JP2007242912A - Conductive paste and solar cell element - Google Patents

Conductive paste and solar cell element Download PDF

Info

Publication number
JP2007242912A
JP2007242912A JP2006063749A JP2006063749A JP2007242912A JP 2007242912 A JP2007242912 A JP 2007242912A JP 2006063749 A JP2006063749 A JP 2006063749A JP 2006063749 A JP2006063749 A JP 2006063749A JP 2007242912 A JP2007242912 A JP 2007242912A
Authority
JP
Japan
Prior art keywords
silver
conductive paste
parts
solar cell
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006063749A
Other languages
Japanese (ja)
Other versions
JP4556886B2 (en
Inventor
Eiichi Asada
榮一 浅田
Nobuo Nishioka
信夫 西岡
Masami Nakamura
正美 中村
Tomoko Uchida
友子 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP2006063749A priority Critical patent/JP4556886B2/en
Publication of JP2007242912A publication Critical patent/JP2007242912A/en
Application granted granted Critical
Publication of JP4556886B2 publication Critical patent/JP4556886B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive paste with excellent adhesive strength and electric characteristics that is used for a surface electrode of a solar cell element. <P>SOLUTION: The conductive paste is used for forming the surface electrode of the solar cell element in which a region of an inverse conductivity is formed on the light receiving surface side of a semiconductor substrate of a conductivity, an antireflective film and the surface electrode are provided on the region, and an underside electrode is provided on the opposite side surface thereof. The conductive paste contains 100 w/t parts of silver powder, 0.1 to 10 w/t parts of glass frit, 0.05 to 3.0 w/t parts, a total amount in terms of metal silver, of at least one kind of silver compound selected from a silver carbonate, a silver oxide and silver acetate, and an organic vehicle. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、銀粉末とガラスフリットを含み、太陽電池素子の電極を形成するために使用される焼成型導電性ペーストと、これを用いて形成された太陽電池素子に関する。   The present invention relates to a fired conductive paste that contains silver powder and glass frit and is used for forming an electrode of a solar cell element, and a solar cell element formed using the same.

一般的な太陽電池素子は、図1に示すように、半導体基板1、拡散層2、反射防止膜3、裏面電極4及び表面電極5を少なくとも備えている。   As shown in FIG. 1, a general solar cell element includes at least a semiconductor substrate 1, a diffusion layer 2, an antireflection film 3, a back electrode 4, and a surface electrode 5.

このような太陽電池素子は、例えば以下のように製造される。まず、シリコンからなる半導体基板1の受光面側(表面側)に、不純物の拡散層2と、窒化シリコン、酸化シリコンまたは酸化チタンなどからなる絶縁性の反射防止膜3と、が順次形成される。ここで、半導体基板1は、例えば、硼素などの半導体不純物を1×1016〜1018atoms/cm3程度含有することにより、比抵抗1.5Ωcm程度の一導電型(例えば、p型)を呈するようにしたものである。単結晶シリコンの場合は引き上げ法などによって形成され、多結晶シリコンの場合は鋳造法などによって形成される。多結晶シリコンは、大量生産が可能で製造コスト面で単結晶シリコンよりも有利である。半導体基板1は、引き上げ法や鋳造法によって形成されたインゴットを300μm程度の厚みにスライスして得られる。 Such a solar cell element is manufactured as follows, for example. First, an impurity diffusion layer 2 and an insulating antireflection film 3 made of silicon nitride, silicon oxide, titanium oxide, or the like are sequentially formed on the light receiving surface side (surface side) of the semiconductor substrate 1 made of silicon. . Here, the semiconductor substrate 1 contains, for example, a semiconductor impurity such as boron at about 1 × 10 16 to 10 18 atoms / cm 3 so as to have one conductivity type (for example, p-type) having a specific resistance of about 1.5 Ωcm. It is intended to be presented. In the case of monocrystalline silicon, it is formed by a pulling method or the like, and in the case of polycrystalline silicon, it is formed by a casting method or the like. Polycrystalline silicon can be mass-produced and is more advantageous than single crystal silicon in terms of manufacturing cost. The semiconductor substrate 1 is obtained by slicing an ingot formed by a pulling method or a casting method to a thickness of about 300 μm.

拡散層2は、半導体基板1の受光面に、リンなどの不純物を拡散させることにより形成された、半導体基板1の逆の導電型(例えば、n型)を呈する領域である。拡散層2は、例えば、半導体基板1を拡散炉中に配置して、オキシ塩化リン(POCl3)などの中で加熱することによって形成される。 The diffusion layer 2 is a region exhibiting an opposite conductivity type (for example, n-type) of the semiconductor substrate 1 formed by diffusing impurities such as phosphorus on the light receiving surface of the semiconductor substrate 1. The diffusion layer 2 is formed, for example, by placing the semiconductor substrate 1 in a diffusion furnace and heating it in phosphorus oxychloride (POCl 3 ) or the like.

