JP2011066353A - Aluminum paste for solar cell - Google Patents

Aluminum paste for solar cell Download PDF

Info

Publication number
JP2011066353A
JP2011066353A JP2009217944A JP2009217944A JP2011066353A JP 2011066353 A JP2011066353 A JP 2011066353A JP 2009217944 A JP2009217944 A JP 2009217944A JP 2009217944 A JP2009217944 A JP 2009217944A JP 2011066353 A JP2011066353 A JP 2011066353A
Authority
JP
Japan
Prior art keywords
mass
powder
aluminum
electrode
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009217944A
Other languages
Japanese (ja)
Inventor
Kosuke Tsunoda
航介 角田
Kosuke Ochi
浩輔 越智
Masao Yamagishi
正生 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2009217944A priority Critical patent/JP2011066353A/en
Priority to TW99127104A priority patent/TW201137895A/en
Priority to KR1020100089963A priority patent/KR20110031109A/en
Priority to CN2010102873362A priority patent/CN102024506A/en
Publication of JP2011066353A publication Critical patent/JP2011066353A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide aluminum paste for a solar cell capable of suppressing warpage of a back electrode while keeping an electrical characteristic, film strength and film appearance. <P>SOLUTION: Since a small amount of Sn powder is included in this aluminum paste, when an overall electrode 26 is formed on the back of a silicon substrate 12 by printing, drying and baking by using the paste, warpage of the silicon substrate 12 is reduced. In addition, when Sn is added, waterproofness of the overall electrode 26 formed of aluminum is improved and, since the additive amount is 0.3-5.0 (pts.mass) in 100 (pts.mass) of Al, that is, an extremely small amount such as 0.21-3.5 (pts.mass) in 100 (pts.mass) of paste, the conductivity, film strength and appearance of the overall electrode 26 are not influenced at all. Since the warpage can be suppressed without reducing the film thickness, a BSF effect can be sufficiently exerted. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、太陽電池の裏面電極用に好適なアルミニウムペーストに関する。   The present invention relates to an aluminum paste suitable for a back electrode of a solar cell.

例えば、一般的なシリコン系太陽電池は、p型多結晶半導体であるシリコン基板の上面にn+層を介して反射防止膜および受光面電極が備えられると共に、下面にp+層を介して裏面電極が備えられた構造を有している。受光により半導体のp−n接合に電力が生じ、これを電極を通して取り出すようになっている。 For example, a general silicon-based solar cell is provided with an antireflection film and a light-receiving surface electrode on an upper surface of a silicon substrate which is a p-type polycrystalline semiconductor via an n + layer, and on the lower surface via a p + layer. It has a structure with electrodes. By receiving light, electric power is generated in the pn junction of the semiconductor and is taken out through the electrode.

上記n+層はシリコン基板にn型のドーパントであるP(燐)などを拡散して形成したもので、例えば厚みが160〜300(μm)のシリコン基板において0.2〜0.6(μm)程度の厚みで設けられる。また、反射防止膜は窒化珪素、二酸化チタン、二酸化珪素等の薄膜から成るもので、十分な可視光透過率を保ちつつ表面反射率を低減して受光効率を高めるために設けられている。受光面電極は銀等を導体成分として含む厚膜材料から成るもので、この反射防止膜上に所謂ファイヤースルー法等で形成される。 The n + layer is formed by diffusing an n-type dopant such as P (phosphorus) in a silicon substrate. For example, in a silicon substrate having a thickness of 160 to 300 (μm), the thickness is about 0.2 to 0.6 (μm). Is provided. The antireflection film is made of a thin film such as silicon nitride, titanium dioxide, or silicon dioxide, and is provided to reduce the surface reflectance and increase the light receiving efficiency while maintaining a sufficient visible light transmittance. The light-receiving surface electrode is made of a thick film material containing silver or the like as a conductor component, and is formed on the antireflection film by a so-called fire-through method or the like.

一方、裏面電極は、帯状に設けられた例えば2本の帯状電極と、その帯状電極上を除く略全面に設けられた全面電極とから構成されている。全面電極はアルミニウムを導体成分とする厚膜材料から成るもので、帯状電極は銀を導体成分とする厚膜材料から成るものである。この帯状電極は裏面電極に導線等を半田付け可能にする目的で設けられている。   On the other hand, the back electrode is composed of, for example, two strip electrodes provided in a strip shape, and a full-surface electrode provided on substantially the entire surface excluding the strip electrode. The entire surface electrode is made of a thick film material containing aluminum as a conductor component, and the strip electrode is made of a thick film material containing silver as a conductor component. This strip electrode is provided for the purpose of enabling soldering of a lead wire or the like to the back electrode.

上記全面電極を形成するに際しては、スクリーン印刷法などを用いて裏面にアルミニウムペーストを塗布し、乾燥後、ペースト組成に応じた温度で焼成処理を施す。このとき、ペースト中のアルミニウムがシリコン基板に拡散して前記p+層が形成され、裏面側にpp+層間のフェルミ準位の差による電界ができ、生成キャリアの収集効率が向上するBSF(Back Surface Field)効果が得られる。上記のアルミニウムペーストには、例えば、アルミニウム粉末に、有機質ビヒクルと、アルミニウム電極の強度を向上させるためのガラスフリットとが添加される。 In forming the full-surface electrode, an aluminum paste is applied to the back surface by screen printing or the like, dried, and then fired at a temperature corresponding to the paste composition. At this time, the aluminum in the paste diffuses into the silicon substrate to form the p + layer, an electric field is generated on the back side due to the difference in Fermi level between the pp + layers, and the collection efficiency of the generated carriers is improved. Surface Field) effect is obtained. In the aluminum paste, for example, an organic vehicle and glass frit for improving the strength of the aluminum electrode are added to aluminum powder.

