JP2011066570A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit Download PDF

Info

Publication number
JP2011066570A
JP2011066570A JP2009213986A JP2009213986A JP2011066570A JP 2011066570 A JP2011066570 A JP 2011066570A JP 2009213986 A JP2009213986 A JP 2009213986A JP 2009213986 A JP2009213986 A JP 2009213986A JP 2011066570 A JP2011066570 A JP 2011066570A
Authority
JP
Japan
Prior art keywords
coil
input terminal
capacitor
input
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009213986A
Other languages
Japanese (ja)
Inventor
Mitsuyuki Ashida
光行 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009213986A priority Critical patent/JP2011066570A/en
Priority to US12/881,446 priority patent/US20110063050A1/en
Publication of JP2011066570A publication Critical patent/JP2011066570A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor integrated circuit switching a frequency band used by an amplifier while maintaining a good high frequency characteristic. <P>SOLUTION: The semiconductor integrated circuit is constituted of: a coil L11 and a coil L12 which have a coupling factor k1 and are connected parallel to each other; a coil L13 connected in series to the coil L11 and coil L12; a capacitor C11 connected parallel to the coil L11; a capacitor C12 connected parallel to the coil L12; an input terminal p1 connected to one end of the coil L11 and to one end of the capacitor C11; an input terminal n1 connected to one end of the coil L12 and one end of the capacitor C12; and an input signal supply part 200 which supplies input signals of opposite phases to the input terminal p1 and input terminal n1 respectively. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、増幅器の周波数帯域を切り替える半導体集積回路に関する。   The present invention relates to a semiconductor integrated circuit that switches a frequency band of an amplifier.

近年携帯端末のような無線通信システムにおいては、GSM、GPS、WCDMAなどのあらゆる通信システムに対応するために、送受信システムの広帯域化、マルチバンド化が盛んに行われている。   In recent years, in a wireless communication system such as a portable terminal, in order to cope with all communication systems such as GSM, GPS, WCDMA, etc., the transmission / reception system has been widely widened and multibanded.

使用周波数帯域が数百MHzと、さほど帯域が広くない無線通信システムにおいて入出力が広帯域な特性を持つと、帯域内・帯域外妨害波などによる相互変調により所望帯域内に歪み成分を発生させることがある。   If the frequency band used is several hundred MHz, and the input and output of the wireless communication system is not so wide, distortion components will be generated in the desired band by intermodulation due to in-band and out-of-band interference waves. There is.

そのため狭帯域なシステムでは帯域をしぼって使用すること、つまり周波数帯域を切り替えて使用することが歪み特性、雑音特性などの劣化を抑制できるという観点からも望ましい。   Therefore, it is desirable to narrow down the band in a narrow band system, that is, to use by switching the frequency band from the viewpoint of suppressing deterioration of distortion characteristics, noise characteristics, and the like.

無線通信システムは共振回路から構成される。共振回路は、インダクタ及びコンデンサから構成され、その共振周波数は1/{2π√(LC)}で表される。ここでLはインダクタのインダクタ値(誘導係数)、Cはコンデンサの静電容量値である。このインダクタ値もしくは静電容量値を変えることにより、共振周波数を変化させることができる。つまり、周波数帯域を切り替えることができる。   The wireless communication system is composed of a resonant circuit. The resonance circuit is composed of an inductor and a capacitor, and the resonance frequency is represented by 1 / {2π√ (LC)}. Here, L is the inductor value (inductive coefficient) of the inductor, and C is the capacitance value of the capacitor. The resonant frequency can be changed by changing the inductor value or the capacitance value. That is, the frequency band can be switched.

この共振周波数を変化させる手法として、一般的には、抵抗などの受動素子を用いて周波数チューニングする手法が多く用いられている。   As a technique for changing the resonance frequency, a technique of frequency tuning using a passive element such as a resistor is generally used.

特に高周波においては、増幅器の負荷としてインダクタやコンデンサを使用し、帯域に応じて静電容量値を切り替える手法1、インダクタ値を切り替える手法2や、インダクタの結合係数を利用してインダクタ値を替える手法3などが用いられる。   Particularly at high frequencies, an inductor or a capacitor is used as an amplifier load, a method 1 for switching the capacitance value according to a band, a method 2 for switching an inductor value, or a method for changing an inductor value by using an inductor coupling coefficient. 3 or the like is used.

しかし、手法1は、静電容量値を切り替えるため、広い可変周波数範囲をとりたい場合には大きな容量値が必要となり、低周波において高いQ値を得るのが困難であるという課題がある。ここで、Q値とは、インダクタの寄生抵抗をR、コイルのインダクタンスをL、コンデンサの静電容量をCとしたときに、Q=1/R√(L/C)であらわされ、Q値が高いほど周波数特性が急峻となり周波数選択性が高いことを意味する。   However, since the method 1 switches the capacitance value, a large capacitance value is required when it is desired to take a wide variable frequency range, and it is difficult to obtain a high Q value at a low frequency. Here, the Q value is expressed as Q = 1 / R√ (L / C), where R is the parasitic resistance of the inductor, L is the inductance of the coil, and C is the capacitance of the capacitor. The higher the value, the sharper the frequency characteristics, and the higher the frequency selectivity.

また、手法2はスイッチを利用してインダクタの値自体を切り替えるため、適用システム数に対応するインダクタ数が必要となり面積が大きくなる。また、更に広い可変周波数範囲をとりたい場合は大きなインダクタが必要となり寄生抵抗も大きくなりQ値の劣化にもつながるという課題がある。   Moreover, since the method 2 switches the inductor value itself using a switch, the number of inductors corresponding to the number of applied systems is required, and the area increases. Further, when it is desired to take a wider variable frequency range, there is a problem that a large inductor is required, the parasitic resistance is increased, and the Q value is deteriorated.

