JP2011066210A - 太陽電池 - Google Patents

太陽電池 Download PDF

Info

Publication number
JP2011066210A
JP2011066210A JP2009215657A JP2009215657A JP2011066210A JP 2011066210 A JP2011066210 A JP 2011066210A JP 2009215657 A JP2009215657 A JP 2009215657A JP 2009215657 A JP2009215657 A JP 2009215657A JP 2011066210 A JP2011066210 A JP 2011066210A
Authority
JP
Japan
Prior art keywords
solar cell
layer
matrix layer
quantum dots
electron transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009215657A
Other languages
English (en)
Inventor
Yoshiki Fukada
善樹 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009215657A priority Critical patent/JP2011066210A/ja
Publication of JP2011066210A publication Critical patent/JP2011066210A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】光を照射することによって生成されたキャリアを量子ドットから効率良く移動させることが可能な太陽電池を提供する。
【解決手段】量子ドット、該量子ドットと接触したマトリクス層、並びに、正電極及び負電極を有し、マトリクス層と負電極とがホールの通過を阻止可能な電子移動層を介して接続されるとともに、マトリクス層と正電極とが電子の通過を阻止可能なホール移動層を介して接続され、量子ドットに存在し得る電子のエネルギー準位と一致する電子移動準位、及び/又は、量子ドットに存在し得るホールのエネルギー準位と一致するホール移動準位が、マトリクス層に形成されている、太陽電池とする。
【選択図】図2