反射防止膜3は、反射防止機能と併せて太陽電池素子の保護のため、拡散層2の受光面側に形成されるものである。反射防止膜3が窒化シリコン膜の場合、例えば、シラン(SiH4)とアンモニア(NH4)との混合ガスをグロー放電分解でプラズマ化させて堆積させるプラズマCVD法などで形成される。反射防止膜3は、半導体基板1との屈折率差などを考慮して、屈折率が1.8〜2.3程度になるように形成され、500〜1000A程度の厚みに形成される。 The antireflection film 3 is formed on the light receiving surface side of the diffusion layer 2 in order to protect the solar cell element together with the antireflection function. When the antireflection film 3 is a silicon nitride film, it is formed by, for example, a plasma CVD method in which a mixed gas of silane (SiH 4 ) and ammonia (NH 4 ) is plasmatized by glow discharge decomposition and deposited. The antireflection film 3 is formed so as to have a refractive index of about 1.8 to 2.3 in consideration of a refractive index difference with the semiconductor substrate 1 and is formed to a thickness of about 500 to 1000A.

また、半導体基板1の受光面と反対側(裏面側)の表面には、例えば、アルミニウムなどが拡散した高濃度p型のBSF層(図示省略)が形成され、半導体基板1の表面には表面電極5が、裏面には裏面電極4が、それぞれ導電性ペーストを塗布、焼成することにより形成される。   Further, a high-concentration p-type BSF layer (not shown) in which, for example, aluminum is diffused is formed on the surface opposite to the light receiving surface (rear surface side) of the semiconductor substrate 1. The electrode 5 is formed on the back surface by applying and baking a conductive paste on the back surface 4.

ここで、表面電極5は、銀粉末、ガラスフリットおよび有機ビヒクルを含む導電性ペーストを反射防止膜3の表面に所定のパターンで印刷し、500〜900℃の高温で焼成することによって形成される。通常は、焼成の際、導電性ペーストに含有されているガラスフリットが反射防止膜3に作用して当該膜を溶解し、その結果、表面電極5が反射防止膜3を突き抜けて拡散層2と電気的に接触する方法が採用される(ファイヤースルー方式)。   Here, the surface electrode 5 is formed by printing a conductive paste containing silver powder, glass frit and an organic vehicle on the surface of the antireflection film 3 in a predetermined pattern and baking it at a high temperature of 500 to 900 ° C. . Usually, during baking, glass frit contained in the conductive paste acts on the antireflection film 3 to dissolve the film, and as a result, the surface electrode 5 penetrates the antireflection film 3 and the diffusion layer 2 and An electrical contact method is employed (fire-through method).

この方法において、表面電極5の焼成の際、ガラスフリットの作用のばらつき等により、表面電極5と半導体基板1の拡散層2との間で安定なオーミック接触が得られず、また接着強度もばらつくという問題がある。オーミック接触性が不充分になると出力の取り出しに際して損失が生じ、太陽電池の変換効率が低下したり、また電流電圧特性が悪化したりする。   In this method, when the surface electrode 5 is fired, a stable ohmic contact cannot be obtained between the surface electrode 5 and the diffusion layer 2 of the semiconductor substrate 1 due to variations in the action of the glass frit, and the adhesive strength also varies. There is a problem. When the ohmic contact is insufficient, a loss occurs when the output is taken out, and the conversion efficiency of the solar cell is lowered or the current-voltage characteristics are deteriorated.

特許文献1では、表面電極用の銀系導電性ペーストにTi、Bi、Co、Zn、Zr、Fe、Cr、またはその化合物のうち少なくとも1種を含有させることにより、オーミック接触性と接着強度を向上させている。また、特許文献2には、銀粉末、酸化銀、炭酸銀、酢酸銀等を主体とする銀系導電性ペーストに、Ti、Bi、Zn、Y、In、Mo、またはその化合物の極めて微細な粉末を含有させることにより、さらに安定なオーミック接触性を得ることが記載されている。また特許文献3には、表面電極用の銀ペーストにリンやリン化合物を少量添加することにより、オーミック接触性を改善することが記載されている。
特開2001−313400号公報 特開2005−243500号公報 特公平3−46985号公報
In patent document 1, ohmic contact property and adhesive strength are achieved by including at least one of Ti, Bi, Co, Zn, Zr, Fe, Cr, or a compound thereof in a silver-based conductive paste for a surface electrode. It is improving. Patent Document 2 discloses a silver-based conductive paste mainly composed of silver powder, silver oxide, silver carbonate, silver acetate, and the like, and Ti, Bi, Zn, Y, In, Mo, or a compound thereof is extremely fine. It is described that a more stable ohmic contact is obtained by including a powder. Patent Document 3 describes that ohmic contact is improved by adding a small amount of phosphorus or a phosphorus compound to a silver paste for a surface electrode.
JP 2001-313400 A JP-A-2005-243500 Japanese Patent Publication No. 3-46985

しかしながら、これらの文献に記載されている添加物の効果はあまり大きくなく、さらなる改善が望まれる。本発明はこのような点に鑑みてなされたものであり、高い接着強度を確保しつつさらなるオーミック接触性の向上を図り、出力の取り出しの際の損失を低減することにより太陽電池の変換効率をさらに高めることができる、太陽電池素子の表面電極用導電性ペーストを提供することを目的とする。   However, the effects of the additives described in these documents are not so great, and further improvements are desired. The present invention has been made in view of the above points, and further improves the ohmic contact while ensuring high adhesive strength, and reduces the loss at the time of taking out the output, thereby improving the conversion efficiency of the solar cell. An object is to provide a conductive paste for a surface electrode of a solar cell element, which can be further increased.

