG. 14 shows the states of the torsion springs S1 and S2 in the optimum starting phase.
The outer end portions 32 of the torsion springs S1 and S2 are locked to the engaging recesses 6T on the inner surface of the front plate 6 connected to the outer rotor 1 so as not to be relatively movable. However, the inner end portions 31 of the torsion springs S1 and S2 are engaged with a wide engagement recess 10G cut out sufficiently longer than the outer diameter of the inner end portion 31 so as to be relatively movable.
And from the bottom part of the front plate 6, the regulation pieces 33A and 33B which can be engaged with the inner end part 31 of the torsion springs S1 and S2 are erected.
The following effects are achieved by the wide engaging recess 10G and the restricting pieces 33A and 33B as in the second embodiment.

図14(a)から理解されるように、最進角位相から始動最適位相までの進角領域Bでは、第1トーションバネS1の内側係合部31は第1規制片33Aによって係止されるため内部ロータ2に作用しない。そのため、第2トーションバネS2の付勢力のみが回転位相に作用し、第1トーションバネS1からは回転位相に付勢力が作用しない。
逆に、図14(b)から理解されるように、最遅角位相から始動最適位相までの遅角領域Aでは、第2トーションバネS2の内側係合部31は第2規制片33Bによって係止されるため内部ロータ2に作用しない。そのため、第1ゼンマイバネS1の付勢力のみが回転位相に作用し、第2トーションバネS2からは回転位相に付勢力が作用しない。
As understood from FIG. 14A, in the advance angle region B from the most advanced angle phase to the optimum starting phase, the inner engagement portion 31 of the first torsion spring S1 is locked by the first restricting piece 33A. Therefore, it does not act on the inner rotor 2. Therefore, only the urging force of the second torsion spring S2 acts on the rotational phase, and no urging force acts on the rotational phase from the first torsion spring S1.
On the contrary, as understood from FIG. 14B, in the retardation region A from the most retarded phase to the optimum starting phase, the inner engagement portion 31 of the second torsion spring S2 is engaged by the second regulating piece 33B. Since it is stopped, it does not act on the inner rotor 2. Therefore, only the urging force of the first mainspring spring S1 acts on the rotational phase, and no urging force acts on the rotational phase from the second torsion spring S2.

その結果、各トーションバネS1,S2の内側係合部31による内部ロータ2に対する付勢操作位置が第1、第2規制片33A,33Bの各位置までに限定されるので、遅角室11及び進角室12に対する作動油の給排が停止されると、各トーションバネS1,S2の付勢力のバランスが長期間の使用などにより当初の状態から崩れた場合でも、回転位相が前記バランスの崩れによってずれることなく始動最適位相に精度よく保持することが可能となる。第1規制片33Aの位置は第1所定位相に相当し、第2規制片33Bの位置は第2所定位相に相当する。   As a result, the biasing operation positions of the inner engagement portions 31 of the torsion springs S1 and S2 with respect to the inner rotor 2 are limited to the positions of the first and second restricting pieces 33A and 33B. When the supply and discharge of the hydraulic oil to and from the advance chamber 12 is stopped, even if the balance of the urging forces of the torsion springs S1 and S2 is lost from the initial state due to long-term use, the rotational phase is lost. Therefore, it is possible to accurately maintain the optimum starting phase without shifting. The position of the first restriction piece 33A corresponds to a first predetermined phase, and the position of the second restriction piece 33B corresponds to a second predetermined phase.