Description

本発明は、太陽電池に関し、特に量子ドットを利用した太陽電池に関する。
太陽電池は、発電量当たりの二酸化炭素排出量が少なく、発電用の燃料が不要という利点を有している。そのため、様々な種類の太陽電池に関する研究が、盛んに進められている。現在、実用化されている太陽電池の中では、単結晶シリコン又は多結晶シリコンを用いた、一組のpn接合を有する単接合太陽電池が主流となっている。ところが、単接合太陽電池の光電変換効率の理論限界(以下において、「理論限界効率」という。)は約30%に留まっているため、理論限界効率をさらに向上させる新たな方法が検討されている。
これまでに検討されている新たな方法の1つに、半導体の量子ドットを利用した太陽電池(以下において、「量子ドット太陽電池」という。)がある。量子ドット太陽電池で用いられる量子ドットは、寸法が約10nm程度の半導体ナノ結晶であり、光を照射することにより発生した電子やホール(以下において、これらをまとめて「キャリア」ということがある。)を三次元的に閉じ込めることができる。量子ドットに電子を閉じ込めることにより、電子の量子力学的な波としての性質を使えるようになり、従来の太陽電池では吸収することができなかった帯域の太陽光スペクトルをも吸収させることが可能になる。さらに、量子ドット太陽電池によれば、熱として失われるエネルギーを低減することが可能になる。そのため、量子ドット太陽電池によれば、理論限界効率を60%以上にまで向上させることが可能になると考えられている。
量子ドット太陽電池に関する技術として、例えば特許文献1には、pin構造で構成され、光検知層であるi層に3次元量子閉じ込め作用をもつ量子ドットを含み、量子ドット及びそれを囲むバリア層のエネルギ・バンド構造がtypeIIを成すことを特徴とする太陽電池が開示されている。また、特許文献2には、量子ドットを使用する太陽電池が開示されている。また、特許文献3には、量子ドットを有する人工アモルファス材料を用いた人工アモルファス材料光電池セルが開示されている。
特開2006−114815号公報 特開2006−332540号公報 特表2007−535806号公報
特許文献1に開示されている技術によれば、量子ドットを利用しているため、キャリアを三次元的に強力に閉じ込めることができる。その結果、キャリアのエネルギー損失を低減することが可能になると考えられる。しかしながら、特許文献1に開示されている技術では、量子ドットからキャリアを取り出す(移動させる)ことが困難であるため、太陽電池の効率を向上させることが困難であるという問題があった。かかる問題は、特許文献2や特許文献3に開示されている技術と、特許文献1に開示されている技術とを組み合わせたとしても、解決することが困難であった。
そこで本発明は、光を照射することによって生成されたキャリアを量子ドットから効率良く移動させることが可能な太陽電池を提供することを課題とする。
上記課題を解決するために、本発明は以下の手段をとる。すなわち、
本発明は、量子ドット、該量子ドットと接触したマトリクス層、並びに、正電極及び負電極を有し、マトリクス層と負電極とが、ホールの通過を阻止可能な電子移動層を介して接続されるとともに、マトリクス層と正電極とが、電子の通過を阻止可能なホール移動層を介して接続され、量子ドットに存在し得る電子のエネルギー準位と一致する電子移動準位、及び/又は、量子ドットに存在し得るホールのエネルギー準位と一致するホール移動準位が、マトリクス層に形成されていることを特徴とする、太陽電池である。
ここに、「電子移動準位及び/又はホール移動準位がマトリクス層に形成されている」とは、マトリクス層の作製方法や量子ドットの作製方法を制御することによって、量子ドットに存在し得る電子及び/又はホールのエネルギー準位と一致するエネルギー準位が、マトリクス層に形成されていることをいう。さらに、「マトリクス層に形成されている」とは、マトリクス層自体に形成されている形態のほか、マトリクス層に形成した量子ドットに形成されている形態をも含む概念である。
また、上記本発明において、少なくとも電子移動準位がマトリクス層に形成されていることが好ましい。
また、上記本発明において、マトリクス層に結晶構造の欠陥を形成することにより、電子移動準位及び/又はホール移動準位が形成されていても良い。
また、上記本発明において、さらに、上記量子ドットよりも小さい小粒量子ドットをマトリクス層へ形成することにより、電子移動準位及び/又はホール移動準位が形成されていても良い。
また、上記本発明において、電子移動層が、nドープされた半導体によって作製されていても良い。
ここに、本発明において、「nドープ」とは、半導体中に余剰の電子を発生させる処理をいう。すなわち、本発明におけるnドープには、例えばGaNをn型半導体にする元素を添加する形態のように、余剰の電子を発生させ得る元素を半導体材料に添加する形態が含まれる。このほか、例えばGaNによって構成されるマトリクス層にInNによって構成される量子ドットを形成する形態のように、半導体に量子ドットを形成することによって量子ドットを形成された半導体中に余剰の電子を発生させる形態も含まれる。
また、上記本発明において、ホール移動層が、pドープされた半導体によって作製されていても良い。
ここに、本発明において、「pドープ」とは、半導体中に余剰のホールを発生させる処理をいう。すなわち、本発明におけるpドープには、例えばGaNをp型半導体にする元素を添加する形態のように、余剰のホールを発生させ得る元素を半導体材料に添加する形態が含まれる。このほか、例えばGaNによって構成されるマトリクス層に少量のMgを添加する形態のように、発生させたホールの量が不十分である結果、半導体がp型にはならないものの、移動してきた電子を吸収する機能を担う余剰のホールを半導体中に発生させる形態も含まれる。
また、上記本発明において、電子移動準位のみがマトリクス層に形成される場合には、マトリクス層がpドープされた半導体によって作製されていることが好ましい。
また、上記本発明において、電子移動準位のみがマトリクス層に形成される場合には、量子ドットがnドープされた半導体によって作製されていることが好ましい。
また、上記本発明において、ホール移動準位のみがマトリクス層に形成される場合には、マトリクス層がnドープされた半導体によって作製されていることが好ましい。
また、上記本発明において、ホール移動準位のみがマトリクス層に形成される場合には、量子ドットがpドープされた半導体によって作製されていることが好ましい。
本発明では、マトリクス層に、電子移動準位及び/又はホール移動準位が形成されている。そのため、量子ドットに閉じ込められたキャリアを、マトリクス層へ効率良く移動させることができる。したがって、本発明によれば、光を照射することによって生成されたキャリアを量子ドットから効率良く移動させることが可能な太陽電池を提供することができる。
また、本発明において、少なくとも電子移動準位がマトリクス層に形成されていることにより、容易に光電変換効率を向上させることが可能な太陽電池を提供することができる。
また、本発明において、マトリクス層に結晶構造の欠陥を形成し、当該欠陥のエネルギー準位を電子移動準位及び/又はホール移動準位として機能させることにより、量子ドットに存在するキャリアを、量子ドットからマトリクス層へ移動させることができる。