前記課題を解決するために、請求項1に記載の発明は、導電性ペーストにおいて、
一導電型を呈する半導体基板の受光面側に逆導電型を呈する領域を形成し、その上に反射防止膜と表面電極を設け、前記受光面の反対側の面に裏面電極を設けた太陽電池素子の表面電極形成に用いられる導電性ペーストであって、銀粉末を100重量部、ガラスフリットを0.1〜10重量部、炭酸銀、酸化銀、酢酸銀から選ばれる少なくとも1種の銀化合物を金属銀換算の合計量で0.05〜3.0重量部、および有機ビヒクルを含有することを特徴とする。
In order to solve the above problems, the invention according to claim 1 is a conductive paste,
A solar cell in which a region exhibiting a reverse conductivity type is formed on a light receiving surface side of a semiconductor substrate exhibiting one conductivity type, an antireflection film and a surface electrode are provided thereon, and a back electrode is provided on a surface opposite to the light receiving surface A conductive paste used for forming a surface electrode of an element, comprising 100 parts by weight of silver powder, 0.1 to 10 parts by weight of glass frit, at least one silver compound selected from silver carbonate, silver oxide and silver acetate In an amount of 0.05 to 3.0 parts by weight in terms of metallic silver, and an organic vehicle.

請求項2に記載の発明は、請求項1に記載の導電性ペーストにおいて、
前記銀化合物は、平均粒径5μm以下の粒子状であることを特徴とする。
The invention according to claim 2 is the conductive paste according to claim 1,
The silver compound is in the form of particles having an average particle size of 5 μm or less.

請求項3に記載の発明は、
一導電型を呈する半導体基板の受光面側に逆導電型を呈する領域を形成し、その上に反射防止膜と表面電極を設け、前記受光面の反対側の面に裏面電極を設けた太陽電池素子において、前記表面電極が、請求項1または2に記載された導電性ペーストを500〜900℃で焼付けることにより形成されたものであることを特徴とする。
The invention described in claim 3
A solar cell in which a region exhibiting a reverse conductivity type is formed on a light receiving surface side of a semiconductor substrate exhibiting one conductivity type, an antireflection film and a surface electrode are provided thereon, and a back electrode is provided on a surface opposite to the light receiving surface In the device, the surface electrode is formed by baking the conductive paste according to claim 1 or 2 at 500 to 900 ° C.

前記導電性ペーストを太陽電池素子の反射防止膜上に焼付けることにより、ファイヤースルーを良好に行うことができ、高い接着強度を示すと共に半導体基板とのオーミック接触性の優れた表面電極をばらつきなく形成することができる。これにより発電効率が高く、また電流電圧特性等も良好な太陽電池素子を得ることができる。   By baking the conductive paste on the anti-reflection film of the solar cell element, the fire-through can be performed satisfactorily, and there is no variation in the surface electrode exhibiting high adhesive strength and excellent ohmic contact with the semiconductor substrate. Can be formed. As a result, a solar cell element having high power generation efficiency and good current-voltage characteristics can be obtained.

以下に、本発明に係る導電性ペースト及び太陽電池素子の一実施形態について説明する。ただし、発明の範囲を以下に限定するものではない。   Below, one Embodiment of the electrically conductive paste and solar cell element which concern on this invention is described. However, the scope of the invention is not limited to the following.

まず、本発明に係る導電性ペーストについて説明する。
本発明の導電性ペーストは、銀粉末100重量部に対して、ガラスフリットを0.1〜10重量部と、炭酸銀、酸化銀、酢酸銀のうちの少なくとも1種の銀化合物を金属銀換算の合計量で0.05〜3.0重量部配合し、有機ビヒクルに分散させたものである。
First, the conductive paste according to the present invention will be described.
In the conductive paste of the present invention, 0.1 to 10 parts by weight of glass frit with respect to 100 parts by weight of silver powder, and at least one silver compound of silver carbonate, silver oxide and silver acetate is converted into metal silver The total amount is 0.05 to 3.0 parts by weight and dispersed in an organic vehicle.

以下、各成分について説明する。
銀粉末としては特に制限はなく、球状銀粉末、フレーク状銀粉末、樹枝状銀粉末等、従来用いられているものが使用される。また、純銀粉末のほか、少なくとも表面が銀層からなる銀被覆複合粉末や、銀を主成分とする合金等を用いてもよい。銀粉末は、平均粒径が0.1〜10μmのものが好ましい。
Hereinafter, each component will be described.
There is no restriction | limiting in particular as silver powder, What is used conventionally, such as spherical silver powder, flaky silver powder, dendritic silver powder, is used. In addition to pure silver powder, a silver-coated composite powder having a silver layer at least on the surface, an alloy containing silver as a main component, or the like may be used. The silver powder preferably has an average particle size of 0.1 to 10 μm.