更に、手法3は、同相モード・差動モードの切り替えによりそのインダクタ値が結合係数kに応じて(1−k)L〜(1+k)Lまで変化するため、その値に応じて周波数範囲を変化させることができるが、Q値が(1/R)√{(1−k)L/C}と低くなる同相モード時の方が共振周波数は高くなる。特に高周波においては低周波に比べて良好な特性を得るのが元々困難な上、低雑音増幅器(LNA)、電力増幅器(PA)、電圧制御発振器(VCO)などのアナログ回路ブロックにおいては負荷や縮退抵抗の替わりに使用するインダクタのQ値が利得特性や最大出力電力、発振振幅などに大きな影響を与えるため、極力高いQ値を持つ素子を使用したいが、手法3では高周波側になるとQ値が劣化してしまい所望の利得、雑音特性を確保できないという課題がある。   Further, in Method 3, since the inductor value changes from (1−k) L to (1 + k) L according to the coupling coefficient k by switching between the common mode and the differential mode, the frequency range is changed according to the value. However, the resonance frequency is higher in the common mode in which the Q value is as low as (1 / R) √ {(1-k) L / C}. In particular, it is difficult to obtain good characteristics at high frequencies compared to low frequencies. In addition, analog circuit blocks such as low-noise amplifiers (LNA), power amplifiers (PA), and voltage-controlled oscillators (VCOs) load and degenerate. Since the Q value of the inductor used instead of the resistor has a large effect on the gain characteristics, maximum output power, oscillation amplitude, etc., we would like to use an element with a Q value as high as possible. There is a problem that the desired gain and noise characteristics cannot be secured due to deterioration.

特許第3959371号Japanese Patent No. 3959371

本発明は、良好な高周波特性を維持しつつ、増幅器の使用周波数帯域切換えが可能な半導体集積回路を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor integrated circuit capable of switching the used frequency band of an amplifier while maintaining good high frequency characteristics.

上記目的を達成するために、本発明の一態様の半導体集積回路は、第1の結合係数を有し、互いに並列に接続される第1のコイル及び第2のコイルと、前記第1のコイル及び前記第2のコイルに直列に接続される第3のコイルと、前記第1のコイルの一端と前記第3のコイルの一端に対し並列に接続される第1のコンデンサと、前記第2のコイルの一端と前記第3のコイルの一端に対し並列に接続される第2のコンデンサと、前記第1のコイルの一端と、前記第1のコンデンサの一端とに接続される第1の入力端子と、前記第2のコイルの一端と、前記第2のコンデンサの一端とに接続される第2の入力端子と、前記第1の入力端子と、前記第2の入力端子とにそれぞれ逆位相の入力信号を供給する入力信号供給部を具備することを特徴とする。   To achieve the above object, a semiconductor integrated circuit of one embodiment of the present invention includes a first coil and a second coil having a first coupling coefficient and connected in parallel to each other, and the first coil. And a third coil connected in series to the second coil, a first capacitor connected in parallel to one end of the first coil and one end of the third coil, and the second coil A second capacitor connected in parallel to one end of the coil and one end of the third coil, a first input terminal connected to one end of the first coil and one end of the first capacitor And a second input terminal connected to one end of the second coil, and one end of the second capacitor, the first input terminal, and the second input terminal are respectively in opposite phases. An input signal supply unit for supplying an input signal is provided. .

本発明によれば、良好な高周波特性を維持しつつ、増幅器の使用周波数帯域切換えが可能な半導体集積回路を提供することができる。   According to the present invention, it is possible to provide a semiconductor integrated circuit capable of switching the used frequency band of an amplifier while maintaining good high frequency characteristics.

本発明の半導体集積回路のシステムブロック図である。1 is a system block diagram of a semiconductor integrated circuit of the present invention. 本発明の実施例1の回路図である。It is a circuit diagram of Example 1 of the present invention. 本発明の実施例2の回路図である。It is a circuit diagram of Example 2 of the present invention. 本発明の実施例3の回路図である。It is a circuit diagram of Example 3 of the present invention. 本発明の実施例4の回路図である。It is a circuit diagram of Example 4 of the present invention. 本発明の実施例5の回路図である。It is a circuit diagram of Example 5 of the present invention. 本発明の実施例6の回路図である。It is a circuit diagram of Example 6 of the present invention. 本発明の実施例7の回路図である。It is a circuit diagram of Example 7 of the present invention. 本発明の実施例8の回路図である。It is a circuit diagram of Example 8 of the present invention.

以下本発明の実施の形態について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明に係る半導体集積回路のシステムブロック図である。本発明の半導体集積回路は、データを送受信するアンテナ10、データの送信及び受信を切り替えるT/Rスイッチ部11、LNA12(低雑音増幅器:Low Noise Amplifier)、PA13(Power Amplifier:電力増幅器:)、MIX14(Mixer:ミキサ)、VCO15(Voltage Controlled Amplifier:電圧制御増幅器)及びLPF16(Low Path Filter:低域フィルタ)から構成され、このうち、特にLNA12及びPA13に特徴を有する。   FIG. 1 is a system block diagram of a semiconductor integrated circuit according to the present invention. The semiconductor integrated circuit according to the present invention includes an antenna 10 for transmitting and receiving data, a T / R switch unit 11 for switching transmission and reception of data, an LNA 12 (low noise amplifier), a PA 13 (power amplifier :), It is composed of MIX14 (Mixer), VCO15 (Voltage Controlled Amplifier), and LPF16 (Low Path Filter), among which LNA12 and PA13 are particularly characterized.

