WO2020084764A1 - Valve timing adjustment device - Google Patents

Valve timing adjustment device Download PDF

Info

Publication number
WO2020084764A1
WO2020084764A1 PCT/JP2018/039870 JP2018039870W WO2020084764A1 WO 2020084764 A1 WO2020084764 A1 WO 2020084764A1 JP 2018039870 W JP2018039870 W JP 2018039870W WO 2020084764 A1 WO2020084764 A1 WO 2020084764A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
advance
retard
hydraulic chamber
rotor
Prior art date
Application number
PCT/JP2018/039870
Other languages
French (fr)
Japanese (ja)
Inventor
卓大 松本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/039870 priority Critical patent/WO2020084764A1/en
Priority to JP2020547149A priority patent/JP6797342B2/en
Publication of WO2020084764A1 publication Critical patent/WO2020084764A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive

Definitions

  • the present invention relates to a valve timing adjusting device equipped with an oil control valve.
  • valve timing adjusting device that adjusts the opening / closing timing of an engine valve using oil as a working fluid.
  • This valve timing adjusting device includes a housing and a rotor that can rotate relative to the housing, and a lock member provided in the housing can be fitted into a fitting hole formed in the rotor. Has become. In this way, the valve timing adjusting device can lock the rotor in a predetermined lock phase by fitting the lock member in the fitting hole.
  • the lock phase in the above conventional valve timing adjusting device is limited depending on the number of lock members and fitting holes. Therefore, the conventional valve timing adjusting device cannot lock the rotor in an ideal phase with respect to the temperature of the engine oil in the idling start / stop mode of the engine.
  • the present invention has been made to solve the above problems, and provides a valve timing adjusting device capable of locking a rotor in a phase corresponding to an oil temperature in an engine idling start / stop mode.
  • the purpose is to
  • a valve timing adjusting device includes a case that rotates synchronously with a crankshaft of an internal combustion engine, a rotor that is coaxially rotatably arranged relative to the case, and that opens and closes a valve of the internal combustion engine, and a case.
  • a partition is formed between the rotor and the case, and the partition is formed between the case and the rotor and the advance hydraulic chamber that relatively rotates the rotor in the advance direction with the supply of the working fluid.
  • a retard oil pressure chamber that relatively rotates the rotor in the retard direction, and an oil control valve that controls the supply and discharge of the working fluid with respect to the advance hydraulic chamber and the retard hydraulic chamber.
  • the oil control valve is biased in the advance direction from the phase to the original phase located between the most retarded phase and the most advanced phase, and the oil control valve is connected to the supply port of the working fluid, the advance angle.
  • Hydraulic chamber A housing having an advancing port communicating with it, a retarding port communicating with the retarding hydraulic chamber, and a drain port communicating with the outside of the oil control valve, and reciprocating between an initial position and a final position in the housing, A spool that supplies and discharges the working fluid via the supply port, the advance port, the retard port, and the drain port according to the stroke amount, and the supply port when the spool is placed in the initial position.
  • a valve timing adjusting device includes a case that rotates synchronously with a crankshaft of an internal combustion engine, a rotor that is coaxially rotatably arranged relative to the case, and that opens and closes a valve of the internal combustion engine, and a case.
  • a partition is formed between the rotor and the case, and the partition is formed between the case and the rotor and the advance hydraulic chamber that relatively rotates the rotor in the advance direction with the supply of the working fluid.
  • a retard oil pressure chamber that relatively rotates the rotor in the retard direction, and an oil control valve that controls the supply and discharge of the working fluid with respect to the advance hydraulic chamber and the retard hydraulic chamber.
  • the oil control valve is biased in the advance direction from the phase to the original phase located between the most retarded phase and the most advanced phase, and the oil control valve is connected to the supply port of the working fluid, the advance angle.
  • Hydraulic chamber A housing having an advancing port communicating with it, a retarding port communicating with the retarding hydraulic chamber, and a drain port communicating with the outside of the oil control valve, and reciprocating between an initial position and a final position in the housing, A spool that supplies and discharges the working fluid via the supply port, the advance port, the retard port, and the drain port according to the stroke amount is provided, and the advance angle is set when the spool is arranged at the initial position. While communicating the port with the outside of the oil control valve, communicating the retard port and the drain port, and communicating the supply port with the advance port and the retard port when the spool is at the final position. It is characterized by.
  • the rotor in the idling start / stop mode of the engine, can be locked in a phase according to the oil temperature.
  • FIG. 3 is a configuration diagram of an OCV provided in the valve timing adjustment device according to the first embodiment.
  • FIG. 1A is an external view of the OCV.
  • FIG. 1B is a partial vertical sectional view of the OCV.
  • FIG. 1C is a vertical sectional view of the OCV.
  • FIG. 1D is a diagram of the tip end surface of the spool as viewed from the axial direction.
  • FIG. 6 is a diagram showing transition states of an advance port and a retard port with respect to a stroke amount of the spool in the first embodiment.
  • FIG. 6 is a diagram showing an operation of OCV according to the first embodiment.
  • FIG. 3A is a diagram showing an initial state of OCV.
  • FIG. 3B is a diagram showing a retarded supply state of OCV.
  • FIG. 3C is a diagram showing an intermediate holding state of OCV.
  • FIG. 6 is a diagram showing an operation of OCV according to the first embodiment.
  • FIG. 4A is a diagram showing an advance supply state of OCV.
  • FIG. 4B is a diagram showing the final state of OCV.
  • FIG. 3 is a cross-sectional view of the valve timing adjusting device according to the first embodiment. It is the figure which showed a mode that the rotor returned to the original phase.
  • FIG. 6A is a cross-sectional view of the valve timing adjustment device when the rotor returns to the original phase from the retard side.
  • FIG. 6B is a diagram showing a state of the valve timing adjusting device when the rotor returns to the original phase from the advance side.
  • FIG. 6 is a diagram showing an operation of the valve timing adjustment device according to the first embodiment.
  • FIG. 7A is a cross-sectional view of the valve timing adjustment device in the OCV retarded supply state.
  • FIG. 7B is a cross-sectional view of the valve timing adjusting device in the advance supply state of OCV.
  • FIG. 7C is a cross-sectional view of the valve timing adjusting device in the final state of OCV.
  • FIG. 6 is a transverse cross-sectional view showing an operation when the valve timing adjusting device according to the first embodiment is used in an idle state of the engine.
  • FIG. 8A is a diagram showing a state where the vehicle is keyed off in the idle state.
  • FIG. 8B is a diagram showing a state in which the rotor returns to the original phase.
  • FIG. 8A is a diagram showing a state where the vehicle is keyed off in the idle state.
  • FIG. 8B is a diagram showing a state in which the rotor returns to the
  • FIG. 8C is a diagram showing a state in which the rotor is locked.
  • FIG. 7 is a configuration diagram of an OCV provided in the valve timing adjustment device according to the second embodiment.
  • FIG. 9A is an external view of the OCV.
  • FIG. 9B is a partial vertical sectional view of the OCV.
  • FIG. 9C is a vertical sectional view of the OCV.
  • FIG. 9D is a diagram of the tip end surface of the spool as viewed from the axial direction.
  • FIG. 9E is a diagram of the stopper surface of the stopper as viewed from the axial direction.
  • FIG. 9 is a diagram showing transition states of an advance port and a retard port with respect to a stroke amount of a spool in the second embodiment.
  • FIG. 9 is a diagram showing an operation of OCV according to the second embodiment.
  • FIG. 11A is a diagram showing an initial state of OCV.
  • FIG. 11B is a diagram showing a retarded supply state of OCV.
  • FIG. 11C is a diagram showing an intermediate holding state of OCV.
  • FIG. 9 is a diagram showing an operation of OCV according to the second embodiment.
  • FIG. 12A is a diagram showing an advance supply state of OCV.
  • FIG. 12B is a diagram showing the final state of OCV.
  • Embodiment 1 A valve timing adjusting device including an oil control valve (hereinafter referred to as OCV) according to the first embodiment will be described in detail with reference to FIGS. 1 to 6.
  • OCV oil control valve
  • FIG. 1A is an external view of an OCV.
  • FIG. 1B is a partial vertical cross-sectional view of the OCV.
  • FIG. 1C is a vertical sectional view of the OCV.
  • FIG. 1D is a diagram of the tip end surface of the spool as viewed from the axial direction.
  • the valve timing adjustment device adjusts the opening / closing timing of the intake valve or the exhaust valve according to the operating state of the engine, which is the internal combustion engine.
  • the OCV 10 controls the supply, discharge, or retention of oil in the advance hydraulic chamber and the retard hydraulic chamber of the valve timing adjusting device. That is, the oil serves as the working fluid of the valve timing adjusting device.
  • the OCV 10 includes a center bolt 11, a spool 12, a stopper 13, and a spring 14.
  • the center bolt 11 is a bolt for fixing the valve timing adjusting device to the camshaft.
  • the center bolt 11 has a tubular shape and has a supply port 21, an advance port 22, a retard port 23, a drain port 24, and partitions 25 to 29.
  • the center bolt 11 constitutes a housing of the OCV 10.
  • the supply port 21, the advance port 22, and the retard port 23 connect the outer peripheral surface and the inner peripheral surface of the center bolt 11. Further, the supply port 21 communicates with the oil supply source.
  • the advance port 22 communicates with the advance hydraulic chamber of the valve timing adjusting device, and the retard port 23 communicates with the retard hydraulic chamber of the valve timing adjusting device.
  • the drain port 24 constitutes an opening on the tip side of the center bolt 11, and is always in communication with the outside of the OCV 10.
  • the oil supply source is provided outside the valve timing adjusting device and the OCV 10.
  • the partitions 25 to 29 are formed in an annular shape along the circumferential direction of the inner peripheral surface of the center bolt 11 and project radially inward from the inner peripheral surface.
  • the supply port 21 is open between the partitions 26 and 27.
  • the advance port 22 is opened between the partitions 25 and 26.
  • the retard port 23 is opened between the partitions 27 and 28.
  • the center bolt 11 is configured such that the port opened between the partitions 25 and 26 is the advance port 22, and the port opened between the partitions 27 and 28 is the retard port 23.
  • 26 may be used as the retarded angle port 23, and the ports opened between the partitions 27, 28 may be configured as the advanced angle port 22. That is, the supply port 21 may be arranged between the advance port 22 and the retard port 23 in the axial direction of the center bolt 11.
  • the spool 12 is supported inside the partitions 25 to 29 of the center bolt 11 in the radial direction so as to be capable of reciprocating in the axial direction of the center bolt 11.
  • the spool 12 is hollow and has a drain port 31, a flow path 32, partitions 33 to 38, and a lateral groove 39.
  • the OCV 10 supplies oil to the valve timing adjusting device via the supply port 21, the advance port 22, the retard port 23, and the drain port 24 according to the stroke amount that is the movement amount of the spool 12. Excretion can be done.
  • the drain port 31 connects the outer peripheral surface and the inner peripheral surface of the spool 12 and is always in communication with the outside of the OCV 10. Further, the flow passage 32 has the flow passage 32 in the axial direction of the spool 12 in the spool 12. The flow path extends to the drain port 31 on the base end side thereof and communicates with the drain port 24 of the center bolt 11 on the other hand.
  • the partitions 33 to 38 are formed in an annular shape along the circumferential direction of the outer peripheral surface of the spool 12 and project outward from the outer peripheral surface in the radial direction. That is, the partitions 33 to 38 are supported in the partitions 25 to 29 so as to be capable of reciprocating in the axial direction of the center bolt 11. Further, the drain port 31 is opened outside the partition 33 in the axial direction of the spool 12.
  • the lateral groove 39 is provided so as to penetrate the flow path 32 and the partition 38 in the radial direction thereof, and is formed so as to cut out the partition 38.
  • the stopper 13 regulates the movement of the spool 12.
  • the stopper 13 has an annular shape and is provided in the opening of the center bolt 11 on the proximal end side. Further, the stopper 13 is provided so that the partition 33 arranged closest to the proximal end side of the spool 12 can come into contact with the stopper 13 and also faces the drain port 31 in the radial direction.
  • the spring 14 is provided between the inside of the tip end of the center bolt 11 and the tip of the flow passage 32 in the spool 12, and biases the spool 12 toward the stopper 13. As a result, since the partition 33 contacts the stopper 13 from the tip end side of the center bolt 11, the spool 12 is restricted from moving toward the base end side.
  • the moving position of the spool 12 when the partition 33 contacts the stopper 13 becomes the initial position, and the stroke amount becomes the minimum. Further, the moving position of the spool 12 when the partition 33 is farthest from the stopper 13 is the final position, and the stroke amount thereof is the maximum. That is, the spool 12 reciprocates between the initial position and the final position.
  • the spool 12 has its base end pressed by an external solenoid.
  • the moving position of the spool 12 is determined by the balance between the biasing force of the spring 14 and the pressing force of the external solenoid.
  • the stroke amount of the spool 12 changes depending on the current value or the Duty value applied to the external solenoid.
  • the OCV 10 is capable of shifting to five states by changing the stroke amount of the spool 12. Specifically, the OCV 10 can shift to any one of an initial state, a retarded supply state, an intermediate holding state, an advanced supply state, and a final state.
  • FIG. 2 is a diagram showing transition states of the advance port and the retard port with respect to the stroke amount of the spool in the first embodiment.
  • the OCV 10 shifts in the order of an initial state, a retard angle supply state, an intermediate holding state, an advance angle supply state, and a final state as the stroke amount of the spool 12 increases. At this time, when the stroke amount of the spool 12 is minimized, the OCV 10 shifts the spool 12 to the initial position by arranging the spool 12 at the initial position. Further, when the stroke amount of the spool 12 is maximized, the OCV 10 shifts the spool 12 to the final position by arranging the spool 12 at the final position.
  • the supply port 21 and the advance port 22 communicate with each other, so that the oil flowing into the supply port 21 is supplied to the advance hydraulic chamber through the advance port 22, while being connected to the supply port 21.
  • the oil flowing into the supply port 21 is supplied to the retard hydraulic chamber via the retard port 23.
  • the retarded supply state means that the advance port 22 and the base end side opening of the center bolt 11 communicate with each other, whereby the oil stored in the advance angle hydraulic chamber is discharged through the base end side opening.
  • the retarded angle supply state is a state in which the rotor of the valve timing adjustment device rotates in the retarded angle direction.
  • the intermediate holding state means that the advance port 22 is blocked from the supply port 21 and the drain ports 24 and 31, so that the hydraulic pressure in the advance hydraulic chamber is maintained as it is, while the retard port 23 is set to the supply port 21. By disconnecting the drain ports 24 and 31 from each other, the hydraulic pressure in the retard hydraulic chamber is maintained as it is. That is, the intermediate holding state is a state in which the rotor of the valve timing adjusting device is held in the current phase.
  • the advanced angle supply state means that the supply port 21 and the advanced angle port 22 communicate with each other so that the oil flowing into the supply port 21 is supplied to the advanced angle hydraulic chamber through the advanced angle port 22 while the retarded angle is supplied.
  • This is a state in which the oil stored in the retarded angle hydraulic chamber is discharged through the drain ports 24 and 31 by the communication between the port 23 and the drain ports 24 and 31.
  • the advance supply state is a state in which the rotor of the valve timing adjustment device rotates in the advance direction.
  • the final state means that the advance port 22 communicates with the base end side opening of the center bolt 11 to discharge the oil stored in the advance angle hydraulic chamber through the base end side opening, while The angle port 23 and the drain ports 24 and 31 are in communication with each other, whereby the oil stored in the retarded angle hydraulic chamber is discharged through the drain ports 24 and 31.
  • FIG. 3A is a diagram showing an initial state of OCV.
  • FIG. 3B is a diagram showing a retarded supply state of OCV.
  • FIG. 3C is a diagram showing an intermediate holding state of OCV.
  • FIG. 4A is a diagram showing an advance supply state of OCV.
  • FIG. 4B is a diagram showing the final state of OCV.
  • the arrows shown in FIGS. 3A, 3B, 4A, and 4B indicate the flow of oil.
  • the partition 25 and the partition 34 are in contact with each other over the entire circumference and seal between them.
  • the partition 28 and the partition 38 are in contact with each other over the entire circumference and seal between them.
  • the oil flowing in from the supply port 21 is supplied to the advance angle port 22 by the seal between the partitions 25, 34 after passing between the partitions 26, 35, 36. Further, the oil flowing in from the supply port 21 passes between the partitions 27, 36, 37 and is then supplied to the retard port 23 by the seal between the partitions 28, 29.
  • the partition 26 and the partition 35 are in contact with each other over the entire circumference and seal between them.
  • the partition 28 and the partition 38 are in contact with each other over the entire circumference and seal between them.
  • the oil stored in the advance port 22 is discharged to the outside of the OCV 10 through the opening on the proximal end side of the center bolt 11 after passing between the partitions 25, 33, 34. Further, the oil flowing in from the supply port 21 passes between the partitions 27, 36, 37 and is then supplied to the retard port 23 by the seal between the partitions 28, 38. At this time, the oil is not supplied to the advance port 22 due to the seal between the partitions 26 and 35.
  • the partition 25 and the partition 33 are in contact with each other over the entire circumference and seal between them.
  • the partition 26 and the partition 35 are in contact with each other over the entire circumference and seal between them.
  • the partition 27 and the partition 36 are in contact with each other over the entire circumference and seal between them.
  • the partition 28 and the partition 38 are in contact with each other over the entire circumference and seal between them.
  • the oil flowing from the supply port 21 is not supplied to the advance port 22 due to the seal between the partitions 26 and 35. Further, the oil flowing in from the supply port 21 is not supplied to the retard port 23 due to the seal between the partitions 27 and 36. Further, the oil stored in the advance port 22 is not discharged to the outside of the OCV 10 due to the seal between the partitions 25 and 33. On the other hand, the oil stored in the retard port 23 is not discharged from the drain ports 24 and 31 due to the seal between the partitions 28 and 38.
  • the partition 25 and the partition 33 are in contact with each other over the entire circumference and seal between them.
  • the partition 27 and the partition 36 are in contact with each other over the entire circumference and seal between them.
  • the oil flowing in from the supply port 21 passes between the partitions 26, 34 and 35, and is then supplied to the advance port 22 by the seal between the partitions 25 and 33. At this time, the oil is not supplied to the retard port 23 due to the seal between the partitions 27 and 36.
  • the oil stored in the retard port 23 passes between the partitions 28, 37 and 38, then flows into the flow path 32 from the lateral groove 39 and is discharged from the drain ports 24 and 31.
  • the partition 26 and the partition 34 are in contact with each other over the entire circumference and seal between them.
  • the partition 27 and the partition 36 are in contact with each other over the entire circumference and seal between them.
  • the oil flowing from the supply port 21 is not supplied to the advance port 22 due to the seal between the partitions 26 and 34. Further, the oil flowing in from the supply port 21 is not supplied to the retard port 23 due to the seal between the partitions 27 and 36. Further, the oil stored in the advance port 22 passes between the partitions 25 and 33, and then is discharged to the outside of the OCV 10 through the opening on the base end side of the center bolt 11. On the other hand, the oil stored in the retard port 23 passes between the partitions 28, 37, 38, then flows into the flow path 32 from the lateral groove 39, and is discharged from the drain ports 24, 31.