ガラスフリットとしては、焼成中低温で軟化し、反射防止膜を溶解することによってこれを突き抜け、拡散層を介して表面電極を半導体基板に強固に接着させ得るものであれば制限はなく、例えば、通常用いられている軟化点300〜600℃程度の硼珪酸鉛系ガラス、硼珪酸ビスマス系ガラス、硼珪酸亜鉛系ガラスなどが使用される。ガラスフリットの配合量は、銀粉末100重量部に対して、0.1重量部より少ないと、接着性、電極強度が極めて弱くなる。また10重量部を超えると、電極表面にガラス浮きを生じたり、はんだ付け性が阻害されたりするので望ましくない。   The glass frit is not limited as long as it can be softened at a low temperature during firing, penetrated by dissolving the antireflection film, and can firmly adhere the surface electrode to the semiconductor substrate through the diffusion layer. Commonly used lead borosilicate glass, bismuth borosilicate glass, zinc borosilicate glass, etc. having a softening point of about 300 to 600 ° C. are used. If the blending amount of the glass frit is less than 0.1 parts by weight with respect to 100 parts by weight of the silver powder, the adhesiveness and the electrode strength become extremely weak. On the other hand, if it exceeds 10 parts by weight, it is not desirable because glass floats on the electrode surface or solderability is hindered.

銀粉末とガラスフリットを含む導電性ペーストに、添加剤として前記炭酸銀、酸化銀、酢酸銀のうちいずれか一種または複数種の銀化合物を特定量含有させることにより、半導体基板に対する接着性や反射防止膜の溶解性を損なうことなく、表面電極と半導体基板とのオーミック接触性が向上する。このため出力の取り出しの際の損失が低減でき、電流電圧特性(曲線因子)や発電効率を向上させることができる。   By adding a specific amount of any one or a plurality of silver compounds of silver carbonate, silver oxide, and silver acetate as an additive to a conductive paste containing silver powder and glass frit, adhesion and reflection to a semiconductor substrate The ohmic contact between the surface electrode and the semiconductor substrate is improved without impairing the solubility of the prevention film. For this reason, the loss at the time of taking out an output can be reduced, and current-voltage characteristics (curve factor) and power generation efficiency can be improved.

これらの銀化合物の作用機構については必ずしも解明されていないが、これらの銀化合物は、焼成中に分解して活性なナノサイズの銀超微粒子を生成し、これが直接半導体基板と反応してシリコン等の半導体元素と合金化すること、または溶融したガラスに溶解し、冷却時に活性なナノサイズの銀超微粒子が析出して半導体基板と反応し、合金化することによって、表面電極と半導体基板とのオーミック接触性が向上するのではないかと考えられる。   Although the mechanism of action of these silver compounds has not yet been elucidated, these silver compounds decompose during firing to produce active nano-sized silver ultrafine particles, which react directly with the semiconductor substrate to form silicon or the like. It is alloyed with the semiconductor element of the above, or dissolved in the molten glass, and when cooled, the nano-sized silver ultrafine particles that are active are precipitated and react with the semiconductor substrate to form an alloy. It is thought that ohmic contact is improved.

銀化合物の添加量は、銀粉末100重量部に対して金属銀換算で0.05重量部より少ないと効果が確認できない。また多量に含有させると曲線因子や変換効率が逆に低下する傾向があり、また接着強度も低下してくるので、金属銀換算の合計量で3.0重量部までとする必要がある。これらの銀化合物の中でも炭酸銀は特に効果が大きい。特に、銀粉末100重量部に対して炭酸銀を金属銀換算で0.1〜2.0重量部配合することにより、接着強度を低下させることなく極めて優れた変換特性が得られるので好ましい。   If the amount of silver compound added is less than 0.05 parts by weight in terms of metallic silver with respect to 100 parts by weight of silver powder, the effect cannot be confirmed. Moreover, when it is contained in a large amount, the fill factor and conversion efficiency tend to decrease, and the adhesive strength also decreases. Therefore, the total amount in terms of metallic silver needs to be up to 3.0 parts by weight. Among these silver compounds, silver carbonate is particularly effective. In particular, it is preferable to add 0.1 to 2.0 parts by weight of silver carbonate in terms of metallic silver to 100 parts by weight of silver powder because extremely excellent conversion characteristics can be obtained without reducing the adhesive strength.

銀化合物の添加形態に制限はなく、通常は粒子状のものが使用される。特に、銀化合物が平均粒径5μm以下の微細な粒子状である場合、より優れたオーミック接触性向上効果が得られるので好ましい。銀化合物の平均粒径の下限は特にないが、コスト及び取り扱いの観点から100nm以上が実用的である。   There is no restriction | limiting in the addition form of a silver compound, Usually, a particulate thing is used. In particular, it is preferable that the silver compound is in the form of fine particles having an average particle diameter of 5 μm or less because a better ohmic contact improvement effect can be obtained. The lower limit of the average particle diameter of the silver compound is not particularly limited, but 100 nm or more is practical from the viewpoint of cost and handling.