図2は、図1におけるLNA12(又はPA13)に含まれる、本発明の実施例1に係る半導体集積回路の共振回路部100を示したものである。図2(a)の共振回路部100は、結合係数k1を持ち、互いに並列に接続されるインダクタンスLのコイルL11及びインダクタンスLのコイルL12と、コイルL11及びコイルL12に直列に接続されるインダクタンスLのコイルL13と、コイルL11に並列に接続される静電容量CのコンデンサC11と、コイルL12に並列に接続される静電容量CのコンデンサC12とから構成される。 FIG. 2 shows the resonance circuit unit 100 of the semiconductor integrated circuit according to the first embodiment of the present invention, which is included in the LNA 12 (or PA 13) in FIG. Resonant circuit 100 of FIG. 2 (a) has a coupling coefficient k1, is connected to the coil L11 and coil L12 of the inductance L 1 of the inductance L 1 connected in parallel with one another, in series with the coil L11 and the coil L12 a coil L13 of the inductance L 2, a capacitor C11 of the capacitance C 1 connected in parallel to the coil L11, composed of the capacitance C 1 of capacitor C12 Prefecture connected in parallel to the coil L12.

そして、入力端子p1がコイルL11の一端及びコンデンサC11の一端に接続され、入力端子n1がコイルL12の一端及びコンデンサC12の一端に接続され、入力端子p1及び入力端子n1には、入力信号供給部200から信号が供給される。 The input terminal p1 is connected to one end of the coil L11 and one end of the capacitor C11, the input terminal n1 is connected to one end of the coil L12 and one end of the capacitor C12, and the input terminal p1 and the input terminal n1 have an input signal supply unit. A signal is supplied from 200.

ここでコイルL11及びコイルL12は、逆位相の信号が流れると磁束が強め合う向きに巻かれているものとする。   Here, it is assumed that the coil L11 and the coil L12 are wound in a direction in which magnetic fluxes strengthen each other when signals having opposite phases flow.

入力信号供給部200は、入力端子p1と入力端子n1に互いに逆位相の信号を供給すると、コイルL11及びコイルL12で構成されるインダクタには、それぞれ互いに逆相の信号が流れ、磁束を強めあう方向に磁力が働くため、コイルL11、コイルL12及びコイルL13から構成されるインダクタのインダクタンスは、コイルL11とコイルL12の結合係数をkとすると、L=L(1+k)となる。また、L12に流れる信号は逆相信号のため、L13の影響は見えなくなる。したがって、共振周波数は、f=1/R{(2π√(L×C))、Q値はQ=(1/R)√(L/C)となり、Q値を劣化させずに、共振回路部100を低周波で共振させることが可能となる。なお、Rは各インダクタの寄生抵抗である(以降同様)。 When the input signal supply unit 200 supplies signals of opposite phases to the input terminal p1 and the input terminal n1, signals of opposite phases flow through the inductors composed of the coil L11 and the coil L12 to strengthen the magnetic flux. Since the magnetic force acts in the direction, the inductance of the inductor composed of the coil L11, the coil L12, and the coil L13 is L L = L 1 (1 + k 1 ) where the coupling coefficient between the coil L11 and the coil L12 is k 1 . Further, since the signal flowing through L12 is a reverse phase signal, the influence of L13 is not visible. Therefore, the resonance frequency is f L = 1 / R {(2π√ (L L × C 1 )), and the Q value is Q L = (1 / R) √ (L L / C 1 ), which degrades the Q value. Without causing the resonance circuit unit 100 to resonate at a low frequency. R is a parasitic resistance of each inductor (the same applies hereinafter).

図2(b)の共振回路部100は、入力端子n1に供給される信号の位相以外は、図2(a)と同様である。図2(b)では、入力信号供給部200から入力端子n1と入力端子p1とに、互いに同位相の信号が供給される。入力端子p1とn1に互いに同位相の信号が供給されると、コイルL11及びコイルL12で構成されるインダクタには、それぞれ同相信号が流れ、磁束を打ち消す方向に磁力が働くため、コイルL11、コイルL12から構成されるインダクタのインダクタンスは、コイル11とコイル12の結合係数kとすると、L(1−k)となる。また、L21に流れる信号は同相信号のため、コイルL11、コイルL12、コイルL13により構成されるインダクタのインダクタンスは、L=2L+L(1−k)となり、共振周波数はf=1/{2π√(L)}、Q値はQ=(1/R)√(L/C)となり、十分なアイソレーションを確保しつつ所望の周波数に周波数を変更することができ、更に、高周波動作モードにおけるQ値を改善できるため、良好な利得特性、雑音特性を得ることができる。具体的には、同位相モードにより劣化したコイルL11及びコイルL12、コイルL21及びコイルL22のQ値を、コイルL13/L23で補償することで高周波モード時にも高いQ値を保つことができ、良好な利得特性、雑音特性を得ることができる。 2B is the same as FIG. 2A except for the phase of the signal supplied to the input terminal n1. In FIG. 2B, signals having the same phase are supplied from the input signal supply unit 200 to the input terminal n1 and the input terminal p1. When signals having the same phase are supplied to the input terminals p1 and n1, the in-phase signals flow through the inductors configured by the coil L11 and the coil L12, respectively, and the magnetic force acts in the direction to cancel the magnetic flux. The inductance of the inductor composed of the coil L12 is L 1 (1−k 1 ) when the coupling coefficient k 1 between the coil 11 and the coil 12 is used. Further, since the signal flowing through L21 is an in-phase signal, the inductance of the inductor constituted by the coil L11, the coil L12, and the coil L13 is L H = 2L 2 + L 1 (1−k 1 ), and the resonance frequency is f H = 1 / {2π√ (L H C 1 )}, Q value is Q H = (1 / R) √ (L H / C 1 ), and the frequency is changed to a desired frequency while ensuring sufficient isolation. Furthermore, since the Q value in the high-frequency operation mode can be improved, good gain characteristics and noise characteristics can be obtained. Specifically, the Q value of the coil L11 and coil L12, the coil L21 and the coil L22 deteriorated by the same phase mode can be compensated by the coil L13 / L23, and a high Q value can be maintained even in the high frequency mode. Gain characteristics and noise characteristics can be obtained.