  • FIG. 5 is a cross-sectional view of the valve timing adjustment device according to the first embodiment.
  • valve timing adjusting device can lock the rotor 52 at an arbitrary phase. Further, the valve timing adjusting device integrally includes the OCV 10, but the OCV 10 may be separately provided. The OCV 10 shown in FIG. 5 is illustrated in a simplified manner.
  • the valve timing adjustment device includes an OCV 10, a case 51, a rotor 52, a spring 53, a holder 54, and lock pins 55a and 55b.
  • the case 51 has an annular shape and rotates synchronously with the crankshaft of the engine.
  • the case 51 has a plurality of shoes 51a and a sprocket 51b.
  • the shoe 51a is provided so as to protrude from the inner peripheral surface of the case 51 toward the inner side in the radial direction.
  • the sprocket 51b is provided along the outer peripheral portion of the case 51 and receives the rotational driving force of the crankshaft.
  • the rotor 52 is coaxially disposed inside the case 51 so as to be rotatable relative to the case 51, and rotates integrally with a cam shaft for opening and closing a valve in the engine. Further, the rotor 52 has a plurality of vanes 52a.
  • the vane 52a is provided so as to protrude from the outer peripheral surface of the rotor 52 toward the outer side in the radial direction. Further, the vanes 52a are arranged so as to enter the hydraulic chamber formed between the adjacent shoes 51a.
  • the hydraulic chamber is partitioned into the advance hydraulic chamber 61 and the retard hydraulic chamber 62 by the vane 52a, and the advance angle is provided between the inner peripheral surface of the case 51 and the outer peripheral surface of the rotor 52.
  • the hydraulic chamber 61 and the retarded hydraulic chamber 62 are partitioned and formed.
  • the advance angle hydraulic chamber 61 communicates with the advance angle port 22 of the OCV 10.
  • the retard oil pressure chamber 62 communicates with the retard port 23 of the OCV 10.
  • the vanes 52a rotate relative to the case 51 according to the pressure difference between them.
  • the rotor 52 has a phase shift in the advance direction, and therefore rotates ahead of the phase of the case 51.
  • the retarded angle hydraulic chamber 62 when oil is supplied to the retarded angle hydraulic chamber 62, the rotor 52 has a phase shift in the retarded direction, and therefore rotates later than the phase of the case 51.
  • the spring 53, the holder 54, and the lock pins 55a and 55b are provided between the inner peripheral surface of the case 51 and the tip surface of the vane 52a.
  • the lock pin 55a constitutes an advance angle side lock pin
  • the lock pin 55b constitutes a retard angle side lock pin.
  • the spring 53 is provided on the tip surface of the vane 52a via the holder 54. Further, the spring 53 is arranged such that the biasing direction is substantially orthogonal to the axial directions of the case 51 and the rotor 52.
  • the lock pins 55a and 55b are provided so as to sandwich the spring 53 from both sides in the biasing direction. Further, the lock pins 55a and 55b are arranged so that their axial directions substantially coincide with the axial directions of the case 51 and the rotor 52, respectively.
  • the lock pin 55a is arranged on the advance hydraulic chamber 61 side of the spring 53 and so as to be in contact with the advance hydraulic chamber 61. As a result, the lock pin 55a is urged by the spring 53 toward the advance hydraulic chamber 61 side, and the lock pin 55a is sandwiched between the inner peripheral surface of the case 51 and the tip surface of the vane 52a. Become.
  • the lock pin 55b is arranged on the retard angle hydraulic chamber 62 side of the spring 53 and in contact with the retard angle hydraulic chamber 62. As a result, the lock pin 55b is biased toward the retarded hydraulic chamber 62 side, and is in a state of being sandwiched between the inner peripheral surface of the case 51 and the tip surface of the vane 52a.
  • FIG. 6A is a cross-sectional view of the valve timing adjusting device when the rotor returns from the retard side to the original phase.
  • FIG. 6B is a cross-sectional view of the valve timing adjustment device when the rotor returns to the original phase from the advance side.
  • FIG. 7A is a cross-sectional view of the valve timing adjustment device in the OCV retarded supply state.
  • FIG. 7B is a cross-sectional view of the valve timing adjustment device in the advance supply state of OCV.
  • FIG. 7C is a cross-sectional view of the valve timing adjusting device in the final state of OCV.
  • the original phase that is the lock phase of the rotor 52 is described as the intermediate phase between the most advanced phase and the most retarded phase, but the original phase is It may be any phase between the advanced phase and the most retarded phase. At this time, the original phase may be the most advanced phase or the most retarded phase.
  • the force acting on the rotor 52 is the assist torque Ta for biasing the rotor 52 in the advance direction and the cam torque Tc that is the reaction force of the cam provided on the cam shaft.
  • the lock pins 55a and 55b receive the hydraulic pressures from the advance hydraulic chamber 61 and the retard hydraulic chamber 62, respectively, the lock pins 55a and 55b move against each other against the biasing force of the spring 53, and the rotor 52 moves to the case 51. On the other hand, the lock is released.
  • the biasing range of the assist torque Ta is the range from the most retarded phase to the original phase.
  • the valve timing adjusting device can restore the rotor 52 to the original phase by setting the value of the assist torque Ta larger than the average value of the cam torque Tc.
  • valve timing adjustment device can return the rotor 52 to the original phase.
  • the valve timing adjustment device in the idling start / stop mode of the engine, immediately before shifting to idling stop, the phase corresponding to the oil temperature at that time is previously obtained, and then the rotor 52 The OCV 10 can be moved to the final state after being rotated to the phase.
  • the valve timing adjustment device can lock the rotor at a phase corresponding to the temperature of the oil that correlates with the temperature of the combustion chamber in the engine immediately before the idling stop. It is possible to improve fuel efficiency and reduce exhaust gas while suppressing the generation.
  • the idling start / stop mode is a mode in which the vehicle speed is zero and the engine is running.
  • the conventional valve timing adjustment device causes oil to be discharged from the advance angle hydraulic chamber and the retard angle hydraulic chamber at the next key-on to the vehicle, so that the rotor is not activated when the engine is started. There was noise when it hit the case.
  • valve timing adjusting device can return the rotor 52 to the original phase by shifting the OCV 10 to the initial state even in the above-mentioned slight period. After that, when the engine is completely stopped, the oil stored in the advance hydraulic chamber and the retard hydraulic chamber is naturally discharged, so that the rotor 52 is locked in the original phase.
  • FIG. 8A is a diagram showing a state when the vehicle is keyed off.
  • FIG. 8B is a diagram showing a state in which the rotor returns to the original phase.
  • FIG. 8C is a diagram showing a state in which the rotor is locked.
  • the valve timing adjusting device shown in FIG. 8A is used by rotating the rotor 52 to the advance side with respect to the original phase in the idle state of the engine.
  • the external solenoid for driving the OCV 10 is de-energized, so that the external solenoid is de-energized.
  • the stroke amount of the spool 12 becomes the minimum, and the OCV 10 shifts to the initial state accordingly.
  • the rotor 52 returns to the original phase for a short period after the vehicle is keyed off until the engine is stopped. Then, as shown in FIG. 8C, when the engine is completely stopped, the oil stored in the advance hydraulic chamber 61 and the retard hydraulic chamber 62 is discharged from the advance hydraulic chamber 61 and the retard hydraulic chamber 62. . As a result, the rotor 52 is locked in the original phase by the action of the lock pins 55a and 55b.
  • the valve timing adjusting device is in a case where the rotor 52 is arranged in a phase different from the original phase in the idle state of the engine, and in a short period from the key-off of the vehicle to the stop of the engine. No matter what phase the rotor 52 is arranged in, the rotor 52 can be returned to the original phase. As a result, the valve timing adjusting device locks the rotor 52 even when the key is turned on next time, so that it is possible to prevent the rotor 52 from colliding with the case 51 at the time of engine start, so that noise of noise is prevented. Occurrence can be suppressed.
  • the rotor 52 in the valve timing adjustment device according to the first embodiment is attached in the advance direction from the most retarded phase to the original phase located between the most retarded phase and the most advanced phase. It is energized.
  • the OCV 10 in the valve timing adjusting device according to the first embodiment has a supply port 21 that communicates with an oil supply source, an advance port 22 that communicates with the advance hydraulic chamber 61, and a retard angle that communicates with the retard hydraulic chamber 62.
  • the spool 12 is provided with a square port 22, a retard port 23, and a drain port 24 for supplying and discharging oil. Then, the OCV 10 connects the supply port 21, the advance port 22 and the retard port 23 when the spool 12 is arranged at the initial position. Further, the OCV 10 allows the advance port 22 and the outside of the OCV 10 to communicate with each other and the retard port 23 and the drain port 24 to communicate with each other when the spool 12 is disposed at the final position.
  • valve timing adjustment device can lock the rotor 52 in a phase according to the oil temperature in the engine idling start / stop mode.
  • the valve timing adjusting device can improve the fuel consumption and reduce the exhaust gas while suppressing the generation of noise when the engine is restarted.
  • Embodiment 2 The valve timing adjusting device according to the second embodiment has the oil supply / drain relationship in the initial state and the final state set oppositely to those of the valve timing adjusting device according to the first embodiment.
  • FIG. 9A is an external view of the OCV.
  • FIG. 9B is a partial vertical sectional view of the OCV.
  • FIG. 9C is a vertical sectional view of the OCV.
  • FIG. 9D is a diagram of the tip end surface of the spool as viewed from the axial direction.
  • FIG. 9E is a diagram when the stopper surface of the stopper is viewed from the axial direction.
  • the OCV 10A includes a center bolt 11, a spool 12A, a stopper 13, and a spring 14.
  • the center bolt 11 constitutes a housing of the OCV 10A.
  • the spool 12A is supported inside the partitions 25 to 29 of the center bolt 11 in the radial direction so as to be capable of reciprocating in the axial direction of the center bolt 11.
  • the spool 12A is hollow and has a drain port 31, a flow path 32, a lateral groove 39, and partitions 41 to 47.
  • the OCV 10A supplies oil to the valve timing adjusting device via the supply port 21, the advance port 22, the retard port 23, and the drain port 24 according to the stroke amount that is the movement amount of the spool 12A. Excretion can be done.
  • the partitions 41 to 47 are formed in an annular shape along the circumferential direction of the outer peripheral surface of the spool 12A, and project outward from the outer peripheral surface in the radial direction. That is, the partitions 41 to 47 are supported in the partitions 25 to 29 so as to be capable of reciprocating in the axial direction of the center bolt 11. Then, the drain port 31 is opened outside the partition 41 in the axial direction of the spool 12A.
  • the lateral groove 39 is formed so as to pass through the center of the flow path 32 and the partition 47.
  • the stopper 13 has a lateral groove 13a.
  • the lateral groove 13a is formed so as to pass through the center of the stopper 13.
  • the lateral groove 13a faces the partition 41 in the axial direction of the center bolt 11, and communicates with a clearance passage formed between the inner peripheral surface of the center bolt 11 and the outer peripheral surface of the spool 12A.
  • the spring 14 is provided between the inside of the tip of the center bolt 11 and the tip of the flow path 32 in the spool 12A, and biases the spool 12A toward the stopper 13.
  • the partition 12 of the spool 12A comes into contact with the stopper 13 from the tip end side of the center bolt 11, so that movement of the spool 12A toward the base end side is restricted.
  • the moving position of the spool 12A when the partition 41 contacts the stopper 13 becomes the initial position, and the stroke amount thereof becomes the minimum. Further, the moving position of the spool 12A when the partition 41 is farthest from the stopper 13 is the final position, and the stroke amount thereof is the maximum. That is, the spool 12A reciprocates between the initial position and the final position.
  • the base end of the spool 12A is pressed by an external solenoid.
  • the moving position of the spool 12A is determined by the balance between the biasing force of the spring 14 and the pressing force of the external solenoid.
  • the stroke amount of the spool 12A changes depending on the current value or Duty value applied to the external solenoid.
  • the OCV 10A is capable of shifting to five states by changing the stroke amount of the spool 12A. Specifically, the OCV 10A can shift to any one of an initial state, a retarded supply state, an intermediate holding state, an advanced supply state, and a final state.
  • FIG. 10 is a diagram showing transition states of the advance port and the retard port with respect to the stroke amount of the spool in the second embodiment.
  • the advance port 22 communicates with the base end side opening of the center bolt 11 to discharge the oil stored in the advance angle hydraulic chamber through the base end side opening, while The angle port 23 and the drain ports 24 and 31 are in communication with each other, whereby the oil stored in the retarded angle hydraulic chamber is discharged through the drain ports 24 and 31.
  • the retarded supply state means that the advance port 22 and the base end side opening of the center bolt 11 communicate with each other, whereby the oil stored in the advance angle hydraulic chamber is discharged through the base end side opening.
  • the retarded angle supply state is a state in which the rotor of the valve timing adjustment device rotates in the retarded angle direction.
  • the intermediate holding state means that the advance port 22 is blocked from the supply port 21 and the drain ports 24 and 31, so that the hydraulic pressure in the advance hydraulic chamber is maintained as it is, while the retard port 23 is set to the supply port 21. By disconnecting the drain ports 24 and 31 from each other, the hydraulic pressure in the retard hydraulic chamber is maintained as it is. That is, the intermediate holding state is a state in which the rotor of the valve timing adjusting device is held in the current phase.
  • the advanced angle supply state means that the supply port 21 and the advanced angle port 22 communicate with each other so that the oil flowing into the supply port 21 is supplied to the advanced angle hydraulic chamber through the advanced angle port 22 while the retarded angle is supplied.
  • the port 23 and the drain ports 24 and 31 are in communication with each other, whereby the oil stored in the retard hydraulic chamber is discharged through the drain ports 24 and 31. That is, the advance supply state is a state in which the rotor of the valve timing adjustment device rotates in the advance direction.
  • the final state means that the supply port 21 and the advance port 22 communicate with each other so that the oil flowing into the supply port 21 is supplied to the advance hydraulic chamber via the advance port 22 and the supply port 21.
  • the retard port 23 By communicating with the retard port 23, the oil flowing into the supply port 21 is supplied to the retard hydraulic chamber via the retard port 23.
  • FIG. 11A is a diagram showing an initial state of OCV.
  • FIG. 11B is a diagram showing a retarded supply state of OCV.
  • FIG. 11C is a diagram showing an intermediate holding state of OCV.
  • FIG. 12A is a diagram showing an advance supply state of OCV.
  • FIG. 12B is a diagram showing the final state of OCV.
  • the arrows shown in FIGS. 11A, 11B, 12A, and 12B indicate the flow of oil.
  • the partition 26 and the partition 42 are in contact with each other over the entire circumference and seal between them.
  • the partition 27 and the partition 44 are in contact with each other over the entire circumference and seal between them.
  • the oil flowing in from the supply port 21 will not be supplied to the advance port 22 due to the seal between the partitions 26 and 42. Further, the oil flowing in from the supply port 21 is not supplied to the retard port 23 due to the seal between the partitions 27 and 44. Further, the oil stored in the advance port 22 passes between the partitions 25 and 41, and then is discharged from the base end side opening of the center bolt 11 via the lateral groove 13a. On the other hand, the oil stored in the retard port 23 passes between the partitions 28, 46, 47, then flows into the flow path 32 from the lateral groove 39, and is discharged from the drain ports 24, 31.
  • the partition 26 and the partition 42 are in contact with each other over the entire circumference and seal between them.
  • the partition 28 and the partition 46 are in contact with each other over the entire circumference and seal between them.
  • the oil stored in the advance port 22 passes through the space between the partitions 25 and 41, and then is discharged to the outside of the OCV 10 through the opening on the base end side of the center bolt 11.
  • the oil flowing in from the supply port 21 passes between the partitions 27, 43, 44, and then is supplied to the retard port 23 by the seal between the partitions 28, 46. At this time, the oil is not supplied to the advance port 22 due to the seal between the partitions 26 and 42.
  • the partition 25 and the partition 41 are in contact with each other over the entire circumference and seal between them.
  • the partition 26 and the partition 42 are in contact with each other over the entire circumference and seal between them.
  • the partition 27 and the partition 43 are in contact with each other over the entire circumference and seal between them.
  • the partition 28 and the partition 46 are in contact with each other over the entire circumference and seal between them.
  • the oil flowing in from the supply port 21 will not be supplied to the advance port 22 due to the seal between the partitions 26 and 42. Further, the oil flowing in from the supply port 21 is not supplied to the retard port 23 due to the seal between the partitions 27 and 43. Furthermore, the oil stored in the advance port 22 is not discharged to the outside of the OCV 10A due to the seal between the partitions 25 and 41. On the other hand, the oil stored in the retard port 23 is not discharged from the drain ports 24 and 31 due to the seal between the partitions 28 and 46.
  • the partition 25 and the partition 41 are in contact with each other over the entire circumference and seal between them.
  • the partition 27 and the partition 43 are in contact with each other over the entire circumference and seal between them.
  • the oil flowing in from the supply port 21 is supplied to the advance port 22 by the seal between the partitions 25 and 41 after passing between the partitions 26 and 42. At this time, the oil is not supplied to the retard port 23 due to the seal between the partitions 27 and 43. Further, the oil stored in the retard port 23 passes between the partitions 28, 45 and 46, then flows into the flow path 32 from the lateral groove 39 and is discharged from the drain ports 24 and 31.
  • the partition 25 and the partition 41 are in contact with each other over the entire circumference and seal between them.
  • the partition 28 and the partition 45 are in contact with each other over the entire circumference and seal between them.
  • the oil flowing in from the supply port 21 is supplied to the advance port 22 by the seal between the partitions 25 and 41 after passing between the partitions 26 and 42. Further, the oil flowing in from the supply port 21 passes through the spaces between the partitions 27, 42 and 43, and then is supplied to the supply port 21 by the seal between the partitions 28 and 45.
  • the rotor 52 in the valve timing control apparatus according to the second embodiment is attached in the advance direction from the most retarded phase to the original phase located between the most retarded phase and the most advanced phase. It is energized.
  • the OCV 10A in the valve timing adjustment device according to the second embodiment is configured such that the supply port 21 that communicates with the oil supply source, the advance port 22 that communicates with the advance hydraulic chamber 61, and the retard angle that communicates with the retard hydraulic chamber 62.
  • the supply port 21, A spool 12 ⁇ / b> A that supplies and drains oil via the square port 22, the retard port 23, and the drain port 24 is provided.
  • the OCV 10A allows the advance port 22 and the outside of the OCV 10A to communicate with each other, while allowing the retard port 23 and the drain port 24 to communicate with each other.
  • the OCV 10A connects the supply port 21, the advance port 22 and the retard port 23 when the spool 12A is placed at the final position.
  • valve timing adjustment device can lock the rotor 52 in a phase according to the oil temperature in the engine idling start / stop mode.
  • the valve timing adjusting device can improve the fuel consumption and reduce the exhaust gas while suppressing the generation of noise when the engine is restarted.
  • the valve timing adjusting device is provided with a supply port, an advance port, a retard port, and a drain port in a center bolt that accommodates a spool in a reciprocating manner, and supplies oil through these ports. Since it can be discharged, it is suitable for use in a valve timing adjusting device equipped with an oil control valve.