前記銀粉末、ガラスフリットおよび銀化合物は、有機ビヒクルと混合され、スクリーン印刷その他の印刷方法に適したレオロジーのペースト、塗料、またはインク状とされる。ビヒクルとしては特に限定はなく、通常銀ペーストのビヒクルとして使用されている有機バインダーや溶剤等が適宜選択して配合される。例えば有機バインダーとしては、セルロース類、アクリル樹脂、フェノール樹脂、アルキッド樹脂、ロジンエステル等が、また溶剤としてはアルコール系、エーテル系、エステル系、炭化水素系等の有機溶剤や水、これらの混合溶剤が挙げられる。この他必要により可塑剤や、粘度調整剤、界面活性剤、酸化剤、金属有機化合物等を適宜配合することができる。ビヒクルの配合量は特に限定されるものではなく、無機成分をペースト中に保持し得る適切な量で、塗布方法等に応じて適宜調整されるが、通常銀粉末100重量部に対して10〜40重量部程度である。   The silver powder, glass frit and silver compound are mixed with an organic vehicle to form a rheological paste, paint or ink suitable for screen printing and other printing methods. The vehicle is not particularly limited, and an organic binder, a solvent and the like that are usually used as a vehicle for silver paste are appropriately selected and blended. For example, as organic binders, celluloses, acrylic resins, phenol resins, alkyd resins, rosin esters, etc., and as solvents, alcohol-based, ether-based, ester-based, hydrocarbon-based organic solvents, water, and mixed solvents thereof Is mentioned. In addition, a plasticizer, a viscosity modifier, a surfactant, an oxidizing agent, a metal organic compound, and the like can be appropriately blended as necessary. The blending amount of the vehicle is not particularly limited, and is an appropriate amount capable of retaining the inorganic component in the paste, and is appropriately adjusted according to the coating method and the like, but is usually 10 to 100 parts by weight of the silver powder. About 40 parts by weight.

本発明の導電性ペーストには、本発明の効果を損なわない範囲で、添加剤として通常添加されることのある金属酸化物、金属有機化合物等などを配合してもよい。   The conductive paste of the present invention may be blended with metal oxides, metal organic compounds, and the like that are usually added as additives, as long as the effects of the present invention are not impaired.

本発明に係る太陽電池素子は、例えば次のようにして製造される。半導体基板は好ましくは単結晶シリコンまたは多結晶シリコンからなり、例えば、硼素などの半導体不純物を含有することにより一導電型(例えば、p型)を呈するようにしたものである。半導体基板の受光面側の表面に、リン原子などの不純物を拡散させて拡散層を形成することにより、逆導電型(例えば、n型)を呈する領域を形成する。さらにその上に窒化シリコン等の反射防止膜を設け、また受光面と反対側の基板表面にアルミニウムペーストおよび銀ペースト、または銀−アルミニウムペーストを焼付けして裏面電極を形成すると同時に高濃度のp型のBSF層を形成する。このように、一般的な半導体基板、拡散層、反射防止膜および裏面電極を形成した後に、本発明に係る導電性ペーストを用いて表面電極を形成する。詳しくは、前記反射防止膜上に、本発明に係る導電性ペーストをスクリーン印刷法など通常の方法で塗布し、乾燥後、500〜900℃の高温で1〜30分間程度焼成することにより、有機ビヒクル成分を分解、揮散させ、表面電極を形成する。なお、表面電極は裏面電極と同時に焼成を行っても良く、また表面電極焼成後に裏面電極を形成してもよい。   The solar cell element according to the present invention is manufactured, for example, as follows. The semiconductor substrate is preferably made of single crystal silicon or polycrystalline silicon, and has a conductivity type (for example, p-type) by containing a semiconductor impurity such as boron. A region having a reverse conductivity type (for example, n-type) is formed by diffusing impurities such as phosphorus atoms to form a diffusion layer on the light receiving surface side surface of the semiconductor substrate. Further, an antireflection film such as silicon nitride is provided thereon, and a back electrode is formed by baking aluminum paste and silver paste, or silver-aluminum paste on the substrate surface opposite to the light receiving surface, and at the same time a high concentration p-type The BSF layer is formed. Thus, after forming a general semiconductor substrate, a diffusion layer, an antireflection film, and a back electrode, a surface electrode is formed using the conductive paste according to the present invention. Specifically, the conductive paste according to the present invention is applied onto the antireflection film by a normal method such as a screen printing method, dried, and then baked at a high temperature of 500 to 900 ° C. for about 1 to 30 minutes, thereby forming an organic material. The vehicle component is decomposed and volatilized to form a surface electrode. The front electrode may be fired simultaneously with the back electrode, or the back electrode may be formed after firing the front electrode.

以上のように、本発明にかかる導電性ペーストを用いて太陽電池素子を作製することにより、表面電極のファイヤースルーを良好に行うことができる。よって、表面電極と半導体基板との接着強度及びオーミック接触性が向上するため、半導体素子の出力を効率良く取り出すことが可能であり、太陽電池素子の変換効率や電流電圧特性をさらに高めることができる。   As described above, by producing a solar cell element using the conductive paste according to the present invention, the surface electrode can be fired through satisfactorily. Therefore, since the adhesion strength and ohmic contact between the surface electrode and the semiconductor substrate are improved, the output of the semiconductor element can be taken out efficiently, and the conversion efficiency and current-voltage characteristics of the solar cell element can be further enhanced. .

以下に実施例として球状銀粉末の製造及びその評価を示すが、本発明はこれに限定されるものではない。   In the following, production of spherical silver powder and evaluation thereof will be shown as examples, but the present invention is not limited thereto.