図3は、本発明の実施例2に係る半導体集積回路の共振回路部100を示したものである。図3(a)の共振回路部100は、結合係数k1を持ち、互いに並列に接続されるインダクタンスLのコイルL11及びインダクタンスLのコイルL12と、同様に、結合係数k1を持ち、互いに並列に接続されるインダクタンスLのコイルL21及びインダクタンスLのコイルL22と、コイルL11及びコイルL12に直列に接続されるインダクタンスLのコイルL13と、コイルL21及びコイルL22に直列に接続されるインダクタンスLのコイルL23と、コイルL11に並列に接続される静電容量CのコンデンサC11及び、コイルL12に並列に接続される静電容量CのコンデンサC12と、コイルL21に並列に接続される静電容量CのコンデンサC21及び、コイルL22に並列に接続される静電容量CのコンデンサC22とから構成される。 FIG. 3 shows a resonant circuit section 100 of a semiconductor integrated circuit according to the second embodiment of the present invention. Resonant circuit 100 of FIG. 3 (a) has a coupling coefficient k1, and the coil L11 and coil L12 of the inductance L 1 of the inductance L 1 connected in parallel with each other, similarly, has a coupling coefficient k1, parallel with each other a coil L22 of the coil L21 and the inductance L 1 of the inductance L 1 connected to the inductance of the coil L13 of the inductance L 2 connected in series to the coil L11 and the coil L12, is connected in series with the coil L21 and the coil L22 a coil L23 of L 2, a capacitor C11 and the capacitance C 1 connected in parallel to the coil L11, the capacitance C 1 of capacitor C12 connected in parallel to the coil L12, is connected in parallel to the coil L21 that the capacitor C21 and the capacitance C 1, the electrostatic connected in parallel to the coil L22 And a capacitor C22 Metropolitan capacity C 1.

ここで、コイルL13とコイルL23との結合係数はkとする。 Here, the coupling coefficient between the coil L13 and the coil L23 is set to k 2.

また、コイルL11及びコイルL12、コイルL21及びコイルL22、コイルL13及びコイルL23は、それぞれ逆位相の信号が流れると磁束が強め合う向きに巻かれているものとする。 Further, it is assumed that the coil L11 and the coil L12, the coil L21 and the coil L22, the coil L13 and the coil L23 are wound in directions in which magnetic fluxes are strengthened when signals having opposite phases flow.

そして、入力端子p1がコイルL11の一端及びコンデンサC11の一端に接続され、入力端子n1がコイルL12の一端及びコンデンサC12の一端に接続され、入力端子p2がコイルL21の一端及びコンデンサC21の一端に接続され、入力端子n2がコイルL22の一端及びコンデンサC22の一端に接続され、入力端子p1、n1、p2、n2には、入力信号供給部200から信号が供給される。 The input terminal p1 is connected to one end of the coil L11 and one end of the capacitor C11, the input terminal n1 is connected to one end of the coil L12 and one end of the capacitor C12, and the input terminal p2 is connected to one end of the coil L21 and one end of the capacitor C21. The input terminal n2 is connected to one end of the coil L22 and one end of the capacitor C22, and a signal is supplied from the input signal supply unit 200 to the input terminals p1, n1, p2, and n2.

入力端子p1と入力端子n1に互いに逆位相の信号が供給されると、コイルL11及びコイルL12で構成されるインダクタにはそれぞれ互いに逆相信号が流れ、磁束を強めあう方向に磁力が働くため、コイルL11、コイルL12及びコイルL13から構成されるインダクタのインダクタンスは、コイルL11とコイルL12の結合係数をkとすると、L=L(1+k)となる。コイルL21及びコイルL22についても同様に、コイルL21とコイルL22の結合係数をkとすると、L=L(1+k)となる。 When signals with opposite phases are supplied to the input terminal p1 and the input terminal n1, opposite phase signals flow through the inductors configured by the coil L11 and the coil L12, respectively, and magnetic force acts in the direction of strengthening the magnetic flux. The inductance of the inductor composed of the coil L11, the coil L12, and the coil L13 is L L = L 1 (1 + k 1 ) where the coupling coefficient between the coil L11 and the coil L12 is k 1 . Similarly, the coil L21 and the coil L22, the coupling coefficient of the coil L21 and the coil L22 and k 1, a L L = L 1 (1 + k 1).

また、L12とL22に流れる信号は逆相信号のため、L13とL23の影響は見えなくなる。したがって、共振周波数は、f=1/R{(2π√(L×C))、Q値はQ=(1/R)√(L/C)となり、Q値を劣化させずに、共振回路部100を低周波で共振させることが可能となる。 In addition, since the signals flowing through L12 and L22 are antiphase signals, the influence of L13 and L23 is invisible. Therefore, the resonance frequency is f L = 1 / R {(2π√ (L L × C 1 )), and the Q value is Q L = (1 / R) √ (L L / C 1 ), which degrades the Q value. Without causing the resonance circuit unit 100 to resonate at a low frequency.

図3(b)の共振回路部100は、入力端子n1及びp2に供給される信号の位相以外は、図3(a)と同様である。図3(b)では、入力端子p1と入力端子n1に、及び入力端子p2と入力端子n2に、互いに同位相の信号が供給される。また、入力端子p1及び入力端子n1に入力される信号の位相と、入力端子p2及び入力端子n2に入力される信号の位相とは、互いに逆位相である。   The resonance circuit unit 100 in FIG. 3B is the same as that in FIG. 3A except for the phase of the signal supplied to the input terminals n1 and p2. In FIG. 3B, signals having the same phase are supplied to the input terminal p1 and the input terminal n1, and to the input terminal p2 and the input terminal n2. Further, the phase of the signal input to the input terminal p1 and the input terminal n1 and the phase of the signal input to the input terminal p2 and the input terminal n2 are opposite to each other.