(第4実施形態)
第4実施形態は、図15に示すように、相対位相を始動最適位相に保持する付勢部材として、内部ロータ2の係合凹部10Gに係止された内側係合部31と、外部ロータ1の係合凹部6Tに係止された外側係合部32とを有する1本のトーションバネSを用いている。
この形態では、遅角室11及び進角室12に対する作動油の給排が停止されると、トーションバネSの付勢力によって相対位相が始動最適位相に変位操作され、同位相に保持される。作動油による始動最適位相から遅角側への変位操作は、図15の上方から見たとき、トーションバネSの内側係合部31が外側係合部32に対して反時計方向に相対回転されるように、従って、トーションバネSが縮径する変形を伴って行われる。逆に、始動最適位相から進角側への変位操作は、図15の上方から見たとき、トーションバネSの内側係合部31が外側係合部32に対して時計方向に相対回転されるように、従って、トーションバネSが拡径する変形を伴って行われる。
(Fourth embodiment)
In the fourth embodiment, as shown in FIG. 15, as an urging member that keeps the relative phase at the optimum starting phase, the inner engagement portion 31 locked to the engagement recess 10 </ b> G of the inner rotor 2 and the outer rotor 1. One torsion spring S having an outer engaging portion 32 locked to the engaging recess 6T is used.
In this embodiment, when the supply and discharge of the hydraulic oil to and from the retard chamber 11 and the advance chamber 12 are stopped, the relative phase is displaced to the optimum start phase by the urging force of the torsion spring S, and the same phase is maintained. In the displacement operation from the optimum starting phase to the retard side by the hydraulic oil, the inner engagement portion 31 of the torsion spring S is rotated relative to the outer engagement portion 32 in the counterclockwise direction when viewed from above in FIG. Therefore, the torsion spring S is deformed with a reduced diameter. Conversely, in the displacement operation from the optimum starting phase to the advance side, the inner engagement portion 31 of the torsion spring S is rotated relative to the outer engagement portion 32 in the clockwise direction when viewed from above in FIG. Thus, the torsion spring S is performed with a deformation that expands the diameter.

(第5実施形態)
第5実施形態は、内部ロータ2の係合凹部10が周方向に非常に長く形成されており、相対位相を始動最適位相に保持する付勢部材として、円柱状の作動油給排部Vbに外嵌された1本のトーションバネSを用いている。このトーションバネSの両端31a,31bはいずれも径方向外向きに延出されており、両端31a,31bどうしをトーションバネSの付勢力に抗して近接させた状態で係合凹部10に係入させている。
フロントプレート6には、両端31a,31bの付近にトーションバネSの外側に接当または隣接する一対の規制片34A、34Bが立設されている。遅角室11及び進角室12に対する作動油の給排が停止された状態では、図16(a)に示すように、トーションバネSの両端31a,31bが係合凹部10の両端10a,10bと一対の規制片34A、34Bとに同時に押付けられることで、相対位相を始動最適位相に付勢している。
作動油の作用によって相対位相が遅角側に変位操作されると、図16(b)に例示するように、トーションバネSの一端31bは規制片34Bに押付けられたまま、内部ロータ2の係合凹部10Gの一方の端面10aがトーションバネSの他端31aを反時計方向に押し操作しながら変位操作が実行される。
(Fifth embodiment)
In the fifth embodiment, the engagement concave portion 10 of the inner rotor 2 is formed to be very long in the circumferential direction, and the cylindrical hydraulic oil supply / discharge portion Vb is used as an urging member that maintains the relative phase at the optimum starting phase. One externally fitted torsion spring S is used. Both ends 31a, 31b of the torsion spring S are extended outward in the radial direction, and both ends 31a, 31b are engaged with the engaging recess 10 in a state where they are brought close to each other against the urging force of the torsion spring S. I am allowed to enter.
The front plate 6 is provided with a pair of restricting pieces 34A and 34B that are in contact with or adjacent to the outside of the torsion spring S in the vicinity of both ends 31a and 31b. In a state where the supply and discharge of the hydraulic oil to the retard chamber 11 and the advance chamber 12 are stopped, both ends 31a and 31b of the torsion spring S are connected to both ends 10a and 10b of the engaging recess 10 as shown in FIG. And the pair of restricting pieces 34A and 34B are simultaneously pressed to bias the relative phase to the optimum starting phase.
When the relative phase is displaced to the retard side by the action of the hydraulic oil, as shown in FIG. 16B, the end 31b of the torsion spring S is pressed against the restricting piece 34B and the engagement of the inner rotor 2 is performed. The displacement operation is executed while one end face 10a of the combined recess 10G pushes the other end 31a of the torsion spring S counterclockwise.