特開2000−090734号公報JP 2000-090734 A 特開2003−223813号公報Japanese Patent Laid-Open No. 2003-223813 特開2001−313402号公報JP 2001-313402 A 特開2008−166344号公報JP 2008-166344 A 特開2007−234625号公報JP 2007-234625 A 特公平06−105792号公報Japanese Examined Patent Publication No. 06-105792 特開2007−273760号公報JP 2007-273760 A

ところで、上述した太陽電池において、近年、コストダウンを図ることを目的として、シリコン基板厚みを200(μm)以下に薄くすることが検討されている。しかしながら、シリコン基板を薄くすると、電極形成のための焼成時にシリコンとアルミニウムの熱膨張率の差に起因して基板に応力が発生するので、シリコン基板が反り、延いては製造工程で割れる等の問題があった。   Incidentally, in the solar cell described above, in recent years, it has been studied to reduce the thickness of the silicon substrate to 200 (μm) or less for the purpose of reducing the cost. However, if the silicon substrate is thinned, stress is generated in the substrate due to the difference in thermal expansion coefficient between silicon and aluminum during firing for electrode formation, so that the silicon substrate warps and eventually breaks in the manufacturing process. There was a problem.

これに対して、基板厚みを薄くした場合の反りを低減する技術が種々提案されている。例えば、アルミニウム電極の厚さ寸法を薄くするものがある(例えば特許文献1を参照。)。この技術によれば焼成時の応力が小さくなるので反りが抑制されるが、裏面へのアルミニウム拡散量が少なくなり延いてはBSF効果が減じられるので電気的特性が低下すると共に、ブリスターや玉が発生し易く膜外観も低下する問題がある。   On the other hand, various techniques for reducing warpage when the substrate thickness is reduced have been proposed. For example, there is one that reduces the thickness dimension of an aluminum electrode (see, for example, Patent Document 1). According to this technology, warping is suppressed because the stress during firing is reduced, but the amount of aluminum diffused on the back surface is reduced and the BSF effect is reduced. There is a problem that the appearance of the film tends to be reduced and the appearance of the film is also lowered.

また、アルミニウムペーストにシリカやアルミナ等の熱膨張率がアルミニウムよりも小さく且つ融点がアルミニウムよりも高い無機化合物粉末を添加することも提案されている(例えば、特許文献2を参照。)。この技術によれば、添加した無機化合物粉末によってアルミニウム電極の熱膨張率が小さくされることから、焼成時の応力が小さくなり延いては反りが抑制されるが、絶縁材料割合が多くなるので電気的特性が低下する。しかも、アルミニウムの焼結が無機化合物粉末で阻害されるため、膜強度も低下する問題がある。   In addition, it has also been proposed to add inorganic compound powders such as silica and alumina having a smaller thermal expansion coefficient than aluminum and a higher melting point than aluminum to the aluminum paste (see, for example, Patent Document 2). According to this technique, since the thermal expansion coefficient of the aluminum electrode is reduced by the added inorganic compound powder, the stress at the time of firing is reduced and the warpage is suppressed. Characteristics are degraded. In addition, since the sintering of aluminum is inhibited by the inorganic compound powder, there is a problem that the film strength is also lowered.

また、アルミニウムペーストにシリコン粉末を添加することが提案されている(例えば、特許文献3を参照。)。シリコン粉末はアルミニウム電極の熱膨張率を低下させ延いては反りを抑制する目的で添加されるが、Al-Si共晶点は577(℃)でアルミニウムの融点660(℃)よりも低いので、膜中の液相量が多くなり、延いては裏面に形成される合金層の厚みも増加する。このため、上記目的に反し、却って反りが増大することとなる。Al-Mg合金粉末或いはMg粉末を添加することも提案されているが(例えば、特許文献4を参照。)、Al割合が高い範囲ではAl-Mg共晶点が450(℃)と低いので、シリコン粉末を添加した場合と同様に却って反りが増大する。   In addition, it has been proposed to add silicon powder to aluminum paste (see, for example, Patent Document 3). Silicon powder is added for the purpose of decreasing the thermal expansion coefficient of the aluminum electrode and suppressing warping, but the Al-Si eutectic point is 577 (° C), which is lower than the melting point of aluminum 660 (° C). The amount of liquid phase in the film increases, and the thickness of the alloy layer formed on the back surface also increases. For this reason, contrary to the said objective, curvature will increase on the contrary. Although addition of Al-Mg alloy powder or Mg powder has also been proposed (see, for example, Patent Document 4), since the Al-Mg eutectic point is as low as 450 (° C) when the Al ratio is high, In the same manner as when silicon powder is added, warpage increases.

また、アルミニウムよりも融点の高いアルミニウム含有合金粉末をアルミニウムペーストに添加するものがある(例えば、特許文献5を参照。)。合金の構成元素としては、チタンやバナジウム等が挙げられている。この技術によれば、合金粉末添加によって固相の析出温度が上昇するため、液相量が低下し延いては反りが抑制される。しかしながら、高融点合金粉末によってアルミニウム電極の導電性が低下する問題がある。これら特許文献1〜5に記載の技術では、反りを抑制できないか、電気的特性、引っ張り強度、膜外観等、他の特性が低下するので、太陽電池特性が得られない。   In addition, there is one in which an aluminum-containing alloy powder having a melting point higher than that of aluminum is added to an aluminum paste (see, for example, Patent Document 5). Titanium, vanadium, etc. are mentioned as a constituent element of an alloy. According to this technique, since the precipitation temperature of the solid phase increases due to the addition of the alloy powder, the amount of the liquid phase decreases and the warpage is suppressed. However, there is a problem that the conductivity of the aluminum electrode is lowered by the high melting point alloy powder. In the techniques described in these Patent Documents 1 to 5, the warpage cannot be suppressed, or other characteristics such as electrical characteristics, tensile strength, and film appearance are deteriorated, so that the solar cell characteristics cannot be obtained.

本発明は、以上の事情を背景として為されたもので、その目的は、電気的特性・膜強度・膜外観を保ちながら裏面電極の反りを抑制できる太陽電池用アルミニウムペーストを提供することにある。   The present invention has been made against the background of the above circumstances, and an object thereof is to provide an aluminum paste for a solar cell that can suppress warpage of a back electrode while maintaining electrical characteristics, film strength, and film appearance. .

斯かる目的を達成するため、本発明の要旨とするところは、Al粉末と、ガラスフリットと、ベヒクルとを含む太陽電池用アルミニウムペーストであって、前記Al粉末100質量部に対してSn粉末を0.3乃至5.0質量部の範囲内の割合で含むことにある。   In order to achieve such an object, the gist of the present invention is an aluminum paste for solar cells containing Al powder, glass frit, and a vehicle, and Sn powder is added to 100 parts by mass of the Al powder. It is to be included at a ratio in the range of 0.3 to 5.0 parts by mass.