入力端子p1及びn1、p2及びn2に、それぞれ同位相の信号が供給されると、コイルL11及びコイルL12、コイルL21及びコイルL22には、それぞれ互いに同位相の信号が流れ、磁束を打ち消す方向に磁力が働くため、コイルL11及びコイルL12、コイルL21及びコイルL22から構成されるインダクタのインダクタンスは、コイルL11及びコイルL12、コイルL21及びコイルL22の結合係数をそれぞれkとすると、それぞれL(1−k)となる。 When signals having the same phase are supplied to the input terminals p1 and n1, and p2 and n2, signals having the same phase flow through the coils L11 and L12, and the coils L21 and L22, respectively, in a direction that cancels the magnetic flux. Since the magnetic force works, the inductance of the inductor composed of the coil L11 and the coil L12, the coil L21 and the coil L22 is L 1 (when the coupling coefficient of the coil L11 and the coil L12 and the coil L21 and the coil L22 is k 1 , respectively. 1-k 1 ).

また、コイルL13とコイルL23に流れる信号は逆位相の信号が流れるので、コイルL13とコイルL23には磁束を強め合う方向に磁力が働くため、コイルL13とコイルL23とで構成されるインダクタのインダクタンスは、コイルL13とコイルL23の結合係数をkとすると、L(1+k)となる。 In addition, since the signals flowing in the coils L13 and L23 are opposite in phase, a magnetic force acts on the coils L13 and L23 in the direction of strengthening the magnetic flux, so that the inductance of the inductor constituted by the coils L13 and L23 Is L 2 (1 + k 2 ), where k 2 is the coupling coefficient between the coil L13 and the coil L23.

以上より、コイルL11、コイルL12及びコイルL13から構成されるインダクタのインダクタンスは、L=2L(1+k)+L(1-k)となり、共振周波数はf=1/{2π√(LC)}、Q値はQ=(1/R)√(L/C)となり、Q値を劣化させずに共振回路部100を高周波で共振させることが可能となる。 From the above, the inductance of the inductor constituted by the coil L11, the coil L12, and the coil L13 is L H = 2L 2 (1 + k 2 ) + L 1 (1−k 1 ), and the resonance frequency is f H = 1 / {2π√ (L H C)}, the Q value is Q H = (1 / R) √ (L H / C), and the resonance circuit unit 100 can resonate at a high frequency without degrading the Q value. Become.

ここで、結合係数kを持つコイルL13及びコイルL23がない場合は、同インダクタンスはL´=L(1−k)となり、本実施例におけるQ値の方が、√(L/L´)倍高くなることが分かる。つまり、Q値を劣化させずに共振回路部100を高周波で共振させることが可能となる。 Here, if there is no coil L13 and coil L23 having a coupling coefficient k 2 is the inductance L H '= L 1 (1 -k 1) , and the better the Q value in the present embodiment, √ (L H It can be seen that / L H ′) times higher. That is, the resonance circuit unit 100 can be resonated at a high frequency without deteriorating the Q value.

図4は、本発明の実施例3に係る半導体集積回路を示したものである。本実施例は、実施例2の共振回路部100と、コイルL11、コイルL12及び、コイルL21、コイルL22にそれぞれ流れる信号を、選択的に同位相/逆位相に切り替えるスイッチM21〜M26から構成される入力信号供給部200とで構成されたカスコード構成の差動増幅回路である。   FIG. 4 shows a semiconductor integrated circuit according to Embodiment 3 of the present invention. The present embodiment is configured from the resonance circuit unit 100 of the second embodiment and switches M21 to M26 that selectively switch the signals flowing through the coil L11, the coil L12, and the coil L21 and the coil L22 to the same phase / antiphase. A differential amplifier circuit having a cascode configuration configured with the input signal supply unit 200.

上記の共振回路部100を低周波で共振させたい場合は、M21及びM23、M24及びM26をON(H)、M22及びM25をOFF(L)にして逆相の信号を共振器に供給する。   When it is desired to resonate the resonance circuit unit 100 at a low frequency, M21 and M23, M24 and M26 are turned ON (H), and M22 and M25 are turned OFF (L) to supply a signal having a reverse phase to the resonator.

インダクタンスL、共振周波数fL、Q値については、実施例2と同様に、L=L(1+k)、f=1/{2π√(LC)}、Q=(1/R)√(L/C)となる。 As with the second embodiment, the inductance L L , resonance frequency f L, and Q value are as follows: L L = L 1 (1 + k 1 ), f L = 1 / {2π√ (L L C)}, Q L = (1 / R) √ (L L / C).

また上記の共振回路部100を高周波で共振させたい場合、M21及びM22、M24及びM25をON(H)、M23及びM26をOFF(L)にして同相の信号を共振器に供給する。   When the resonance circuit unit 100 is desired to resonate at a high frequency, M21 and M22, M24 and M25 are turned on (H), and M23 and M26 are turned off (L) to supply in-phase signals to the resonator.

インダクタンスL、共振周波数fH、Q値については、実施例2と同様に、L=2L(1+k)+L(1-k)、f=1/{2π√(LC)}、Q=(1/R)√(L/C)となる。 As with the second embodiment, the inductance L H , resonance frequency f H, and Q value are L H = 2L 2 (1 + k 2 ) + L 1 (1−k 1 ), f H = 1 / {2π√ (L H C)}, Q H = (1 / R) √ (L H / C).

以上により、実施例2の効果に加え、各コイルに流れる信号を、選択的に同位相/逆位相に切り替えること可能になる。   As described above, in addition to the effects of the second embodiment, it is possible to selectively switch the signal flowing through each coil to the same phase / antiphase.

図5は本発明の実施例4の回路を示したものである。本実施例の回路は、実施例3の入力信号供給部200に、コイルL31に並列に可変容量コンデンサC31を、コイルL32に並列に可変容量コンデンサC32を更に設けることで、入力信号供給部200にLC共振回路を構成している。   FIG. 5 shows a circuit according to a fourth embodiment of the present invention. In the circuit of this embodiment, the input signal supply unit 200 according to the third embodiment is further provided with a variable capacitor C31 in parallel with the coil L31 and a variable capacitor C32 in parallel with the coil L32. An LC resonance circuit is configured.