また、本発明において、小粒量子ドットを形成し、当該小粒量子ドットに存在するエネルギー準位を電子移動準位又はホール移動準位として機能させることにより、量子ドットに存在するキャリアを、量子ドットからマトリクス層へ移動させることが可能になる。
また、本発明において、nドープされた半導体によって電子移動層を作製することにより、上記効果に加えて、ホールが負電極へと達する事態を容易に防止することができる。
また、本発明において、pドープされた半導体によってホール移動層を作製することにより、上記効果に加えて、電子が正電極へと達する事態を容易に防止することができる。
また、本発明において、電子移動準位のみがマトリクス層に形成される場合に、pドープされた半導体でマトリクス層を作製することにより、電子のみならずホールも、量子ドットからマトリクス層へと移動しやすい形態の太陽電池を提供することが可能になる。
また、本発明において、電子移動準位のみがマトリクス層に形成される場合に、nドープされた半導体で量子ドットを作製することにより、電子のみならずホールも、量子ドットからマトリクス層へと移動しやすい形態の太陽電池を提供することが可能になる。
また、本発明において、ホール移動準位のみがマトリクス層に形成される場合に、nドープされた半導体でマトリクス層を作製することにより、ホールのみならず電子も、量子ドットからマトリクス層へと移動しやすい形態の太陽電池を提供することが可能になる。
また、本発明において、ホール移動準位のみがマトリクス層に形成される場合に、pドープされた半導体で量子ドットを作製することにより、ホールのみならず電子も、量子ドットからマトリクス層へと移動しやすい形態の太陽電池を提供することが可能になる。
太陽電池10の形態例を示す図である。 太陽電池10のバンド構造を簡略化して示す概念図である。 太陽電池20の形態例を示す断面図である。 太陽電池20のバンド構造を簡略化して示す概念図である。 太陽電池30のバンド構造を簡略化して示す概念図である。 太陽電池40のバンド構造を簡略化して示す概念図である。 太陽電池50の形態例を示す図である。
量子ドット太陽電池は、光を照射することにより発生したキャリアを量子ドットへと閉じ込める。これによって、吸収可能な太陽光スペクトルの帯域を増大させることが可能になるため、量子ドット太陽電池では、キャリアを量子ドットへ閉じ込める必要がある。一方、キャリアが量子ドットに閉じ込められたまま保持され、量子ドットから電極へと移動できない状態になると、電流を取り出すことができず、結果として、太陽電池の効率を向上させることが困難になる。そのため、量子ドット太陽電池の効率を向上させるためには、キャリアを量子ドットへ閉じ込める効果を最大限に維持しつつ、量子ドットからキャリアを移動させることも可能にする必要がある。
本発明者は、鋭意研究の結果、電子が移動する準位(電子移動準位)やホールが移動する準位(ホール移動準位)を、量子ドットが形成されるマトリクス層へ形成することにより、キャリアを量子ドットへ閉じ込めることにより得られる効果を最大限に維持しつつ、量子ドットからキャリアを移動させることも可能になることを知見した。さらに、本発明者は、マトリクス層と負電極とを電子移動層を介して接続し、マトリクス層と正電極とをホール移動層を介して接続することにより、マトリクス層へと移動させた電子のみを負電極へと移動させ、マトリクス層へと移動させたホールのみを正電極へと移動させることが可能になり、電流を取り出すことが可能になることを知見した。
本発明は、かかる知見に基づいてなされたものである。本発明は、電子移動準位及び/又はホール移動準位をマトリクス層へ形成することにより、量子ドットからマトリクス層へ、キャリアを効率良く移動させることが可能な太陽電池を提供することを、主な要旨とする。
以下、図面を参照しつつ、本発明について説明する。なお、以下に示す形態は本発明の例示であり、本発明は以下に示す形態に限定されるものではない。
1.第1実施形態
図1は、第1実施形態にかかる本発明の太陽電池10の形態例を示す図である。図1において、「●」は電子、「○」はホールを示している。図1では、太陽電池10の一部のみを抽出し、拡大して示している。また、図1では、一部符号の記載を省略している。図1に示すように、太陽電池10は、複数の量子ドット11、11、…が形成されたマトリクス層12と、負電極13及び正電極14と、を有し、マトリクス層12と負電極13との間には、ホールの通過を阻止する電子移動層15が配置され、マトリクス層12と正電極14との間には、電子の通過を阻止するホール移動層16が配置されている。
太陽電池10において、マトリクス層12は、当該マトリクス層12に存在する結晶構造欠陥や不純物の一部のエネルギー準位が、量子ドット11、11、…に存在可能な電子のエネルギー準位と等しく、電子移動準位として機能する。加えて、マトリクス層12は、当該マトリクス層12に存在する結晶構造欠陥や不純物の他の一部のエネルギー準位が、量子ドット11、11、…に存在可能なホールのエネルギー準位と等しく、ホール移動準位として機能する。さらに、太陽電池10においてn層として機能する電子移動層15は、ホール移動準位を有しない。そのため、量子ドット11、11、…及びマトリクス層12を移動可能なホールは、電子移動層15を通過できない。太陽電池10において、電子移動層15に存在する刃状転位のエネルギー準位は、量子ドット11、11、…及びマトリクス層12を移動可能な電子のエネルギー準位と等しく、当該刃状転位のエネルギー準位が電子移動準位として機能する。これに対し、太陽電池10においてp層として機能するホール移動層16は、電子移動準位を有しない。そのため、量子ドット11、11、…及びマトリクス層12を移動可能な電子は、ホール移動層16を通過できない。太陽電池10において、ホール移動層16に存在する刃状転位のエネルギー準位は、量子ドット11、11、…及びマトリクス層12を移動可能なホールのエネルギー準位と等しく、当該刃状転位のエネルギー準位がホール移動準位として機能する。かかる形態とすることにより、太陽電池10によれば、量子ドット11、11、…で発生、又は、量子ドット11、11、…へと移動したキャリア(電子及びホール)を、マトリクス層12へと移動させることができる。そして、マトリクス層12へと移動させたキャリアのうち、電子のみを負電極13へと移動させ、ホールのみを正電極14へと移動させることができる。したがって、太陽電池10によれば、光を照射することによって生成されたキャリアを量子ドット11、11、…から効率良く移動させることができる。
図2は、太陽電池10のバンド構造を簡略化して示す概念図である。図2の上下は電子のエネルギーの高低とそれぞれ対応しており、図2の左右は、太陽電池10の各構成要素の厚さと対応している。また、図2の「●」は電子、「○」はホールを示している。