Abstract

An OCV (10) provided in a valve timing adjustment device is equipped with: a center bolt (11) which has a supply port (21) which is connected to an oil supply source, an advanced ignition port (22) which is connected to an advanced ignition oil pressure chamber (61), a delayed ignition port (23) which is connected to a delayed ignition oil pressure chamber (62), and a drain port (24) which is connected to the outside of the OCV (10); and a spool (12) which moves back and forth inside the center bolt (11) in the axial direction thereof, and according to stroke volume, supplies and discharges oil through the supply port (21), the advanced ignition port (22), the delayed ignition port (23) and the drain port (24). When the spool (12) is positioned in the starting position, the supply port (21) is connected to the advanced ignition port (22) and the delayed ignition port (23), and when the spool (12) is positioned in the ending position, the advanced ignition port (22) is connected to the outside of the OCV (10) and the delayed ignition port (23) is connected to the drain port (24).

Description

バルブタイミング調整装置Valve timing adjustment device
 この発明は、オイルコントロールバルブを備えるバルブタイミング調整装置に関する。 The present invention relates to a valve timing adjusting device equipped with an oil control valve.
 従来、オイルを作動流体として、エンジンバルブの開閉タイミングを調整するバルブタイミング調整装置が提供されている。このバルブタイミング調整装置は、ハウジングと、当該ハウジングに対して相対回転可能となるロータとを備えており、ロータに形成された嵌合孔に対して、ハウジングに設けられたロック部材が嵌合可能となっている。このように、バルブタイミング調整装置は、ロック部材を嵌合孔に嵌合させることにより、ロータを所定のロック位相でロックすることができる。 Conventionally, a valve timing adjusting device that adjusts the opening / closing timing of an engine valve using oil as a working fluid has been provided. This valve timing adjusting device includes a housing and a rotor that can rotate relative to the housing, and a lock member provided in the housing can be fitted into a fitting hole formed in the rotor. Has become. In this way, the valve timing adjusting device can lock the rotor in a predetermined lock phase by fitting the lock member in the fitting hole.
 また、ロック位相とは異なる位相にロータが配置された状態で、エンジンが始動した場合には、そのロータは、エンジンが回転し始めてから、オイルがバルブタイミング調整装置に供給されるまでの間に、カムシャフトの反力によって、大きく振れてしまい、ノイズを発生させてしまう。このため、バルブタイミング調整装置は、エンジン停止時において、ロータをロック位相に復帰させてロックさせる必要があった。そして、このような、従来のバルブタイミング調整装置は、例えば、特許文献1に開示されている。 In addition, when the engine is started in a state where the rotor is arranged in a phase different from the lock phase, the rotor is set between the time when the engine starts rotating and the time when oil is supplied to the valve timing adjusting device. , The reaction force of the camshaft causes a large shake, which causes noise. Therefore, the valve timing adjusting device needs to return the rotor to the lock phase and lock the rotor when the engine is stopped. Then, such a conventional valve timing adjusting device is disclosed in, for example, Patent Document 1.
特開2016-50576号公報JP, 2016-50576, A
 しかしながら、上記従来のバルブタイミング調整装置におけるロック位相は、ロック部材及び嵌合孔の数量に応じて制限されてしまう。このため、上記従来のバルブタイミング調整装置は、エンジンのアイドリングスタート/ストップモードにおいて、ロータをエンジンオイルの温度に対して理想的な位相でロックすることができない。 However, the lock phase in the above conventional valve timing adjusting device is limited depending on the number of lock members and fitting holes. Therefore, the conventional valve timing adjusting device cannot lock the rotor in an ideal phase with respect to the temperature of the engine oil in the idling start / stop mode of the engine.
 この発明は、上記のような課題を解決するためになされたもので、エンジンのアイドリングスタート/ストップモードにおいて、ロータをオイルの温度に応じた位相でロックすることができるバルブタイミング調整装置を提供することを目的とする。 The present invention has been made to solve the above problems, and provides a valve timing adjusting device capable of locking a rotor in a phase corresponding to an oil temperature in an engine idling start / stop mode. The purpose is to
 この発明に係るバルブタイミング調整装置は、内燃機関のクランクシャフトに対して同期回転するケースと、ケースに対して相対回転可能に同軸上に配置され、内燃機関のバルブを開閉させるロータと、ケースとロータとの間に区画形成され、作動流体の供給に伴って、ロータを進角方向に相対回転させる進角油圧室と、ケースとロータとの間に区画形成され、作動流体の供給に伴って、ロータを遅角方向に相対回転させる遅角油圧室と、進角油圧室及び遅角油圧室に対して、作動流体の給排を制御するオイルコントロールバルブとを設け、ロータは、最遅角位相から当該最遅角位相と最進角位相との間に位置する原位相まで進角方向に向けて付勢され、オイルコントロールバルブは、作動流体の供給源と連通する供給ポート、進角油圧室と連通する進角ポート、遅角油圧室と連通する遅角ポート、及び、オイルコントロールバルブの外部と連通するドレインポートを有するハウジングと、ハウジング内における初期位置と最終位置との間で往復移動し、ストローク量に応じて、供給ポート、進角ポート、遅角ポート、及び、ドレインポートを介して、作動流体の給排を行うスプールとを備え、スプールが初期位置に配置されたときに、供給ポートと進角ポート及び遅角ポートとを連通させ、スプールが最終位置に配置されたときに、進角ポートとオイルコントロールバルブの外部とを連通させる一方、遅角ポートとドレインポートとを連通させることを特徴とするものである。 A valve timing adjusting device according to the present invention includes a case that rotates synchronously with a crankshaft of an internal combustion engine, a rotor that is coaxially rotatably arranged relative to the case, and that opens and closes a valve of the internal combustion engine, and a case. A partition is formed between the rotor and the case, and the partition is formed between the case and the rotor and the advance hydraulic chamber that relatively rotates the rotor in the advance direction with the supply of the working fluid. , A retard oil pressure chamber that relatively rotates the rotor in the retard direction, and an oil control valve that controls the supply and discharge of the working fluid with respect to the advance hydraulic chamber and the retard hydraulic chamber. The oil control valve is biased in the advance direction from the phase to the original phase located between the most retarded phase and the most advanced phase, and the oil control valve is connected to the supply port of the working fluid, the advance angle. Hydraulic chamber A housing having an advancing port communicating with it, a retarding port communicating with the retarding hydraulic chamber, and a drain port communicating with the outside of the oil control valve, and reciprocating between an initial position and a final position in the housing, A spool that supplies and discharges the working fluid via the supply port, the advance port, the retard port, and the drain port according to the stroke amount, and the supply port when the spool is placed in the initial position. The advance port and the retard port, and when the spool is in the final position, the advance port communicates with the outside of the oil control valve, while the retard port and the drain port communicate with each other. It is characterized by.
 この発明に係るバルブタイミング調整装置は、内燃機関のクランクシャフトに対して同期回転するケースと、ケースに対して相対回転可能に同軸上に配置され、内燃機関のバルブを開閉させるロータと、ケースとロータとの間に区画形成され、作動流体の供給に伴って、ロータを進角方向に相対回転させる進角油圧室と、ケースとロータとの間に区画形成され、作動流体の供給に伴って、ロータを遅角方向に相対回転させる遅角油圧室と、進角油圧室及び遅角油圧室に対して、作動流体の給排を制御するオイルコントロールバルブとを設け、ロータは、最遅角位相から当該最遅角位相と最進角位相との間に位置する原位相まで進角方向に向けて付勢され、オイルコントロールバルブは、作動流体の供給源と連通する供給ポート、進角油圧室と連通する進角ポート、遅角油圧室と連通する遅角ポート、及び、オイルコントロールバルブの外部と連通するドレインポートを有するハウジングと、ハウジング内における初期位置と最終位置との間で往復移動し、ストローク量に応じて、供給ポート、進角ポート、遅角ポート、及び、ドレインポートを介して、作動流体の給排を行うスプールとを備え、スプールが初期位置に配置されたときに、進角ポートとオイルコントロールバルブの外部とを連通させる一方、遅角ポートとドレインポートとを連通させ、スプールが最終位置に配置されたときに、供給ポートと進角ポート及び遅角ポートとを連通させることを特徴とするものである。 A valve timing adjusting device according to the present invention includes a case that rotates synchronously with a crankshaft of an internal combustion engine, a rotor that is coaxially rotatably arranged relative to the case, and that opens and closes a valve of the internal combustion engine, and a case. A partition is formed between the rotor and the case, and the partition is formed between the case and the rotor and the advance hydraulic chamber that relatively rotates the rotor in the advance direction with the supply of the working fluid. , A retard oil pressure chamber that relatively rotates the rotor in the retard direction, and an oil control valve that controls the supply and discharge of the working fluid with respect to the advance hydraulic chamber and the retard hydraulic chamber. The oil control valve is biased in the advance direction from the phase to the original phase located between the most retarded phase and the most advanced phase, and the oil control valve is connected to the supply port of the working fluid, the advance angle. Hydraulic chamber A housing having an advancing port communicating with it, a retarding port communicating with the retarding hydraulic chamber, and a drain port communicating with the outside of the oil control valve, and reciprocating between an initial position and a final position in the housing, A spool that supplies and discharges the working fluid via the supply port, the advance port, the retard port, and the drain port according to the stroke amount is provided, and the advance angle is set when the spool is arranged at the initial position. While communicating the port with the outside of the oil control valve, communicating the retard port and the drain port, and communicating the supply port with the advance port and the retard port when the spool is at the final position. It is characterized by.
 この発明によれば、エンジンのアイドリングスタート/ストップモードにおいて、ロータをオイルの温度に応じた位相でロックすることができる。 According to this invention, in the idling start / stop mode of the engine, the rotor can be locked in a phase according to the oil temperature.
実施の形態1に係るバルブタイミング調整装置に設けられるOCVの構成図である。図1AはOCVの外観図である。図1BはOCVの部分縦断面図である。図1CはOCVの縦断面図である。図1Dはスプールの先端面を軸方向から見たときの図である。FIG. 3 is a configuration diagram of an OCV provided in the valve timing adjustment device according to the first embodiment. FIG. 1A is an external view of the OCV. FIG. 1B is a partial vertical sectional view of the OCV. FIG. 1C is a vertical sectional view of the OCV. FIG. 1D is a diagram of the tip end surface of the spool as viewed from the axial direction. 実施に形態1におけるスプールのストローク量に対する進角ポート及び遅角ポートの遷移状態を示した図である。FIG. 6 is a diagram showing transition states of an advance port and a retard port with respect to a stroke amount of the spool in the first embodiment. 実施の形態1に係るOCVの動作を示した図である。図3AはOCVの初期状態を示した図である。図3BはOCVの遅角供給状態を示した図である。図3CはOCVの中間保持状態を示した図である。FIG. 6 is a diagram showing an operation of OCV according to the first embodiment. FIG. 3A is a diagram showing an initial state of OCV. FIG. 3B is a diagram showing a retarded supply state of OCV. FIG. 3C is a diagram showing an intermediate holding state of OCV. 実施の形態1に係るOCVの動作を示した図である。図4AはOCVの進角供給状態を示した図である。図4BはOCVの最終状態を示した図である。FIG. 6 is a diagram showing an operation of OCV according to the first embodiment. FIG. 4A is a diagram showing an advance supply state of OCV. FIG. 4B is a diagram showing the final state of OCV. 実施の形態1に係るバルブタイミング調整装置の横断面図である。FIG. 3 is a cross-sectional view of the valve timing adjusting device according to the first embodiment. ロータが原位相に復帰する様子を示した図である。図6Aはロータが遅角側から原位相に復帰するときのバルブタイミング調整装置の横断面図である。図6Bはロータが進角側から原位相に復帰するときのバルブタイミング調整装置の様子を示した図である。It is the figure which showed a mode that the rotor returned to the original phase. FIG. 6A is a cross-sectional view of the valve timing adjustment device when the rotor returns to the original phase from the retard side. FIG. 6B is a diagram showing a state of the valve timing adjusting device when the rotor returns to the original phase from the advance side. 実施の形態1に係るバルブタイミング調整装置の動作を示した図である。図7AはOCVの遅角供給状態におけるバルブタイミング調整装置の横断面図である。図7BはOCVの進角供給状態におけるバルブタイミング調整装置の横断面図である。図7CはOCVの最終状態におけるバルブタイミング調整装置の横断面図である。FIG. 6 is a diagram showing an operation of the valve timing adjustment device according to the first embodiment. FIG. 7A is a cross-sectional view of the valve timing adjustment device in the OCV retarded supply state. FIG. 7B is a cross-sectional view of the valve timing adjusting device in the advance supply state of OCV. FIG. 7C is a cross-sectional view of the valve timing adjusting device in the final state of OCV. 実施の形態1に係るバルブタイミング調整装置をエンジンのアイドル状態において使用したときの動作を示した横断面図である。図8Aはアイドル状態において車両がキーオフされたときの状態を示した図である。図8Bはロータが原位相に復帰する状態を示した図である。図8Cはロータがロックされた状態を示した図である。FIG. 6 is a transverse cross-sectional view showing an operation when the valve timing adjusting device according to the first embodiment is used in an idle state of the engine. FIG. 8A is a diagram showing a state where the vehicle is keyed off in the idle state. FIG. 8B is a diagram showing a state in which the rotor returns to the original phase. FIG. 8C is a diagram showing a state in which the rotor is locked. 実施の形態2に係るバルブタイミング調整装置に設けられるOCVの構成図である。図9AはOCVの外観図である。図9BはOCVの部分縦断面図である。図9CはOCVの縦断面図である。図9Dはスプールの先端面を軸方向から見たときの図である。図9Eはストッパのストッパ面を軸方向から見たときの図である。FIG. 7 is a configuration diagram of an OCV provided in the valve timing adjustment device according to the second embodiment. FIG. 9A is an external view of the OCV. FIG. 9B is a partial vertical sectional view of the OCV. FIG. 9C is a vertical sectional view of the OCV. FIG. 9D is a diagram of the tip end surface of the spool as viewed from the axial direction. FIG. 9E is a diagram of the stopper surface of the stopper as viewed from the axial direction. 実施に形態2におけるスプールのストローク量に対する進角ポート及び遅角ポートの遷移状態を示した図である。FIG. 9 is a diagram showing transition states of an advance port and a retard port with respect to a stroke amount of a spool in the second embodiment. 実施の形態2に係るOCVの動作を示した図である。図11AはOCVの初期状態を示した図である。図11BはOCVの遅角供給状態を示した図である。図11CはOCVの中間保持状態を示した図である。FIG. 9 is a diagram showing an operation of OCV according to the second embodiment. FIG. 11A is a diagram showing an initial state of OCV. FIG. 11B is a diagram showing a retarded supply state of OCV. FIG. 11C is a diagram showing an intermediate holding state of OCV. 実施の形態2に係るOCVの動作を示した図である。図12AはOCVの進角供給状態を示した図である。図12BはOCVの最終状態を示した図である。FIG. 9 is a diagram showing an operation of OCV according to the second embodiment. FIG. 12A is a diagram showing an advance supply state of OCV. FIG. 12B is a diagram showing the final state of OCV.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
実施の形態1.
 実施の形態1に係る、オイルコントロールバルブ(Oil Control Valve:以下、OCVと称す)を備えたバルブタイミング調整装置について、図1から図6を用いて詳細に説明する。
Embodiment 1.
A valve timing adjusting device including an oil control valve (hereinafter referred to as OCV) according to the first embodiment will be described in detail with reference to FIGS. 1 to 6.
 先ず、実施の形態1に係るOCVの構成について、図1を用いて説明する。図1Aは、OCVの外観図である。図1Bは、OCVの部分縦断面図である。図1Cは、OCVの縦断面図である。図1Dは、スプールの先端面を軸方向から見たときの図である。 First, the configuration of the OCV according to the first embodiment will be described with reference to FIG. FIG. 1A is an external view of an OCV. FIG. 1B is a partial vertical cross-sectional view of the OCV. FIG. 1C is a vertical sectional view of the OCV. FIG. 1D is a diagram of the tip end surface of the spool as viewed from the axial direction.
 バルブタイミング調整装置は、内燃機関となるエンジンの運転状態に応じて、その吸気バルブまたは排気バルブの開閉タイミングを調整するものである。これに対して、OCV10は、バルブタイミング調整装置の進角油圧室及び遅角油圧室に対するオイルの供給または排出あるいは保持を制御するものである。即ち、オイルは、バルブタイミング調整装置の作動流体となるものである。 The valve timing adjustment device adjusts the opening / closing timing of the intake valve or the exhaust valve according to the operating state of the engine, which is the internal combustion engine. On the other hand, the OCV 10 controls the supply, discharge, or retention of oil in the advance hydraulic chamber and the retard hydraulic chamber of the valve timing adjusting device. That is, the oil serves as the working fluid of the valve timing adjusting device.
 OCV10は、センターボルト11、スプール12、ストッパ13、及び、ばね14を備えている。 The OCV 10 includes a center bolt 11, a spool 12, a stopper 13, and a spring 14.
 センターボルト11は、バルブタイミング調整装置をカムシャフトに固定するためのボルトである。このセンターボルト11は、筒状をなしており、供給ポート21、進角ポート22、遅角ポート23、ドレインポート24、及び、仕切り25~29を有している。なお、センターボルト11は、OCV10のハウジングを構成するものである。 The center bolt 11 is a bolt for fixing the valve timing adjusting device to the camshaft. The center bolt 11 has a tubular shape and has a supply port 21, an advance port 22, a retard port 23, a drain port 24, and partitions 25 to 29. The center bolt 11 constitutes a housing of the OCV 10.
 供給ポート21、進角ポート22、及び、遅角ポート23は、センターボルト11の外周面と内周面との間を繋いでいる。更に、供給ポート21は、オイルの供給源と連通している。進角ポート22は、バルブタイミング調整装置の進角油圧室と連通しており、遅角ポート23は、バルブタイミング調整装置の遅角油圧室と連通している。また、ドレインポート24は、センターボルト11の先端側開口部を構成しており、OCV10の外部と常に連通している。なお、オイルの供給源は、バルブタイミング調整装置及びOCV10の外部に設けられている。 The supply port 21, the advance port 22, and the retard port 23 connect the outer peripheral surface and the inner peripheral surface of the center bolt 11. Further, the supply port 21 communicates with the oil supply source. The advance port 22 communicates with the advance hydraulic chamber of the valve timing adjusting device, and the retard port 23 communicates with the retard hydraulic chamber of the valve timing adjusting device. Further, the drain port 24 constitutes an opening on the tip side of the center bolt 11, and is always in communication with the outside of the OCV 10. The oil supply source is provided outside the valve timing adjusting device and the OCV 10.
 仕切り25~29は、センターボルト11における内周面の周方向に沿って、環状に形成されると共に、その内周面から径方向内側に向けて突出している。そして、供給ポート21は、仕切り26,27の間に開口している。また、進角ポート22は、仕切り25,26の間に開口している。更に、遅角ポート23は、仕切り27,28の間に開口している。 The partitions 25 to 29 are formed in an annular shape along the circumferential direction of the inner peripheral surface of the center bolt 11 and project radially inward from the inner peripheral surface. The supply port 21 is open between the partitions 26 and 27. Further, the advance port 22 is opened between the partitions 25 and 26. Further, the retard port 23 is opened between the partitions 27 and 28.
 但し、センターボルト11は、仕切り25,26の間に開口するポートを進角ポート22とし、仕切り27,28の間に開口するポートを遅角ポート23とする構成となっているが、仕切り25,26の間に開口するポートを遅角ポート23とし、仕切り27,28の間に開口するポートを進角ポート22とする構成としても構わない。即ち、供給ポート21は、センターボルト11の軸方向において、進角ポート22と遅角ポート23との間に配置されていれば良い。 However, the center bolt 11 is configured such that the port opened between the partitions 25 and 26 is the advance port 22, and the port opened between the partitions 27 and 28 is the retard port 23. , 26 may be used as the retarded angle port 23, and the ports opened between the partitions 27, 28 may be configured as the advanced angle port 22. That is, the supply port 21 may be arranged between the advance port 22 and the retard port 23 in the axial direction of the center bolt 11.
 スプール12は、センターボルト11における仕切り25~29の径方向内側において、当該センターボルト11の軸方向に往復移動可能に支持されている。また、スプール12は、中空状をなしており、ドレインポート31、流路32、仕切り33~38、及び、横溝39を有している。これにより、OCV10は、スプール12の移動量となるストローク量に応じて、供給ポート21、進角ポート22、遅角ポート23、及び、ドレインポート24を介して、バルブタイミング調整装置に対するオイルの給排を行うことができる。 The spool 12 is supported inside the partitions 25 to 29 of the center bolt 11 in the radial direction so as to be capable of reciprocating in the axial direction of the center bolt 11. The spool 12 is hollow and has a drain port 31, a flow path 32, partitions 33 to 38, and a lateral groove 39. As a result, the OCV 10 supplies oil to the valve timing adjusting device via the supply port 21, the advance port 22, the retard port 23, and the drain port 24 according to the stroke amount that is the movement amount of the spool 12. Excretion can be done.