本発明は、エンジンの吸気弁と排気弁との少なくとも一方の開閉タイミングを設定する弁開閉時期制御装置全般に利用することができる。   The present invention can be used for all valve opening / closing timing control devices for setting the opening / closing timing of at least one of an intake valve and an exhaust valve of an engine.

1 外部ロータ(駆動側回転部材)
2 内部ロータ(従動側回転部材)
2S 円筒状空間
3 カムシャフト
5 ベーン(仕切り)
6 フロントプレート
6T 係合凹部
7 リヤプレート
10 軸状体
10G 係合凹部
11 遅角室
11a 遅角室側油路
12 進角室
12a 進角室側油路
22 スプールバルブ
24 第1ポート
25 第2ポート
28 ハウジング
33A 第1規制片
33B 第2規制片
M 保持機構
P 油圧ポンプ
S1 第1ゼンマイバネ(スプリング)
S2 第2ゼンマイバネ(スプリング)
T1 進角方向
T2 遅角方向
V 流体制御弁機構
Va 作動油制御部
Vb 作動油給排部
1 External rotor (drive side rotating member)
2 Internal rotor (driven side rotating member)
2S Cylindrical space 3 Camshaft 5 Vane (partition)
6 Front plate 6T Engaging recess 7 Rear plate 10 Shaft 10G Engaging recess 11 Retarding chamber 11a Retarding chamber side oil passage 12 Advance chamber 12a Advance chamber side oil passage 22 Spool valve 24 First port 25 Second Port 28 Housing 33A First restriction piece 33B Second restriction piece M Holding mechanism P Hydraulic pump S1 First spring (spring)
S2 Second spring (spring)
T1 Advance angle direction T2 Delay angle direction V Fluid control valve mechanism Va Hydraulic oil control part Vb Hydraulic oil supply / discharge part

Claims (6)