図2に示すように、マトリクス層12を構成する半導体の伝導帯の底のエネルギー準位は、量子ドット11、11、…を構成する半導体の伝導帯の底のエネルギー準位よりも高い。さらに、マトリクス層12を構成する半導体の価電子帯の頂上のエネルギー準位は、量子ドット11、11、…を構成する半導体の価電子帯の頂上のエネルギー準位よりも低い。図2に示すように、マトリクス層12及び電子移動層15は電子移動準位X1を有し、マトリクス層12及びホール移動層16はホール移動準位Y1を有する。そのため、太陽電池10によれば、量子ドット11、11、…で発生、又は、量子ドット11、11、…へと移動した電子を、マトリクス層12及び電子移動層15を介して負電極13へと移動させることができる。加えて、太陽電池10によれば、量子ドット11、11、…で発生、又は、量子ドット11、11、…へと移動したホールを、マトリクス層12及びホール移動層16を介して正電極14へと移動させることができる。
太陽電池10において、量子ドット11、11、…は、例えば、InNで構成することができる。また、マトリクス層12は、例えば、刃状転位を多く(1011cm−2以上が好ましい)含み、且つ、Ga空孔を含むGaNで構成することができる。また、負電極13は、例えば、金、又は、金チタン合金で構成することができる。また、正電極14は、例えば、金ニッケル合金で構成することができる。また、電子移動層15は、例えば、刃状転位を多く(1011cm−2以上が好ましい)含むGaNで構成することができる。また、ホール移動層16は、例えば、転位が少なく(10cm−2以下が好ましい)、Ga空孔を含むGaNで構成することができる。ここに、「Ga空孔」は、価電子帯の頂上から約1eV上に準位を形成することが知られている(Chris G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004))。Ga空孔は、結晶生長時にGa及びNを少なくして結晶生長を行うことにより、作製することができる。
太陽電池10において、電子移動準位X1は、量子ドット11、11、…の伝導帯の底のエネルギー準位以上であれば特に限定されるものではない。ただし、いわゆるインパクトイオン化が生じ難い材料によって太陽電池10を構成した場合には、量子ドット11、11、…に存在し得る電子の複数のエネルギー準位の平均値を、電子移動準位X1とすることが好ましい。これに対し、いわゆるインパクトイオン化が生じ易い材料によって太陽電池10を構成した場合には、量子ドット11、11、…に存在し得る電子の複数のエネルギー準位の平均値よりも低いエネルギー準位を、電子移動準位X1とすることが好ましい。
また、太陽電池10において、ホール移動準位Y1は、量子ドット11、11、…の価電子帯の頂上のエネルギー準位以下であれば特に限定されるものではない。ただし、いわゆるインパクトイオン化が生じ難い材料によって太陽電池10を構成した場合には、量子ドット11、11、…に存在し得るホールの複数のエネルギー準位の平均値を、ホール移動準位Y1とすることが好ましい。これに対し、いわゆるインパクトイオン化が生じ易い材料によって太陽電池10を構成した場合には、量子ドット11、11、…に存在し得るホールの複数のエネルギー準位の平均値よりも低いエネルギー準位を、ホール移動準位Y1とすることが好ましい。
2.第2実施形態
図3は、第2実施形態にかかる本発明の太陽電池20の形態例を示す断面図である。図3では、太陽電池20の一部のみを抽出し、拡大して示している。また、図3では、一部符号の記載を省略している。図3に示すように、太陽電池20は、下地層29の表面に形成されたホール移動層26と、ホール移動層26の表面に形成された量子ドット21、21、…と、ホール移動層26及び量子ドット21、21、…の表面に形成されたマトリクス層22、22、…と、マトリクス層22の表面に形成された電子移動層25と、電子移動層25の表面に配置された透明電極27と、透明電極27の表面に配置された負電極23と、電子移動層25からホール移動層26の向きへ形成された凹部28にホール移動層26と接触するように配置された正電極24と、を有し、下地層29はサファイア等によって構成した基板29sの表面に形成されている。図3に示すように、マトリクス層22、22、…及び電子移動層25には、多数の刃状転位が形成されており、当該刃状転位のエネルギー準位が電子移動準位として機能している。太陽電池20において、下地層29は、結晶構造欠陥の少ないホール移動層26を形成させるために基板29sの表面に形成した、GaNによって構成される層である。ホール移動層26は、p型半導体となるように強くpドープされたAlGaN又はGaNによって構成され、量子ドット21、21、…は、InNによって構成されている。さらに、マトリクス層22、22、…はpドープしたGaNによって構成され、電子移動層25はAlGaN又はGaNのn型層によって構成されている。そして、透明電極27は金、又は、金チタン合金によって構成され、負電極23は金によって構成され、正電極24は金ニッケル合金によって構成されている。なお、ここで言う「強くpドープされた」とは、ホールのキャリア密度が1016cm−3以上であることを言う。
図4は、太陽電池20のバンド構造を簡略化して示す概念図である。図4の上下は電子のエネルギーの高低とそれぞれ対応しており、図4の左右は、太陽電池20の各構成要素の厚さと対応している。図4では、一部符号の記載を省略している。図4において、「●」は電子、「○」はホールを示している。
図4に示すように、太陽電池20では、マトリクス層22及び電子移動層25に形成した刃状転位のエネルギー準位を電子移動準位X2として機能させている。かかる形態とすることにより、太陽電池20によれば、量子ドット21、21、…に存在する電子を、マトリクス層22へと移動させることができ、さらに、電子移動層25を介して負電極23へと移動させることができる。加えて、上述のように、マトリクス層22は、pドープしたGaNによって構成されている。そのため、マトリクス層22には、多数のホールが存在している。
図4に示すように、マトリクス層22を構成するGaNの価電子帯の頂上のエネルギー準位は、量子ドット21、21、…を構成するInNの価電子帯の頂上のエネルギー準位よりも低い。そのため、マトリクス層22に存在するホールは、量子ドット21、21、…へと移動することができる。このようにしてホールが量子ドット21、21、…へと移動すると、量子ドット21、21、…は正に帯電する。量子ドット21、21、…が正に帯電すると、量子ドット21、21、…を構成するInNのバンドが下に凸の形態で曲がり、量子ドット21、21、…を構成するInNの価電子帯の頂上のエネルギー準位と、マトリクス層22を構成するGaNの価電子帯の頂上のエネルギー準位との段差(以下において、「価電子帯頂上の段差」という。)が小さくなる(図4参照)。価電子帯頂上の段差が小さくなると、量子ドット21、21、…へと移動したホールが、マトリクス層22へと移動できるようになるので、太陽電池20によれば、量子ドット21、21、…に存在するホールを、マトリクス層22へと移動させることができる。