 ドレインポート31は、スプール12の外周面と内周面との間を繋いでおり、OCV10の外部と常に連通している、また、流路32は、スプール12内において、当該スプール12の軸方向に延びる流路であって、その基端側がドレインポート31と連通する一方、その先端がセンターボルト11のドレインポート24と連通している。 The drain port 31 connects the outer peripheral surface and the inner peripheral surface of the spool 12 and is always in communication with the outside of the OCV 10. Further, the flow passage 32 has the flow passage 32 in the axial direction of the spool 12 in the spool 12. The flow path extends to the drain port 31 on the base end side thereof and communicates with the drain port 24 of the center bolt 11 on the other hand.
 仕切り33~38は、スプール12における外周面の周方向に沿って、環状に形成されると共に、その外周面から径方向外側に向けて突出している。即ち、仕切り33~38は、仕切り25~29内において、センターボルト11の軸方向において往復移動可能に支持されている。そして、ドレインポート31は、仕切り33よりもスプール12の軸方向外側で開口している。 The partitions 33 to 38 are formed in an annular shape along the circumferential direction of the outer peripheral surface of the spool 12 and project outward from the outer peripheral surface in the radial direction. That is, the partitions 33 to 38 are supported in the partitions 25 to 29 so as to be capable of reciprocating in the axial direction of the center bolt 11. Further, the drain port 31 is opened outside the partition 33 in the axial direction of the spool 12.
 横溝39は、流路32及び仕切り38をその径方向に貫通するように設けられており、当該仕切り38を切り欠くように形成されている。 The lateral groove 39 is provided so as to penetrate the flow path 32 and the partition 38 in the radial direction thereof, and is formed so as to cut out the partition 38.
 ストッパ13は、スプール12の移動を規制するものである。このストッパ13は、環状をなしており、センターボルト11の基端側開口部内に設けられている。また、ストッパ13は、スプール12における最も基端側に配置された仕切り33が当接可能となると共に、ドレインポート31とその径方向において対向するように設けられている。 The stopper 13 regulates the movement of the spool 12. The stopper 13 has an annular shape and is provided in the opening of the center bolt 11 on the proximal end side. Further, the stopper 13 is provided so that the partition 33 arranged closest to the proximal end side of the spool 12 can come into contact with the stopper 13 and also faces the drain port 31 in the radial direction.
 ばね14は、センターボルト11の先端側内部と、スプール12における流路32の先端との間に設けられており、スプール12をストッパ13に向けて付勢している。これにより、スプール12は、ストッパ13に対して仕切り33がセンターボルト11の先端側から当接するため、その基端側への移動が規制される。 The spring 14 is provided between the inside of the tip end of the center bolt 11 and the tip of the flow passage 32 in the spool 12, and biases the spool 12 toward the stopper 13. As a result, since the partition 33 contacts the stopper 13 from the tip end side of the center bolt 11, the spool 12 is restricted from moving toward the base end side.
 このとき、仕切り33がストッパ13に当接したときのスプール12の移動位置は、初期位置となり、そのストローク量は、最小となる。また、仕切り33がストッパ13から最も離れたときのスプール12の移動位置は、最終位置となり、そのストローク量は、最大となる。即ち、スプール12は、初期位置と最終位置との間で往復移動する。 At this time, the moving position of the spool 12 when the partition 33 contacts the stopper 13 becomes the initial position, and the stroke amount becomes the minimum. Further, the moving position of the spool 12 when the partition 33 is farthest from the stopper 13 is the final position, and the stroke amount thereof is the maximum. That is, the spool 12 reciprocates between the initial position and the final position.
 また、スプール12は、その基端が外部ソレノイドによって押圧される。これにより、スプール12の移動位置は、ばね14の付勢力と外部ソレノイドの押圧力との釣り合いによって決定される。言い換えれば、スプール12のストローク量は、外部ソレノイドに印加される電流値もしくはDuty値によって変化する。 Also, the spool 12 has its base end pressed by an external solenoid. As a result, the moving position of the spool 12 is determined by the balance between the biasing force of the spring 14 and the pressing force of the external solenoid. In other words, the stroke amount of the spool 12 changes depending on the current value or the Duty value applied to the external solenoid.
 更に、OCV10は、そのスプール12のストローク量の変化によって、5つの状態に移行可能となっている。具体的には、OCV10は、初期状態、遅角供給状態、中間保持状態、進角供給状態、及び、最終状態のうち、いずれか1つの状態に移行することができる。 Furthermore, the OCV 10 is capable of shifting to five states by changing the stroke amount of the spool 12. Specifically, the OCV 10 can shift to any one of an initial state, a retarded supply state, an intermediate holding state, an advanced supply state, and a final state.
 次に、実施の形態1に係るOCVの5つの状態について、図2を用いて説明する。図2は、実施の形態1におけるスプールのストローク量に対する進角ポート及び遅角ポートの遷移状態を示した図である。 Next, five states of the OCV according to the first embodiment will be described with reference to FIG. FIG. 2 is a diagram showing transition states of the advance port and the retard port with respect to the stroke amount of the spool in the first embodiment.
 OCV10は、スプール12のストローク量が大きくなるに従って、初期状態、遅角供給状態、中間保持状態、進角供給状態、及び、最終状態の順に移行する。このとき、OCV10は、スプール12のストローク量が最小になった場合に、当該スプール12が初期位置に配置されて、初期状態に移行する。また、OCV10は、スプール12のストローク量が最大になった場合に、当該スプール12が最終位置に配置されて、最終状態に移行する。 The OCV 10 shifts in the order of an initial state, a retard angle supply state, an intermediate holding state, an advance angle supply state, and a final state as the stroke amount of the spool 12 increases. At this time, when the stroke amount of the spool 12 is minimized, the OCV 10 shifts the spool 12 to the initial position by arranging the spool 12 at the initial position. Further, when the stroke amount of the spool 12 is maximized, the OCV 10 shifts the spool 12 to the final position by arranging the spool 12 at the final position.
 初期状態とは、供給ポート21と進角ポート22とが連通することにより、供給ポート21に流入したオイルを、進角ポート22を介して、進角油圧室に供給する一方、供給ポート21と遅角ポート23とが連通することにより、供給ポート21に流入したオイルを、遅角ポート23を介して、遅角油圧室に供給する状態のことである。 In the initial state, the supply port 21 and the advance port 22 communicate with each other, so that the oil flowing into the supply port 21 is supplied to the advance hydraulic chamber through the advance port 22, while being connected to the supply port 21. By communicating with the retard port 23, the oil flowing into the supply port 21 is supplied to the retard hydraulic chamber via the retard port 23.
 遅角供給状態とは、進角ポート22とセンターボルト11の基端側開口部とが連通することにより、進角油圧室に貯留するオイルを、上記基端側開口部を介して排出する一方、供給ポート21と遅角ポート23とが連通することにより、供給ポート21に流入したオイルを、遅角ポート23を介して、遅角油圧室に供給する状態である。即ち、遅角供給状態とは、バルブタイミング調整装置のロータが遅角方向に向けて回転する状態である。 The retarded supply state means that the advance port 22 and the base end side opening of the center bolt 11 communicate with each other, whereby the oil stored in the advance angle hydraulic chamber is discharged through the base end side opening. By connecting the supply port 21 and the retard port 23 to each other, the oil flowing into the supply port 21 is supplied to the retard hydraulic chamber via the retard port 23. That is, the retarded angle supply state is a state in which the rotor of the valve timing adjustment device rotates in the retarded angle direction.
 中間保持状態とは、進角ポート22が供給ポート21及びドレインポート24,31と遮断されることにより、進角油圧室内の油圧が現状のまま保持される一方、遅角ポート23が供給ポート21及びドレインポート24,31と遮断されることにより、遅角油圧室内の油圧が現状のまま保持される状態のことである。即ち、中間保持状態とは、バルブタイミング調整装置のロータが、現位相のまま保持される状態のことである。 The intermediate holding state means that the advance port 22 is blocked from the supply port 21 and the drain ports 24 and 31, so that the hydraulic pressure in the advance hydraulic chamber is maintained as it is, while the retard port 23 is set to the supply port 21. By disconnecting the drain ports 24 and 31 from each other, the hydraulic pressure in the retard hydraulic chamber is maintained as it is. That is, the intermediate holding state is a state in which the rotor of the valve timing adjusting device is held in the current phase.
 進角供給状態とは、供給ポート21と進角ポート22とが連通することにより、供給ポート21に流入したオイルを、進角ポート22を介して、進角油圧室に供給する一方、遅角ポート23とドレインポート24,31とが連通することにより、遅角油圧室に貯留するオイルを、ドレインポート24,31を介して排出する状態のことである。即ち、進角供給状態とは、バルブタイミング調整装置のロータが進角方向に向けて回転する状態である。 The advanced angle supply state means that the supply port 21 and the advanced angle port 22 communicate with each other so that the oil flowing into the supply port 21 is supplied to the advanced angle hydraulic chamber through the advanced angle port 22 while the retarded angle is supplied. This is a state in which the oil stored in the retarded angle hydraulic chamber is discharged through the drain ports 24 and 31 by the communication between the port 23 and the drain ports 24 and 31. That is, the advance supply state is a state in which the rotor of the valve timing adjustment device rotates in the advance direction.
 最終状態とは、進角ポート22とセンターボルト11の基端側開口部とが連通することにより、進角油圧室に貯留するオイルを、上記基端側開口部を介して排出する一方、遅角ポート23とドレインポート24,31とが連通することにより、遅角油圧室に貯留するオイルを、ドレインポート24,31を介して排出する状態のことである。 The final state means that the advance port 22 communicates with the base end side opening of the center bolt 11 to discharge the oil stored in the advance angle hydraulic chamber through the base end side opening, while The angle port 23 and the drain ports 24 and 31 are in communication with each other, whereby the oil stored in the retarded angle hydraulic chamber is discharged through the drain ports 24 and 31.
 次に、実施の形態1に係るOCVの動作について、図3及び図4を用いて説明する。図3Aは、OCVの初期状態を示した図である。図3Bは、OCVの遅角供給状態を示した図である。図3Cは、OCVの中間保持状態を示した図である。図4Aは、OCVの進角供給状態を示した図である。図4Bは、OCVの最終状態を示した図である。なお、図3A、図3B、図4A、及び、図4Bに記載した矢印は、オイルの流れを示している。 Next, the operation of the OCV according to the first embodiment will be described with reference to FIGS. 3 and 4. FIG. 3A is a diagram showing an initial state of OCV. FIG. 3B is a diagram showing a retarded supply state of OCV. FIG. 3C is a diagram showing an intermediate holding state of OCV. FIG. 4A is a diagram showing an advance supply state of OCV. FIG. 4B is a diagram showing the final state of OCV. The arrows shown in FIGS. 3A, 3B, 4A, and 4B indicate the flow of oil.
 図3Aに示した初期状態のOCV10においては、仕切り25と仕切り34とは、互いに全周に亘って接触しており、それらの間をシールしている。仕切り28と仕切り38とは、互いに全周に亘って接触しており、それらの間をシールしている。 In the OCV 10 in the initial state shown in FIG. 3A, the partition 25 and the partition 34 are in contact with each other over the entire circumference and seal between them. The partition 28 and the partition 38 are in contact with each other over the entire circumference and seal between them.
 従って、供給ポート21から流入したオイルは、仕切り26,35,36の間を通過した後、仕切り25,34間のシールによって、進角ポート22に供給される。また、供給ポート21から流入したオイルは、仕切り27,36,37の間を通過した後、仕切り28,29間のシールによって、遅角ポート23に供給される。 Therefore, the oil flowing in from the supply port 21 is supplied to the advance angle port 22 by the seal between the partitions 25, 34 after passing between the partitions 26, 35, 36. Further, the oil flowing in from the supply port 21 passes between the partitions 27, 36, 37 and is then supplied to the retard port 23 by the seal between the partitions 28, 29.
 図3Bに示した遅角供給状態のOCV10においては、仕切り26と仕切り35とは、互いに全周に亘って接触しており、それらの間をシールしている。仕切り28と仕切り38とは、互いに全周に亘って接触しており、それらの間をシールしている。 In the OCV 10 in the retarded supply state shown in FIG. 3B, the partition 26 and the partition 35 are in contact with each other over the entire circumference and seal between them. The partition 28 and the partition 38 are in contact with each other over the entire circumference and seal between them.
 従って、進角ポート22に貯留するオイルは、仕切り25,33,34の間を通過した後、センターボルト11の基端側開口部からOCV10の外部に排出される。また、供給ポート21から流入したオイルは、仕切り27,36,37の間を通過した後、仕切り28,38間のシールによって、遅角ポート23に供給される。このとき、上記オイルは、仕切り26,35間のシールによって、進角ポート22に供給されることはない。 Therefore, the oil stored in the advance port 22 is discharged to the outside of the OCV 10 through the opening on the proximal end side of the center bolt 11 after passing between the partitions 25, 33, 34. Further, the oil flowing in from the supply port 21 passes between the partitions 27, 36, 37 and is then supplied to the retard port 23 by the seal between the partitions 28, 38. At this time, the oil is not supplied to the advance port 22 due to the seal between the partitions 26 and 35.
 図3Cに示した中間保持状態のOCV10においては、仕切り25と仕切り33とは、互いに全周に亘って接触しており、それらの間をシールしている。仕切り26と仕切り35とは、互いに全周に亘って接触しており、それらの間をシールしている。仕切り27と仕切り36とは、互いに全周に亘って接触しており、それらの間をシールしている。仕切り28と仕切り38とは、互いに全周に亘って接触しており、それらの間をシールしている。 In the OCV 10 in the intermediate holding state shown in FIG. 3C, the partition 25 and the partition 33 are in contact with each other over the entire circumference and seal between them. The partition 26 and the partition 35 are in contact with each other over the entire circumference and seal between them. The partition 27 and the partition 36 are in contact with each other over the entire circumference and seal between them. The partition 28 and the partition 38 are in contact with each other over the entire circumference and seal between them.
 従って、供給ポート21から流入したオイルは、仕切り26,35間のシールによって、進角ポート22に供給されることはない。また、供給ポート21から流入したオイルは、仕切り27,36間のシールによって、遅角ポート23に供給されることはない。更に、進角ポート22に貯留するオイルは、仕切り25,33間のシールによって、OCV10の外部に排出されることはない。一方、遅角ポート23に貯留するオイルは、仕切り28,38間のシールによって、ドレインポート24,31から排出されることはない。 Therefore, the oil flowing from the supply port 21 is not supplied to the advance port 22 due to the seal between the partitions 26 and 35. Further, the oil flowing in from the supply port 21 is not supplied to the retard port 23 due to the seal between the partitions 27 and 36. Further, the oil stored in the advance port 22 is not discharged to the outside of the OCV 10 due to the seal between the partitions 25 and 33. On the other hand, the oil stored in the retard port 23 is not discharged from the drain ports 24 and 31 due to the seal between the partitions 28 and 38.
 図4Aに示した進角供給状態のOCV10においては、仕切り25と仕切り33とは、互いに全周に亘って接触しており、それらの間をシールしている。仕切り27と仕切り36とは、互いに全周に亘って接触しており、それらの間をシールしている。 In the OCV 10 in the advanced-angle supply state shown in FIG. 4A, the partition 25 and the partition 33 are in contact with each other over the entire circumference and seal between them. The partition 27 and the partition 36 are in contact with each other over the entire circumference and seal between them.
 従って、供給ポート21から流入したオイルは、仕切り26,34,35の間を通過した後、仕切り25,33間のシールによって、進角ポート22に供給される。このとき、上記オイルは、仕切り27,36間のシールによって、遅角ポート23に供給されることはない。また、遅角ポート23に貯留するオイルは、仕切り28,37,38の間を通過した後、横溝39から流路32に流入して、ドレインポート24,31から排出される。 Therefore, the oil flowing in from the supply port 21 passes between the partitions 26, 34 and 35, and is then supplied to the advance port 22 by the seal between the partitions 25 and 33. At this time, the oil is not supplied to the retard port 23 due to the seal between the partitions 27 and 36. The oil stored in the retard port 23 passes between the partitions 28, 37 and 38, then flows into the flow path 32 from the lateral groove 39 and is discharged from the drain ports 24 and 31.
 図4Bに示した最終状態のOCV10においては、仕切り26と仕切り34とは、互いに全周に亘って接触しており、それらの間をシールしている。仕切り27と仕切り36とは、互いに全周に亘って接触しており、それらの間をシールしている。 In the OCV 10 in the final state shown in FIG. 4B, the partition 26 and the partition 34 are in contact with each other over the entire circumference and seal between them. The partition 27 and the partition 36 are in contact with each other over the entire circumference and seal between them.
 従って、供給ポート21から流入したオイルは、仕切り26,34間のシールによって、進角ポート22に供給されることはない。また、供給ポート21から流入したオイルは、仕切り27,36間のシールによって、遅角ポート23に供給されることはない。更に、進角ポート22に貯留するオイルは、仕切り25,33の間を通過した後、センターボルト11の基端側開口部からOCV10の外部に排出される。一方、遅角ポート23に貯留するオイルは、仕切り28,37,38の間を通過した後、横溝39から流路32に流入して、ドレインポート24,31から排出される。 Therefore, the oil flowing from the supply port 21 is not supplied to the advance port 22 due to the seal between the partitions 26 and 34. Further, the oil flowing in from the supply port 21 is not supplied to the retard port 23 due to the seal between the partitions 27 and 36. Further, the oil stored in the advance port 22 passes between the partitions 25 and 33, and then is discharged to the outside of the OCV 10 through the opening on the base end side of the center bolt 11. On the other hand, the oil stored in the retard port 23 passes between the partitions 28, 37, 38, then flows into the flow path 32 from the lateral groove 39, and is discharged from the drain ports 24, 31.
 次に、実施の形態1に係るバルブタイミング調整装置の構成について、図5を用いて説明する。図5は、実施の形態1に係るバルブタイミング調整装置の横断面図である。 Next, the configuration of the valve timing adjusting device according to the first embodiment will be described with reference to FIG. FIG. 5 is a cross-sectional view of the valve timing adjustment device according to the first embodiment.
 図5に示した実施の形態1に係るバルブタイミング調整装置は、ロータ52を任意の位相でロックすることができる。また、そのバルブタイミング調整装置は、OCV10を一体的に備えるものであるが、当該OCV10を別体として備えても構わない。なお、図5に示したOCV10は、簡略して図示している。 The valve timing adjusting device according to the first embodiment shown in FIG. 5 can lock the rotor 52 at an arbitrary phase. Further, the valve timing adjusting device integrally includes the OCV 10, but the OCV 10 may be separately provided. The OCV 10 shown in FIG. 5 is illustrated in a simplified manner.
 バルブタイミング調整装置は、OCV10、ケース51、ロータ52、ばね53、ホルダ54、及び、ロックピン55a,55bを備えている。 The valve timing adjustment device includes an OCV 10, a case 51, a rotor 52, a spring 53, a holder 54, and lock pins 55a and 55b.
 ケース51は、環状をなしており、エンジンのクランクシャフトに対して同期回転するものである。このケース51は、複数のシュー51a及びスプロケット51bを有している。シュー51aは、ケース51の内周面からその径方向内側に向けて突出するように設けられている。スプロケット51bは、ケース51の外周部に沿って設けられており、クランクシャフトの回転駆動力を受けるものである。 The case 51 has an annular shape and rotates synchronously with the crankshaft of the engine. The case 51 has a plurality of shoes 51a and a sprocket 51b. The shoe 51a is provided so as to protrude from the inner peripheral surface of the case 51 toward the inner side in the radial direction. The sprocket 51b is provided along the outer peripheral portion of the case 51 and receives the rotational driving force of the crankshaft.
 ロータ52は、ケース51の内部において、当該ケース51に対して相対回転可能に同軸上に配置されており、エンジンにおけるバルブ開閉用のカムシャフトと一体的に回転するものである。また、ロータ52は、複数のベーン52aを有している。ベーン52aは、ロータ52の外周面からその径方向外側に向けて突出するように設けられている。更に、ベーン52aは、隣接するシュー51a間に形成される油圧室に進入するように配置されている。 The rotor 52 is coaxially disposed inside the case 51 so as to be rotatable relative to the case 51, and rotates integrally with a cam shaft for opening and closing a valve in the engine. Further, the rotor 52 has a plurality of vanes 52a. The vane 52a is provided so as to protrude from the outer peripheral surface of the rotor 52 toward the outer side in the radial direction. Further, the vanes 52a are arranged so as to enter the hydraulic chamber formed between the adjacent shoes 51a.
 これにより、上記油圧室は、ベーン52aによって、進角油圧室61と遅角油圧室62とに仕切られており、ケース51の内周面とロータ52の外周面との間には、進角油圧室61及び遅角油圧室62が区画形成されている。そして、進角油圧室61は、OCV10における進角ポート22と連通している。また、遅角油圧室62は、OCV10における遅角ポート23と連通している。 As a result, the hydraulic chamber is partitioned into the advance hydraulic chamber 61 and the retard hydraulic chamber 62 by the vane 52a, and the advance angle is provided between the inner peripheral surface of the case 51 and the outer peripheral surface of the rotor 52. The hydraulic chamber 61 and the retarded hydraulic chamber 62 are partitioned and formed. The advance angle hydraulic chamber 61 communicates with the advance angle port 22 of the OCV 10. The retard oil pressure chamber 62 communicates with the retard port 23 of the OCV 10.
 即ち、オイルがOCV10から進角油圧室61または遅角油圧室62に供給されると、ベーン52aは、それらの圧力差に応じて、ケース51に対して相対的に回転する。オイルが進角油圧室61に供給された場合には、ロータ52は、進角方向に位相がずれるため、ケース51の位相よりも進んで回転する。一方、オイルが遅角油圧室62に供給された場合には、ロータ52は、遅角方向に位相がずれるため、ケース51の位相よりも遅れて回転する。 That is, when oil is supplied from the OCV 10 to the advance hydraulic chamber 61 or the retard hydraulic chamber 62, the vanes 52a rotate relative to the case 51 according to the pressure difference between them. When oil is supplied to the advance hydraulic chamber 61, the rotor 52 has a phase shift in the advance direction, and therefore rotates ahead of the phase of the case 51. On the other hand, when oil is supplied to the retarded angle hydraulic chamber 62, the rotor 52 has a phase shift in the retarded direction, and therefore rotates later than the phase of the case 51.