内燃機関のクランクシャフトに対して同期回転する駆動側回転部材と、
前記駆動側回転部材に対して同軸上に配置され、前記内燃機関の吸気弁及び排気弁の少なくとも一方を開閉するカムシャフトに対して一体回転する従動側回転部材と、
前記駆動側回転部材と前記従動側回転部材の間の相対位相を、可動する仕切りによって容積が相補に可変する2種類の圧力室のそれぞれに対する作動流体の給排によって進角位相側または遅角位相側に変位させる位相変換機構と、
前記相対位相を最進角位相及び最遅角位相を除く前記内燃機関の始動に適した所定位相に向けて付勢する付勢部材と、を有する弁開閉時期制御装置。
A drive-side rotating member that rotates synchronously with the crankshaft of the internal combustion engine;
A driven-side rotating member that is coaxially disposed with respect to the driving-side rotating member and rotates integrally with a camshaft that opens and closes at least one of an intake valve and an exhaust valve of the internal combustion engine;
The relative phase between the driving side rotating member and the driven side rotating member is set to an advance phase phase or a retard angle phase depending on supply / discharge of working fluid to / from each of the two types of pressure chambers whose volumes are complementarily variable by a movable partition. A phase conversion mechanism to be displaced to the side,
And a biasing member that biases the relative phase toward a predetermined phase suitable for starting the internal combustion engine excluding the most advanced angle phase and the most retarded angle phase.
前記付勢部材は、前記相対位相を進角位相方向へ付勢する第1付勢部材と前記相対位相を遅角位相方向へ付勢する第2付勢部材とを有し、さらに、
前記第1付勢部材による付勢力を前記所定位相と最遅角位相の間に限定する第1規制部と、前記第2付勢部材による付勢力を前記所定位相と最進角位相の間に限定する第2規制部とを備えている請求項1に記載の弁開閉時期制御装置。
The urging member includes a first urging member that urges the relative phase in the advance angle phase direction and a second urging member that urges the relative phase in the retard angle phase direction, and
A first restricting portion that limits an urging force by the first urging member between the predetermined phase and the most retarded phase; and an urging force by the second urging member between the predetermined phase and the most advanced angle phase. The valve opening / closing timing control device according to claim 1, further comprising a second restricting portion to be limited.
前記付勢部材が、前記カムシャフトのトルク変動に基づき前記従動側回転部材に作用する変位力に対抗する付勢力を有する請求項1または2に記載の弁開閉時期制御装置。 3. The valve opening / closing timing control device according to claim 1, wherein the urging member has a urging force that opposes a displacement force that acts on the driven side rotation member based on a torque fluctuation of the camshaft. 4. 前記付勢部材が前記駆動側回転部材と前記従動側回転部材との間に配置されたスプリングである請求項1から3のいずれか一項に記載の弁開閉時期制御装置。 The valve opening / closing timing control device according to any one of claims 1 to 3, wherein the biasing member is a spring disposed between the driving side rotating member and the driven side rotating member. 内燃機関のクランクシャフトに対して同期回転する駆動側回転部材と、
前記駆動側回転部材に対して同軸上に配置され、前記内燃機関の吸気弁及び排気弁の少なくとも一方を開閉するカムシャフトに対して一体回転する従動側回転部材と、
前記駆動側回転部材と前記従動側回転部材とにより形成され、容積が拡大することにより前記駆動側回転部材に対する前記従動側回転部材の相対位相を遅角方向に移動させる遅角室、及び、容積が拡大することにより前記相対位相を進角方向に移動させる進角室と、
前記相対位相を最進角位相及び最遅角位相を除く所定位相に向けて付勢する付勢部材と、を有する弁開閉時期制御装置。
A drive-side rotating member that rotates synchronously with the crankshaft of the internal combustion engine;
A driven-side rotating member that is coaxially disposed with respect to the driving-side rotating member and rotates integrally with a camshaft that opens and closes at least one of an intake valve and an exhaust valve of the internal combustion engine;
A retarding chamber formed by the drive-side rotating member and the driven-side rotating member, and moving the relative phase of the driven-side rotating member with respect to the driving-side rotating member in the retarding direction by increasing the volume, and a volume An advance chamber that moves the relative phase in the advance direction by expanding
And a biasing member that biases the relative phase toward a predetermined phase excluding the most advanced angle phase and the most retarded angle phase.
前記付勢部材は、前記相対位相を最遅角位相よりも進角位相方向側に位置する第1所定位相へ付勢する第1付勢部材と前記相対位相を最進角位相よりも遅角位相方向側に位置する第2所定位相へ付勢する第2付勢部材とを有し、
前記第1付勢部材は、前記相対位相を最遅角位相から前記第1所定位相まで付勢すると共に前記第1所定位相から最進角位相までは付勢せず、
前記第2付勢部材は、前記相対位相を最進角位相から前記第2所定位相まで付勢すると共に前記第2所定位相から最遅角位相までは付勢しない請求項5に記載の弁開閉時期制御装置。
The urging member includes a first urging member that urges the relative phase to a first predetermined phase that is positioned on the advance phase direction side of the most retarded phase, and the relative phase that is retarded from the most advanced angle phase. A second biasing member that biases to a second predetermined phase located on the phase direction side,
The first biasing member biases the relative phase from the most retarded phase to the first predetermined phase and does not bias from the first predetermined phase to the most advanced angle phase,
6. The valve opening / closing according to claim 5, wherein the second biasing member biases the relative phase from the most advanced angle phase to the second predetermined phase and does not bias from the second predetermined phase to the most retarded phase. Timing control device.
JP2009220652A 2009-09-25 2009-09-25 Valve timing control device Expired - Fee Related JP5382440B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009220652A JP5382440B2 (en) 2009-09-25 2009-09-25 Valve timing control device
EP10002953A EP2302177B1 (en) 2009-09-25 2010-03-19 Valve opening/closing timing control device
US12/748,518 US20110073055A1 (en) 2009-09-25 2010-03-29 Valve opening/closing timing control device
CN2010101476197A CN102032009A (en) 2009-09-25 2010-03-31 Valve opening/closing timing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009220652A JP5382440B2 (en) 2009-09-25 2009-09-25 Valve timing control device

Publications (2)

Publication Number Publication Date
JP2011069287A true JP2011069287A (en) 2011-04-07
JP5382440B2 JP5382440B2 (en) 2014-01-08