さらに、図4に示すように、電子移動層25は、量子ドット21、21、…を構成するInNよりもバンドギャップが広いAlGaN又はGaNのn型層によって構成されている。電子移動層25を構成する当該材料の価電子帯の頂上のエネルギー準位は、量子ドット21、21、…を構成するInNの価電子帯の頂上のエネルギー準位よりも低い。そのため、電子移動層25によれば、負電極23へと向かうホールの移動を阻止することができる。太陽電池20において、AlGaN又はGaNのn型層(特に、転位密度が1×10cm−2以上、好ましくは1×1011cm−2以上の刃状転位を含み、且つ、弱くnドープした層、又は、ドープしていない層)によって電子移動層25を構成すると、さらに、次のような効果が期待できる。すなわち、電子が電子移動層25の刃状転位による欠陥準位(電子移動準位)に落ち込み、刃状転位が十分な密度を有していることにより、欠陥準位に存在する電子が十分に高い密度になる。そうすると、透明電極27のフェルミ準位と電子移動層25の欠陥準位とが連続的に繋がり、その結果として、電子移動層25と透明電極27との接続を安定化させることが可能になる。したがって、太陽電池20の電子移動層25は、転位密度が1×10cm−2以上、好ましくは1×1011cm−2以上の刃状転位を含み、且つ、弱くnドープされた、若しくは、ドープされていない、AlGaN又はGaNのn型層によって、構成することが好ましい。
一方、図4に示すように、ホール移動層26は、量子ドット21、21、…を構成するInNよりもバンドギャップが広い、AlGaN又はGaNによって構成されている。太陽電池20において、ホール移動層26を構成するAlGaN又はGaNの伝導帯の底のエネルギー準位は、量子ドット21、21、…を構成するInNの伝導帯の底のエネルギー準位よりも高い。そのため、ホール移動層26によれば、正電極24へと向かう電子の移動を阻止することができる。加えて、太陽電池20において、ホール移動層26は、p型半導体となるように強くpドープされたAlGaN又はGaNによって構成されている。そのため、ホール移動層26を構成するAlGaN又はGaNのバンドは、上に凸の形態で曲がっている。かかる形態とすることにより、pドープをする前のAlGaN又はGaNに、電子移動準位が存在していたとしても、強くpドープをすることにより、電子移動準位も上に凸の形態で曲げることができる(図4のホール移動層26に記載された点線を参照。)。そのため、太陽電池20では、強くpドープされたAlGaN又はGaNによってホール移動層26を構成することにより、正電極24へと向かう電子の移動を容易に阻止可能な構成としている。他方、図4に示すように、ホール移動層26は強くpドープされたAlGaN又はGaNによって構成されているので、ホール移動層26を構成するAlGaN又はGaNの価電子帯の頂上のエネルギー準位は、上に凸の形態で曲がっている。かかる形態とすることにより、ホール移動層26とマトリクス層22との界面に存在するエネルギー障壁26a、及び、ホール移動層26と正電極24との界面に存在するエネルギー障壁26bの厚さを薄くすることができる。そのため、トンネル効果によるホールの移動が容易になり、マトリクス層22から正電極24へと向かうホールの移動を確保することができる。
太陽電池20を上記のように構成することにより、マトリクス層22を構成するpドープされたGaNの価電子帯の頂上から約2eV上に、電子移動準位X2を形成することができる。なお、太陽電池20において、マトリクス層22及びホール移動層26のpドープは、Mgをドープすることで実現することができる。さらに、ホール移動層26の電子移動準位を予め除去する等の観点から、ホール移動層26には、ホール移動層26を構成するAlGaN又はGaNとの質量比で1%〜3%程度のMgをドープすることにより、結構構造の欠陥を取り除くことが好ましい。
太陽電池20において、凹部28の形成方法は特に限定されるものではなく、公知の方法により形成することができる。凹部28は、例えば、エッチングによって形成することができる。また、図3及び図4では記載を省略しているが、図3に示される凹部28の露出した表面は、SiO等の膜によって保護される。
太陽電池20に関する上記説明では、pドープされた半導体によってマトリクス層22を構成し、価電子帯頂上の段差を小さくすることによってホールの移動を確保する形態を例示したが、本発明の太陽電池は当該形態に限定されるものではない。本発明の太陽電池では、量子ドットをnドープすることによって、量子ドットを構成する半導体のバンドを下に凸の形態で湾曲させることも可能である。かかる形態であっても、価電子帯頂上の段差を小さくすることが可能になるので、ホールを量子ドットからマトリクス層へと移動させることが可能になる。このほか、いわゆるタイプIIの量子ドットを形成する等、量子ドットを構成する半導体と、マトリクス層を構成する半導体との材料の組合せを適切に行うことにより、ホールが量子ドットに閉じ込められない形態とすることも可能である。
3.第3実施形態
図5は、第3実施形態にかかる本発明の太陽電池30のバンド構造を簡略化して示す概念図である。太陽電池30は、太陽電池20における電子移動層25に代えて、nドープされたInGaNによって構成される電子移動層31を配置し、さらに、太陽電池20におけるホール移動層26に代えて、pドープされたGaNによって構成されるホール移動層32を配置するほかは、太陽電池20と同様の構成を有している。したがって、太陽電池30に関しては、電子移動層31及びホール移動層32についてのみ説明し、その他の説明を省略する。図5は図4と対応する図である。図5の上下は電子のエネルギーの高低とそれぞれ対応しており、図5の左右は、太陽電池30の各構成要素の厚さと対応している。図5では、一部符号の記載を省略しており、「●」は電子、「○」はホールを示している。
図5に示すように、太陽電池30では、マトリクス層22と透明電極27(以下において、「透明負電極27」ということがある。)との間に、電子移動層31が配置されている。図5に示すように、電子移動層31を構成する、nドープされたInGaNのバンドギャップは、マトリクス層22を構成するpドープしたGaNのバンドギャップよりも小さく、量子ドット21、21、…を構成するInNのバンドギャップよりも大きい。さらに、電子移動層31を構成する、nドープされたInGaNの伝導帯の底のエネルギー準位は、電子移動準位X2と一致している。かかる形態とすることにより、太陽電池20によって得られる効果に加え、さらに、透明負電極27との電気的接続を容易に得ることが可能になる。
さらに、図5に示すように、太陽電池30では、マトリクス層22と正電極24との間に、ホール移動層32が配置されている。図5に示すように、ホール移動層32を構成する、pドープされたGaNのバンドギャップは、マトリクス層22を構成するGaNのバンドギャップと同一であり、量子ドット21、21、…を構成するInNのバンドギャップよりも大きい。さらに、ホール移動層32を構成する、pドープされたGaNの伝導帯の底のエネルギー準位は、強いpドープによって上に凸の形態で曲がっており、マトリクス層22を構成するGaNの伝導帯の底のエネルギー準位よりも高く、ホール移動層32には電子移動準位が存在しない。加えて、ホール移動層32を構成する、pドープされたGaNの価電子帯の頂上のエネルギー準位は、マトリクス層22を構成するGaNの価電子帯の頂上のエネルギー準位よりも高い。かかる形態とすることにより、太陽電池20によって得られる効果に加え、さらに、正電極24との電気的接続を容易に得ることが可能になる。
4.第4実施形態