この可変容量コンデンサC31及び可変容量コンデンサC32の容量を変えることで、実施例1乃至3の効果に加え、高周波動作モードや低周波動作モードに適宜変更することができるという効果が得られる。なお、LC共振回路のインピーダンスは所望の動作周波数において十分に高くなるように構成する。   By changing the capacitances of the variable capacitor C31 and the variable capacitor C32, in addition to the effects of the first to third embodiments, it is possible to appropriately change to the high frequency operation mode or the low frequency operation mode. Note that the impedance of the LC resonant circuit is configured to be sufficiently high at a desired operating frequency.

図6は本発明の実施例5の回路を示したものである。本実施例の回路は、実施例2の共振回路100を2つ備え、コイルL11及びコイルL12、コイルL21及びL22に流れる信号を選択的に同位相/逆位相に切り替えるスイッチMN21〜MN26、MP21〜MP26から構成される入力信号供給部200を備えた相補型のカスコード接続のゲート接地型差動増幅回路である。共振回路部100は実施例3と同様な制御を行うものとし、スイッチMN21〜MN26の制御信号に対してスイッチMP21〜MP26の制御信号はその反転信号で制御する。出力信号VOUT_P1とVOUT_P2は同位相の信号であるため電流加算して出力する。   FIG. 6 shows a circuit according to a fifth embodiment of the present invention. The circuit of the present embodiment includes two resonance circuits 100 of the second embodiment, and switches MN21 to MN26 and MP21 to selectively switch the signals flowing through the coils L11 and L12 and the coils L21 and L22 to the same phase / antiphase. This is a complementary cascode-connected gate-grounded differential amplifier circuit including an input signal supply unit 200 composed of MP26. The resonant circuit unit 100 performs the same control as that of the third embodiment, and the control signals of the switches MP21 to MP26 are controlled by the inverted signals with respect to the control signals of the switches MN21 to MN26. Since the output signals VOUT_P1 and VOUT_P2 are in-phase signals, the currents are added and output.

図7は本発明の実施例6の回路を示したものである。本実施例の回路は、実施例2と同様の共振回路部100を備え、コイルL11及びコイルL12、コイルL21及びコイルL22に流れる信号を選択的に同位相/逆位相に切り替えるスイッチM21〜M26から構成される入力信号供給部200を備え、M11及びM12はソース接地型増幅器、M31及びM32はゲート接地型増幅器として動作する増幅回路である。ソース接地回路とゲート接地回路はそれぞれ反転増幅、非反転増幅であるためM11及びM12、M31及びM32のトランスコンダクタンスGmを揃えることで共振回路部100には同じ振幅で逆位相の信号が流れる。またM31及びM32のDC電流源としてI1及びI2を付加している。   FIG. 7 shows a circuit according to a sixth embodiment of the present invention. The circuit of the present embodiment includes a resonance circuit unit 100 similar to that of the second embodiment, and includes switches M21 to M26 that selectively switch the signals flowing through the coil L11, the coil L12, the coil L21, and the coil L22 to the same phase / antiphase. The input signal supply unit 200 is configured, and M11 and M12 are amplifiers that operate as a common source amplifier, and M31 and M32 operate as a common gate amplifier. Since the grounded source circuit and the grounded gate circuit are inverting amplification and non-inverting amplification, respectively, by arranging the transconductances Gm of M11 and M12, M31 and M32, signals having the same amplitude and opposite phase flow through the resonance circuit unit 100. Further, I1 and I2 are added as DC current sources of M31 and M32.

上記の共振器回路部100を低周波で共振させたい場合、M21/M22、M24/M25をON(H)、M23/M26をOFF(L)にして逆相の信号を共振器に供給する。コイルL11及びコイルL12、コイルL21及びコイルL22で構成されるインダクタにはそれぞれ逆相信号が流れ、磁束を強め合う方向に働くため低周波で共振する。   When it is desired to resonate the resonator circuit unit 100 at a low frequency, M21 / M22 and M24 / M25 are turned on (H), and M23 / M26 is turned off (L), so that signals having opposite phases are supplied to the resonator. A negative phase signal flows through each of the inductors constituted by the coil L11, the coil L12, the coil L21, and the coil L22, and resonates at a low frequency because it works in the direction of strengthening the magnetic flux.

また上記の共振回路部100を高周波で共振させたい場合、M21/M23、M24/M26をON(H)、M22/M25をOFF(L)にして同相の信号を共振器に供給する。L11/L12及びL13/L14で構成されるインダクタにはそれぞれ同相信号が流れ、磁束を打ち消す方向に働くため高周波で共振する。 When the resonance circuit unit 100 is desired to resonate at a high frequency, M21 / M23 and M24 / M26 are turned on (H), and M22 / M25 is turned off (L), so that an in-phase signal is supplied to the resonator. An in-phase signal flows through each of the inductors constituted by L11 / L12 and L13 / L14, and resonates at a high frequency because it works in a direction to cancel the magnetic flux.

図8の回路は、本発明の実施例7の回路を示したものである。実施例2と同様の共振回路部100を備え、コイルL11及びコイルL12、コイルL21及びコイルL22に流れる信号を選択的に同位相/逆位相に切り替えるスイッチM21〜M26を備え、M11/M12はドレイン接地型増幅回路として動作する増幅回路である。上記のLC共振器は実施例1と同様な制御を行うものとし、主にバッファ回路として使用する。   The circuit in FIG. 8 shows a circuit according to the seventh embodiment of the present invention. The resonance circuit unit 100 is the same as that of the second embodiment, and includes switches M21 to M26 that selectively switch the signals flowing through the coil L11 and the coil L12, the coil L21 and the coil L22 to the same phase / antiphase, and M11 / M12 is a drain. The amplifier circuit operates as a grounded amplifier circuit. The above LC resonator performs the same control as in the first embodiment, and is mainly used as a buffer circuit.