(試料1〜9の作製)
銀粉末100重量部に対して硼珪酸鉛系ガラスフリットを5重量部と、表1に示すとおり平均粒径約3μmの炭酸銀粉末を金属銀換算で0.05〜4重量部を配合し、有機ビヒクル12重量部に分散させて導電性ペースト(試料1〜8)を作製した。銀粉末としては、平均粒径約2μmの球状粉末と平均粒径約3μmのフレーク状粉末との混合粉末を用いた。有機ビヒクルとしてはエチルセルロースのブチルカルビトール溶液を使用した。また、炭酸銀粉末を配合しない点以外は同様にして、導電性ペースト(試料9)を作製した。なお、試料8、9は本発明の範囲外である。
(Production of samples 1 to 9)
5 parts by weight of lead borosilicate glass frit with respect to 100 parts by weight of silver powder, and 0.05 to 4 parts by weight of silver carbonate powder having an average particle size of about 3 μm as shown in Table 1 in terms of metallic silver, Conductive pastes (samples 1 to 8) were prepared by dispersing in 12 parts by weight of an organic vehicle. As the silver powder, a mixed powder of a spherical powder having an average particle diameter of about 2 μm and a flaky powder having an average particle diameter of about 3 μm was used. As the organic vehicle, a butyl carbitol solution of ethyl cellulose was used. Further, a conductive paste (Sample 9) was prepared in the same manner except that no silver carbonate powder was blended. Samples 8 and 9 are outside the scope of the present invention.

(試料10〜12の作製)
炭酸銀粉末の平均粒径を表1に示すとおりとし、炭酸銀の量を金属銀換算で0.3重量部とする点以外は同様にして、導電性ペースト(試料10〜12)を作製した。
(Production of samples 10 to 12)
A conductive paste (samples 10 to 12) was prepared in the same manner except that the average particle diameter of the silver carbonate powder was as shown in Table 1, and the amount of silver carbonate was 0.3 parts by weight in terms of metallic silver. .

(試料13〜22の作製)
炭酸銀粉末に代えて、平均粒径約2μmの酸化銀(Ag2O)粉末、および平均粒径約2μmの酢酸銀粉末を表1に示すとおりそれぞれ金属銀換算で0.005〜4重量部配合する点以外は同様にして、導電性ペースト(試料13〜22)を作製した。なお、試料17および試料22は本発明の範囲外である。
(Preparation of Samples 13 to 22)
As shown in Table 1, 0.005 to 4 parts by weight of silver oxide (Ag 2 O) powder having an average particle diameter of about 2 μm and silver acetate powder having an average particle diameter of about 2 μm are used instead of silver carbonate powder. A conductive paste (samples 13 to 22) was produced in the same manner except that it was blended. Sample 17 and sample 22 are outside the scope of the present invention.

(試料23〜27の作製)
炭酸銀粉末に代えて、表1に示すとおり、平均粒径約1μmの酸化チタン(TiO2)粉末、平均粒径約2μmの酸化ビスマス(Bi23)粉末、平均粒径約1μmの酸化コバルト(Co23)粉末、平均粒径約1μmの酸化亜鉛粉末、平均粒径約3μmの酸化リン(P25)粉末をそれぞれ0.5重量部配合する点以外は同様にして、導電性ペースト(試料23〜27)を作製した。
(Preparation of samples 23 to 27)
Instead of silver carbonate powder, as shown in Table 1, titanium oxide (TiO 2 ) powder with an average particle diameter of about 1 μm, bismuth oxide (Bi 2 O 3 ) powder with an average particle diameter of about 2 μm, oxidation with an average particle diameter of about 1 μm In the same manner, except that 0.5 parts by weight of cobalt (Co 2 O 3 ) powder, zinc oxide powder having an average particle diameter of about 1 μm, and phosphorus oxide (P 2 O 5 ) powder having an average particle diameter of about 3 μm are blended, Conductive paste (samples 23 to 27) was produced.

(太陽電池素子の作製及び評価)
試料1〜27の導電性ペーストを使用して、次のようにして太陽電池素子を製造した。
15cm×15cmの正方形のp型多結晶シリコン基板を半導体基板として用い、その一主面側にリンを拡散させたn型の領域(拡散層)を形成し、この上に反射防止膜として窒化シリコン膜を形成した。また、一主面の反対面に、アルミニウムペースト、次いで銀ペーストを常法で焼付して裏面電極を形成した。このシリコン基板の反射防止膜上に前記導電性ペーストを櫛型パターンでスクリーン印刷し、700℃で2分間焼成し、表面電極とした。
(Production and evaluation of solar cell elements)
Using the conductive pastes of Samples 1 to 27, solar cell elements were manufactured as follows.
Using a 15 cm × 15 cm square p-type polycrystalline silicon substrate as a semiconductor substrate, an n-type region (diffusion layer) in which phosphorus is diffused is formed on one main surface side, and silicon nitride is formed thereon as an antireflection film. A film was formed. In addition, an aluminum paste and then a silver paste were baked by a conventional method on the opposite surface of one main surface to form a back electrode. The conductive paste was screen-printed in a comb pattern on the antireflection film of the silicon substrate and baked at 700 ° C. for 2 minutes to form a surface electrode.