このようにすれば、アルミニウムペーストには少量のSn粉末が含まれていることから、このペーストを用いて印刷・乾燥・焼成によりシリコン基板に裏面電極を形成すると、そのシリコン基板の反りが低減される。Al-Sn共晶点は228(℃)であってAlの融点よりも著しく低いにも拘わらず、如何なる作用によるものかも定かではないが、Si粉末やMg粉末等を添加した場合とは異なり、反りが抑制されるのである。しかも、Snを添加するとアルミニウム電極の耐水性が向上し、更に、添加量が0.3〜5.0(質量部)と極めて少量であるため、アルミニウム電極の導電性、膜強度や外観には全く影響を与えない。また、膜厚を薄くすることなく反りを抑制できるので、BSF効果を十分に享受できる。したがって、裏面電極に用いた場合に反りが抑制されると共に、電気的特性・膜強度・耐水性・外観に優れた太陽電池用アルミニウムペーストが得られる。   In this way, since the aluminum paste contains a small amount of Sn powder, if the back electrode is formed on the silicon substrate by printing, drying and firing using this paste, the warpage of the silicon substrate is reduced. The Although the Al-Sn eutectic point is 228 (° C) and it is significantly lower than the melting point of Al, it is not certain what effect it is, but unlike the case of adding Si powder or Mg powder, Warpage is suppressed. In addition, the addition of Sn improves the water resistance of the aluminum electrode, and the addition amount is very small, 0.3 to 5.0 (parts by mass), so it has no effect on the conductivity, film strength and appearance of the aluminum electrode. Absent. In addition, since the warpage can be suppressed without reducing the film thickness, the BSF effect can be fully enjoyed. Therefore, when used for the back electrode, warpage is suppressed, and an aluminum paste for solar cells excellent in electrical characteristics, film strength, water resistance, and appearance can be obtained.

なお、Sn添加量が0.3(質量部)未満では、シリコン基板の反りを抑制する効果が十分に得られない。一方、5.0(質量部)を越えても反り低減効果は殆ど変化せず、ブリスターや玉が多量に発生して膜外観が著しく低下する。そのため、Sn粉末量はAl粉末100(質量部)に対して0.3〜5.0(質量部)の範囲とすることが必須である。   Note that if the amount of Sn added is less than 0.3 (parts by mass), the effect of suppressing warpage of the silicon substrate cannot be sufficiently obtained. On the other hand, even if it exceeds 5.0 (parts by mass), the warp reduction effect is hardly changed, and a large amount of blisters and balls are generated and the film appearance is remarkably deteriorated. Therefore, it is essential that the Sn powder amount is in the range of 0.3 to 5.0 (parts by mass) with respect to 100 parts (parts by mass) of the Al powder.

因みに、前記特許文献6には、Al粉末100(質量部)に対して5〜50(質量部)のSn粉末を含むアルミニウムペーストが記載されているが、上述したように5.0(質量部)を越える多量のSn粉末を添加するとブリスターや玉が多量に発生する。上記特許文献6は、アルミニウム電極のメッキを可能とし延いてはリード線をはんだ付け可能とする目的でSn粉末を添加したもので、反りの抑制や膜外観等は全く考慮されていない。   Incidentally, although the said patent document 6 describes the aluminum paste containing 5-50 (mass part) Sn powder with respect to Al powder 100 (mass part), as above-mentioned, 5.0 (mass part) is described. If a large amount of Sn powder is added, blisters and balls are generated in large quantities. In the above-mentioned Patent Document 6, Sn powder is added for the purpose of enabling plating of an aluminum electrode and thus soldering of a lead wire, and no consideration is given to warpage suppression or film appearance.

また、前記特許文献7には、低融点のはんだ合金(すなわちSn合金)で被覆したアルミニウム粉末を用いたアルミニウムペーストが記載されている。このアルミニウムペーストはアルミニウムが溶融しない程度の低温焼成として基板の反りを抑制するもので、はんだ合金でアルミニウム粉末が相互に固着されると共に基板に裏面電極が固着される。そのため、このアルミニウムペーストで裏面電極を形成しても、シリコン基板にアルミニウムが拡散しないことからp+層が形成されないのでBSF効果が得られない。はんだ合金で被覆しないアルミニウム粉末を用いた第1電極層を基板側に設け、被覆したアルミニウム粉末を用いた第2電極層をその上に設けた2層構造とすることでBSF効果と反り抑制が可能となる旨が説明されているが、このような2層構造とすることは工程が煩雑になって製造コストの上昇をもたらすし、第1電極層を形成する際の反りを抑制するためにはこれを薄くする必要があるので、反りを抑制しつつ十分なBSF効果を得ることは困難である。 Patent Document 7 describes an aluminum paste using an aluminum powder coated with a low melting point solder alloy (ie, Sn alloy). This aluminum paste suppresses the warpage of the substrate as low-temperature firing to such an extent that aluminum does not melt. The aluminum powder is fixed to each other with a solder alloy, and the back electrode is fixed to the substrate. Therefore, even if the back electrode is formed with this aluminum paste, since the p + layer is not formed because aluminum does not diffuse into the silicon substrate, the BSF effect cannot be obtained. The BSF effect and warpage suppression can be achieved by providing a two-layer structure in which a first electrode layer using aluminum powder not coated with a solder alloy is provided on the substrate side and a second electrode layer using coated aluminum powder is provided thereon. Although it has been explained that it is possible, such a two-layer structure is complicated in order to increase the manufacturing cost and to suppress warping when forming the first electrode layer Since it is necessary to make this thin, it is difficult to obtain a sufficient BSF effect while suppressing warpage.

ここで、好適には、前記Sn粉末は平均粒径が2乃至10(μm)の範囲内である。Sn粉末の粒径が2(μm)以上であれば、凝集が生じがたいのでペースト調製時に一層良好な分散性が得られる。また、粒径が10(μm)以下であれば、一層少ない添加量で良好な分散性が得られる。平均粒径は、2.5〜5.0(μm)が一層好ましい。また、Sn粉末の添加量は、1.0〜5.0(質量部)の範囲が一層好ましい。   Here, preferably, the Sn powder has an average particle diameter in the range of 2 to 10 (μm). If the particle size of the Sn powder is 2 (μm) or more, agglomeration is unlikely to occur, so that better dispersibility can be obtained during paste preparation. If the particle size is 10 (μm) or less, good dispersibility can be obtained with a smaller addition amount. The average particle size is more preferably 2.5 to 5.0 (μm). The addition amount of Sn powder is more preferably in the range of 1.0 to 5.0 (parts by mass).