図9の回路は本発明の実施例8の回路を示したものである。実施例2と同様の共振回路部100を備え、入力信号供給部200は、コイルL11/L12およびL13/L14に流れる信号を選択的に同位相/逆位相に切り替える電流源I2/I3およびバッファ素子M21〜M24を備え、I1がM11/M12に電流を供給する電流源として動作する。 The circuit of FIG. 9 shows the circuit of the eighth embodiment of the present invention. A resonance circuit unit 100 similar to that of the second embodiment is provided, and an input signal supply unit 200 is configured to selectively switch signals flowing through the coils L11 / L12 and L13 / L14 to the same phase / opposite phase, and the current source I2 / I3 and the buffer element M21 to M24 are provided, and I1 operates as a current source that supplies current to M11 / M12.

M21〜24のゲートに入力された電圧信号はそれぞれのトランジスタのドレインに反転信号として現れるため、電流源I2及びI3を選択的にON/OFFすることによりM22及びM23、M21及びM24のゲートに入力される信号がM11及びM12のドレインにおける電圧信号を同位相/逆位相に切り替えることができる。これにより実施例2と同様に出力信号の周波数を変化させることができる。
(その他の実施例)
Since the voltage signals input to the gates of M21 to 24 appear as inverted signals at the drains of the respective transistors, they are input to the gates of M22 and M23, and M21 and M24 by selectively turning on and off the current sources I2 and I3. The switched signal can switch the voltage signal at the drains of M11 and M12 to in-phase / anti-phase. As a result, the frequency of the output signal can be changed as in the second embodiment.
(Other examples)

実施例1乃至7のコンデンサC11及びコンデンサC12、コンデンサC21及びコンデンサC22を可変容量のコンデンサにしてもよい。これにより、周波数を変更することができ、同位相モードにより劣化したコイルL11及びコイルL12、コイルL21及びコイルL22のQ値を、コイルL13及びコイルL23、可変容量コンデンサC11及び可変容量コンデンサC12、可変容量コンデンサC21及び可変容量コンデンサC22で補償することで、広い可変周波数範囲を確保しつつ周波数帯を微調整できる上、高周波モード時にも高いQ値を保つことができ、良好な利得特性、雑音特性を得ることができる。   The capacitors C11 and C12, and the capacitors C21 and C22 of the first to seventh embodiments may be variable capacitors. Thereby, the frequency can be changed, and the Q values of the coil L11 and the coil L12, the coil L21 and the coil L22 deteriorated by the same phase mode are changed to the coil L13 and the coil L23, the variable capacitor C11 and the variable capacitor C12, and variable. Compensating with the capacitance capacitor C21 and the variable capacitance capacitor C22 makes it possible to finely adjust the frequency band while ensuring a wide variable frequency range, and also to maintain a high Q value even in the high frequency mode, and has good gain characteristics and noise characteristics. Can be obtained.

なお、上述した各実施例において、L11/L12及びL13/L14で構成されるインダクタを同位相で使用する場合、出力信号を足し合わせることで片側出力よりも信号レベルを大きくすることは可能である。   In each of the above-described embodiments, when the inductors composed of L11 / L12 and L13 / L14 are used in the same phase, the signal level can be made larger than the one-side output by adding the output signals. .

また、上記共振回路部100を含む増幅器はFET以外にもバイポーラでも構成することが可能であり、また極性を逆にしたPMOSにおいても実現可能である。 In addition, the amplifier including the resonance circuit unit 100 can be formed of a bipolar circuit in addition to the FET, and can also be realized in a PMOS having a reversed polarity.

10 アンテナ
11 T/Rスイッチ部
12 LNA
13 PA
14 MIX
15 VCO
16 LPF
100 共振回路部
200 入力信号供給部
L11、L12、L13、L21、L22、L23、L31、L32 コイル
C11、C12、C13、C21、C22、C23 コンデンサ
C31、C32 可変容量コンデンサ
M11、M12、M21〜M26、MN21〜MN26、MP21〜MP26 スイッチ
10 Antenna
11 T / R switch
12 LNA
13 PA
14 MIX
15 VCO
16 LPF
100 Resonant circuit unit 200 Input signal supply unit L11, L12, L13, L21, L22, L23, L31, L32 Coil
C11, C12, C13, C21, C22, C23 capacitors
C31, C32 variable capacitor
M11, M12, M21 to M26, MN21 to MN26, MP21 to MP26 switch

Claims (5)