図6は、第4実施形態にかかる本発明の太陽電池40のバンド構造を簡略化して示す概念図である。太陽電池40は、太陽電池20における電子移動層25に代えて、nドープされた薄いGaNによって構成される電子移動層41を配置するほかは、太陽電池20と同様の構成を有している。したがって、太陽電池40に関しては、電子移動層41についてのみ説明し、その他の説明を省略する。図6は図4及び図5と対応する図である。図6の上下は電子のエネルギーの高低とそれぞれ対応しており、図6の左右は、太陽電池40の各構成要素の厚さと対応している。図6では、一部符号及び透明電極27の記載を省略しており、「●」は電子、「○」はホールを示している。
図6に示すように、太陽電池40では、マトリクス層22と負電極23との間に、電子移動層41が配置されている。かかる形態とすることによっても、太陽電池30の場合と同様に、負電極23との電気的接続を容易に得ることが可能になる。さらに、電子移動層41はnドープされたGaNによって構成されるので、容易に製造することができる。電子移動層41の厚さは、10nm以上50nm以下とすることができる。かかる厚さとすることにより、マトリクス層22を通過した電子は、トンネル効果によって電子移動層41を飛び越え、負電極23へと達することが可能になる。
太陽電池20、30、40に関する上記説明では、マトリクス層22に電子移動準位のみが形成される形態を例示したが、本発明の太陽電池は、マトリクス層にホール移動準位のみを形成する形態とすることも可能である。かかる形態とする場合、量子ドットで発生又は量子ドットへと移動してきた電子をマトリクス層へと移動させやすい形態の太陽電池にする等の観点から、マトリクス層の伝導帯の底のエネルギー準位と量子ドットの伝導帯の底のエネルギー準位との段差(以下において、「伝導帯底の段差」という。)を小さくすることが好ましい。本発明の太陽電池では、nドープされた半導体材料によってマトリクス層を作製する、及び/又は、pドープされた半導体材料によって量子ドットを作製することによって、伝導帯底の段差を小さくすることができる。
5.第5実施形態
図7は、第5実施形態にかかる本発明の太陽電池50の形態例を示す図である。図7において、「●」は電子、「○」はホールを示している。図5に示すように、太陽電池50は、量子ドット51、51、…(以下において、「大粒量子ドット51、51、…」ということがある。)及び小粒量子ドット52、52、…が形成されたマトリクス層53と、負電極54及び正電極55と、を有し、マトリクス層53と負電極54との間には、ホールの通過を阻止する電子移動層56が配置され、マトリクス層53と正電極55との間には、電子の通過を阻止するホール移動層57が配置されている。
太陽電池50において、マトリクス層53には、大粒量子ドット51、51、…及び小粒量子ドット52、52、…が分散されている。太陽電池50において、大粒量子ドット51、51、…の大きさは数nm〜数十nm程度であり、小粒量子ドット52、52、…の大きさは1nm〜3nm程度である。かかる構成とすることにより、マトリクス層53を構成する半導体材料の伝導帯の底のエネルギー準位と大粒量子ドット51、51、…を構成する半導体材料の伝導帯の底のエネルギー準位との間に、電子を存在させ得るエネルギー準位(電子移動準位)が形成された、小粒量子ドット52、52、…をマトリクス層53に形成することができる。また、かかる形態とすることにより、マトリクス層53を構成する半導体材料の価電子帯の頂上のエネルギー準位と大粒量子ドット51、51、…を構成する半導体材料の価電子帯の頂上のエネルギー準位との間に、ホールを存在させ得るエネルギー準位(ホール移動準位)が形成された、小粒量子ドット52、52、…を形成することができる。そして、大粒量子ドット51、51、…と小粒量子ドット52、52、…との間隔が、5nm〜40nm程度となるように、大粒量子ドット51、51、…及び小粒量子ドット52、52、…を分散させることにより、大粒量子ドット51、51、…に閉じ込められたキャリア(電子及びホール)は、トンネル現象によって、小粒量子ドット52、52、…へと移動することができる。同様に、小粒量子ドット52、52、…へと移動したキャリアも、トンネル現象によって、大粒量子ドット51、51、…へと移動することができる。そのため、太陽電池50によれば、大粒量子ドット51、51、…に閉じ込めた電子を、マトリクス層53に形成した小粒量子ドット52、52、…へと移動させる過程を経て、負電極54へと移動させることができ、大粒量子ドット52、52、…に閉じ込めたホールを、マトリクス層53に形成した小粒量子ドット52、52、…へと移動させる過程を経て、正電極55へと移動させることができる。したがって、かかる形態とすることにより、光を照射することによって生成されたキャリアを量子ドットから効率良く移動させることが可能な太陽電池50を提供することができる。
このような太陽電池50は、例えば、大粒量子ドット51、51、…及び小粒量子ドット52、52、…をInNで構成し、マトリクス層53をGaNで構成し、負電極54を金チタン合金で構成し、正電極55を金ニッケル合金で構成し、電子移動層56をnドープされたGaNで構成し、ホール移動層57を強くpドープされたAlGaNで構成することによって、実現することができる。
本発明の太陽電池において、十分なオーミック接触が得られる形態とする等の観点から、電子移動層における電子密度及びホール移動層におけるホール密度は、1×1019cm−3以上とすることが好ましい。それゆえ、1つの結晶格子に1つのキャリアが存在できると考えると、刃状転位のエネルギー準位を電子移動準位やホール移動準位として機能させる場合には、刃状転位の転位密度が1×10cm−2以上となるように、電子移動層やホール移動層を作製することが好ましい。電子移動層やホール移動層における刃状転位のより好ましい転位密度は、1×1011cm−2以上である。これに対し、らせん転位は、らせん転位に基づくエネルギー準位が数多く生じるため、電子移動層における電子移動準位やホール移動層におけるホール移動準位の機能を果たさないと考えられる。それゆえ、電子移動層やホール移動層におけるらせん転位の転位密度は小さくすることが必要であり、十分な光電変換効率を確保する等の観点からは、電子移動層やホール移動層におけるらせん転位の転位密度を1×10cm−2以下とすることが好ましい。電子移動層やホール移動層におけるらせん転位のより好ましい転位密度は、1×10cm−2以下である。
本発明の太陽電池は、電気自動車の動力源や太陽光発電システム等に利用することができる。
X1…電子移動準位
X2…電子移動準位
Y1…ホール移動準位
10…太陽電池
11…量子ドット
12…マトリクス層
13…負電極
14…正電極
15…電子移動層
16…ホール移動層
20…太陽電池
21…量子ドット
22…マトリクス層
23…負電極
24…正電極
25…電子移動層
26…ホール移動層
26a…エネルギー障壁
26b…エネルギー障壁
27…透明電極(透明負電極)
28…凹部
29…下地層
29s…基板
30…太陽電池
31…電子移動層
32…ホール移動層
40…太陽電池
41…電子移動層
50…太陽電池
51…量子ドット(大粒量子ドット)
52…小粒量子ドット
53…マトリクス層
54…負電極
55…正電極
56…電子移動層
57…ホール移動層