また、好適には、前記アルミニウムペーストは、ペースト全体100(質量部)中に、アルミニウム粉末を60(質量部)以上80(質量部)以下の範囲、ガラス粉末を5(質量部)以下の範囲でそれぞれ含むものである。Sn粉末はペースト100(質量部)中に0.21〜3.5(質量部)の範囲で含まれる。アルミニウム粉末を60(質量部)以上にすれば、電極の導電性が一層高められると共に基板へのAl拡散量が一層多くなる。また、アルミニウム粉末を80(質量部)以下に留めれば、ビヒクル量を十分に多くできるので印刷性に一層優れたペーストが得られる。ガラス粉末は基板への電極の固着強度を高めるためには添加されることが必須であるが、十分に高い導電性を得るためには5(質量部)以下に留めることが望ましい。なお、有機質ベヒクルは、例えば上記アルミニウム粉末、ガラス粉末、およびSn粉末の他のペーストの残部を占める。   Preferably, the aluminum paste is in a range of 60 (parts by mass) to 80 (parts by mass) of aluminum powder and 5 (parts by mass) or less of glass powder in the entire paste 100 (parts by mass). Including each. Sn powder is contained in the paste 100 (parts by mass) in the range of 0.21 to 3.5 (parts by mass). When the aluminum powder is 60 (parts by mass) or more, the conductivity of the electrode is further increased and the amount of Al diffusion into the substrate is further increased. Further, if the aluminum powder is kept at 80 (parts by mass) or less, the amount of vehicle can be sufficiently increased, so that a paste with more excellent printability can be obtained. The glass powder is essential to be added in order to increase the adhesion strength of the electrode to the substrate, but in order to obtain sufficiently high conductivity, it is desirable to keep it at 5 (parts by mass) or less. The organic vehicle occupies the balance of the other pastes of the aluminum powder, glass powder, and Sn powder, for example.

また、好適には、前記アルミニウム粉末は、平均粒径が2乃至9(μm)の範囲内である。粒径が大きくなると分散性が劣る傾向があり、また、粒径が著しく小さくなっても凝集などに起因して分散性が劣る傾向が生ずるので、上記粒径範囲が好ましい。上記観点から、アルミニウム粉末の平均粒径は、5〜7(μm)の範囲が一層好ましい。   Preferably, the aluminum powder has an average particle size in the range of 2 to 9 (μm). When the particle size is increased, the dispersibility tends to be inferior, and even when the particle size is significantly decreased, the dispersibility tends to be inferior due to aggregation or the like. From the above viewpoint, the average particle size of the aluminum powder is more preferably in the range of 5 to 7 (μm).

また、前記有機質ビヒクルは特に限定されない。例えば、セルロース系高分子、アクリル樹脂等の適宜の樹脂をターピネオールやブチルカルビトール等で溶解したものを用いることができる。   The organic vehicle is not particularly limited. For example, what melt | dissolved appropriate resin, such as a cellulose polymer and an acrylic resin, with terpineol, butyl carbitol, etc. can be used.

また、ガラス粉末も特に限定されない。鉛系、ビスマス系、硼珪酸系等、種々のものを用い得る。但し、対環境性を考慮すると、非鉛系が好ましい。また、ガラス粉末の平均粒径は例えば1乃至10(μm)の範囲内が好適である。   Further, the glass powder is not particularly limited. Various materials such as lead-based, bismuth-based, and borosilicate-based materials can be used. However, in consideration of environment, non-lead type is preferable. The average particle size of the glass powder is preferably in the range of 1 to 10 (μm), for example.

また、前記アルミニウムペーストは、前記各成分の他に、その特性を妨げない範囲で他の添加物を適宜含むことができる。添加物としては、例えば、ペーストに一般的に使用されるフタル酸エステルやアジピン酸エステルなどの可塑剤、ビニル系ポリマーやポリカルボン酸などに代表される分散剤などが挙げられる。   Moreover, the said aluminum paste can contain suitably other additives in the range which does not disturb the characteristic other than said each component. Examples of the additive include plasticizers such as phthalic acid esters and adipic acid esters generally used in pastes, and dispersants typified by vinyl polymers and polycarboxylic acids.

本発明の一実施例のアルミニウムペーストが裏面電極の形成に適用された太陽電池の断面構造を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of the solar cell with which the aluminum paste of one Example of this invention was applied for formation of a back surface electrode. 図1の太陽電池の裏面電極を示す図である。It is a figure which shows the back surface electrode of the solar cell of FIG. Sn添加量とシリコン基板の反りとの関係の評価結果である。It is the evaluation result of the relationship between Sn addition amount and the curvature of a silicon substrate.

以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following embodiments, the drawings are appropriately simplified or modified, and the dimensional ratios, shapes, and the like of the respective parts are not necessarily drawn accurately.

図1は、本発明の一実施例の太陽電池用アルミニウムペーストが適用されたシリコン系太陽電池10の断面構造を模式的に示す図である。図1において、太陽電池10は、例えばp型多結晶半導体であるシリコン基板12と、その上下面にそれぞれ形成されたn+層14およびp+層16と、そのn+層14上に形成された反射防止膜18および受光面電極20と、そのp+層16上に形成された裏面電極22とを備えている。上記シリコン基板12の厚さ寸法は例えば100〜200(μm)の範囲内、例えば180(μm)程度で、125×125(mm)程度の矩形薄板状或いは直径125(mm)程度の円板状を成すものである。 FIG. 1 is a diagram schematically showing a cross-sectional structure of a silicon-based solar cell 10 to which an aluminum paste for solar cell according to an embodiment of the present invention is applied. In FIG. 1, a solar cell 10 is formed on a silicon substrate 12 which is, for example, a p-type polycrystalline semiconductor, an n + layer 14 and a p + layer 16 respectively formed on the upper and lower surfaces thereof, and the n + layer 14. The antireflection film 18 and the light receiving surface electrode 20, and the back electrode 22 formed on the p + layer 16 are provided. The thickness dimension of the silicon substrate 12 is in the range of, for example, 100 to 200 (μm), for example, about 180 (μm), and is a rectangular thin plate of about 125 × 125 (mm) or a disk shape of about 125 (mm) in diameter. It is what constitutes.