第1の結合係数を有し、互いに並列に接続される第1のコイル及び第2のコイルと、
前記第1のコイル及び前記第2のコイルに直列に接続される第3のコイルと、
前記第1のコイルの一端と前記第3のコイルの一端に対し並列に接続される第1のコンデンサと、
前記第2のコイルの一端と前記第3のコイルの一端に対し並列に接続される第2のコンデンサと、
前記第1のコイルの一端と、前記第1のコンデンサの一端とに接続される第1の入力端子と、
前記第2のコイルの一端と、前記第2のコンデンサの一端とに接続される第2の入力端子と、
前記第1の入力端子と、前記第2の入力端子とにそれぞれ逆位相の入力信号を供給する入力信号供給部と
から構成されることを特徴とする半導体集積回路。
A first coil and a second coil having a first coupling coefficient and connected in parallel to each other;
A third coil connected in series to the first coil and the second coil;
A first capacitor connected in parallel to one end of the first coil and one end of the third coil;
A second capacitor connected in parallel to one end of the second coil and one end of the third coil;
A first input terminal connected to one end of the first coil and one end of the first capacitor;
A second input terminal connected to one end of the second coil and one end of the second capacitor;
A semiconductor integrated circuit comprising: an input signal supply unit that supplies input signals having opposite phases to the first input terminal and the second input terminal, respectively.
前記入力信号供給部は、前記第1の入力端子と、前記第2の入力端子とにそれぞれ同位相の入力信号を供給することを特徴とする半導体集積回路。   The semiconductor integrated circuit, wherein the input signal supply unit supplies input signals having the same phase to the first input terminal and the second input terminal, respectively. 前記第1の結合係数を有し、互いに並列に接続される第4のコイル及び第5のコイルと、
前記第4のコイル及び前記第5のコイルに直列に接続され、前記第3のコイルと第2の結合係数を有する第6のコイルと、
前記第4のコイルの一端と前記第6のコイルの一端に対し並列に接続される第3のコンデンサと、
前記第5のコイルの一端と前記第6のコイルの一端に対し並列に接続される第4のコンデンサと、
前記第4のコイルの一端と、前記第3のコンデンサの一端とに接続される第3の入力端子と、
前記第5のコイルの一端と、前記第4のコンデンサの一端とに接続される第4の入力端子と、
前記第1の入力端子と前記第2の入力端子とにそれぞれ逆位相の入力信号を供給し、前記第3の入力端子と前記第4の入力端子とにそれぞれ逆位相の入力信号を供給する入力信号供給部と
を更に有することを特徴とする請求項1に記載の半導体集積回路。
A fourth coil and a fifth coil having the first coupling coefficient and connected in parallel to each other;
A sixth coil connected in series to the fourth coil and the fifth coil and having a second coupling coefficient with the third coil;
A third capacitor connected in parallel to one end of the fourth coil and one end of the sixth coil;
A fourth capacitor connected in parallel to one end of the fifth coil and one end of the sixth coil;
A third input terminal connected to one end of the fourth coil and one end of the third capacitor;
A fourth input terminal connected to one end of the fifth coil and one end of the fourth capacitor;
Inputs that supply input signals of opposite phases to the first input terminal and the second input terminal, respectively, and supply input signals of opposite phases to the third input terminal and the fourth input terminal, respectively. The semiconductor integrated circuit according to claim 1, further comprising: a signal supply unit.
前記入力信号供給部は、前記第1の入力端子と前記第2の入力端子とに、それぞれ同位相の入力信号を供給し、
前記入力信号供給部は、前記第3の入力端子と前記第4の入力端子とに、それぞれ同位相の入力信号を供給し、
前記第1の入力端子及び前記第2の入力端子と、前記第3の入力端子及び前記第4の入力端子との入力信号は、それぞれ逆位相であることを特徴とする請求項3に記載の半導体集積回路。
The input signal supply unit supplies input signals having the same phase to the first input terminal and the second input terminal,
The input signal supply unit supplies input signals having the same phase to the third input terminal and the fourth input terminal,
The input signals of the first input terminal and the second input terminal, and the input signals of the third input terminal and the fourth input terminal are in opposite phases, respectively. Semiconductor integrated circuit.
前記入力信号供給部は、前記第1乃至第4の入力端子に入力する入力信号を、選択的に、同位相もしくは逆位相に切り替えるスイッチから構成されることを特徴とする請求項3に記載の半導体集積回路。   The said input signal supply part is comprised from the switch which selectively switches the input signal input into the said 1st thru | or 4th input terminal to the same phase or an opposite phase. Semiconductor integrated circuit.
JP2009213986A 2009-09-16 2009-09-16 Semiconductor integrated circuit Pending JP2011066570A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009213986A JP2011066570A (en) 2009-09-16 2009-09-16 Semiconductor integrated circuit
US12/881,446 US20110063050A1 (en) 2009-09-16 2010-09-14 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009213986A JP2011066570A (en) 2009-09-16 2009-09-16 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JP2011066570A true JP2011066570A (en) 2011-03-31

Family

ID=43729922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009213986A Pending JP2011066570A (en) 2009-09-16 2009-09-16 Semiconductor integrated circuit

Country Status (2)

Country Link
US (1) US20110063050A1 (en)
JP (1) JP2011066570A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9866184B1 (en) * 2016-09-28 2018-01-09 International Business Machines Corporation Degenerated transimpedance amplifier with wire-bonded photodiode for reducing group delay distortion

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI66268C (en) * 1980-12-16 1984-09-10 Euroka Oy MOENSTER OCH FILTERKOPPLING FOER AOTERGIVNING AV AKUSTISK LJUDVAEG ANVAENDNINGAR AV MOENSTRET OCH MOENSTRET TILLAEMPANDETALSYNTETISATOR
US5793196A (en) * 1996-07-03 1998-08-11 Sundstrand Corporation Current transformer for measuring differential-mode and common-mode current
US6476685B1 (en) * 2000-03-01 2002-11-05 William S. H. Cheung Network for providing group delay equalization for filter networks
DE102006004952A1 (en) * 2006-02-01 2007-08-16 Atmel Germany Gmbh Differential amplifier and radio system with differential amplifier

Also Published As

Publication number Publication date
US20110063050A1 (en) 2011-03-17

Similar Documents

Publication Publication Date Title
US11646697B2 (en) Resonator circuit
JP5302323B2 (en) Dual band coupled VCO
JP5989541B2 (en) Transformer-based CMOS oscillator
US7420429B2 (en) Source coupled differential complementary colpitts oscillator
US8922282B2 (en) Low output impedance RF amplifier
US20200313617A1 (en) Radio frequency oscillator
EP2685630B1 (en) A two stage single-ended input, differential output current reuse low noise amplifier
CN101032073B (en) Frequency-tunable oscillator arrangement
KR20120028391A (en) Configurable wide tuning range oscillator core
KR100423502B1 (en) Voltage controlled oscillator using an LC resonator and a differential amplifier
JP2006229266A (en) Voltage-controlled oscillator and rf-ic
JP2007166121A (en) Voltage-controlled oscillator, transmitter, and receiver
US20130169374A1 (en) Voltage controlled oscillator
WO2007099622A1 (en) Amplifier circuit
JP2011066570A (en) Semiconductor integrated circuit
JP2012253561A (en) Voltage-controlled oscillator
KR101503505B1 (en) wide-band voltage controlled oscillator using transformer coupling and resonance mode switching
US20210126620A1 (en) Radio frequency filtering circuitry
JPH11308048A (en) High frequency oscillation circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002