Claims (10)

  1. 量子ドット、前記量子ドットと接触したマトリクス層、並びに、正電極及び負電極を有し、
    前記マトリクス層と前記負電極とが、ホールの通過を阻止可能な電子移動層を介して接続されるとともに、前記マトリクス層と前記正電極とが、電子の通過を阻止可能なホール移動層を介して接続され、
    前記量子ドットに存在し得る前記電子のエネルギー準位と一致する電子移動準位、及び/又は、前記量子ドットに存在し得る前記ホールのエネルギー準位と一致するホール移動準位が、前記マトリクス層に形成されていることを特徴とする、太陽電池。
  2. 少なくとも前記電子移動準位が前記マトリクス層に形成されていることを特徴とする、請求項1に記載の太陽電池。
  3. 前記マトリクス層に結晶構造の欠陥を形成することにより、前記電子移動準位及び/又は前記ホール移動準位が形成されることを特徴とする、請求項1又は2に記載の太陽電池。
  4. さらに、前記量子ドットよりも小さい小粒量子ドットを前記マトリクス層へ形成することにより、前記電子移動準位及び/又は前記ホール移動準位が形成されることを特徴とする、請求項1〜3のいずれか1項に記載の太陽電池。
  5. 前記電子移動層が、nドープされた半導体によって作製されていることを特徴とする、請求項1〜4のいずれか1項に記載の太陽電池。
  6. 前記ホール移動層が、pドープされた半導体によって作製されていることを特徴とする、請求項1〜5のいずれか1項に記載の太陽電池。
  7. 前記電子移動準位のみが前記マトリクス層に形成される場合には、前記マトリクス層がpドープされた半導体によって作製されていることを特徴とする、請求項1〜6のいずれか1項に記載の太陽電池。
  8. 前記電子移動準位のみが前記マトリクス層に形成される場合には、前記量子ドットがnドープされた半導体によって作製されていることを特徴とする、請求項1〜7のいずれか1項に記載の太陽電池。
  9. 前記ホール移動準位のみが前記マトリクス層に形成される場合には、前記マトリクス層がnドープされた半導体によって作製されていることを特徴とする、請求項1〜6のいずれか1項に記載の太陽電池。
  10. 前記ホール移動準位のみが前記マトリクス層に形成される場合には、前記量子ドットがpドープされた半導体によって作製されていることを特徴とする、請求項1〜6、9のいずれか1項に記載の太陽電池。
JP2009215657A 2009-09-17 2009-09-17 太陽電池 Pending JP2011066210A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009215657A JP2011066210A (ja) 2009-09-17 2009-09-17 太陽電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009215657A JP2011066210A (ja) 2009-09-17 2009-09-17 太陽電池