上記のn+層14およびp+層16は、シリコン基板12の上下面に不純物濃度の高い層を形成することで設けられたもので、その高濃度層の厚さ寸法はn+層14が例えば70〜100(nm)程度、p+層16が例えば500(nm)程度である。n+層14は、一般的なシリコン系太陽電池では100〜200(nm)程度であるが、本実施例ではそれよりも薄くなっており、シャローエミッタと称される構造を成している。なお、n+層14に含まれる不純物は、n型のドーパント、例えば燐(P)で、p+層16に含まれる不純物は、p型のドーパント、例えばアルミニウム(Al)である。 The n + layer 14 and the p + layer 16 are provided by forming layers having a high impurity concentration on the upper and lower surfaces of the silicon substrate 12, and the thickness of the high concentration layer is the same as that of the n + layer 14. For example, about 70 to 100 (nm), and the p + layer 16 is about 500 (nm), for example. The n + layer 14 is about 100 to 200 (nm) in a general silicon solar cell, but is thinner than that in the present embodiment, and has a structure called a shallow emitter. The impurity contained in the n + layer 14 is an n-type dopant such as phosphorus (P), and the impurity contained in the p + layer 16 is a p-type dopant such as aluminum (Al).

また、前記の反射防止膜18は、例えば、窒化珪素 Si3N4等から成る薄膜で、例えば可視光波長の1/4程度の光学的厚さ、例えば80(nm)程度で設けられることによって10(%)以下、例えば2(%)程度の極めて低い反射率に構成されている。 The antireflection film 18 is a thin film made of, for example, silicon nitride Si 3 N 4 , and is provided with an optical thickness of, for example, about ¼ of the visible light wavelength, for example, about 80 (nm). It is configured to have an extremely low reflectance of 10 (%) or less, for example, 2 (%).

また、前記の受光面電極20は、例えば一様な厚さ寸法の厚膜導体から成るもので、受光面24の略全面に多数本の細線部を有する櫛状を成す平面形状で設けられている。上記の厚膜導体は、Agを67〜98(wt%)の範囲内、例えば94.3(wt%)程度、およびガラスを2〜33(wt%)の範囲内、例えば5.7(wt%)程度を含む厚膜銀から成るものである。上記ガラスは例えば硼珪酸ガラスや鉛ガラスである。   Further, the light receiving surface electrode 20 is made of, for example, a thick film conductor having a uniform thickness, and is provided in a planar shape that forms a comb shape having a large number of thin wire portions on substantially the entire surface of the light receiving surface 24. Yes. The above thick film conductor has a Ag in the range of 67 to 98 (wt%), for example, about 94.3 (wt%), and a glass in the range of 2 to 33 (wt%), for example, about 5.7 (wt%). It consists of thick film silver. The glass is, for example, borosilicate glass or lead glass.

また、前記の裏面電極22は、図2に模式的に示すように、p+層16上に帯状に設けられた厚膜銀からなる帯状電極28と、その帯状電極28上を除く略全面に一部がその帯状電極28に重なるように設けられたアルミニウムを導体成分とする厚膜から成る全面電極26とから構成されている。全面電極26を構成する厚膜はアルミニウム、微量のSn、およびガラスから成るもので、例えば、アルミニウム100(質量部)に対して、Snが0.3〜5(質量部)程度、ガラスが2.9(質量部)程度含まれている。なお、上記の帯状電極28は、裏面電極22に導線等を半田付け可能にするために設けられたものである。 Further, as schematically shown in FIG. 2, the back electrode 22 has a strip electrode 28 made of thick film silver provided on the p + layer 16 in a strip shape, and substantially the entire surface excluding the strip electrode 28. A full-surface electrode 26 made of a thick film having aluminum as a conductor component provided so as to partially overlap the belt-like electrode 28. The thick film constituting the entire surface electrode 26 is made of aluminum, a small amount of Sn, and glass. For example, Sn is about 0.3 to 5 (parts by mass) and glass is 2.9 (parts by mass) with respect to 100 parts (parts by mass) of aluminum. Part) is included. The strip electrode 28 is provided in order to make it possible to solder a conductive wire or the like to the back electrode 22.

本実施例の太陽電池10は、上述したように受光面24側からn+層14、p型シリコン基板12、p+層16が備えられたn+pp+構造を有していることから、BSF効果が好適に得られている。そのため、高い集電効率を有する利点がある。 Solar cell 10 of the embodiment, since it is a n + pp + structure from the light receiving surface 24 side is n + layer 14, p-type silicon substrate 12, p + layer 16 provided as described above, The BSF effect is suitably obtained. Therefore, there is an advantage of having high current collection efficiency.

上記の太陽電池10は、例えば、以下のようにしてアルミニウムペーストを調製すると共に、これを用いて裏面の全面電極26を形成することにより製造される。まず、アルミニウム粉末 100(質量部)と、有機質ビヒクル 32〜40(質量部)と、ガラス粉末 2.9(質量部)と、Sn粉末 0.3〜5.0(質量部)とを混合する。ペースト全体を100(wt%)とすると、アルミニウム粉末が70(wt%)、ガラス粉末が2.0(wt%)、Sn粉末が0.21〜3.5(wt%)、ベヒクルが24.5〜27.79(wt%)になる。アルミニウム粉末は、例えば平均粒径が6(μm)程度の球状或いは球状に近い粉末である。また、ガラス粉末は例えばSiO2-B2O3-ZnO系ガラスで、例えば平均粒径は5(μm)程度である。また、Sn粉末は水−アトマイズ法で製造した球状粒子で、表1に示すように平均粒径が2.5〜10(μm)のものを用いた。このような組成で調合した試料を例えば三本ロールミルで混練し、アルミニウムペーストを得た。 The solar cell 10 is manufactured, for example, by preparing an aluminum paste as described below and forming a full-surface electrode 26 on the back surface using the aluminum paste. First, aluminum powder 100 (mass part), organic vehicle 32-40 (mass part), glass powder 2.9 (mass part), and Sn powder 0.3-5.0 (mass part) are mixed. Assuming that the entire paste is 100 (wt%), aluminum powder is 70 (wt%), glass powder is 2.0 (wt%), Sn powder is 0.21 to 3.5 (wt%), vehicle is 24.5 to 27.79 (wt%) Become. The aluminum powder is, for example, a spherical or nearly spherical powder having an average particle size of about 6 (μm). The glass powder is, for example, SiO 2 —B 2 O 3 —ZnO glass, and the average particle size is, for example, about 5 (μm). Sn powder was spherical particles produced by a water-atomization method, and those having an average particle diameter of 2.5 to 10 (μm) as shown in Table 1. A sample prepared with such a composition was kneaded by, for example, a three-roll mill to obtain an aluminum paste.