得られた太陽電池素子について、電気特性(曲線因子および変換効率)と表面電極の接着強度(引張強度)をそれぞれ測定し、表1に示した。引張強度はボンドテスター(西進商事株式会社製 SD−30WD)を用いてはんだメッキ銅箔を電極表面に取り付け、この銅箔を電極表面に対して垂直方向に引き上げた際に、銅箔が剥がれるか、または太陽電池素子が破壊されたときの荷重(Kg)を測定したものである。

Figure 2007242912
The obtained solar cell elements were measured for electrical characteristics (curve factor and conversion efficiency) and surface electrode adhesive strength (tensile strength), and are shown in Table 1. Tensile strength is whether or not the copper foil peels off when a solder-plated copper foil is attached to the electrode surface using a bond tester (SD-30WD manufactured by Nishishin Shoji Co., Ltd.) and the copper foil is pulled up in a direction perpendicular to the electrode surface. Or the load (Kg) when the solar cell element is destroyed.
Figure 2007242912

表1から明らかなように、炭酸銀、酸化銀、酢酸銀を本発明の範囲内で含有する場合、含有しないものに比べ曲線因子、変換効率の改善がみられた。また、接着強度も良好であった。特に炭酸銀では0.1〜2.0重量部の範囲で効果が極めて優れていた。また炭酸銀の平均粒径が5μmより小さい場合、改善効果が極めて大きかった。   As is clear from Table 1, when silver carbonate, silver oxide, and silver acetate were contained within the scope of the present invention, improvement in the fill factor and conversion efficiency was observed as compared with those not containing. Also, the adhesive strength was good. In particular, the effect of silver carbonate was extremely excellent in the range of 0.1 to 2.0 parts by weight. Further, when the average particle size of silver carbonate was smaller than 5 μm, the improvement effect was extremely large.

一般的な太陽電池素子の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of a general solar cell element.

符号の説明Explanation of symbols

1 半導体基板
2 拡散層
3 反射防止膜
4 裏面電極
5 表面電極
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Diffusion layer 3 Antireflection film 4 Back surface electrode 5 Front surface electrode

Claims (3)

一導電型を呈する半導体基板の受光面側に逆導電型を呈する領域を形成し、その上に反射防止膜と表面電極を設け、前記受光面の反対側の面に裏面電極を設けた太陽電池素子の表面電極形成に用いられる導電性ペーストであって、銀粉末を100重量部、ガラスフリットを0.1〜10重量部、炭酸銀、酸化銀、酢酸銀から選ばれる少なくとも1種の銀化合物を金属銀換算の合計量で0.05〜3.0重量部、および有機ビヒクルを含有することを特徴とする導電性ペースト。   A solar cell in which a region exhibiting a reverse conductivity type is formed on a light receiving surface side of a semiconductor substrate exhibiting one conductivity type, an antireflection film and a surface electrode are provided thereon, and a back electrode is provided on a surface opposite to the light receiving surface A conductive paste used for forming a surface electrode of an element, comprising 100 parts by weight of silver powder, 0.1 to 10 parts by weight of glass frit, at least one silver compound selected from silver carbonate, silver oxide and silver acetate Containing 0.05 to 3.0 parts by weight of the total amount in terms of metallic silver, and an organic vehicle. 前記銀化合物は、平均粒径5μm以下の粒子状であることを特徴とする請求項1に記載の導電性ペースト。   2. The conductive paste according to claim 1, wherein the silver compound is in the form of particles having an average particle diameter of 5 μm or less. 一導電型を呈する半導体基板の受光面側に逆導電型を呈する領域を形成し、その上に反射防止膜と表面電極を設け、前記受光面の反対側の面に裏面電極を設けた太陽電池素子において、前記表面電極が、請求項1または2に記載された導電性ペーストを500〜900℃で焼付けることにより形成されたものであることを特徴とする太陽電池素子。   A solar cell in which a region exhibiting a reverse conductivity type is formed on a light receiving surface side of a semiconductor substrate exhibiting one conductivity type, an antireflection film and a surface electrode are provided thereon, and a back electrode is provided on a surface opposite to the light receiving surface In the device, the surface electrode is formed by baking the conductive paste according to claim 1 or 2 at 500 to 900 ° C.
JP2006063749A 2006-03-09 2006-03-09 Conductive paste and solar cell element Active JP4556886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006063749A JP4556886B2 (en) 2006-03-09 2006-03-09 Conductive paste and solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006063749A JP4556886B2 (en) 2006-03-09 2006-03-09 Conductive paste and solar cell element

Publications (2)

Publication Number Publication Date
JP2007242912A true JP2007242912A (en) 2007-09-20
JP4556886B2 JP4556886B2 (en) 2010-10-06

Family

ID=38588157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006063749A Active JP4556886B2 (en) 2006-03-09 2006-03-09 Conductive paste and solar cell element

Country Status (1)