 ばね53、ホルダ54、及び、ロックピン55a,55b、は、ケース51の内周面とベーン52aの先端面との間に設けられている。なお、ロックピン55aは、進角側ロックピンを構成し、ロックピン55bは、遅角側ロックピンを構成している。 The spring 53, the holder 54, and the lock pins 55a and 55b are provided between the inner peripheral surface of the case 51 and the tip surface of the vane 52a. The lock pin 55a constitutes an advance angle side lock pin, and the lock pin 55b constitutes a retard angle side lock pin.
 ばね53は、ホルダ54を介して、ベーン52aの先端面に設けられている。また、ばね53は、付勢方向がケース51及びロータ52の各軸方向と略直交するように配置されている。 The spring 53 is provided on the tip surface of the vane 52a via the holder 54. Further, the spring 53 is arranged such that the biasing direction is substantially orthogonal to the axial directions of the case 51 and the rotor 52.
 ロックピン55a,55bは、ばね53をその付勢方向両側から挟み込むように設けられている。また、ロックピン55a,55bは、その軸方向がケース51及びロータ52の各軸方向と略一致するように配置されている。 The lock pins 55a and 55b are provided so as to sandwich the spring 53 from both sides in the biasing direction. Further, the lock pins 55a and 55b are arranged so that their axial directions substantially coincide with the axial directions of the case 51 and the rotor 52, respectively.
 具体的には、ロックピン55aは、ばね53の進角油圧室61側で、且つ、当該進角油圧室61と対接するように配置されている。これにより、ロックピン55aは、ばね53によって、進角油圧室61側に向けて付勢されることになり、ケース51の内周面とベーン52aの先端面との間に挟まれた状態となる。 Specifically, the lock pin 55a is arranged on the advance hydraulic chamber 61 side of the spring 53 and so as to be in contact with the advance hydraulic chamber 61. As a result, the lock pin 55a is urged by the spring 53 toward the advance hydraulic chamber 61 side, and the lock pin 55a is sandwiched between the inner peripheral surface of the case 51 and the tip surface of the vane 52a. Become.
 一方、ロックピン55bは、ばね53の遅角油圧室62側で、且つ、当該遅角油圧室62と対接するように配置されている。これにより、ロックピン55bは、遅角油圧室62側に向けて付勢されることになり、ケース51の内周面とベーン52aの先端面との間に挟まれた状態となる。 On the other hand, the lock pin 55b is arranged on the retard angle hydraulic chamber 62 side of the spring 53 and in contact with the retard angle hydraulic chamber 62. As a result, the lock pin 55b is biased toward the retarded hydraulic chamber 62 side, and is in a state of being sandwiched between the inner peripheral surface of the case 51 and the tip surface of the vane 52a.
 次に、実施の形態1に係るバルブタイミング調整装置の動作について、図6及び図7を用いて説明する。図6Aは、ロータが遅角側から原位相に復帰するときのバルブタイミング調整装置の横断面図である。図6Bは、ロータが進角側から原位相に復帰するときのバルブタイミング調整装置の横断面図である。図7Aは、OCVの遅角供給状態におけるバルブタイミング調整装置の横断面図である。図7Bは、OCVの進角供給状態におけるバルブタイミング調整装置の横断面図である。図7Cは、OCVの最終状態におけるバルブタイミング調整装置の横断面図である。 Next, the operation of the valve timing adjusting device according to the first embodiment will be described with reference to FIGS. 6 and 7. FIG. 6A is a cross-sectional view of the valve timing adjusting device when the rotor returns from the retard side to the original phase. FIG. 6B is a cross-sectional view of the valve timing adjustment device when the rotor returns to the original phase from the advance side. FIG. 7A is a cross-sectional view of the valve timing adjustment device in the OCV retarded supply state. FIG. 7B is a cross-sectional view of the valve timing adjustment device in the advance supply state of OCV. FIG. 7C is a cross-sectional view of the valve timing adjusting device in the final state of OCV.
 但し、図6Aから図7Cにおいては、ロータ52のロック位相となる原位相を、最進角位相と最遅角位相との間の中間位相として説明しているが、原位相は、最進角位相と最遅角位相との間における任意の位相であれば良い。このとき、原位相は、最進角位相または最遅角位相であっても構わない。 However, in FIGS. 6A to 7C, the original phase that is the lock phase of the rotor 52 is described as the intermediate phase between the most advanced phase and the most retarded phase, but the original phase is It may be any phase between the advanced phase and the most retarded phase. At this time, the original phase may be the most advanced phase or the most retarded phase.
 図6A及び図6Bに示すように、バルブタイミング調整装置におけるロータ52は、現在の位相が進角側または遅角側のどちらかに位置していようと、OCV10が初期状態に移行した場合には、その位相が原位相に復帰するようになっている。 As shown in FIGS. 6A and 6B, in the rotor 52 in the valve timing adjustment device, when the OCV 10 shifts to the initial state regardless of whether the current phase is on the advance side or the retard side. , The phase is set to return to the original phase.
 OCV10が初期状態に移行した場合には、供給ポート21から流入したオイルは、進角ポート22及び遅角ポート23の両ポートに供給され続けるため、進角油圧室61及び遅角油圧室62の両油圧室は、オイルで満たされる。これにより、ロータ52には、進角油圧室61側及び遅角油圧室62側の両方向から油圧が作用することになるが、結果として、それらの油圧は、逆方向に作用して打ち消し合うため、相殺される。 When the OCV 10 shifts to the initial state, the oil that has flowed in from the supply port 21 continues to be supplied to both the advance port 22 and the retard port 23. Both hydraulic chambers are filled with oil. As a result, the hydraulic pressure acts on the rotor 52 from both the advance hydraulic chamber 61 side and the retard hydraulic chamber 62 side, but as a result, the hydraulic pressures act in opposite directions and cancel each other out. , Offset.
 従って、ロータ52に作用する力は、ロータ52を進角方向に向けて付勢するためのアシストトルクTaと、カムシャフトに設けられたカムの反力となるカムトルクTcとになる。また、ロックピン55a,55bは、進角油圧室61及び遅角油圧室62からの油圧をそれぞれ受けるため、互いにばね53の付勢力に抗して移動することになり、ロータ52はケース51に対してロックが解除された状態となる。なお、アシストトルクTaの付勢範囲は、最遅角位相から原位相までの範囲となっている。 Therefore, the force acting on the rotor 52 is the assist torque Ta for biasing the rotor 52 in the advance direction and the cam torque Tc that is the reaction force of the cam provided on the cam shaft. Further, since the lock pins 55a and 55b receive the hydraulic pressures from the advance hydraulic chamber 61 and the retard hydraulic chamber 62, respectively, the lock pins 55a and 55b move against each other against the biasing force of the spring 53, and the rotor 52 moves to the case 51. On the other hand, the lock is released. The biasing range of the assist torque Ta is the range from the most retarded phase to the original phase.
 よって、図6Aに示しように、ロータ52の位相が原位相よりも遅角側に位置する場合には、当該ロータ52には、進角方向へのアシストトルクTaと、遅角方向へのカムトルクTcとが作用している。これにより、バルブタイミング調整装置は、アシストトルクTaの値をカムトルクTcの平均値よりも大きく設定することにより、ロータ52を原位相に復帰させることができる。 Therefore, as shown in FIG. 6A, when the phase of the rotor 52 is located on the retard side with respect to the original phase, the rotor 52 has the assist torque Ta in the advance direction and the assist torque Ta in the retard direction. The cam torque Tc acts. As a result, the valve timing adjusting device can restore the rotor 52 to the original phase by setting the value of the assist torque Ta larger than the average value of the cam torque Tc.
 また、図6Bに示すように、ロータ52の位相が原位相よりも進角側に位置する場合には、当該ロータ52には、遅角方向へのカムトルクのみが作用している。これにより、バルブタイミング調整装置は、ロータ52を原位相に復帰させることができる。 Further, as shown in FIG. 6B, when the phase of the rotor 52 is located on the advance side with respect to the original phase, only the cam torque in the retard direction acts on the rotor 52. Accordingly, the valve timing adjustment device can return the rotor 52 to the original phase.
 図7Aに示した遅角供給状態におけるバルブタイミング調整装置は、オイルは、遅角油圧室62に供給されている。これにより、ロックピン55bは、遅角油圧室62から作用する油圧によって、ばね53の付勢力に抗して、ケース51の内周面とベーン52aの先端面との間から脱し、遅角方向に向けて移動する。これに伴って、ベーン52aが遅角方向に向けて回転し始めると、ロックピン55aは、ケース51の内周面とベーン52aの先端面との間から脱して、進角方向に向けて滑る。従って、ロータ52は、ケース51に対して、遅角方向に回転する。 In the valve timing adjusting device in the retarded supply state shown in FIG. 7A, oil is supplied to the retarded hydraulic chamber 62. As a result, the lock pin 55b is disengaged from between the inner peripheral surface of the case 51 and the tip end surface of the vane 52a against the biasing force of the spring 53 by the hydraulic pressure applied from the retard angle hydraulic chamber 62, and the retard angle direction is increased. Move towards. Along with this, when the vane 52a starts to rotate in the retard direction, the lock pin 55a comes off between the inner peripheral surface of the case 51 and the tip surface of the vane 52a and slides in the advancing direction. . Therefore, the rotor 52 rotates in the retard direction with respect to the case 51.
 図7Bに示した進角供給状態におけるバルブタイミング調整装置は、オイルは、進角油圧室61に供給されている。これにより、ロックピン55aは、進角油圧室61から作用する油圧によって、ばね53の付勢力に抗して、ケース51の内周面とベーン52aの先端面との間から脱し、進角方向に向けて移動する。これに伴って、ベーン52aが進角方向に向けて回転し始めると、ロックピン55bは、ケース51の内周面とベーン52aの先端面との間から脱して、遅角方向に向けて滑る。従って、ロータ52は、ケース51に対して、進角方向に回転する。 In the valve timing adjustment device in the advance supply state shown in FIG. 7B, oil is supplied to the advance hydraulic chamber 61. As a result, the lock pin 55a is released from between the inner peripheral surface of the case 51 and the tip surface of the vane 52a against the biasing force of the spring 53 by the hydraulic pressure acting from the advance hydraulic chamber 61, and the lock pin 55a moves in the advance direction. Move towards. Along with this, when the vane 52a starts to rotate in the advance direction, the lock pin 55b comes off between the inner peripheral surface of the case 51 and the tip surface of the vane 52a and slides in the retard direction. . Therefore, the rotor 52 rotates in the advance direction with respect to the case 51.
 図7Cに示した最終状態におけるバルブタイミング調整装置は、オイルは、進角油圧室61及び遅角油圧室62の双方に供給されていない。これにより、ばね53は、ロックピン55aを、進角油圧室61側に向けて付勢して、ケース51の内周面とベーン52aの先端面との間に挟み込む一方、ロックピン55bを、遅角油圧室62側に向けて付勢して、ケース51の内周面とベーン52aの先端面との間に挟み込む。従って、ロータ52は、ケース51に対する相対回転が規制され、当該ケース51に対してロックされた状態となる。なお、図7Cは、ロータ52が原位相でロックされた状態を示している。 In the valve timing adjusting device in the final state shown in FIG. 7C, oil is not supplied to both the advance hydraulic chamber 61 and the retard hydraulic chamber 62. As a result, the spring 53 biases the lock pin 55a toward the advance hydraulic chamber 61 side to sandwich the lock pin 55a between the inner peripheral surface of the case 51 and the tip surface of the vane 52a, while the lock pin 55b is It is biased toward the retard angle hydraulic chamber 62 side and is sandwiched between the inner peripheral surface of the case 51 and the tip end surface of the vane 52a. Therefore, relative rotation of the rotor 52 with respect to the case 51 is restricted, and the rotor 52 is locked with respect to the case 51. Note that FIG. 7C shows the rotor 52 locked in the original phase.
 従って、実施の形態1に係るバルブタイミング調整装置は、エンジンのアイドリングスタート/ストップモードにおいて、アイドリングストップに移行する直前に、その時のオイルの温度に応じた位相を予め求めた後、ロータ52をその位相まで回転させてから、OCV10を最終状態に移行させることができる。これにより、バルブタイミング調整装置は、アイドリングストップ直前において、ロータを、エンジンにおける燃焼室の温度に相関するオイルの温度に応じた位相で、ロックすることができるので、エンジン再始動時において、ノイズの発生を抑えつつ、燃費向上及び排ガス低減を図ることができる。なお、アイドリングスタート/ストップモードとは、車速がゼロで、且つ、エンジンが駆動しているモードのことである。 Therefore, in the valve timing adjusting device according to the first embodiment, in the idling start / stop mode of the engine, immediately before shifting to idling stop, the phase corresponding to the oil temperature at that time is previously obtained, and then the rotor 52 The OCV 10 can be moved to the final state after being rotated to the phase. As a result, the valve timing adjustment device can lock the rotor at a phase corresponding to the temperature of the oil that correlates with the temperature of the combustion chamber in the engine immediately before the idling stop. It is possible to improve fuel efficiency and reduce exhaust gas while suppressing the generation. The idling start / stop mode is a mode in which the vehicle speed is zero and the engine is running.
 また、エンジンのアイドル状態で、ロータが原位相とは異なる位相に配置された場合であって、車両がキーオフされてからエンジンが停止するまでの僅かな期間において、そのロータが原位相まで復帰できなかった場合には、従来のバルブタイミング調整装置は、次回の車両へのキーオン時において、その進角油圧室及び遅角油圧室からオイルが排出されているため、エンジン始動時に、ロータがケースに衝突して、ノイズが発生していた。 Also, when the rotor is placed in a phase different from the original phase when the engine is in the idle state, the rotor will reach the original phase for a short period after the vehicle is keyed off until the engine stops. If it cannot be restored, the conventional valve timing adjustment device causes oil to be discharged from the advance angle hydraulic chamber and the retard angle hydraulic chamber at the next key-on to the vehicle, so that the rotor is not activated when the engine is started. There was noise when it hit the case.
 これに対して、実施の形態1に係るバルブタイミング調整装置は、上述した僅かな期間でも、OCV10を初期状態に移行させて、ロータ52を原位相に復帰させることができる。その後、エンジンが完全に停止すると、進角油圧室及び遅角油圧室に貯留するオイルは、自然に排出されるため、ロータ52は、原位相でロックされる。 On the other hand, the valve timing adjusting device according to the first embodiment can return the rotor 52 to the original phase by shifting the OCV 10 to the initial state even in the above-mentioned slight period. After that, when the engine is completely stopped, the oil stored in the advance hydraulic chamber and the retard hydraulic chamber is naturally discharged, so that the rotor 52 is locked in the original phase.
 次に、実施の形態1に係るバルブタイミング調整装置をエンジンのアイドル状態において使用したときの動作について、図8を用いて説明する。図8Aは、車両がキーオフされたときの状態を示した図である。図8Bは、ロータが原位相に復帰する状態を示した図である。図8Cは、ロータがロックされた状態を示した図である。 Next, the operation when the valve timing adjusting device according to the first embodiment is used in an engine idle state will be described with reference to FIG. FIG. 8A is a diagram showing a state when the vehicle is keyed off. FIG. 8B is a diagram showing a state in which the rotor returns to the original phase. FIG. 8C is a diagram showing a state in which the rotor is locked.
 図8Aに示したバルブタイミング調整装置は、エンジンのアイドル状態において、ロータ52を原位相よりも進角側に回転させて使用している。このような使用状態から車両がキーオフされた場合には、OCV10を駆動させるための外部ソレノイドへの通電は、遮断されるため、当該外部ソレノイドは、無通電状態となる。この結果、スプール12のストローク量は最小となり、これに伴って、OCV10は初期状態に移行する。 The valve timing adjusting device shown in FIG. 8A is used by rotating the rotor 52 to the advance side with respect to the original phase in the idle state of the engine. When the vehicle is keyed off from such a usage state, the external solenoid for driving the OCV 10 is de-energized, so that the external solenoid is de-energized. As a result, the stroke amount of the spool 12 becomes the minimum, and the OCV 10 shifts to the initial state accordingly.
 次いで、図8Bに示すように、ロータ52は、車両がキーオフされてからエンジンが停止するまでの僅かな期間において、原位相に復帰する。そして、図8Cに示すように、エンジンが完全に停止することにより、進角油圧室61及び遅角油圧室62貯留するオイルは、当該進角油圧室61及び遅角油圧室62から排出される。これにより、ロータ52は、ロックピン55a,55bの働きによって、原位相でロックされる。 Next, as shown in FIG. 8B, the rotor 52 returns to the original phase for a short period after the vehicle is keyed off until the engine is stopped. Then, as shown in FIG. 8C, when the engine is completely stopped, the oil stored in the advance hydraulic chamber 61 and the retard hydraulic chamber 62 is discharged from the advance hydraulic chamber 61 and the retard hydraulic chamber 62. . As a result, the rotor 52 is locked in the original phase by the action of the lock pins 55a and 55b.
 従って、バルブタイミング調整装置は、エンジンのアイドル状態で、ロータ52が原位相とは異なる位相に配置された場合であって、車両がキーオフされてからエンジンが停止するまでの僅かな期間において、ロータ52がどのような位相に配置されていても、当該ロータ52を原位相に復帰させることができる。これにより、バルブタイミング調整装置は、次回のキーオン時であっても、ロータ52をロックしているため、エンジン始動時において、ロータ52のケース51への衝突を防止することができるので、ノイズの発生を抑えることができる。 Therefore, the valve timing adjusting device is in a case where the rotor 52 is arranged in a phase different from the original phase in the idle state of the engine, and in a short period from the key-off of the vehicle to the stop of the engine. No matter what phase the rotor 52 is arranged in, the rotor 52 can be returned to the original phase. As a result, the valve timing adjusting device locks the rotor 52 even when the key is turned on next time, so that it is possible to prevent the rotor 52 from colliding with the case 51 at the time of engine start, so that noise of noise is prevented. Occurrence can be suppressed.
 以上より、実施の形態1に係るバルブタイミング調整装置におけるロータ52は、最遅角位相から当該最遅角位相と最進角位相との間に位置する原位相まで進角方向に向けて付勢されている。また、実施の形態1に係るバルブタイミング調整装置におけるOCV10は、オイルの供給源と連通する供給ポート21、進角油圧室61と連通する進角ポート22、遅角油圧室62と連通する遅角ポート23、及び、OCV10の外部と連通するドレインポート24を有するセンターボルト11と、センターボルト11内における初期位置と最終位置との間で往復移動し、ストローク量に応じて、供給ポート21、進角ポート22、遅角ポート23、及び、ドレインポート24を介して、オイルの給排を行うスプール12とを備えている。そして、OCV10は、スプール12が初期位置に配置されたときに、供給ポート21と進角ポート22及び遅角ポート23とを連通させる。また、OCV10は、スプール12が最終位置に配置されたときに、進角ポート22とOCV10の外部とを連通させる一方、遅角ポート23とドレインポート24とを連通させる。 As described above, the rotor 52 in the valve timing adjustment device according to the first embodiment is attached in the advance direction from the most retarded phase to the original phase located between the most retarded phase and the most advanced phase. It is energized. Further, the OCV 10 in the valve timing adjusting device according to the first embodiment has a supply port 21 that communicates with an oil supply source, an advance port 22 that communicates with the advance hydraulic chamber 61, and a retard angle that communicates with the retard hydraulic chamber 62. It reciprocates between a center bolt 11 having a port 23 and a drain port 24 communicating with the outside of the OCV 10, and an initial position and a final position in the center bolt 11, and depending on the stroke amount, the supply port 21, The spool 12 is provided with a square port 22, a retard port 23, and a drain port 24 for supplying and discharging oil. Then, the OCV 10 connects the supply port 21, the advance port 22 and the retard port 23 when the spool 12 is arranged at the initial position. Further, the OCV 10 allows the advance port 22 and the outside of the OCV 10 to communicate with each other and the retard port 23 and the drain port 24 to communicate with each other when the spool 12 is disposed at the final position.
 これにより、バルブタイミング調整装置は、エンジンのアイドリングスタート/ストップモードにおいて、ロータ52をオイルの温度に応じた位相でロックすることができる。この結果、バルブタイミング調整装置は、エンジン再始動時において、ノイズの発生を抑えつつ、燃費向上及び排ガス低減を図ることができる。 With this, the valve timing adjustment device can lock the rotor 52 in a phase according to the oil temperature in the engine idling start / stop mode. As a result, the valve timing adjusting device can improve the fuel consumption and reduce the exhaust gas while suppressing the generation of noise when the engine is restarted.
実施の形態2.
 実施の形態2に係るバルブタイミング調整装置は、実施の形態1に係るバルブタイミング調整装置に対して、初期状態及び最終状態におけるオイルの給排関係を逆に設定したものである。
Embodiment 2.
The valve timing adjusting device according to the second embodiment has the oil supply / drain relationship in the initial state and the final state set oppositely to those of the valve timing adjusting device according to the first embodiment.
 先ず、実施の形態2に係るOCVに構成について図9を用いて説明する。図9Aは、OCVの外観図である。図9Bは、OCVの部分縦断面図である。図9Cは、OCVの縦断面図である。図9Dは、スプールの先端面を軸方向から見たときの図である。図9Eは、ストッパのストッパ面を軸方向から見たときの図である。 First, the configuration of the OCV according to the second embodiment will be described with reference to FIG. FIG. 9A is an external view of the OCV. FIG. 9B is a partial vertical sectional view of the OCV. FIG. 9C is a vertical sectional view of the OCV. FIG. 9D is a diagram of the tip end surface of the spool as viewed from the axial direction. FIG. 9E is a diagram when the stopper surface of the stopper is viewed from the axial direction.
 OCV10Aは、センターボルト11、スプール12A、ストッパ13、及び、ばね14を備えている。なお、センターボルト11は、OCV10Aのハウジングを構成するものである。 The OCV 10A includes a center bolt 11, a spool 12A, a stopper 13, and a spring 14. The center bolt 11 constitutes a housing of the OCV 10A.