Figure 2011066353
Figure 2011066353

なお、上記の表1において、実施例1〜9および比較例13,14はSn粉末を用いたものであるが、実施例10、11はSn粉末に代えてSn/Ag3/Cu0.5合金を用いた異なる実施例、比較例12は何ら金属粉末等が添加されていないもの、比較例15はSi粉末を添加したもの、比較例16はSiO2粉末を添加したものである。各実施例および比較例の金属粉末等の粒径および添加量は表1に示した通りである。また、比較例13,14は、Sn粉末の添加量をそれぞれAl粉末100(質量部)に対して0.1(質量部)、8.0(質量部)としたものである。 In Table 1, Examples 1 to 9 and Comparative Examples 13 and 14 use Sn powder, but Examples 10 and 11 use Sn / Ag3 / Cu0.5 alloy instead of Sn powder. The different examples used and Comparative Example 12 are those to which no metal powder or the like is added, Comparative Example 15 is the one to which Si powder is added, and Comparative Example 16 is the one to which SiO 2 powder is added. The particle diameters and addition amounts of the metal powders and the like of each Example and Comparative Example are as shown in Table 1. In Comparative Examples 13 and 14, the amount of Sn powder added was 0.1 (parts by mass) and 8.0 (parts by mass) with respect to 100 parts (parts by mass) of Al powder.

次いで、例えば厚さ寸法が180(μm)程度、大きさが125×125(mm)程度の矩形薄板状のp型シリコン基板12を用意し、これに表面銀電極すなわち受光面電極20と、裏面銀電極すなわち帯状電極28とを、それぞれ例えば厚膜スクリーン印刷法で印刷形成し、乾燥処理を施す。次いで、これに上記のアルミニウムペーストを例えば厚膜スクリーン印刷法を用いて印刷する。印刷製版には例えばステンレス製200メッシュを用い、ペースト付量は7(mg/cm2)とした。印刷後、80(℃)で乾燥し、大気雰囲気中で近赤外線高速焼成炉を用いて焼成温度700〜800(℃)で焼成した。すなわち、銀電極およびアルミニウム電極を一括焼成した。これにより、前記受光面電極20および裏面電極22が形成され、前記太陽電池10が得られる。 Next, for example, a rectangular thin plate-shaped p-type silicon substrate 12 having a thickness of about 180 (μm) and a size of about 125 × 125 (mm) is prepared. A silver electrode, that is, a belt-like electrode 28 is formed by printing, for example, by a thick film screen printing method, and a drying process is performed. Next, the above-described aluminum paste is printed on this using, for example, a thick film screen printing method. For printing plate making, for example, stainless steel 200 mesh was used, and the amount of paste applied was 7 (mg / cm 2 ). After printing, it was dried at 80 (° C.), and baked at a baking temperature of 700 to 800 (° C.) using a near-infrared high-speed baking furnace in the air atmosphere. That is, the silver electrode and the aluminum electrode were collectively fired. Thereby, the said light-receiving surface electrode 20 and the back surface electrode 22 are formed, and the said solar cell 10 is obtained.

上記のようにして製造した太陽電池10について、反り、膜強度、耐水性、および外観を評価した。結果を表1の右欄に示す。反りは、受光面24側を上にして水平面に置き、下面の高さを反り量とした。また、膜強度は、粘着テープを全面電極26に貼り付けて引き剥がし、電極膜の剥離の有無を評価した。剥離しなかった場合を○、剥離した場合を×とした。また、耐水性は、全面電極26を80(℃)の温水中に漬け、膜面に気泡が発生するか否かを評価した。2分以下で気泡が発生したものを×、2〜10分で気泡が発生したものを△、気泡が発生するまでの時間が10分以上のものを○とした。また、外観は、膜表面を観察してブリスターや玉が発生していた場合を×、ない場合を○とした。   The solar cell 10 manufactured as described above was evaluated for warpage, film strength, water resistance, and appearance. The results are shown in the right column of Table 1. The warpage was placed on a horizontal surface with the light-receiving surface 24 side up, and the height of the lower surface was taken as the amount of warpage. Further, the film strength was evaluated by determining whether or not the electrode film was peeled off by sticking the adhesive tape to the entire surface electrode 26 and peeling it off. The case where it did not exfoliate was set as (circle) and the case where it peeled off was set as x. Further, the water resistance was evaluated by immersing the entire surface electrode 26 in warm water of 80 (° C.) and generating bubbles on the film surface. The case where bubbles were generated in 2 minutes or less was evaluated as x, the case where bubbles were generated in 2 to 10 minutes was evaluated as Δ, and the time until bubbles were generated was determined as 10 minutes. Further, the appearance was evaluated as x when blisters or balls were observed by observing the film surface, and ◯ when there was no blister.

上記評価結果に示されるように、Al 100(質量部)に対して、Snを0.3〜5.0(質量部)の範囲で含む、すなわちペースト100(質量部)中にSnを0.21〜3.5(質量部)の範囲で含む実施例1〜9では、反りが1.0〜1.8(mm)であった。また、Sn/Ag3/Cu0.5を2.0(質量部)含む実施例10,11でも反りが1.0〜1.2(mm)に留まった。また、実施例では何れも膜強度、外観ともに良好で、耐水性も実施例1がやや劣る他は全て良好であった。   As shown in the above evaluation results, with respect to Al 100 (parts by mass), Sn is contained in the range of 0.3 to 5.0 (parts by mass), that is, Sn in paste 100 (parts by mass) is 0.21 to 3.5 (parts by mass). In Examples 1 to 9 included in the range of), the warpage was 1.0 to 1.8 (mm). Further, even in Examples 10 and 11 containing 2.0 (parts by mass) of Sn / Ag3 / Cu0.5, the warpage remained at 1.0 to 1.2 (mm). Further, in all the examples, the film strength and the appearance were both good, and the water resistance was all good except that Example 1 was slightly inferior.