Publications (1)

Publication Number Publication Date
JP2011066210A true JP2011066210A (ja) 2011-03-31

Family

ID=43952153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009215657A Pending JP2011066210A (ja) 2009-09-17 2009-09-17 太陽電池

Country Status (1)

Country Link
JP (1) JP2011066210A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015537378A (ja) * 2012-10-26 2015-12-24 リサーチ トライアングル インスティテュート 溶液プロセスによる量子ドットを利用した中間帯半導体、ヘテロ接合、及び光電子デバイス、並びに関連する方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015537378A (ja) * 2012-10-26 2015-12-24 リサーチ トライアングル インスティテュート 溶液プロセスによる量子ドットを利用した中間帯半導体、ヘテロ接合、及び光電子デバイス、並びに関連する方法

Similar Documents

Publication Publication Date Title
TWI441346B (zh) 第ⅱ型量子點太陽能電池
JP5050574B2 (ja) Iii族窒化物系半導体発光素子
KR101431658B1 (ko) 양자 점 구조물들을 이용한 반도체 구조물 및 소자들의 제조 방법들 및 관련된 구조물들
US20130270514A1 (en) Low resistance bidirectional junctions in wide bandgap semiconductor materials
JP2015532014A (ja) ナノピラミッドサイズ光電構造及びそれを製造するための方法
KR102200757B1 (ko) 향상된 효율을 위해 구성된 낮은 밴드갭 활성층을 가지는 광활성 장치 및 관련 방법
JP5029764B2 (ja) 太陽電池
US10756234B2 (en) Aluminum nitride substrate removal for ultraviolet light-emitting devices
JP6060652B2 (ja) 太陽電池及びその製造方法
JP2010186915A (ja) 太陽電池
Chen et al. Improved performance of a back-illuminated GaN-based metal-semiconductor-metal ultraviolet photodetector by in-situ modification of one-dimensional ZnO nanorods on its screw dislocations
JP2011066210A (ja) 太陽電池
TW201511334A (zh) 具有經減低漏電之奈米線發光二極體結構及其製造方法
CA2997020C (en) Tandem junction photovoltaic cell
US10020408B2 (en) System of architecture and related built-in nanomembranes for the emitter of a light-to-electricity all-silicon converter for the giant photoconversion and the method of its manufacture
US8653501B2 (en) Emitting device and manufacturing method therefor
JP5642418B2 (ja) 光電変換素子及びその製造方法
KR20150006942A (ko) 나노 솔라 셀 및 그 제조방법
JP6036833B2 (ja) 太陽電池及びその製造方法
CN117174802B (zh) 发光二极管的外延结构及其制备方法
Arif et al. Investigation of new approaches for InGaN growth with high indium content for CPV application
KR101539183B1 (ko) 하부 폭에 비해 상부 폭이 좁은 다면체, 이의 제조방법, 및 이를 포함하는 광전변환소자
US10763111B2 (en) Polyhedron of which upper width is narrower than lower width, manufacturing method therefor, and photoelectric conversion device comprising same
WO2024073095A1 (en) An ultrahigh efficiency excitonic device
JP2015065312A (ja) 量子ドットおよび太陽電池