 スプール12Aは、センターボルト11における仕切り25~29の径方向内側において、当該センターボルト11の軸方向に往復移動可能に支持されている。また、スプール12Aは、中空状をなしており、ドレインポート31、流路32、横溝39、及び、仕切り41~47を有している。これにより、OCV10Aは、スプール12Aの移動量となるストローク量に応じて、供給ポート21、進角ポート22、遅角ポート23、及び、ドレインポート24を介して、バルブタイミング調整装置に対するオイルの給排を行うことができる。 The spool 12A is supported inside the partitions 25 to 29 of the center bolt 11 in the radial direction so as to be capable of reciprocating in the axial direction of the center bolt 11. The spool 12A is hollow and has a drain port 31, a flow path 32, a lateral groove 39, and partitions 41 to 47. As a result, the OCV 10A supplies oil to the valve timing adjusting device via the supply port 21, the advance port 22, the retard port 23, and the drain port 24 according to the stroke amount that is the movement amount of the spool 12A. Excretion can be done.
 仕切り41~47は、スプール12Aにおける外周面の周方向に沿って、環状に形成されると共に、その外周面から径方向外側に向けて突出している。即ち、仕切り41~47は、仕切り25~29内において、センターボルト11の軸方向に往復移動可能に支持されている。そして、ドレインポート31は、仕切り41よりもスプール12Aの軸方向外側で開口している。また、横溝39は、流路32及び仕切り47の中心を通るように形成されている。 The partitions 41 to 47 are formed in an annular shape along the circumferential direction of the outer peripheral surface of the spool 12A, and project outward from the outer peripheral surface in the radial direction. That is, the partitions 41 to 47 are supported in the partitions 25 to 29 so as to be capable of reciprocating in the axial direction of the center bolt 11. Then, the drain port 31 is opened outside the partition 41 in the axial direction of the spool 12A. The lateral groove 39 is formed so as to pass through the center of the flow path 32 and the partition 47.
 ストッパ13は、横溝13aを有している。この横溝13aは、当該ストッパ13の中心を通るように形成されている。また、横溝13aは、センターボルト11の軸方向において、仕切り41と対向しており、センターボルト11の内周面とスプール12Aの外周面との間に形成される隙間通路と連通している。 The stopper 13 has a lateral groove 13a. The lateral groove 13a is formed so as to pass through the center of the stopper 13. The lateral groove 13a faces the partition 41 in the axial direction of the center bolt 11, and communicates with a clearance passage formed between the inner peripheral surface of the center bolt 11 and the outer peripheral surface of the spool 12A.
 ばね14は、センターボルト11の先端側内部と、スプール12Aにおける流路32の先端との間に設けられており、スプール12Aをストッパ13に向けて付勢している。これにより、スプール12Aは、ストッパ13に対して仕切り41がセンターボルト11の先端側から当接するため、その基端側への移動が規制される。 The spring 14 is provided between the inside of the tip of the center bolt 11 and the tip of the flow path 32 in the spool 12A, and biases the spool 12A toward the stopper 13. As a result, the partition 12 of the spool 12A comes into contact with the stopper 13 from the tip end side of the center bolt 11, so that movement of the spool 12A toward the base end side is restricted.
 このとき、仕切り41がストッパ13に当接したときのスプール12Aの移動位置は、初期位置となり、そのストローク量は、最小となる。また、仕切り41がストッパ13から最も離れたときのスプール12Aの移動位置は、最終位置となり、そのストローク量は、最大となる。即ち、スプール12Aは、初期位置と最終位置との間で往復移動する。 At this time, the moving position of the spool 12A when the partition 41 contacts the stopper 13 becomes the initial position, and the stroke amount thereof becomes the minimum. Further, the moving position of the spool 12A when the partition 41 is farthest from the stopper 13 is the final position, and the stroke amount thereof is the maximum. That is, the spool 12A reciprocates between the initial position and the final position.
 また、スプール12Aは、その基端が外部ソレノイドによって押圧される。これにより、スプール12Aの移動位置は、ばね14の付勢力と外部ソレノイドの押圧力との釣り合いによって決定される。言い換えれば、スプール12Aのストローク量は、外部ソレノイドに印加される電流値もしくはDuty値によって変化する。 Further, the base end of the spool 12A is pressed by an external solenoid. As a result, the moving position of the spool 12A is determined by the balance between the biasing force of the spring 14 and the pressing force of the external solenoid. In other words, the stroke amount of the spool 12A changes depending on the current value or Duty value applied to the external solenoid.
 更に、OCV10Aは、そのスプール12Aのストローク量の変化によって、5つの状態に移行可能となっている。具体的には、OCV10Aは、初期状態、遅角供給状態、中間保持状態、進角供給状態、及び、最終状態のうち、いずれか1つの状態に移行することができる。 Furthermore, the OCV 10A is capable of shifting to five states by changing the stroke amount of the spool 12A. Specifically, the OCV 10A can shift to any one of an initial state, a retarded supply state, an intermediate holding state, an advanced supply state, and a final state.
 次に、実施の形態2に係るOCVの5つの状態について、図10を用いて説明する。図10は、実施の形態2におけるスプールのストローク量に対する進角ポート及び遅角ポートの遷移状態を示した図である。 Next, five states of the OCV according to the second embodiment will be described with reference to FIG. FIG. 10 is a diagram showing transition states of the advance port and the retard port with respect to the stroke amount of the spool in the second embodiment.
 初期状態とは、進角ポート22とセンターボルト11の基端側開口部とが連通することにより、進角油圧室に貯留するオイルを、上記基端側開口部を介して排出する一方、遅角ポート23とドレインポート24,31とが連通することにより、遅角油圧室に貯留するオイルを、ドレインポート24,31を介して、排出する状態のことである。 In the initial state, the advance port 22 communicates with the base end side opening of the center bolt 11 to discharge the oil stored in the advance angle hydraulic chamber through the base end side opening, while The angle port 23 and the drain ports 24 and 31 are in communication with each other, whereby the oil stored in the retarded angle hydraulic chamber is discharged through the drain ports 24 and 31.
 遅角供給状態とは、進角ポート22とセンターボルト11の基端側開口部とが連通することにより、進角油圧室に貯留するオイルを、上記基端側開口部を介して排出する一方、供給ポート21と遅角ポート23とが連通することにより、供給ポート21に流入したオイルを、遅角ポート23を介して、遅角油圧室に供給する状態である。即ち、遅角供給状態とは、バルブタイミング調整装置のロータが遅角方向に向けて回転する状態である。 The retarded supply state means that the advance port 22 and the base end side opening of the center bolt 11 communicate with each other, whereby the oil stored in the advance angle hydraulic chamber is discharged through the base end side opening. By connecting the supply port 21 and the retard port 23 to each other, the oil flowing into the supply port 21 is supplied to the retard hydraulic chamber via the retard port 23. That is, the retarded angle supply state is a state in which the rotor of the valve timing adjustment device rotates in the retarded angle direction.
 中間保持状態とは、進角ポート22が供給ポート21及びドレインポート24,31と遮断されることにより、進角油圧室内の油圧が現状のまま保持される一方、遅角ポート23が供給ポート21及びドレインポート24,31と遮断されることにより、遅角油圧室内の油圧が現状のまま保持される状態のことである。即ち、中間保持状態とは、バルブタイミング調整装置のロータが、現位相のまま保持される状態のことである。 The intermediate holding state means that the advance port 22 is blocked from the supply port 21 and the drain ports 24 and 31, so that the hydraulic pressure in the advance hydraulic chamber is maintained as it is, while the retard port 23 is set to the supply port 21. By disconnecting the drain ports 24 and 31 from each other, the hydraulic pressure in the retard hydraulic chamber is maintained as it is. That is, the intermediate holding state is a state in which the rotor of the valve timing adjusting device is held in the current phase.
 進角供給状態とは、供給ポート21と進角ポート22とが連通することにより、供給ポート21に流入したオイルを、進角ポート22を介して、進角油圧室に供給する一方、遅角ポート23とドレインポート24,31とが連通することにより、遅角油圧室に貯留するオイルを、ドレインポート24,31を介して、排出する状態のことである。即ち、進角供給状態とは、バルブタイミング調整装置のロータが進角方向に向けて回転する状態である。 The advanced angle supply state means that the supply port 21 and the advanced angle port 22 communicate with each other so that the oil flowing into the supply port 21 is supplied to the advanced angle hydraulic chamber through the advanced angle port 22 while the retarded angle is supplied. The port 23 and the drain ports 24 and 31 are in communication with each other, whereby the oil stored in the retard hydraulic chamber is discharged through the drain ports 24 and 31. That is, the advance supply state is a state in which the rotor of the valve timing adjustment device rotates in the advance direction.
 最終状態とは、供給ポート21と進角ポート22とが連通することにより、供給ポート21に流入したオイルを、進角ポート22を介して、進角油圧室に供給する一方、供給ポート21と遅角ポート23とが連通することにより、供給ポート21に流入したオイルを、遅角ポート23を介して、遅角油圧室に供給する状態のことである。 The final state means that the supply port 21 and the advance port 22 communicate with each other so that the oil flowing into the supply port 21 is supplied to the advance hydraulic chamber via the advance port 22 and the supply port 21. By communicating with the retard port 23, the oil flowing into the supply port 21 is supplied to the retard hydraulic chamber via the retard port 23.
 次に、実施の形態2に係るOCVの動作について、図11及び図12を用いて説明する。図11Aは、OCVの初期状態を示した図である。図11Bは、OCVの遅角供給状態を示した図である。図11Cは、OCVの中間保持状態を示した図である。図12Aは、OCVの進角供給状態を示した図である。図12Bは、OCVの最終状態を示した図である。なお、図11A、図11B、図12A、及び、図12Bに記載した矢印は、オイルの流れを示している。 Next, the operation of the OCV according to the second embodiment will be described with reference to FIGS. 11 and 12. FIG. 11A is a diagram showing an initial state of OCV. FIG. 11B is a diagram showing a retarded supply state of OCV. FIG. 11C is a diagram showing an intermediate holding state of OCV. FIG. 12A is a diagram showing an advance supply state of OCV. FIG. 12B is a diagram showing the final state of OCV. The arrows shown in FIGS. 11A, 11B, 12A, and 12B indicate the flow of oil.
 図11Aに示した初期状態のOCV10Aにおいては、仕切り26と仕切り42とは、互いに全周に亘って接触しており、それらの間をシールしている。仕切り27と仕切り44とは、互いに全周に亘って接触しており、それらの間をシールしている。 In the initial OCV 10A shown in FIG. 11A, the partition 26 and the partition 42 are in contact with each other over the entire circumference and seal between them. The partition 27 and the partition 44 are in contact with each other over the entire circumference and seal between them.
 従って、供給ポート21から流入したオイルは、仕切り26,42間のシールによって、進角ポート22に供給されることはない。また、供給ポート21から流入したオイルは、仕切り27,44間のシールによって、遅角ポート23に供給されることはない。更に、進角ポート22に貯留するオイルは、仕切り25,41の間を通過した後、横溝13aを介して、センターボルト11の基端側開口部から排出される。一方、遅角ポート23に貯留するオイルは、仕切り28,46,47の間を通過した後、横溝39から流路32に流入して、ドレインポート24,31から排出される。 Therefore, the oil flowing in from the supply port 21 will not be supplied to the advance port 22 due to the seal between the partitions 26 and 42. Further, the oil flowing in from the supply port 21 is not supplied to the retard port 23 due to the seal between the partitions 27 and 44. Further, the oil stored in the advance port 22 passes between the partitions 25 and 41, and then is discharged from the base end side opening of the center bolt 11 via the lateral groove 13a. On the other hand, the oil stored in the retard port 23 passes between the partitions 28, 46, 47, then flows into the flow path 32 from the lateral groove 39, and is discharged from the drain ports 24, 31.
 図11Bに示した遅角供給状態のOCV10Aにおいては、仕切り26と仕切り42とは、互いに全周に亘って接触しており、それらの間をシールしている。仕切り28と仕切り46とは、互いに全周に亘って接触しており、それらの間をシールしている。 In the OCV 10A in the retarded supply state shown in FIG. 11B, the partition 26 and the partition 42 are in contact with each other over the entire circumference and seal between them. The partition 28 and the partition 46 are in contact with each other over the entire circumference and seal between them.
 従って、進角ポート22に貯留するオイルは、仕切り25,41の間を通過した後、センターボルト11の基端側開口部からOCV10の外部に排出される。また、供給ポート21から流入したオイルは、仕切り27,43,44の間を通過した後、仕切り28,46間のシールによって、遅角ポート23に供給される。このとき、上記オイルは、仕切り26,42間のシールによって、進角ポート22に供給されることはない。 Therefore, the oil stored in the advance port 22 passes through the space between the partitions 25 and 41, and then is discharged to the outside of the OCV 10 through the opening on the base end side of the center bolt 11. The oil flowing in from the supply port 21 passes between the partitions 27, 43, 44, and then is supplied to the retard port 23 by the seal between the partitions 28, 46. At this time, the oil is not supplied to the advance port 22 due to the seal between the partitions 26 and 42.
 図11Cに示した中間保持状態のOCV10Aにおいては、仕切り25と仕切り41とは、互いに全周に亘って接触しており、それらの間をシールしている。仕切り26と仕切り42とは、互いに全周に亘って接触しており、それらの間をシールしている。仕切り27と仕切り43とは、互いに全周に亘って接触しており、それらの間をシールしている。仕切り28と仕切り46とは、互いに全周に亘って接触しており、それらの間をシールしている。 In the intermediate holding OCV 10A shown in FIG. 11C, the partition 25 and the partition 41 are in contact with each other over the entire circumference and seal between them. The partition 26 and the partition 42 are in contact with each other over the entire circumference and seal between them. The partition 27 and the partition 43 are in contact with each other over the entire circumference and seal between them. The partition 28 and the partition 46 are in contact with each other over the entire circumference and seal between them.
 従って、供給ポート21から流入したオイルは、仕切り26,42間のシールによって、進角ポート22に供給されることはない。また、供給ポート21から流入したオイルは、仕切り27,43間のシールによって、遅角ポート23に供給されることはない。更に、進角ポート22に貯留するオイルは、仕切り25,41間のシールによって、OCV10Aの外部に排出されることはない。一方、遅角ポート23に貯留するオイルは、仕切り28,46間のシールによって、ドレインポート24,31から排出されることはない。 Therefore, the oil flowing in from the supply port 21 will not be supplied to the advance port 22 due to the seal between the partitions 26 and 42. Further, the oil flowing in from the supply port 21 is not supplied to the retard port 23 due to the seal between the partitions 27 and 43. Furthermore, the oil stored in the advance port 22 is not discharged to the outside of the OCV 10A due to the seal between the partitions 25 and 41. On the other hand, the oil stored in the retard port 23 is not discharged from the drain ports 24 and 31 due to the seal between the partitions 28 and 46.
 図12Aに示した進角供給状態のOCV10Aにおいては、仕切り25と仕切り41とは、互いに全周に亘って接触しており、それらの間をシールしている。仕切り27と仕切り43とは、互いに全周に亘って接触しており、それらの間をシールしている。 In the OCV 10A in the advanced angle supply state shown in FIG. 12A, the partition 25 and the partition 41 are in contact with each other over the entire circumference and seal between them. The partition 27 and the partition 43 are in contact with each other over the entire circumference and seal between them.
 従って、供給ポート21から流入したオイルは、仕切り26,42の間を通過した後、仕切り25,41間のシールによって、進角ポート22に供給される。このとき、上記オイルは、仕切り27,43間のシールによって、遅角ポート23に供給されることはない。また、遅角ポート23に貯留するオイルは、仕切り28,45,46の間を通過した後、横溝39から流路32に流入して、ドレインポート24,31から排出される。 Therefore, the oil flowing in from the supply port 21 is supplied to the advance port 22 by the seal between the partitions 25 and 41 after passing between the partitions 26 and 42. At this time, the oil is not supplied to the retard port 23 due to the seal between the partitions 27 and 43. Further, the oil stored in the retard port 23 passes between the partitions 28, 45 and 46, then flows into the flow path 32 from the lateral groove 39 and is discharged from the drain ports 24 and 31.
 図12Bに示した最終状態のOCV10Aにおいては、仕切り25と仕切り41とは、互いに全周に亘って接触しており、それらの間をシールしている。仕切り28と仕切り45とは、互いに全周に亘って接触しており、それらの間をシールしている。 In the OCV 10A in the final state shown in FIG. 12B, the partition 25 and the partition 41 are in contact with each other over the entire circumference and seal between them. The partition 28 and the partition 45 are in contact with each other over the entire circumference and seal between them.
 従って、供給ポート21から流入したオイルは、仕切り26,42の間を通過した後、仕切り25,41間のシールによって、進角ポート22に供給される。また、供給ポート21から流入したオイルは、仕切り27,42,43の間を通過した後、仕切り28,45間のシールによって、供給ポート21に供給される。 Therefore, the oil flowing in from the supply port 21 is supplied to the advance port 22 by the seal between the partitions 25 and 41 after passing between the partitions 26 and 42. Further, the oil flowing in from the supply port 21 passes through the spaces between the partitions 27, 42 and 43, and then is supplied to the supply port 21 by the seal between the partitions 28 and 45.
 以上より、実施の形態2に係るバルブタイミング調整装置におけるロータ52は、最遅角位相から当該最遅角位相と最進角位相との間に位置する原位相まで進角方向に向けて付勢されている。また、実施の形態2に係るバルブタイミング調整装置におけるOCV10Aは、オイルの供給源と連通する供給ポート21、進角油圧室61と連通する進角ポート22、遅角油圧室62と連通する遅角ポート23、及び、OCV10Aの外部と連通するドレインポート24を有するセンターボルト11と、センターボルト11内における初期位置と最終位置との間で往復移動し、ストローク量に応じて、供給ポート21、進角ポート22、遅角ポート23、及び、ドレインポート24を介して、オイルの給排を行うスプール12Aとを備えている。そして、OCV10Aは、スプール12Aが初期位置に配置されたときに、進角ポート22とOCV10Aの外部とを連通させる一方、遅角ポート23とドレインポート24とを連通させる。また、OCV10Aは、スプール12Aが最終位置に配置されたときに、供給ポート21と進角ポート22及び遅角ポート23とを連通させる。 As described above, the rotor 52 in the valve timing control apparatus according to the second embodiment is attached in the advance direction from the most retarded phase to the original phase located between the most retarded phase and the most advanced phase. It is energized. Further, the OCV 10A in the valve timing adjustment device according to the second embodiment is configured such that the supply port 21 that communicates with the oil supply source, the advance port 22 that communicates with the advance hydraulic chamber 61, and the retard angle that communicates with the retard hydraulic chamber 62. It reciprocates between a center bolt 11 having a port 23 and a drain port 24 communicating with the outside of the OCV 10A, and an initial position and a final position in the center bolt 11, and depending on the stroke amount, the supply port 21, A spool 12 </ b> A that supplies and drains oil via the square port 22, the retard port 23, and the drain port 24 is provided. Then, when the spool 12A is placed at the initial position, the OCV 10A allows the advance port 22 and the outside of the OCV 10A to communicate with each other, while allowing the retard port 23 and the drain port 24 to communicate with each other. Further, the OCV 10A connects the supply port 21, the advance port 22 and the retard port 23 when the spool 12A is placed at the final position.
 これにより、バルブタイミング調整装置は、エンジンのアイドリングスタート/ストップモードにおいて、ロータ52をオイルの温度に応じた位相でロックすることができる。この結果、バルブタイミング調整装置は、エンジン再始動時において、ノイズの発生を抑えつつ、燃費向上及び排ガス低減を図ることができる。 With this, the valve timing adjustment device can lock the rotor 52 in a phase according to the oil temperature in the engine idling start / stop mode. As a result, the valve timing adjusting device can improve the fuel consumption and reduce the exhaust gas while suppressing the generation of noise when the engine is restarted.
 なお、本願発明は、その発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは、各実施の形態における任意の構成要素の変形、もしくは、各実施の形態における任意の構成要素の省略が可能である。 It should be noted that the invention of the present application, within the scope of the invention, may be any combination of the embodiments, or modification of any constituent element in each embodiment, or omission of any constituent element in each embodiment. It is possible.
 この発明に係るバルブタイミング調整装置は、スプールを往復移動可能に収納するセンターボルトに、供給ポート、進角ポート、遅角ポート、及び、ドレインポートを備えて、それらのポートを介してオイルを給排することができるので、オイルコントロールバルブを備えたバルブタイミング調整装置等に用いるのに適している。 The valve timing adjusting device according to the present invention is provided with a supply port, an advance port, a retard port, and a drain port in a center bolt that accommodates a spool in a reciprocating manner, and supplies oil through these ports. Since it can be discharged, it is suitable for use in a valve timing adjusting device equipped with an oil control valve.
 10,10A オイルコントロールバルブ(OCV)、11 センターボルト、12,12A スプール、13 ストッパ、13a 横溝、14 ばね、21 供給ポート、22 進角ポート、23 遅角ポート、24 ドレインポート、25~29 仕切り、31 ドレインポート、32 流路、33~38 仕切り、39 横溝、41~47 仕切り、51 ケース、51a シュー、51b スプロケット、52 ロータ、52a ベーン、53 ばね、54 ホルダ、55a,55b ロックピン、61 進角油圧室、62 遅角油圧室。 10, 10A oil control valve (OCV), 11 center bolt, 12, 12A spool, 13 stopper, 13a lateral groove, 14 spring, 21 supply port, 22 advance port, 23 retard port, 24 drain port, 25-29 partition , 31 drain port, 32 flow path, 33 to 38 partition, 39 lateral groove, 41 to 47 partition, 51 case, 51a shoe, 51b sprocket, 52 rotor, 52a vane, 53 spring, 54 holder, 55a, 55b lock pin, 61 Advance hydraulic chamber, 62 retard hydraulic chamber.