これに対して、Snを添加しない比較例12では反りが2.4(mm)、また、0.1(質量部)添加した比較例13でも反りが2.2(mm)と、何れも2(mm)以上の大きな反りであった。Siを添加した比較例15でも反りが2.6(mm)と大きい結果であった。また、Snを添加しない比較例12は、耐水性、外観共に劣っていた。SnをAl 100(質量部)に対して0.1(質量部)すなわちペースト100(質量部)中に0.07(質量部)含む比較例13およびSiを添加した比較例15では、上記反りが大きいことに加えて耐水性がやや劣っていた。SnをAl 100(質量部)に対して8.0(質量部)すなわちペースト100(質量部)中に5.6(質量部)含む比較例14では、反りは1.3(mm)と小さくなったものの、ブリスターや玉が多く見られ、外観が劣る結果となった。また、SiO2を添加した比較例16は、反りは1.2(mm)と小さくなったものの、膜強度が弱く、耐水性も不十分であった。 On the other hand, in Comparative Example 12 in which Sn was not added, the warpage was 2.4 (mm), and in Comparative Example 13 in which 0.1 (mass part) was added, the warpage was 2.2 (mm), both of which were 2 (mm) or more. It was a warp. In Comparative Example 15 to which Si was added, the warpage was as large as 2.6 (mm). Moreover, the comparative example 12 which does not add Sn was inferior in both water resistance and appearance. In Comparative Example 13 in which Sn is 0.1 (mass part) with respect to Al 100 (mass part), that is, 0.07 (mass part) in paste 100 (mass part) and Comparative Example 15 in which Si is added, the warpage is large. In addition, the water resistance was slightly inferior. In Comparative Example 14 where Sn is 8.0 (parts by mass) with respect to Al 100 (parts by mass), that is, 5.6 (parts by mass) in paste 100 (parts by mass), the warpage was as small as 1.3 (mm). Many balls were seen, resulting in poor appearance. In Comparative Example 16 to which SiO 2 was added, although the warpage was as small as 1.2 (mm), the film strength was weak and the water resistance was insufficient.

上記の評価結果によれば、Sn或いはSn合金をAl 100(質量部)に対して0.3〜5.0(質量部)すなわちペースト100(質量部)中に0.21〜3.5(質量部)含む場合に、反りを2.0(mm)未満の小さい値にすることができ、膜強度が高く、良好な外観が得られることが明らかである。特に、添加量をAl 100(質量部)に対して1.0(質量部)すなわちペースト100(質量部)中に0.7(質量部)以上にすれば、反りが1.4(mm)以下に留まると共に、耐水性も十分に高められる。   According to the above evaluation results, when Sn or Sn alloy is contained 0.3 to 5.0 (parts by mass) with respect to Al 100 (parts by mass), that is, 0.21 to 3.5 (parts by mass) in paste 100 (parts by mass), warpage occurs. It is apparent that can be made a small value of less than 2.0 (mm), the film strength is high, and a good appearance can be obtained. In particular, if the addition amount is 1.0 (parts by mass) with respect to Al 100 (parts by mass), that is, 0.7 (parts by mass) or more in the paste 100 (parts by mass), the warpage remains at 1.4 (mm) or less and water resistance Sex is also sufficiently enhanced.

図3は、横軸にAl 100(質量部)に対するSnまたはSn合金の添加量を、縦軸に反り量をとって、上記の評価結果をグラフに表したものである。添加量がAl 100(質量部)に対して0.3(質量部)すなわちペースト100(質量部)中に0.21(質量部)を越えたところから急激に反りが小さくなる傾向が認められ、Al 100(質量部)に対して1.0(質量部)以上すなわちペースト100(質量部)中に0.7(質量部)以上であれば、反りの変化が略横這いになることが判る。また、相違は比較的小さいものの、粒径が大きい方が反りが小さくなる傾向が認められた。   FIG. 3 is a graph showing the above evaluation results, with the horizontal axis representing the amount of Sn or Sn alloy added to Al 100 (parts by mass) and the vertical axis representing the amount of warpage. The tendency for the warpage to decrease sharply from where the addition amount exceeds 0.31 (parts by mass) with respect to Al 100 (parts by mass), that is, 0.21 (parts by mass) in paste 100 (parts by mass), is confirmed. It can be seen that the change in warping becomes almost horizontal when the mass is 1.0 (mass part) or more with respect to (mass part), that is, 0.7 (mass part) or more in the paste 100 (mass part). Further, although the difference was relatively small, it was recognized that the warp tends to be smaller as the particle size is larger.

以上説明したように、本実施例によれば、アルミニウムペーストに少量のSn粉末が含まれていることから、このペーストを用いて印刷・乾燥・焼成によりシリコン基板12の裏面に全面電極26を形成すると、そのシリコン基板12の反りが低減される。しかも、Snを添加するとアルミニウムから成る全面電極26の耐水性が向上し、更に、添加量がAl 100(質量部)に対して0.3〜5.0(質量部)すなわちペースト100(質量部)中に0.21〜3.5(質量部)と極めて少量であるため、全面電極26の導電性、膜強度や外観には全く影響を与えない。また、膜厚を薄くすることなく反りを抑制できるので、BSF効果を十分に享受できる。   As described above, according to this embodiment, since a small amount of Sn powder is contained in the aluminum paste, the entire surface electrode 26 is formed on the back surface of the silicon substrate 12 by printing, drying, and baking using this paste. Then, the warp of the silicon substrate 12 is reduced. Moreover, when Sn is added, the water resistance of the entire surface electrode 26 made of aluminum is improved, and the addition amount is 0.3 to 5.0 (parts by mass) with respect to Al 100 (parts by mass), that is, 0.21 in the paste 100 (parts by mass). Since it is a very small amount of ~ 3.5 (parts by mass), it does not affect the conductivity, film strength and appearance of the entire surface electrode 26 at all. In addition, since the warpage can be suppressed without reducing the film thickness, the BSF effect can be fully enjoyed.

以上、本発明を図面を参照して詳細に説明したが、本発明は更に別の態様でも実施でき、その主旨を逸脱しない範囲で種々変更を加え得るものである。   As mentioned above, although this invention was demonstrated in detail with reference to drawings, this invention can be implemented also in another aspect, A various change can be added in the range which does not deviate from the main point.