Family

ID=43333228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009220652A Expired - Fee Related JP5382440B2 (en) 2009-09-25 2009-09-25 Valve timing control device

Country Status (4)

Country Link
US (1) US20110073055A1 (en)
EP (1) EP2302177B1 (en)
JP (1) JP5382440B2 (en)
CN (1) CN102032009A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241651A (en) * 2011-05-20 2012-12-10 Denso Corp Valve timing adjusting device
JP2013092098A (en) * 2011-10-25 2013-05-16 Denso Corp Hydraulic valve timing adjusting device
US8640662B2 (en) 2011-01-04 2014-02-04 Hilite Germany Gmbh Valve timing control apparatus and method
US8973542B2 (en) 2012-09-21 2015-03-10 Hilite Germany Gmbh Centering slot for internal combustion engine
US9366161B2 (en) 2013-02-14 2016-06-14 Hilite Germany Gmbh Hydraulic valve for an internal combustion engine
US9784143B2 (en) 2014-07-10 2017-10-10 Hilite Germany Gmbh Mid lock directional supply and cam torsional recirculation
JPWO2021005704A1 (en) * 2019-07-09 2021-01-14

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5739168B2 (en) * 2011-01-12 2015-06-24 日立オートモティブシステムズ株式会社 Valve timing control device for internal combustion engine
DE102012200683B4 (en) * 2012-01-18 2017-01-26 Schaeffler Technologies AG & Co. KG Phaser
JP5928158B2 (en) * 2012-05-25 2016-06-01 アイシン精機株式会社 Valve timing control device
JP5661725B2 (en) * 2012-12-13 2015-01-28 サンコール株式会社 Mainspring
DE102014216119A1 (en) * 2013-08-22 2015-02-26 Schaeffler Technologies Gmbh & Co. Kg Method and device for winding a return spring with a two-part rotor for a cam phaser
US10107152B2 (en) * 2014-03-25 2018-10-23 Ntn Corporation Seal ring
DE102015217261B3 (en) 2015-09-10 2016-12-15 Schaeffler Technologies AG & Co. KG Camshaft adjuster with a spring
CN108603422B (en) * 2016-03-15 2020-07-28 日立汽车系统株式会社 Valve timing control device for internal combustion engine and method of mounting the valve timing control device
DE102017110599A1 (en) * 2017-05-16 2018-11-22 Schaeffler Technologies AG & Co. KG Housing for a camshaft adjusting device
US10883396B1 (en) * 2019-08-21 2021-01-05 Schaeffler Technologies AG & Co. KG Camshaft phaser with resilient cover plate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327492A (en) * 2006-06-06 2007-12-20 Delphi Technologies Inc Vane cam phasor having pressing spring system for assisting locking of pin at intermediate position

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3733730B2 (en) * 1998-01-30 2006-01-11 トヨタ自動車株式会社 Valve timing control device for internal combustion engine
JP4158185B2 (en) * 1999-12-15 2008-10-01 株式会社デンソー Valve timing adjustment device
US6439184B1 (en) * 2001-01-31 2002-08-27 Denso Corporation Valve timing adjusting system of internal combustion engine
JP2002295275A (en) * 2001-03-29 2002-10-09 Denso Corp Valve timing adjustment device
JP4487449B2 (en) * 2001-06-28 2010-06-23 アイシン精機株式会社 Valve timing control device
JP4032288B2 (en) * 2002-03-28 2008-01-16 アイシン精機株式会社 Valve timing control device
US7556000B2 (en) * 2002-05-21 2009-07-07 Delphi Technologies, Inc. Camshaft phaser having designated contact vane
US7311069B2 (en) * 2003-06-25 2007-12-25 Aisin Seiki Kabushiki Kaisha Variable valve timing control device
JP2005016482A (en) * 2003-06-27 2005-01-20 Aisin Seiki Co Ltd Valve timing controlling device
DE102006004760A1 (en) * 2006-02-02 2007-10-11 Schaeffler Kg Hydraulic camshaft adjuster
GB2437305B (en) * 2006-04-19 2011-01-12 Mechadyne Plc Hydraulic camshaft phaser with mechanical lock
JP4238903B2 (en) * 2006-09-13 2009-03-18 株式会社日立製作所 Camshaft phase varying device and phase varying device for internal combustion engine
JP2009074414A (en) * 2007-09-20 2009-04-09 Hitachi Ltd Variable valve gear system and variable valve device for internal combustion engine
DE102009005114A1 (en) * 2008-01-30 2009-08-06 Schaeffler Kg Camshaft adjusting device
US20090211549A1 (en) * 2008-02-21 2009-08-27 Schaeffler Kg Cam phase adjuster with a plurality of springs
US8127728B2 (en) 2008-03-21 2012-03-06 Delphi Technologies, Inc. Vane-type cam phaser having dual rotor bias springs
JP5403341B2 (en) * 2009-06-17 2014-01-29 アイシン精機株式会社 Valve timing control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327492A (en) * 2006-06-06 2007-12-20 Delphi Technologies Inc Vane cam phasor having pressing spring system for assisting locking of pin at intermediate position