Claims (3)

  1.  内燃機関のクランクシャフトに対して同期回転するケースと、
     前記ケースに対して相対回転可能に同軸上に配置され、前記内燃機関のバルブを開閉させるロータと、
     前記ケースと前記ロータとの間に区画形成され、作動流体の供給に伴って、前記ロータを進角方向に相対回転させる進角油圧室と、
     前記ケースと前記ロータとの間に区画形成され、作動流体の供給に伴って、前記ロータを遅角方向に相対回転させる遅角油圧室と、
     前記進角油圧室及び前記遅角油圧室に対して、作動流体の給排を制御するオイルコントロールバルブとを設け、
     前記ロータは、
     最遅角位相から当該最遅角位相と最進角位相との間に位置する原位相まで進角方向に向けて付勢され、
     前記オイルコントロールバルブは、
     作動流体の供給源と連通する供給ポート、前記進角油圧室と連通する進角ポート、前記遅角油圧室と連通する遅角ポート、及び、前記オイルコントロールバルブの外部と連通するドレインポートを有するハウジングと、
     前記ハウジング内における初期位置と最終位置との間で往復移動し、ストローク量に応じて、前記供給ポート、前記進角ポート、前記遅角ポート、及び、前記ドレインポートを介して、作動流体の給排を行うスプールとを備え、
     前記スプールが前記初期位置に配置されたときに、前記供給ポートと前記進角ポート及び前記遅角ポートとを連通させ、
     前記スプールが前記最終位置に配置されたときに、前記進角ポートと前記オイルコントロールバルブの外部とを連通させる一方、前記遅角ポートと前記ドレインポートとを連通させる
     ことを特徴とするバルブタイミング調整装置。
    A case that rotates synchronously with the crankshaft of the internal combustion engine,
    A rotor that is coaxially arranged so as to be rotatable relative to the case and that opens and closes a valve of the internal combustion engine,
    An advance hydraulic chamber that is formed between the case and the rotor and that relatively rotates the rotor in the advance direction with the supply of working fluid.
    A retard angle hydraulic chamber that is formed between the case and the rotor and relatively rotates the rotor in the retard direction with the supply of working fluid,
    An oil control valve for controlling the supply and discharge of the working fluid is provided for the advance hydraulic chamber and the retard hydraulic chamber,
    The rotor is
    From the most retarded angle phase to the original phase located between the most retarded angle phase and the most advanced angle phase is biased toward the advanced angle direction,
    The oil control valve is
    A supply port that communicates with a supply source of a working fluid, an advance port that communicates with the advance hydraulic chamber, a retard port that communicates with the retard hydraulic chamber, and a drain port that communicates with the outside of the oil control valve. Housing,
    It reciprocates between an initial position and a final position in the housing, and supplies a working fluid via the supply port, the advance port, the retard port, and the drain port according to the stroke amount. Equipped with a spool for discharging,
    When the spool is arranged at the initial position, the supply port is communicated with the advance port and the retard port,
    When the spool is arranged at the final position, the advance port and the outside of the oil control valve are communicated with each other, while the retard port and the drain port are communicated with each other. apparatus.
  2.  内燃機関のクランクシャフトに対して同期回転するケースと、
     前記ケースに対して相対回転可能に同軸上に配置され、前記内燃機関のバルブを開閉させるロータと、
     前記ケースと前記ロータとの間に区画形成され、作動流体の供給に伴って、前記ロータを進角方向に相対回転させる進角油圧室と、
     前記ケースと前記ロータとの間に区画形成され、作動流体の供給に伴って、前記ロータを遅角方向に相対回転させる遅角油圧室と、
     前記進角油圧室及び前記遅角油圧室に対して、作動流体の給排を制御するオイルコントロールバルブとを設け、
     前記ロータは、
     最遅角位相から当該最遅角位相と最進角位相との間に位置する原位相まで進角方向に向けて付勢され、
     前記オイルコントロールバルブは、
     作動流体の供給源と連通する供給ポート、前記進角油圧室と連通する進角ポート、前記遅角油圧室と連通する遅角ポート、及び、前記オイルコントロールバルブの外部と連通するドレインポートを有するハウジングと、
     前記ハウジング内における初期位置と最終位置との間で往復移動し、ストローク量に応じて、前記供給ポート、前記進角ポート、前記遅角ポート、及び、前記ドレインポートを介して、作動流体の給排を行うスプールとを備え、
     前記スプールが前記初期位置に配置されたときに、前記進角ポートと前記オイルコントロールバルブの外部とを連通させる一方、前記遅角ポートと前記ドレインポートとを連通させ、
     前記スプールが前記最終位置に配置されたときに、前記供給ポートと前記進角ポート及び前記遅角ポートとを連通させる
     ことを特徴とするバルブタイミング調整装置。
    A case that rotates synchronously with the crankshaft of the internal combustion engine,
    A rotor that is coaxially arranged so as to be rotatable relative to the case and that opens and closes a valve of the internal combustion engine,
    An advance hydraulic chamber that is formed between the case and the rotor and that relatively rotates the rotor in the advance direction with the supply of working fluid.
    A retard angle hydraulic chamber that is formed between the case and the rotor and relatively rotates the rotor in the retard direction with the supply of working fluid,
    An oil control valve for controlling the supply and discharge of the working fluid is provided for the advance hydraulic chamber and the retard hydraulic chamber,
    The rotor is
    From the most retarded angle phase to the original phase located between the most retarded angle phase and the most advanced angle phase is biased toward the advanced angle direction,
    The oil control valve is
    A supply port that communicates with a supply source of a working fluid, an advance port that communicates with the advance hydraulic chamber, a retard port that communicates with the retard hydraulic chamber, and a drain port that communicates with the outside of the oil control valve. Housing,
    It reciprocates between an initial position and a final position in the housing, and supplies a working fluid via the supply port, the advance port, the retard port, and the drain port according to the stroke amount. Equipped with a spool for discharging,
    When the spool is arranged at the initial position, the advance port and the outside of the oil control valve are in communication with each other, while the retard port and the drain port are in communication with each other,
    A valve timing adjusting device, characterized in that when the spool is arranged at the final position, the supply port communicates with the advance port and the retard port.
  3.  前記ロータの外周面から径方向外側に向けて突出し、前記進角油圧室と前記遅角油圧室とを仕切るベーンと、
     前記ベーンの先端面に設けられるばねと、
     前記ケースの内周面と前記ベーンの先端面との間で、且つ、前記ばねの前記進角油圧室側に設けられ、前記ばねによって、前記進角油圧室側に向けて付勢される進角側ロックピンと、
     前記ケースの内周面と前記ベーンの先端面との間で、且つ、前記ばねの前記遅角油圧室側に設けられ、前記ばねによって、前記遅角油圧室側に向けて付勢される遅角側ロックピンとを備える
     ことを特徴とする請求項1または請求項2記載のバルブタイミング調整装置。
    A vane that projects radially outward from the outer peripheral surface of the rotor and partitions the advance hydraulic chamber and the retard hydraulic chamber,
    A spring provided on the tip surface of the vane,
    It is provided between the inner peripheral surface of the case and the tip end surface of the vane and on the advance hydraulic chamber side of the spring, and is urged by the spring toward the advance hydraulic chamber side. Corner side lock pin,
    It is provided between the inner peripheral surface of the case and the tip surface of the vane and on the retard angle hydraulic chamber side of the spring, and is biased by the spring toward the retard angle hydraulic chamber side. The corner side lock pin is provided. The valve timing adjusting device according to claim 1, wherein the valve timing adjusting device is provided.
PCT/JP2018/039870 2018-10-26 2018-10-26 Valve timing adjustment device WO2020084764A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/039870 WO2020084764A1 (en) 2018-10-26 2018-10-26 Valve timing adjustment device
JP2020547149A JP6797342B2 (en) 2018-10-26 2018-10-26 Valve timing adjuster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/039870 WO2020084764A1 (en) 2018-10-26 2018-10-26 Valve timing adjustment device