10:太陽電池、12:シリコン基板、14:n+層、16:p+層、18:反射防止膜、20:受光面電極、22:裏面電極、24:受光面、26:全面電極、28:帯状電極 10: solar cell, 12: silicon substrate, 14: n + layer, 16: p + layer, 18: antireflection film, 20: light receiving surface electrode, 22: back electrode, 24: light receiving surface, 26: full surface electrode, 28 : Strip electrode

Claims (2)

Al粉末と、ガラスフリットと、ベヒクルとを含む太陽電池用アルミニウムペーストであって、
前記Al粉末100質量部に対してSn粉末を0.3乃至5.0質量部の範囲内の割合で含むことを特徴とする太陽電池用アルミニウムペースト。
An aluminum paste for solar cells containing Al powder, glass frit, and vehicle,
An aluminum paste for solar cells, comprising Sn powder in a proportion of 0.3 to 5.0 parts by mass with respect to 100 parts by mass of the Al powder.
前記Sn粉末は平均粒径が2乃至10(μm)の範囲内である請求項1の太陽電池用アルミニウムペースト。   The aluminum paste for solar cells according to claim 1, wherein the Sn powder has an average particle size in the range of 2 to 10 (µm).
JP2009217944A 2009-09-18 2009-09-18 Aluminum paste for solar cell Pending JP2011066353A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009217944A JP2011066353A (en) 2009-09-18 2009-09-18 Aluminum paste for solar cell
TW99127104A TW201137895A (en) 2009-09-18 2010-08-13 Aluminum paste for solar cell
KR1020100089963A KR20110031109A (en) 2009-09-18 2010-09-14 Aluminum paste for solar cell
CN2010102873362A CN102024506A (en) 2009-09-18 2010-09-17 Aluminum paste for solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009217944A JP2011066353A (en) 2009-09-18 2009-09-18 Aluminum paste for solar cell

Publications (1)

Publication Number Publication Date
JP2011066353A true JP2011066353A (en) 2011-03-31

Family

ID=43865696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009217944A Pending JP2011066353A (en) 2009-09-18 2009-09-18 Aluminum paste for solar cell

Country Status (4)

Country Link
JP (1) JP2011066353A (en)
KR (1) KR20110031109A (en)
CN (1) CN102024506A (en)
TW (1) TW201137895A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881351A (en) * 2012-09-26 2013-01-16 湖南红太阳光电科技有限公司 Back tin electrode slurry for crystalline silicon photovoltaic cells and method for preparing back tin electrode slurry
WO2013162024A1 (en) * 2012-04-26 2013-10-31 京セラ株式会社 Solar cell element and method for producing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5134722B1 (en) * 2011-12-02 2013-01-30 株式会社ノリタケカンパニーリミテド Solar cell and paste material used therefor
JP5937904B2 (en) * 2012-06-26 2016-06-22 株式会社ノリタケカンパニーリミテド Paste composition for solar cell electrode
CN107486553B (en) * 2016-06-12 2019-08-02 苏州铜宝锐新材料有限公司 Aluminium cream and its application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140883A (en) * 1983-12-28 1985-07-25 Hitachi Ltd Manufacture of semiconductor device
WO2008047580A1 (en) * 2006-09-28 2008-04-24 Kyocera Corporation Solar battery element and method for manufacturing the same
WO2009009512A1 (en) * 2007-07-09 2009-01-15 Ferro Corporation Solar cell contacts containing aluminum and at least one of boron, titanium, nickel, tin, silver, gallium, zinc, indium and copper

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4627511B2 (en) * 2006-03-31 2011-02-09 京セラ株式会社 Photoelectric conversion element and method for manufacturing photoelectric conversion element
US8309844B2 (en) * 2007-08-29 2012-11-13 Ferro Corporation Thick film pastes for fire through applications in solar cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140883A (en) * 1983-12-28 1985-07-25 Hitachi Ltd Manufacture of semiconductor device
WO2008047580A1 (en) * 2006-09-28 2008-04-24 Kyocera Corporation Solar battery element and method for manufacturing the same
WO2009009512A1 (en) * 2007-07-09 2009-01-15 Ferro Corporation Solar cell contacts containing aluminum and at least one of boron, titanium, nickel, tin, silver, gallium, zinc, indium and copper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013162024A1 (en) * 2012-04-26 2013-10-31 京セラ株式会社 Solar cell element and method for producing same
CN102881351A (en) * 2012-09-26 2013-01-16 湖南红太阳光电科技有限公司 Back tin electrode slurry for crystalline silicon photovoltaic cells and method for preparing back tin electrode slurry

Also Published As

Publication number Publication date
TW201137895A (en) 2011-11-01
CN102024506A (en) 2011-04-20
KR20110031109A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
TWI389323B (en) Aluminum paste composition and solar cell element employing the same
JP5542212B2 (en) Silver paste composition and solar cell using the same
US20120238052A1 (en) Method of producing a crystalline silicon solar cell
JPWO2008078374A1 (en) Conductive paste for solar cell
TWI450405B (en) Paste composition for electrode and photovoltaic cell
JP4949263B2 (en) Paste composition and solar cell element using the same
WO2011013469A1 (en) Paste composition and solar cell element using same
TWI495125B (en) Element and photovoltaic cell
JP6220862B2 (en) Electrode forming conductive paste, solar cell manufacturing method, and solar cell
JP2006295197A (en) Conductive thick-film composition and electrode and solar cell formed therefrom
JP5137923B2 (en) Electrode paste composition for solar cell
TWI401808B (en) Paste composition, electrode and solar cell including the same
JP2016213284A (en) Aluminum paste composition for PERC type solar cell
JP4907331B2 (en) Conductive paste for photoelectric conversion element, photoelectric conversion element, and method for producing photoelectric conversion element
JP5059042B2 (en) Paste composition for solar cell electrode
WO2017154612A1 (en) Conductive paste and solar cell
JP2007242912A (en) Conductive paste and solar cell element
JP2009194121A (en) Conductive paste for forming crystal system silicon solar cell electrode
JP2011066353A (en) Aluminum paste for solar cell
JP2015191971A (en) Aluminum paste for fire-through and solar cell element
JP2010251645A (en) Solar cell, and conductive paste for forming electrode of the same
JP6688500B2 (en) Conductive paste and solar cell
JP6896506B2 (en) Paste composition for solar cells
JP6137852B2 (en) Conductive paste for solar cell electrode formation
JP2008166344A (en) Conductive paste for photoelectric converting element, photoelectric converting element, and method for manufacturing photoelectric converting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131210