Country Link
JP (1) JP4556886B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114806A1 (en) * 2007-03-14 2008-09-25 Sanyo Electric Co., Ltd. Semiconductor device and method for manufacturing the same
JP2011035062A (en) * 2009-07-30 2011-02-17 Yokohama Rubber Co Ltd:The Solar cell base with conductive electrode
EP2317523A1 (en) 2009-10-28 2011-05-04 Shoei Chemical Inc. Conductive paste for forming a solar cell electrode
EP2317561A2 (en) 2009-10-28 2011-05-04 Shoei Chemical Inc. Solar cell device and manufacturing method therefor
US8070986B2 (en) * 2007-01-30 2011-12-06 Exax Inc. Silver paste for forming conductive layers
WO2012144335A1 (en) 2011-04-21 2012-10-26 昭栄化学工業株式会社 Conductive paste
TWI447181B (en) * 2011-06-09 2014-08-01 Yokohama Rubber Co Ltd Paste and solar cell for solar cell electrodes
JP2015528178A (en) * 2012-06-12 2015-09-24 ヘレウス プレシャス メタルズ ノース アメリカ コンショホーケン エルエルシー Conductive paste with adhesion promoter
CN105449012A (en) * 2014-09-23 2016-03-30 三星Sdi株式会社 Solar cell including electrode formed on high sheet resistance wafer
KR101765920B1 (en) * 2011-01-31 2017-08-07 엘지이노텍 주식회사 Paste compisition and solar cell
US10249774B2 (en) 2015-03-13 2019-04-02 Shoei Chemical Inc. Conductive paste for forming solar cell electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313400A (en) * 2000-04-28 2001-11-09 Kyocera Corp Method for forming solar battery element
JP2004253251A (en) * 2003-02-20 2004-09-09 Fujikura Ltd Conductive composition
JP2005243500A (en) * 2004-02-27 2005-09-08 Kyocera Chemical Corp Conductive paste, solar cell and manufacturing method of solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313400A (en) * 2000-04-28 2001-11-09 Kyocera Corp Method for forming solar battery element
JP2004253251A (en) * 2003-02-20 2004-09-09 Fujikura Ltd Conductive composition
JP2005243500A (en) * 2004-02-27 2005-09-08 Kyocera Chemical Corp Conductive paste, solar cell and manufacturing method of solar cell

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8070986B2 (en) * 2007-01-30 2011-12-06 Exax Inc. Silver paste for forming conductive layers
US8187949B2 (en) 2007-03-14 2012-05-29 Sanyo Semiconductor Co., Ltd. Semiconductor device and method of manufacturing the same
WO2008114806A1 (en) * 2007-03-14 2008-09-25 Sanyo Electric Co., Ltd. Semiconductor device and method for manufacturing the same
JP2011035062A (en) * 2009-07-30 2011-02-17 Yokohama Rubber Co Ltd:The Solar cell base with conductive electrode
EP2317523A1 (en) 2009-10-28 2011-05-04 Shoei Chemical Inc. Conductive paste for forming a solar cell electrode
EP2317561A2 (en) 2009-10-28 2011-05-04 Shoei Chemical Inc. Solar cell device and manufacturing method therefor
EP3288040A1 (en) 2009-10-28 2018-02-28 Shoei Chemical Inc. Conductive paste for forming a solar cell electrode
KR101765920B1 (en) * 2011-01-31 2017-08-07 엘지이노텍 주식회사 Paste compisition and solar cell
WO2012144335A1 (en) 2011-04-21 2012-10-26 昭栄化学工業株式会社 Conductive paste
TWI447181B (en) * 2011-06-09 2014-08-01 Yokohama Rubber Co Ltd Paste and solar cell for solar cell electrodes
JP2015528178A (en) * 2012-06-12 2015-09-24 ヘレウス プレシャス メタルズ ノース アメリカ コンショホーケン エルエルシー Conductive paste with adhesion promoter
CN105449012A (en) * 2014-09-23 2016-03-30 三星Sdi株式会社 Solar cell including electrode formed on high sheet resistance wafer
US10249774B2 (en) 2015-03-13 2019-04-02 Shoei Chemical Inc. Conductive paste for forming solar cell electrode

Also Published As

Publication number Publication date
JP4556886B2 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
JP4556886B2 (en) Conductive paste and solar cell element
KR101165160B1 (en) Solar cell device and manufacturing method therefor
TWI432539B (en) Conductive paste for forming a solar cell electrode
JP5395995B2 (en) Conductive compositions and methods used in the manufacture of semiconductor devices
JP5203970B2 (en) Conductive paste for electrode formation on crystalline silicon substrate
JP5817827B2 (en) Conductive paste
JP4714633B2 (en) Conductive paste for solar cell electrode
JP6735046B2 (en) Conductive paste for solar cell electrode formation
JPWO2008078374A1 (en) Conductive paste for solar cell
JP6487842B2 (en) Conductive paste and method for producing crystalline silicon solar cell
WO2017154612A1 (en) Conductive paste and solar cell
JP4714634B2 (en) Conductive paste for solar cell electrode
JP2009194121A (en) Conductive paste for forming crystal system silicon solar cell electrode
JP2008010527A (en) Conductive paste for solar cell electrode
JP2010251645A (en) Solar cell, and conductive paste for forming electrode of the same
JP6200128B2 (en) Conductive paste for solar cell electrode formation
JP5754787B2 (en) Method for manufacturing solar cell element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R150 Certificate of patent or registration of utility model

Ref document number: 4556886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140730

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250