Publications (1)

Publication Number Publication Date
WO2020084764A1 true WO2020084764A1 (en) 2020-04-30

Family

ID=70332194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039870 WO2020084764A1 (en) 2018-10-26 2018-10-26 Valve timing adjustment device

Country Status (2)

Country Link
JP (1) JP6797342B2 (en)
WO (1) WO2020084764A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068547A1 (en) * 1999-05-11 2000-11-16 INA Wälzlager Schaeffler oHG Device for adjusting the angle of rotation of a camshaft in relation to the crankshaft of a reciprocating internal combustion engine
WO2001066915A2 (en) * 2000-03-08 2001-09-13 Stiwa-Fertigungstechnik Sticht Gesellschaft M.B.H. Adjustment and locating device with clamping elements for a camshaft adjusting device
JP2002295275A (en) * 2001-03-29 2002-10-09 Denso Corp Valve timing adjustment device
JP2013064380A (en) * 2011-09-20 2013-04-11 Hitachi Automotive Systems Ltd Hydraulic control mechanism used for valve timing control apparatus, and controller for hydraulic control mechanism
US20170226902A1 (en) * 2016-02-05 2017-08-10 Hyundai Motor Company Control valve for valve timing adjusting device of internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068547A1 (en) * 1999-05-11 2000-11-16 INA Wälzlager Schaeffler oHG Device for adjusting the angle of rotation of a camshaft in relation to the crankshaft of a reciprocating internal combustion engine
WO2001066915A2 (en) * 2000-03-08 2001-09-13 Stiwa-Fertigungstechnik Sticht Gesellschaft M.B.H. Adjustment and locating device with clamping elements for a camshaft adjusting device
JP2002295275A (en) * 2001-03-29 2002-10-09 Denso Corp Valve timing adjustment device
JP2013064380A (en) * 2011-09-20 2013-04-11 Hitachi Automotive Systems Ltd Hydraulic control mechanism used for valve timing control apparatus, and controller for hydraulic control mechanism
US20170226902A1 (en) * 2016-02-05 2017-08-10 Hyundai Motor Company Control valve for valve timing adjusting device of internal combustion engine

Also Published As

Publication number Publication date
JPWO2020084764A1 (en) 2021-02-15
JP6797342B2 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
US6779499B2 (en) Variable valve timing apparatus
JP3211713B2 (en) Variable valve timing mechanism for internal combustion engine
US6053139A (en) Valve timing control device
JP5500350B2 (en) Valve timing control device
JPH11132014A (en) Valve open/close timing control device
US8418664B2 (en) Variable valve timing control apparatus
US20100050966A1 (en) Valve timing control device
WO2010109971A1 (en) Valve open/close timing controller
JP2004108370A (en) Variable cam shaft timing mechanism
JP2003013714A (en) Valve opening and closing timing controller
JP2011069287A (en) Valve opening/closing timing control device
WO2005061859A1 (en) Valve opening/closing timing control device
JP2011185100A (en) Valve timing changing device of internal combustion engine
WO2013031338A1 (en) Solenoid valve and valve opening-closing timing control device
JP2004257373A (en) Valve timing adjusting system
US10544714B2 (en) Variable camshaft timing device with two locking positions
JP5887842B2 (en) Valve timing control device
WO2015015960A1 (en) Valve opening/closing timing control device
US20150033907A1 (en) Variable valve timing control apparatus
WO2015019735A1 (en) Valve opening/closing timing control device
US6338322B1 (en) Valve timing control device
JPH11223112A (en) Valve opening and closing timing controller
JP2007198168A (en) Valve open and close timing control device
WO2020084764A1 (en) Valve timing adjustment device
US20050092275A1 (en) Camshaft adjuster

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547149

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937988

Country of ref document: EP

Kind code of ref document: A1