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8640662B2 (en) 2011-01-04 2014-02-04 Hilite Germany Gmbh Valve timing control apparatus and method
JP2012241651A (en) * 2011-05-20 2012-12-10 Denso Corp Valve timing adjusting device
JP2013092098A (en) * 2011-10-25 2013-05-16 Denso Corp Hydraulic valve timing adjusting device
US8973542B2 (en) 2012-09-21 2015-03-10 Hilite Germany Gmbh Centering slot for internal combustion engine
US9366160B2 (en) 2012-09-21 2016-06-14 Hilite Germany Gmbh Centering slot for internal combustion engine
US9366161B2 (en) 2013-02-14 2016-06-14 Hilite Germany Gmbh Hydraulic valve for an internal combustion engine
US9784143B2 (en) 2014-07-10 2017-10-10 Hilite Germany Gmbh Mid lock directional supply and cam torsional recirculation
JPWO2021005704A1 (en) * 2019-07-09 2021-01-14
WO2021005704A1 (en) * 2019-07-09 2021-01-14 株式会社ミクニ Valve timing changer
JP7248796B2 (en) 2019-07-09 2023-03-29 株式会社ミクニ valve timing changer
US11933200B2 (en) 2019-07-09 2024-03-19 Mikuni Corporation Valve timing change device

Also Published As

Publication number Publication date
EP2302177A1 (en) 2011-03-30
JP5382440B2 (en) 2014-01-08
EP2302177B1 (en) 2012-10-31
CN102032009A (en) 2011-04-27
US20110073055A1 (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP5382440B2 (en) Valve timing control device
JP5516937B2 (en) Valve timing control device
JP5582363B2 (en) Valve timing control device
JP4377183B2 (en) Variable camshaft timing mechanism
JP5403341B2 (en) Valve timing control device
JP5516938B2 (en) Valve timing control device
JP5500350B2 (en) Valve timing control device
JP5376227B2 (en) Valve timing control device
JP5321911B2 (en) Valve timing control device
EP2881620B1 (en) Variable Valve Timing Control Apparatus
JP4498976B2 (en) Valve timing control device for internal combustion engine
JP5267263B2 (en) Valve timing control device
JP6225725B2 (en) Valve timing control device
JP5370419B2 (en) Valve timing adjustment device
JP3817067B2 (en) Valve timing control device for internal combustion engine
EP2891773B1 (en) Variable valve timing control apparatus
JP3817065B2 (en) Valve timing control device for internal combustion engine
JP6171423B2 (en) Valve timing control device
JP4095654B2 (en) Valve timing control device for internal combustion engine
WO2020084764A1 (en) Valve timing adjustment device
JP5022327B2 (en) Variable valve timing mechanism for internal combustion engine
JP5574205B2 (en) Valve timing control device
JP6131665B2 (en) Valve timing control device
JP2014020223A (en) Valve opening/closing timing control device
JP2006090140A (en) Valve timing control device of internal combustion engine and its installation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130918

R151 Written notification of patent or utility model registration

Ref document number: 5382440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees