JP2011065879A - Superconducting cable - Google Patents

Superconducting cable Download PDF

Info

Publication number
JP2011065879A
JP2011065879A JP2009215826A JP2009215826A JP2011065879A JP 2011065879 A JP2011065879 A JP 2011065879A JP 2009215826 A JP2009215826 A JP 2009215826A JP 2009215826 A JP2009215826 A JP 2009215826A JP 2011065879 A JP2011065879 A JP 2011065879A
Authority
JP
Japan
Prior art keywords
superconducting
layer
cable
shield layer
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009215826A
Other languages
Japanese (ja)
Other versions
JP5418772B2 (en
Inventor
Masayoshi Oya
正義 大屋
Hiroyasu Yumura
洋康 湯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009215826A priority Critical patent/JP5418772B2/en
Publication of JP2011065879A publication Critical patent/JP2011065879A/en
Application granted granted Critical
Publication of JP5418772B2 publication Critical patent/JP5418772B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconducting cable suppressing temperature rise in an accident while having a small diameter. <P>SOLUTION: A superconducting cable 100 includes, sequentially from the center: a former 11; a superconductive conductor layer 12; an electric insulating layer 13; a superconductive shield layer 14; and a cable core 10 having a protective layer 15. The superconductive shield layer 14 includes a superconductive wire 1s for shield, and does not include a normal conductive shield layer consisting of copper and the like on both inner and outer peripheral sides. A proportion of a normal conductive phase in the superconductive wire 1s for shield is smaller than a proportion of a normal conducting phase in a superconductive wire 1c for a conductor constituting the superconductive conductor layer 12. Since the superconducting cable 100 does not include the normal conductive shield layer, a diameter of the superconducting cable is small. Since the superconductive shield layer 14 includes the superconductive wire 1s for shield including less normal conductive phase, an induced current hardly flows in accident, and temperature rise accompanying heat generation due to the induced current to the normal conductive phase can be suppressed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、超電導導体層と、磁気遮蔽層として機能する超電導シールド層とを具える超電導ケーブルに関するものである。特に、小径でありながら、短絡や地絡などの事故時の温度上昇を抑制することができる超電導ケーブルに関するものである。   The present invention relates to a superconducting cable comprising a superconducting conductor layer and a superconducting shield layer functioning as a magnetic shielding layer. In particular, the present invention relates to a superconducting cable that has a small diameter and can suppress a temperature rise during an accident such as a short circuit or a ground fault.

電力供給路を構成する電力ケーブルとして、超電導ケーブルが開発されつつある。超電導ケーブルは、代表的には、内周側から順にフォーマ、超電導導体層、電気絶縁層、超電導シールド層を有するケーブルコアと、このケーブルコアを収納すると共に、液体窒素といった冷媒が満たされる断熱管とを具える。上記超電導導体層及び上記超電導シールド層は、一般に、同じ仕様の複数の超電導線材を巻回して構成される。超電導線材は、酸化物からなる超電導相と、銅やアルミニウムといった超電導ケーブルの使用温度においても比抵抗が小さい良導体の常電導材料からなる常電導相とを含むものが代表的である。   Superconducting cables are being developed as power cables constituting power supply paths. A superconducting cable is typically a cable core having a former, a superconducting conductor layer, an electric insulation layer, and a superconducting shield layer in order from the inner peripheral side, and a heat insulating tube that houses the cable core and is filled with a refrigerant such as liquid nitrogen. With. The superconducting conductor layer and the superconducting shield layer are generally configured by winding a plurality of superconducting wires having the same specifications. A typical superconducting wire includes a superconducting phase made of an oxide and a normal conducting phase made of a normal conducting material of a good conductor having a small specific resistance even at the operating temperature of a superconducting cable such as copper or aluminum.

上記超電導ケーブルにより、例えば交流送電を行う場合、上記超電導シールド層には、通常運転時、超電導導体層に流れる電流(導体電流)と逆向きでほぼ同じ大きさの電流が誘導される。この誘導電流(シールド電流)による磁場で導体電流による磁場を打ち消すことで、超電導ケーブルの外部への漏れ磁場をほぼゼロにすることができる。   For example, when AC power transmission is performed by the superconducting cable, a current of almost the same magnitude is induced in the superconducting shield layer in the opposite direction to the current (conductor current) flowing in the superconducting conductor layer during normal operation. By canceling the magnetic field due to the conductor current with the magnetic field due to this induced current (shield current), the leakage magnetic field to the outside of the superconducting cable can be made almost zero.

上記超電導ケーブルを実線路に導入した場合、短絡や地絡といった事故により超電導導体層に大電流(事故電流)が流れる恐れがある。このとき、上記超電導シールド層にも大電流が誘導される。ここで、超電導線材に臨界電流Icを超える大電流が流れると、超電導相が常電導状態に転移する(クエンチする)。すると、超電導線材の超電導相ではなく、常電導相に主として電流が流れることでジュール熱が生じ、この発熱による温度上昇に伴い超電導線材に損傷を与える恐れがある。そこで、超電導線材に流れる事故電流を低減するために、上記フォーマを銅などの良導体の常電導材料により構成し、事故電流をこのフォーマに分流させたり、上記超電導シールド層の直上(外周)や直下(内周)に銅などからなる常電導シールド層を具え、上記事故電流に基づく誘導電流をこの常電導シールド層に分流させることが提案されている(例えば、特許文献1参照)。   When the superconducting cable is introduced into the actual line, a large current (accident current) may flow through the superconducting conductor layer due to an accident such as a short circuit or a ground fault. At this time, a large current is also induced in the superconducting shield layer. Here, when a large current exceeding the critical current Ic flows through the superconducting wire, the superconducting phase transitions (quenches) to the normal conducting state. Then, not the superconducting phase of the superconducting wire, but a current flows mainly in the normal conducting phase, resulting in Joule heat, which may damage the superconducting wire as the temperature rises due to this heat generation. Therefore, in order to reduce the accident current flowing in the superconducting wire, the former is made of a normal conductor material such as copper, and the accident current is shunted to this former, or just above (outer) or directly below the superconducting shield layer. It has been proposed to provide a normal conducting shield layer made of copper or the like (inner circumference) and to divert the induced current based on the accident current to the normal conducting shield layer (see, for example, Patent Document 1).

特開2006-331894号公報JP 2006-331894 A

しかし、上記常電導シールド層を具えると、超電導ケーブルが大型化する、という問題がある。
超電導ケーブル線路の構築にあたり、OFケーブルが布設されている既存の管路に、OFケーブルの代替として超電導ケーブルを布設することが検討されている。上記管路への引き入れを考慮すると、超電導ケーブルは、できる限り小径であることが望まれる。また、超電導ケーブルが小径であることで、製造性に優れる上に、搬送や布設などを容易に行える。
However, if the normal conducting shield layer is provided, there is a problem that the superconducting cable is enlarged.
In constructing a superconducting cable line, it is considered to install a superconducting cable as an alternative to the OF cable in an existing pipe line where the OF cable is installed. In consideration of the drawing into the conduit, it is desirable that the superconducting cable be as small as possible. Further, since the superconducting cable has a small diameter, it is excellent in manufacturability and can be easily transported and laid.

例えば、上記常電導シールド層の具備に代えて、上記事故電流が流れた場合でも常電導状態に転移しない電流容量を有するように超電導線材の使用量を多くすることが考えられる。しかし、この構成も、超電導ケーブルの大型化を招く上に、高価な超電導線材が大量に必要であるため、不経済である。   For example, instead of providing the normal conducting shield layer, it is conceivable to increase the amount of superconducting wire used so as to have a current capacity that does not shift to the normal conducting state even when the accident current flows. However, this configuration is also uneconomical because it causes an increase in size of the superconducting cable and requires a large amount of expensive superconducting wire.

そこで、本発明の目的は、小径でありながら、事故時の温度上昇を抑制することができる超電導ケーブルを提供することにある。   Accordingly, an object of the present invention is to provide a superconducting cable that is capable of suppressing a temperature rise during an accident while having a small diameter.

本発明は、事故電流(誘導電流)を分流させるために上記常電導シールド層を具える、という発想ではなく、特に、上記超電導シールド層の温度上昇の原因となる誘導電流の通電自体を抑制する構成とすることを提案する。より具体的には、上記超電導シールド層を構成する超電導線材として、事故電流が誘導され難い特定の構造の線材を具える。   The present invention is not based on the idea that the normal conducting shield layer is provided in order to shunt the accident current (inductive current), and in particular, the conduction of the induced current that causes the temperature rise of the superconducting shield layer is suppressed. Propose to be a configuration. More specifically, the superconducting wire constituting the superconducting shield layer includes a wire having a specific structure in which an accident current is difficult to be induced.

本発明は、中心から順にフォーマと、超電導導体層と、電気絶縁層と、超電導シールド層とを有するケーブルコアを具える超電導ケーブルに係るものである。上記超電導導体層及び上記超電導シールド層は、超電導相と常電導相とを含む複数の超電導線材で構成されている。そして、上記超電導シールド層を構成する超電導線材(以下、シールド用超電導線材と呼ぶ)の少なくとも1本において常電導相が占める割合が、上記超電導導体層を構成する超電導線材(以下、導体用超電導線材と呼ぶ)において常電導相が占める割合よりも小さい。   The present invention relates to a superconducting cable including a cable core having a former, a superconducting conductor layer, an electrical insulating layer, and a superconducting shield layer in order from the center. The superconducting conductor layer and the superconducting shield layer are composed of a plurality of superconducting wires including a superconducting phase and a normal conducting phase. Then, the proportion of the normal conducting phase in at least one of the superconducting wires constituting the superconducting shield layer (hereinafter referred to as a shielding superconducting wire) is the superconducting wire constituting the superconducting conductor layer (hereinafter referred to as the superconducting wire for conductor). Is smaller than the proportion occupied by the normal conducting phase.

上記構成によれば、超電導シールド層を構成するシールド用超電導線材は、常電導相が少ないことで、事故時、常電導状態に転移した場合に電気抵抗が高いことになる。そのため、事故時、超電導導体層やフォーマに事故電流が流れても、上記超電導シールド層には、当該事故電流から誘導される電流が少ない。換言すれば、誘導電流を十分に減衰することができる。特に、シールド用超電導線材における常電導相の割合によっては、上記事故電流からの誘導電流を実質的に無くすことができる。即ち、本発明超電導ケーブルの一形態として、上記ケーブルコアが、上記超電導シールド層の内周側及び外周側の双方に、常電導材料から構成され、事故電流(誘導電流)を分流するための常電導シールド層を有していない形態とすることができる。このような本発明超電導ケーブルは、シールド用超電導線材の常電導相に誘導電流が流れることによる温度上昇を抑制できるため、この温度上昇に伴う超電導線材の損傷を抑制できる。   According to the above configuration, the superconducting wire for shielding that constitutes the superconducting shield layer has a low normal conducting phase, and thus has a high electrical resistance when it is transferred to the normal conducting state at the time of an accident. Therefore, even if an accident current flows through the superconducting conductor layer or the former in the event of an accident, the superconducting shield layer has little current induced from the accident current. In other words, the induced current can be sufficiently attenuated. In particular, depending on the proportion of the normal conducting phase in the superconducting wire for shielding, the induced current from the accident current can be substantially eliminated. That is, as one form of the superconducting cable of the present invention, the cable core is made of a normal conducting material on both the inner peripheral side and the outer peripheral side of the superconducting shield layer, and is used for shunting an accident current (inductive current). It can be set as the form which does not have a conductive shield layer. Such a superconducting cable of the present invention can suppress an increase in temperature due to an induced current flowing through the normal conducting phase of the superconducting wire for shielding, and therefore can suppress damage to the superconducting wire due to this temperature increase.

かつ、本発明超電導ケーブルは、上述のように事故時、超電導シールド層に誘導電流をできるだけ流さない構成であることから、従来、事故対策に必須であった常電導シールド層の割合を低減することができる。究極的には、超電導シールド層に誘導される誘導電流を分流するための常電導シールド層を省略できる。そのため、本発明超電導ケーブルは、従来の超電導ケーブルよりも小径である。   In addition, since the superconducting cable of the present invention has a configuration in which an induced current flows through the superconducting shield layer as much as possible in the event of an accident as described above, the ratio of the normal conducting shield layer that has been indispensable for accident countermeasures conventionally is reduced Can do. Ultimately, the normal conducting shield layer for diverting the induced current induced in the superconducting shield layer can be omitted. Therefore, the superconducting cable of the present invention has a smaller diameter than the conventional superconducting cable.

また、本発明超電導ケーブルに具えるフォーマを、従来のように銅やアルミニウムといった、超電導ケーブルの使用温度における比抵抗が小さい良導体の常電導材料で構成することで、事故電流を主としてフォーマに流すことができる。そのため、本発明超電導ケーブルは、事故電流の通電により超電導導体層の温度が上昇することも抑制することができる。   In addition, the former provided in the superconducting cable of the present invention is made of a normal conductor material of a good conductor, such as copper or aluminum, having a low specific resistance at the operating temperature of the superconducting cable, so that the fault current is mainly passed to the former. Can do. Therefore, the superconducting cable of the present invention can also suppress the temperature of the superconducting conductor layer from rising due to the energization of the accident current.

上述のように本発明超電導ケーブルは、事故時の温度上昇に伴う超電導線材の損傷を回避することが出来ながら、従来の超電導ケーブルよりも小径である。   As described above, the superconducting cable of the present invention has a smaller diameter than the conventional superconducting cable while avoiding damage to the superconducting wire due to the temperature rise at the time of an accident.

以下、本発明をより詳細に説明する。
上記超電導線材に含まれる超電導相は、液体窒素を冷媒に使用することができ、臨界電流が高い高温酸化物超電導相、代表的には、BSCCOと呼ばれるBi系酸化物超電導相やREBCOと呼ばれるRE系酸化物超電導相(RE:希土類元素。例えば、Y,Ho,Gdなど)が好ましい。上記Bi系酸化物超電導相を具える線材は、Bi系酸化物超電導相の粉末を銀又は銀合金のパイプに詰めて、このパイプに塑性加工と熱処理とを施してテープ状とした線材(以下、Bi系酸化物超電導線材と呼ぶ)が代表的である。RE系酸化物超電導相を具える線材は、ステンレス鋼やニッケル合金などの金属からなる基板に、RE系酸化物超電導相を成膜し、この膜の上に銀や銅、その合金といった良導体からなる安定化層を形成した薄膜線材(以下、RE系酸化物薄膜線材と呼ぶ)が挙げられる。
Hereinafter, the present invention will be described in more detail.
The superconducting phase contained in the superconducting wire can use liquid nitrogen as a refrigerant and has a high critical current high-temperature oxide superconducting phase, typically a Bi-based oxide superconducting phase called BSCCO or REBCO An oxide superconducting phase (RE: rare earth element, such as Y, Ho, Gd, etc.) is preferable. The wire material comprising the Bi-based oxide superconducting phase is prepared by packing the Bi-based oxide superconducting phase powder in a silver or silver alloy pipe, and subjecting the pipe to plastic working and heat treatment to form a tape (hereinafter referred to as a tape). Typical examples are Bi-based oxide superconducting wires. Wire rods with RE-based oxide superconducting phase are formed from a metal-based substrate such as stainless steel or nickel alloy with an RE-based oxide superconducting phase formed on a good conductor such as silver, copper, or its alloy. And a thin film wire (hereinafter referred to as RE-based oxide thin film wire) on which a stabilizing layer is formed.

上述のように超電導線材は、一般に、銀や銀合金、銅といった超電導ケーブルの使用温度(冷媒に液体窒素を用いる場合、65K〜80K程度)における比抵抗が1×10-8Ω・m以下、更には5×10-9Ω・m以下の良導体の常電導材料から構成された常電導相を具える。比抵抗が小さい上記常電導材料によりシールド用超電導線材の常電導相が構成される場合、事故時にこの線材に流れる誘導電流が大きくなり易い。そこで、本発明では、複数のシールド用超電導線材のうち、少なくとも1本について常電導相の割合が導体用超電導線材よりも小さいものを具えることで、事故時の温度上昇を抑制する。超電導シールド層を構成する全てのシールド用超電導線材が、上述した常電導相の割合の小さい線材であることがより好ましい。 As described above, the superconducting wire generally has a specific resistance of 1 × 10 −8 Ω · m or less at a working temperature of a superconducting cable such as silver, a silver alloy, or copper (when liquid nitrogen is used as a refrigerant, about 65K to 80K), Furthermore, it comprises a normal conducting phase composed of a normal conducting material having a good conductor of 5 × 10 −9 Ω · m or less. When the normal conducting phase of the superconducting wire for shielding is constituted by the normal conducting material having a small specific resistance, the induced current flowing through the wire tends to increase at the time of an accident. Therefore, in the present invention, at least one of the plurality of shielding superconducting wires has a ratio of the normal conducting phase smaller than that of the conductor superconducting wires, thereby suppressing a temperature rise during an accident. It is more preferable that all the shielding superconducting wires constituting the superconducting shield layer are wires having a small proportion of the normal conducting phase described above.

上記超電導線材における常電導相が占める割合は、例えば、超電導線材の横断面(超電導線材の長手方向に直交する方向に切断した面)をとり、この横断面における常電導相の面積割合を画像処理装置などを利用して求め、この面積割合を利用することができる。或いは、上記横断面における常電導相の面積と等しい面積を有し、かつ所定の幅(長辺)を有する長方形に上記常電導相を変形したときの当該長方形の厚さ(短辺)を等価厚さとし、この等価厚さを上記常電導相が占める割合に利用することができる。上記長方形の幅は、例えば、シールド用超電導線材の基板の幅を利用することができる。   The ratio of the normal conducting phase in the superconducting wire is, for example, the cross section of the superconducting wire (the plane cut in the direction perpendicular to the longitudinal direction of the superconducting wire), and the area ratio of the normal conducting phase in this cross section is image processed. This area ratio can be used by using an apparatus or the like. Alternatively, the rectangular thickness (short side) when the normal conducting phase is deformed into a rectangle having an area equal to the area of the normal conducting phase in the cross section and having a predetermined width (long side) is equivalent. The equivalent thickness can be used as the ratio of the normal conducting phase. As the width of the rectangle, for example, the width of the substrate of the shielding superconducting wire can be used.

上記等価厚さにより常電導相の割合を評価する場合、上記シールド用超電導線材における常電導相の等価厚さをとったとき、この等価厚さは、上記導体用超電導線材における常電導相の等価厚さよりも薄い。特に、上記シールド用超電導線材において上述のように基板の幅に対して常電導相の等価厚さをとったとき、この等価厚さが10μm以下であると、当該超電導線材における常電導相が占める割合が十分に少なく、超電導シールド層に事故電流が誘導され難く好ましい。上記等価厚さは、5μm以下がより好ましく、薄いほど好ましいため、特に下限は設けない。   When evaluating the ratio of the normal conducting phase based on the equivalent thickness, when the equivalent thickness of the normal conducting phase in the shielding superconducting wire is taken, this equivalent thickness is equivalent to the normal conducting phase in the conductor superconducting wire. Thinner than thickness. In particular, when the equivalent thickness of the normal conducting phase relative to the width of the substrate is taken as described above in the superconducting wire for shielding, the normal conducting phase in the superconducting wire occupies that the equivalent thickness is 10 μm or less. The ratio is sufficiently small, and it is preferable that an accident current is not easily induced in the superconducting shield layer. The equivalent thickness is more preferably 5 μm or less, and it is preferably as thin as possible. Therefore, there is no particular lower limit.

本発明の一形態として、上記導体用超電導線材と上記シールド用超電導線材とが仕様が異なる超電導線材である形態、例えば、上記導体用超電導線材が上記Bi系酸化物超電導線材であり、上記シールド用超電導線材が上記RE系酸化物薄膜線材である形態が挙げられる。一般に、RE系酸化物薄膜線材は、当該線材における常電導相の割合が、Bi系酸化物超電導線材における常電導相の割合よりも小さい上に、薄い。従って、シールド用超電導線材がRE系酸化物薄膜線材であると、事故時に超電導シールド層に誘導される電流を低減できる上に、超電導ケーブルの更なる小径化に寄与することができる。   As an aspect of the present invention, the conductor superconducting wire and the shield superconducting wire are superconducting wires having different specifications, for example, the conductor superconducting wire is the Bi-based oxide superconducting wire, and the shield A form in which the superconducting wire is the RE-based oxide thin film wire can be mentioned. In general, the RE-based oxide thin film wire is thin in that the proportion of the normal conducting phase in the wire is smaller than the proportion of the normal conducting phase in the Bi-based oxide superconducting wire. Therefore, if the superconducting wire for shielding is an RE-based oxide thin film wire, it is possible to reduce the current induced in the superconducting shield layer at the time of an accident and contribute to further reducing the diameter of the superconducting cable.

本発明の一形態として、上記シールド用超電導線材が、比抵抗が高い材料からなる補強層を具える形態が挙げられる。上述のように本発明では、シールド用超電導線材における常電導相の割合を低減することから、熱容量や強度といった機械的特性が低下する恐れがある。これに対し、上記比抵抗が高い材料による補強層を具えることで、熱容量や機械的特性の低下を低減する、或いは熱容量や機械的特性を向上することができる。上記補強層の構成材料は、超電導ケーブルの使用温度における比抵抗が1×10-8Ω・m超の材料が好ましい。 As one form of this invention, the form in which the said superconducting wire for shielding is provided with the reinforcement layer which consists of material with a high specific resistance is mentioned. As described above, in the present invention, since the ratio of the normal conducting phase in the superconducting wire for shielding is reduced, the mechanical characteristics such as heat capacity and strength may be lowered. On the other hand, by providing a reinforcing layer made of a material having a high specific resistance, a decrease in heat capacity and mechanical characteristics can be reduced, or heat capacity and mechanical characteristics can be improved. The material constituting the reinforcing layer is preferably a material having a specific resistance at the operating temperature of the superconducting cable of more than 1 × 10 −8 Ω · m.

本発明超電導ケーブルは、小径でありながら、事故時の温度上昇を抑制することができる。   The superconducting cable of the present invention can suppress a temperature rise at the time of an accident while having a small diameter.

図1は、実施形態1の超電導ケーブルの概略構成を示す斜視図である。FIG. 1 is a perspective view showing a schematic configuration of the superconducting cable of the first embodiment. 図2(I)は、試験例に用いたシールド用超電導線材の模式断面図であり、図2(II)は、このシールド用超電導線材における常電導相の等価厚さtを説明する模式断面図である。FIG. 2 (I) is a schematic cross-sectional view of the shielding superconducting wire used in the test example, and FIG. 2 (II) is a schematic cross-sectional view illustrating the equivalent thickness t of the normal conducting phase in this shielding superconducting wire. It is. 図3は、事故時のシミュレーション試験において、導体電流の波形、及びシールド電流の波形を描くグラフである。FIG. 3 is a graph depicting the waveform of the conductor current and the waveform of the shield current in the simulation test at the time of the accident. 図4は、事故時のシミュレーション試験において、事故電流が流れる時間と、超電導シールド層の温度上昇度合いΔTとの関係を示すグラフである。FIG. 4 is a graph showing the relationship between the time during which an accident current flows and the temperature rise ΔT of the superconducting shield layer in a simulation test at the time of an accident. 図5は、事故時のシミュレーション試験において、シールド用超電導線材における常電導相の等価厚さtと、超電導シールド層の温度上昇度合いΔTとの関係を示すグラフである。FIG. 5 is a graph showing the relationship between the equivalent thickness t of the normal conducting phase in the shielding superconducting wire and the temperature rise ΔT of the superconducting shield layer in the simulation test at the time of the accident.

(実施形態1)
以下、図1を参照して実施形態1の超電導ケーブル100を説明する。
[全体構成]
超電導ケーブル100は、3心のケーブルコア10が撚り合わされて一つの断熱管20に収納された、3心一括型のケーブルであり、代表的には交流送電に利用される。ケーブルコア10は、導体用超電導線材1cから構成される超電導導体層12と、シールド用超電導線材1sから構成される超電導シールド層14とを具える。また、超電導ケーブル100は、超電導シールド層14の内周側及び外周側の双方に、銅といった常電導材料からなる常電導シールド層を具えていない。以下、各構成をより詳細に説明する。
(Embodiment 1)
Hereinafter, the superconducting cable 100 of Embodiment 1 will be described with reference to FIG.
[overall structure]
The superconducting cable 100 is a three-core type cable in which three-core cable cores 10 are twisted and housed in one heat insulating tube 20, and is typically used for AC power transmission. The cable core 10 includes a superconducting conductor layer 12 made of a conductor superconducting wire 1c and a superconducting shield layer 14 made of a shielding superconducting wire 1s. Further, the superconducting cable 100 does not have a normal conducting shield layer made of a normal conducting material such as copper on both the inner and outer peripheral sides of the superconducting shield layer. Hereinafter, each configuration will be described in more detail.

[断熱管]
断熱管20は、内管21と外管22とからなる二重構造管であり、内管21と外管22との間が真空引きされた真空断熱構造である。内管21内には、液体窒素といった冷媒が充填され、この冷媒によりケーブルコア10の超電導導体層12及び超電導シールド層14が冷却されて、超電導状態に維持される。内管21と外管22との間には、スーパーインシュレーションといった断熱材23や、両管21,22の間隔を保持するスペーサ(図示せず)が配置される。外管22の外周には、ポリ塩化ビニルといった耐食性に優れる材料を押出して形成した防食層24を具える。
[Insulated pipe]
The heat insulating tube 20 is a double structure tube composed of an inner tube 21 and an outer tube 22, and is a vacuum heat insulating structure in which the space between the inner tube 21 and the outer tube 22 is evacuated. The inner tube 21 is filled with a refrigerant such as liquid nitrogen, and the superconducting conductor layer 12 and the superconducting shield layer 14 of the cable core 10 are cooled by this refrigerant and maintained in a superconducting state. Between the inner tube 21 and the outer tube 22, a heat insulating material 23 such as a super insulation, and a spacer (not shown) that keeps the distance between the two tubes 21, 22 are arranged. On the outer periphery of the outer tube 22, an anticorrosion layer 24 formed by extruding a material having excellent corrosion resistance such as polyvinyl chloride is provided.

[ケーブルコア]
各ケーブルコア10は、中心から順にフォーマ11、超電導導体層12、電気絶縁層13、超電導シールド層14、保護層15を具える。
[Cable core]
Each cable core 10 includes a former 11, a superconducting conductor layer 12, an electrical insulating layer 13, a superconducting shield layer 14, and a protective layer 15 in order from the center.

<フォーマ>
フォーマ11は、超電導導体層12の支持体として機能する他、超電導ケーブル100では、短絡や地絡などの事故時に瞬間的に生じる大きな事故電流を分流するための流路に利用される。このようなフォーマ11は、銅やアルミニウムといった超電導ケーブル100の使用温度(ここでは、65K〜80K程度)における比抵抗が1×10-8Ω・m以下である良導体の常電導材料にて形成された中実体や中空体(管体)を利用することができる。ここでは、フォーマ11は、ポリ塩化ビニル(PVC)やエナメルなどの絶縁被覆を具える銅線を複数本撚り合わせて構成された中実体としている。撚り線構造であることで、交流送電時における渦電流損の低減や曲げ特性に優れるといった効果が得られる。
<Former>
In addition to functioning as a support for the superconducting conductor layer 12, the former 11 is used in the superconducting cable 100 as a flow path for diverting a large accident current that occurs instantaneously at the time of an accident such as a short circuit or a ground fault. The former 11 is formed of a normal conductor material of a good conductor such as copper or aluminum having a specific resistance of 1 × 10 −8 Ω · m or less at the operating temperature of the superconducting cable 100 (here, about 65K to 80K). Solid bodies and hollow bodies (tubular bodies) can be used. Here, the former 11 is a solid body formed by twisting a plurality of copper wires having an insulation coating such as polyvinyl chloride (PVC) or enamel. Due to the stranded wire structure, effects such as reduction of eddy current loss and excellent bending characteristics during AC power transmission can be obtained.

<超電導導体層>
超電導導体層12及び超電導シールド層14は、酸化物超電導相を具えるテープ状の超電導線材を単層又は多層に螺旋状に巻回することで構成されている。ここでは、導体用超電導線材1cとして、超電導相にBi2Sr2Ca2Cu3O10+δ(Bi2223)を具え、Agを金属マトリクスとするBi系酸化物超電導線材を利用している。上記金属マトリクスは、超電導ケーブル100の使用温度(ここでは、65K〜80K程度)において比抵抗:1×10-8Ω・m以下であり、導体用超電導線材1cの常電導相を構成する。超電導導体層12は、この導体用超電導線材1cを四層に巻回した多層構造である。超電導導体層12は、所望の電流容量に応じて、超電導線材の仕様(金属マトリクス比、断面積など)や本数を選択するとよい。
<Superconducting conductor layer>
The superconducting conductor layer 12 and the superconducting shield layer 14 are configured by winding a tape-like superconducting wire having an oxide superconducting phase in a single layer or in a spiral manner. Here, a Bi-based oxide superconducting wire having Bi 2 Sr 2 Ca 2 Cu 3 O 10 + δ (Bi2223) in the superconducting phase and Ag as a metal matrix is used as the conductor superconducting wire 1c. The metal matrix has a specific resistance of 1 × 10 −8 Ω · m or less at the operating temperature of the superconducting cable 100 (here, about 65K to 80K), and constitutes a normal conducting phase of the conductor superconducting wire 1c. The superconducting conductor layer 12 has a multilayer structure in which the conductor superconducting wire 1c is wound in four layers. For the superconducting conductor layer 12, the superconducting wire specifications (metal matrix ratio, cross-sectional area, etc.) and the number thereof may be selected according to the desired current capacity.

超電導導体層12を多層構造とする場合、導体用超電導線材1cがつくる各層の間にクラフト紙などの絶縁紙を巻回した層間絶縁層を設けることができる。超電導導体層12は、導体用超電導線材1cからなる部分に加えて、層間絶縁層を含むことを許容する。更に、超電導導体層12の直上に、カーボン紙などを巻回して内側半導電層を設けることができる。   When the superconducting conductor layer 12 has a multilayer structure, an interlayer insulating layer in which insulating paper such as kraft paper is wound can be provided between the layers formed by the conductor superconducting wire 1c. Superconducting conductor layer 12 is allowed to include an interlayer insulating layer in addition to the portion made of conductor superconducting wire 1c. Furthermore, an inner semiconductive layer can be provided by winding carbon paper or the like directly on the superconducting conductor layer 12.

なお、上記フォーマ11の外周に、クラフト紙といった絶縁紙や、クラフト紙とプラスチックとを複合した半合成絶縁紙(例えば、PPLP(住友電気工業株式会社 登録商標))からなる絶縁性テープを巻回して、クッション層を形成すると、超電導導体層12を形成し易い上に、フォーマ11を構成する銅線により超電導導体層12が損傷することを防止することができる。   An insulating tape made of insulating paper such as kraft paper or semi-synthetic insulating paper composed of kraft paper and plastic (for example, PPLP (registered trademark of Sumitomo Electric Industries, Ltd.)) is wound around the outer periphery of the former 11. When the cushion layer is formed, it is easy to form the superconducting conductor layer 12, and it is possible to prevent the superconducting conductor layer 12 from being damaged by the copper wire constituting the former 11.

<電気絶縁層>
電気絶縁層13は、上記超電導導体層12(或いは内側半導電層)の上に、上述したクラフト紙や半合成絶縁紙などの絶縁性テープを巻回することで形成されている。ここでは、電気絶縁層13は、PPLP(住友電気工業株式会社 登録商標)により構成されている。更に、電気絶縁層13の直上に、カーボン紙などを巻回して外側半導電層を設けることができる。
<Electrical insulation layer>
The electrical insulating layer 13 is formed by winding an insulating tape such as the above-described kraft paper or semi-synthetic insulating paper on the superconducting conductor layer 12 (or inner semiconductive layer). Here, the electrical insulating layer 13 is made of PPLP (registered trademark of Sumitomo Electric Industries, Ltd.). Furthermore, an outer semiconductive layer can be provided by winding carbon paper or the like directly on the electrical insulating layer 13.

<超電導シールド層>
上記電気絶縁層13(或いは外側半導電層)の上に超電導シールド層14が形成されている。ここでは、シールド用超電導線材1sとして、REBa2Cu3Ox(RE123)、例えばYBCO,HoBCO,GdBCOといったRE系酸化物超電導相が基板の上に形成されたRE系酸化物薄膜線材を利用している。より具体的には、ステンレス鋼といった鉄系合金やハステロイ(登録商標)といったNi合金などからなる基板の上に、YSZ(イットリア安定化ジルコニア),MgOといった酸化物などからなる中間層を介して上記超電導相が形成され、この超電導相を覆うように銀や銅といった常電導材料からなる安定化層を具える。上記安定化層は、超電導ケーブル100の使用温度(ここでは、65K〜80K程度)において比抵抗が1×10-8Ω・m以下であり、上記基板は、上記比抵抗が1×10-8Ω・m超である。ここでは、シールド用超電導線材1sにおいて上記比抵抗が1×10-8Ω・m以下の材料からなる部分を常電導相とする。従って、ここでは、シールド用超電導線材1sの常電導相は、上記安定化層により構成される。超電導シールド層14は、このシールド用超電導線材1sを二層に巻回した多層構造である。
<Superconducting shield layer>
A superconducting shield layer 14 is formed on the electrical insulating layer 13 (or outer semiconductive layer). Here, as the superconducting wire 1s for shielding, REBa 2 Cu 3 O x (RE123), for example, a RE-based oxide thin film wire in which a RE-based oxide superconducting phase such as YBCO, HoBCO, GdBCO is formed on a substrate is used. ing. More specifically, on a substrate made of an iron-based alloy such as stainless steel or a Ni alloy such as Hastelloy (registered trademark), an intermediate layer made of an oxide such as YSZ (yttria stabilized zirconia) or MgO is used. A superconducting phase is formed, and a stabilizing layer made of a normal conducting material such as silver or copper is provided so as to cover the superconducting phase. The stabilizing layer has a specific resistance of 1 × 10 −8 Ω · m or less at the operating temperature of the superconducting cable 100 (here, about 65K to 80K), and the substrate has a specific resistance of 1 × 10 −8. It is over Ω · m. Here, a portion made of a material having a specific resistance of 1 × 10 −8 Ω · m or less in the superconducting wire 1s for shielding is defined as a normal conducting phase. Accordingly, here, the normal conducting phase of the shielding superconducting wire 1s is constituted by the stabilizing layer. The superconducting shield layer 14 has a multilayer structure in which the shielding superconducting wire 1s is wound in two layers.

上述した超電導導体層12と同様に、シールド用超電導線材1sがつくる各層の間に層間絶縁層を設けることができる。超電導シールド層14は、シールド用超電導線材1sからなる部分に加えて、層間絶縁層を含むことを許容する。   Similar to the superconducting conductor layer 12 described above, an interlayer insulating layer can be provided between the layers formed by the shielding superconducting wire 1s. The superconducting shield layer 14 allows an interlayer insulating layer to be included in addition to the portion made of the shielding superconducting wire 1s.

上記超電導シールド層14は、通常運転時、超電導導体層12に流れる電流(導体電流)と実質的に同じ大きさの誘導電流が流され、この誘導電流がつくる磁界により導体電流がつくる磁界を打ち消して、導体電流による磁界が外部に漏れることを抑制する機能を有する。従って、超電導シールド層14は、少なくとも導体電流と同じ大きさの電流を流すことができるように、超電導線材の仕様や本数を選択するとよい。   During the normal operation, the superconducting shield layer 14 is supplied with an induced current substantially equal to the current flowing through the superconducting conductor layer 12 (conductor current), and cancels out the magnetic field generated by the conductor current by the magnetic field generated by the induced current. Thus, the magnetic field due to the conductor current has a function of suppressing leakage to the outside. Therefore, the superconducting shield layer 14 may be selected in accordance with the specifications and number of superconducting wires so that at least a current having the same magnitude as the conductor current can flow.

なお、例えば、超電導ケーブル100を三相交流送電に利用する場合、3心のケーブルコア10の両端において、各ケーブルコア10の超電導シールド層14同士を短絡させた状態に構成することで、各ケーブルコア10の超電導シールド層14に上記誘導電流を流すことができる。   For example, when the superconducting cable 100 is used for three-phase AC power transmission, each cable core 10 is configured such that the superconducting shield layers 14 of the cable cores 10 are short-circuited at both ends of each cable core 10. The induced current can flow through the superconducting shield layer 14 of the core 10.

そして、超電導ケーブル100の最も特徴とするところは、シールド用超電導線材1sにおける常電導相(ここでは、安定化層)が占める割合が、導体用超電導線材1cにおける常電導相(ここでは金属マトリクス)が占める割合よりも小さいことにある。   The most characteristic feature of the superconducting cable 100 is that the ratio of the normal conducting phase (here, the stabilization layer) in the shielding superconducting wire 1s is the normal conducting phase (here, the metal matrix) in the conductor superconducting wire 1c. Is less than the proportion of

より具体的には、導体用超電導線材1c及びシールド用超電導線材1sの横断面をとる。各線材1c,1sの横断面において各線材1c,1sの常電導相が占める面積と等しい面積を有し、シールド用超電導線材1sの基板の幅を長辺とする長方形に各線材1c,1sの常電導相を変形したときの厚さ(短辺)を等価厚さとする。このとき、シールド用超電導線材1sの等価厚さが導体用超電導線材1cの等価厚さよりも小さくなっている(薄くなっている)。また、ここでは、超電導シールド層14を構成する全てのシールド用超電導線材1sの等価厚さが導体用超電導線材1cの等価厚さよりも小さい。   More specifically, the cross sections of the conductor superconducting wire 1c and the shield superconducting wire 1s are taken. Each wire rod 1c, 1s has an area equal to the area occupied by the normal conducting phase of each wire rod 1c, 1s in the cross section of each wire rod 1c, 1s, and each wire rod 1c, 1s has a rectangular shape having a long side as the width of the substrate of the superconducting wire rod 1s The thickness (short side) when the normal conducting phase is deformed is defined as the equivalent thickness. At this time, the equivalent thickness of the shielding superconducting wire 1s is smaller (thinner) than the equivalent thickness of the conductor superconducting wire 1c. Here, the equivalent thickness of all the shielding superconducting wires 1s constituting the superconducting shield layer 14 is smaller than the equivalent thickness of the conductor superconducting wire 1c.

<保護層>
超電導シールド層14の外周に、超電導シールド層14を機械的に保護するための保護層15を具える。保護層15は、上述したクラフト紙や半合成絶縁紙などの絶縁性テープを巻回することで形成することができる。
<Protective layer>
A protective layer 15 for mechanically protecting the superconducting shield layer 14 is provided on the outer periphery of the superconducting shield layer 14. The protective layer 15 can be formed by winding an insulating tape such as the above-described kraft paper or semi-synthetic insulating paper.

[効果]
上記構成を具える超電導ケーブル100は、短絡や地絡などの事故時に瞬間的に大きな事故電流が生じても、この事故電流は、主としてフォーマ11に流れ、超電導導体層12を構成する導体用超電導線材1cに流れる量を低減することができる。そのため、超電導導体層12の温度上昇を抑制することができる。従って、超電導ケーブル100は、導体用超電導線材1cの常電導相に事故電流が流れて温度が上昇することで、導体用超電導線材1cが損傷することを抑制することができる。
[effect]
In the superconducting cable 100 having the above configuration, even if a large accident current occurs instantaneously at the time of an accident such as a short circuit or a ground fault, the accident current flows mainly to the former 11 and forms the superconducting conductor layer 12. The amount flowing through the wire 1c can be reduced. Therefore, the temperature rise of superconducting conductor layer 12 can be suppressed. Therefore, the superconducting cable 100 can prevent the conductor superconducting wire 1c from being damaged by an accident current flowing through the normal conducting phase of the conductor superconducting wire 1c and the temperature rising.

かつ、超電導シールド層14を構成するシールド用超電導線材1sは、常電導相が導体用超電導線材1cよりも少ないことで、フォーマ11及び超電導導体層12に流れる事故電流からの誘導電流が流れ難い。即ち、シールド用超電導線材1sに流れる誘導電流を非常に小さく抑えることができる、或いは実質的に無くすることができる。そのため、超電導シールド層14の温度上昇をも抑制することができる。従って、超電導ケーブル100は、シールド用超電導線材1sの常電導相に上記事故電流の誘導電流が流れて温度が上昇することで、シールド用超電導線材1sが損傷することを抑制することができる。   In addition, the superconducting wire 1s for shielding constituting the superconducting shield layer 14 has less normal conducting phase than the superconducting wire 1c for conductor, so that the induced current from the accident current flowing in the former 11 and the superconducting conductor layer 12 is difficult to flow. That is, the induced current flowing through the shielding superconducting wire 1s can be kept very small or can be substantially eliminated. Therefore, the temperature rise of superconducting shield layer 14 can also be suppressed. Therefore, the superconducting cable 100 can prevent the shield superconducting wire 1s from being damaged when the induced current of the accident current flows through the normal conducting phase of the shielding superconducting wire 1s and the temperature rises.

このように超電導ケーブル100は、事故時の対策を十分に具えた構成でありながら、超電導シールド層14が実質的にシールド用超電導線材1sのみで構成され、超電導シールド層14の内周側及び外周側のいずれにも銅といった常電導材料からなる常電導シールド層を具えていない。そのため、ケーブルコア10は、上記常電導シールド層を具える従来の超電導ケーブルのケーブルコアと比較して小径であることから、超電導ケーブル100は、従来の超電導ケーブルよりも小径である。   In this way, the superconducting cable 100 has a configuration with sufficient countermeasures in case of an accident, but the superconducting shield layer 14 is substantially composed of only the superconducting wire 1s for shielding, and the inner and outer sides of the superconducting shield layer 14 Neither side has a normal conducting shield layer made of a normal conducting material such as copper. Therefore, since the cable core 10 has a smaller diameter than the cable core of the conventional superconducting cable having the normal conducting shield layer, the superconducting cable 100 has a smaller diameter than the conventional superconducting cable.

また、超電導導体層12を構成する導体用超電導線材1cがBi系酸化物超電導線材であり、超電導シールド層14を構成するシールド用超電導線材1sがRE系酸化物薄膜線材であることで、シールド用超電導線材1sにおける常電導相が占める割合を導体用超電導線材1cよりも小さい超電導ケーブル100を容易に実現することができる。   In addition, the superconducting wire 1c for the conductor constituting the superconducting conductor layer 12 is a Bi-based oxide superconducting wire, and the superconducting wire 1s for shielding constituting the superconducting shield layer 14 is a RE-based oxide thin film wire. The superconducting cable 100 in which the proportion of the normal conducting phase in the superconducting wire 1s is smaller than that in the conductor superconducting wire 1c can be easily realized.

<変形例1>
実施形態1では、3心のケーブルコアを一つの断熱管に収納した三心一括型の形態を説明したが、1心のケーブルコアを一つの断熱管に収納した単心型の形態としてもよいし、2又は4以上の複数心のケーブルコアを一つの断熱管に収納した多心一括型の形態としてもよい。
<Modification 1>
In the first embodiment, the three-core type configuration in which the three-core cable cores are accommodated in one heat insulation tube has been described. However, the single-core type configuration in which the one-core cable core is accommodated in one insulation tube may be used. However, a multi-core batch type in which two or four or more multi-core cable cores are housed in one heat insulating tube may be adopted.

<変形例2>
実施形態1では、銅といった常電導材料からなる常電導シールド層を有していない形態を説明したが、超電導シールド層の内周側及び外周側の少なくとも一方に常電導シールド層を具えた形態とすることができる。この形態では、事故時、常電導シールド層に誘導電流を分流させられるため、シールド用超電導線材に通電されることによる温度上昇をより効果的に低減することができる。但し、超電導ケーブルの小径化を考慮すると、実施形態1のように、上記常電導シールド層を具えていないことが好ましい。
<Modification 2>
In the first embodiment, a form that does not have a normal conductive shield layer made of a normal conductive material such as copper has been described, but a form in which a normal conductive shield layer is provided on at least one of the inner peripheral side and the outer peripheral side of the superconductive shield layer; can do. In this embodiment, since an induced current can be shunted to the normal conducting shield layer in the event of an accident, it is possible to more effectively reduce the temperature rise caused by energizing the shielding superconducting wire. However, considering the reduction of the diameter of the superconducting cable, it is preferable that the normal conducting shield layer is not provided as in the first embodiment.

(実施形態2)
実施形態1では、導体用超電導線材がBi系酸化物超電導線材からなり、シールド用超電導線材がRE系酸化物薄膜線材からなる形態を説明したが、導体用超電導線材及びシールド用超電導線材の双方を同様の仕様の超電導線材としてもよい。
(Embodiment 2)
In the first embodiment, the conductor superconducting wire is made of a Bi-based oxide superconducting wire and the shield superconducting wire is made of an RE-based oxide thin film wire. However, both the conductor superconducting wire and the shield superconducting wire are described. It is good also as a superconducting wire of the same specification.

例えば、導体用超電導線材及びシールド用超電導線材の双方を、Bi系酸化物超電線材とすることができる。このとき、シールド用超電導線材は、上記金属マトリクス比(代表的には銀比又は銀合金比)が少ない線材とする。金属マトリクス比とは、超電導線材の横断面における超電導相部分の面積に対する金属マトリクス部分の面積の比をいう。   For example, both the superconducting wire for conductors and the superconducting wire for shielding can be Bi-based oxide superconductors. At this time, the superconducting wire for shielding is a wire having a small metal matrix ratio (typically silver ratio or silver alloy ratio). The metal matrix ratio refers to the ratio of the area of the metal matrix portion to the area of the superconducting phase portion in the cross section of the superconducting wire.

或いは、導体用超電導線材及びシールド用超電導線材の双方をRE系酸化物薄膜線材とすることができる。このとき、シールド用超電導線材は、上記安定化層が少ない線材、例えば、上述した等価厚さが薄い線材とする。超電導ケーブルに具える超電導部分が上記薄膜線材により構成されることで、当該超電導部分が上記Bi系酸化物超電導線材により構成される場合よりも、超電導ケーブルを更に小径にすることができる。   Alternatively, both the superconducting wire for conductors and the superconducting wire for shielding can be RE-based oxide thin film wires. At this time, the superconducting wire for shielding is a wire having a small number of stabilizing layers, for example, a wire having a thin equivalent thickness as described above. When the superconducting portion included in the superconducting cable is configured by the thin film wire, the superconducting cable can be further reduced in diameter compared to the case where the superconducting portion is configured by the Bi-based oxide superconducting wire.

(実施形態3)
実施形態1では、シールド用超電導線材として、基板と、超電導相と、安定化層とを具える形態を説明したが、更に、補強層を具える超電導線材とすることができる。
(Embodiment 3)
In the first embodiment, as the superconducting wire for shielding, a form including a substrate, a superconducting phase, and a stabilizing layer has been described. However, a superconducting wire including a reinforcing layer can be used.

上記補強層の構成材料は、超電導ケーブルの使用温度(冷媒が液体窒素の場合、65K〜80K程度)における比抵抗が1×10-8Ω・m超の材料が好ましい。このような材料として、例えば、CuNi合金といった銅合金やステンレス鋼といった鉄系合金などの金属が挙げられる。これらの金属は、銅や銀、銀合金と比較して高強度である上に、導電率が低く、高抵抗である。或いは、カーボン繊維、ガラス繊維、これらの繊維を含む樹脂といった高強度で、高抵抗、又は絶縁性の材料が挙げられる。このような補強層は、基板又は安定化層に接着剤やロウ材、半田を利用したり、溶接したりすることで、超電導線材に一体化することができる。上記シールド用超電導線材として、上述したRE系酸化物薄膜線材であって、基板にステンレス鋼といった上記比抵抗が高い材料からなる基板を利用する場合、基板の厚さを若干厚めにしてもよい。 The constituent material of the reinforcing layer is preferably a material having a specific resistance of more than 1 × 10 −8 Ω · m at the operating temperature of the superconducting cable (about 65 K to 80 K when the refrigerant is liquid nitrogen). Examples of such a material include metals such as a copper alloy such as a CuNi alloy and an iron-based alloy such as stainless steel. These metals have higher strength than copper, silver, and silver alloys, and have low conductivity and high resistance. Alternatively, a high-strength, high-resistance or insulating material such as carbon fiber, glass fiber, or resin containing these fibers can be used. Such a reinforcing layer can be integrated with the superconducting wire by using an adhesive, brazing material, solder, or welding to the substrate or the stabilization layer. When the above-mentioned RE-based oxide thin film wire is used as the shielding superconducting wire, and the substrate made of the material having a high specific resistance such as stainless steel is used for the substrate, the thickness of the substrate may be slightly increased.

このような補強層を具える超電導線材とすることで、常電導相が少なくても、強度といった機械的特性を高められる上に、超電導ケーブルを過度に大径化することなく、当該超電導線材の熱容量を大きくすることができる。即ち、温度の上昇度合いを緩やかにする、換言すれば昇温速度を遅くすることができる。従って、補強層を具える超電導線材を利用した超電導ケーブルは、事故時における超電導線材の温度上昇をより効果的に抑制することができる。なお、上記補強層は、高抵抗又は絶縁性が高いため、事故電流が非常に誘導され難い、或いは実質的に誘導されない。   By using a superconducting wire having such a reinforcing layer, mechanical properties such as strength can be improved even if the normal conducting phase is small, and the superconducting cable can be made without excessively increasing the diameter of the superconducting cable. The heat capacity can be increased. That is, the temperature rise rate can be moderated, in other words, the temperature rise rate can be slowed. Therefore, the superconducting cable using the superconducting wire having the reinforcing layer can more effectively suppress the temperature rise of the superconducting wire at the time of the accident. In addition, since the said reinforcement layer has high resistance or insulation, an accident current is very hard to be induced or it is not induced | guided | derived substantially.

[試験例]
実施形態1で説明した3心一括型の超電導ケーブルについて、超電導導体層に事故電流を想定した過電流を流した場合に超電導シールド層に誘導される電流の大きさ、及び超電導シールド層の温度上昇度合いをシミュレーションにより調べた。
[Test example]
For the superconducting cable of the three-core type described in the first embodiment, the magnitude of the current induced in the superconducting shield layer when an overcurrent assuming an accident current is passed through the superconducting conductor layer, and the temperature rise of the superconducting shield layer The degree was investigated by simulation.

この試験では、常電導相の等価厚さが異なる超電導線材を使用したケーブルコアを具える試料No.1〜4を用意した。この試験で用いた超電導ケーブルのケーブルコアの仕様を表1に以下に示す。試料No.1〜4の外径は等価厚さが異なるため正確には異なるが誤差範囲であるため、試料No.1〜4のいずれについても、表1に示す仕様とする。   In this test, sample Nos. 1 to 4 including cable cores using superconducting wires having different equivalent thicknesses of normal conducting phases were prepared. Table 1 shows the specifications of the superconducting cable core used in this test. The outer diameters of sample Nos. 1 to 4 are different from each other because the equivalent thicknesses are different, but are within an error range.

Figure 2011065879
Figure 2011065879

超電導導体層に用いた導体用超電導線材は、住友電気工業株式会社製 BSCCO線材であり、1層目及び2層目:TypeHT(ラミネーション材料:銅合金)、3層目及び4層目:TypeACT(ラミネーション材料:銅合金)である。   The superconducting wire for conductors used for the superconducting conductor layer is a BSCCO wire made by Sumitomo Electric Industries, Ltd., the first and second layers: TypeHT (lamination material: copper alloy), the third and fourth layers: TypeACT ( Lamination material: copper alloy).

超電導シールド層に用いたシールド用超電導線材1sは、図2(I)に示すように、幅w:4.5mm×厚さtb:100μmのステンレス鋼(SUS鋼)からなる基板110の一面に、幅w:4.5mm×厚さts:1μmの超電導相(ここではYBCO)111を被覆し、この基板110と超電導相111との積層体の外周を常電導相112で被覆した形態である。常電導相112は、銀層及び銅めっき層で構成され、超電導ケーブルの使用温度(ここでは、65K〜80K程度)における比抵抗が1×10-8以下を満たす。上記基板110は、上記比抵抗が1×10-8超である(5×10-7程度)。 As shown in FIG. 2 (I), the superconducting wire 1s for shielding used for the superconducting shield layer is formed on one surface of a substrate 110 made of stainless steel (SUS steel) having a width w: 4.5 mm × thickness t b : 100 μm. The superconducting phase (here YBCO) 111 of width w: 4.5 mm × thickness t s : 1 μm is coated, and the outer periphery of the laminate of the substrate 110 and the superconducting phase 111 is coated with the normal conducting phase 112. The normal conducting phase 112 is composed of a silver layer and a copper plating layer, and the specific resistance at the operating temperature of the superconducting cable (here, about 65K to 80K) satisfies 1 × 10 −8 or less. The specific resistance of the substrate 110 is more than 1 × 10 −8 (about 5 × 10 −7 ).

このシールド用超電導線材1sの横断面において上記常電導相112が占める面積を変えずに、図2(II)に示すように基板110の幅w:4.5mmを長辺とする長方形に変形したときの短辺を等価厚さtとする。この試験では、等価厚さtが50μm、20μm、10μm、5μmである試料をそれぞれ用意した(順に試料No.1,2,3,4)。試料No.1〜4に用いられるシールド用超電導線材における常電導相が占める割合は、導体用超電導線材(上記TypeHT及びTypeACTの双方とも)における常電導相が占める割合よりも小さい。なお、図2では、わかり易いように、各構成要素の厚さを誇張して示す。   Without changing the area occupied by the normal conducting phase 112 in the cross section of this shielding superconducting wire 1s, when the substrate 110 is deformed into a rectangle with a width w of 4.5 mm as a long side as shown in FIG. Is the equivalent thickness t. In this test, samples having equivalent thicknesses t of 50 μm, 20 μm, 10 μm, and 5 μm were prepared (sample Nos. 1, 2, 3, and 4 in order). The proportion of the normal conducting phase in the shielding superconducting wire used for Sample Nos. 1 to 4 is smaller than the proportion of the normal conducting phase in the conductor superconducting wire (both TypeHT and TypeACT). In FIG. 2, the thickness of each component is exaggerated for easy understanding.

上記各ケーブルコアの両端において各ケーブルコアの超電導シールド層同士は短絡された状態とし、超電導導体層からの誘導電流が流れ得る状態とする。   The superconducting shield layers of the cable cores are short-circuited at both ends of the cable cores, and the induced current from the superconducting conductor layer can flow.

そして、この試験では、超電導導体層に31.5kA×2secの過電流が流れる場合を想定し、解析プログラムを利用して、各試料の超電導シールド層に流れる電流の大きさ、超電導シールド層の温度上昇度合いΔT(過電流を通電後、0.001sec(1msec)ごとに測定した温度Tnと過電流の通電前の温度T0との差:Tn-T0)、及び等価厚さtと温度上昇度合いΔTとの関係を調べた。上記電流の大きさを図3に、上記温度上昇度合いΔTを図4に、上記等価厚さtと上記温度上昇度合いΔTとの関係を図5及び表2に示す。なお、上記解析プログラムは、電気回路方程式と熱伝導方程式とを利用して電流分布と温度分布とを計算可能なものであり、磁場解析と温度解析とが可能な市販の電磁界解析ソフトを利用することができる。 In this test, it is assumed that an overcurrent of 31.5 kA x 2 sec flows in the superconducting conductor layer, and using the analysis program, the magnitude of the current flowing in the superconducting shield layer of each sample and the temperature rise of the superconducting shield layer Degree ΔT (difference between temperature T n measured every 0.001 sec (1 msec) after energization of overcurrent and temperature T 0 before energization of overcurrent: T n -T 0 ), equivalent thickness t and temperature rise The relationship with the degree ΔT was examined. FIG. 3 shows the magnitude of the current, FIG. 4 shows the temperature rise degree ΔT, and FIG. 5 and Table 2 show the relationship between the equivalent thickness t and the temperature rise degree ΔT. The above analysis program can calculate the current distribution and temperature distribution using the electric circuit equation and the heat conduction equation, and uses commercially available electromagnetic field analysis software capable of magnetic field analysis and temperature analysis. can do.

Figure 2011065879
Figure 2011065879

図5及び表2に示すように、シールド用超電導線材における常電導相が占める割合(ここでは等価厚さ)が小さいほど(薄いほど)、超電導シールド層の温度上昇度合いΔTが小さいことが分かる。この理由は、図3に示すように、上記常電導相が占める割合が小さくなるほど、フォーマと超電導導体層とに流れる事故電流(導体電流)に対して、超電導シールド層に誘導される電流(シールド電流)が小さくなっているため、シールド電流の通電に伴う温度上昇が抑えられたからである、と考えられる。また、図4に示すように、上記常電導相が占める割合が多いほど、超電導シールド層の温度の上昇速度も速く、温度上昇に伴って超電導線材が損傷する可能性が大きくなる、と考えられる。   As shown in FIG. 5 and Table 2, it can be seen that the degree of temperature increase ΔT of the superconducting shield layer is smaller as the proportion of the normal conducting phase in the superconducting wire for shielding (here, equivalent thickness) is smaller (thinner). The reason for this is that, as shown in FIG. 3, as the ratio of the normal conducting phase decreases, the current induced by the superconducting shield layer (shield current) against the fault current (conductor current) flowing between the former and the superconducting conductor layer. This is probably because the temperature rise accompanying the energization of the shield current is suppressed because the current) is small. In addition, as shown in FIG. 4, the higher the proportion of the normal conducting phase, the faster the temperature of the superconducting shield layer rises, and the possibility of damage to the superconducting wire increases with the temperature rise. .

更に、この試験結果から、超電導ケーブルの使用温度における比抵抗が1×10-8Ω・m以下である材料により上記常電導相が構成されている場合であっても、当該常電導相の等価厚さが10μm以下であると、事故時に超電導シールド層の温度上昇を十分に抑制できることが分かる。実際、上記等価厚さが10μmである試料No.3では、導体電流に対するシールド電流の割合が5%程度であり、試料No.4では、2%程度である。上記導体電流に対するシールド電流の割合は、遮断寸前である過電流発生から2sec後の電流値を用いて求めている。このように導体電流に対するシールド電流の割合が5%以下程度になるように、上記等価厚さを調整すると、温度上昇の抑制に効果があると考えられる。 Furthermore, from this test result, even if the normal conducting phase is composed of a material having a specific resistance at the operating temperature of the superconducting cable of 1 × 10 −8 Ω · m or less, the equivalent of the normal conducting phase It can be seen that when the thickness is 10 μm or less, the temperature rise of the superconducting shield layer can be sufficiently suppressed in the event of an accident. Actually, in the sample No. 3 where the equivalent thickness is 10 μm, the ratio of the shield current to the conductor current is about 5%, and in the sample No. 4, it is about 2%. The ratio of the shield current to the conductor current is obtained using the current value 2 seconds after the occurrence of overcurrent, which is about to be interrupted. Thus, it is considered that adjusting the equivalent thickness so that the ratio of the shield current to the conductor current is about 5% or less is effective in suppressing the temperature rise.

なお、この試験では、実施形態1に説明した3心一括型の超電導ケーブルについて調べたが、上述した実施形態2,3や変形例1,2についても同様の結果が得られると期待される。特に、補強層を設けた場合は、熱容量を大きくすることができるため、温度上昇度合いΔTをより低減することができると期待される。   In this test, the three-core superconducting cable described in the first embodiment was examined, but it is expected that the same results can be obtained for the second and third embodiments and the first and second modifications. In particular, when the reinforcing layer is provided, the heat capacity can be increased, so that it is expected that the temperature increase degree ΔT can be further reduced.

上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、本発明超電導ケーブルを交流送電だけなく、直流送電に用いてもよい。   The above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration. For example, the superconducting cable of the present invention may be used not only for AC transmission but also for DC transmission.

本発明超電導ケーブルは、超電導ケーブル線路の構成部材に好適に利用することができる。   The superconducting cable of the present invention can be suitably used as a constituent member of a superconducting cable line.

1c 導体用超電導線材 1s シールド用超電導線材
10 ケーブルコア 11 フォーマ 12 超電導導体層 13 電気絶縁層
14 超電導シールド層 15 保護層
20 断熱管 21 内管 22 外管 23 断熱材 24 防食層
100 超電導ケーブル
110 基板 111 超電導相 112 常電導相
1c Superconducting wire for conductor 1s Superconducting wire for shield
10 Cable core 11 Former 12 Superconducting conductor layer 13 Electrical insulation layer
14 Superconducting shield layer 15 Protective layer
20 Heat insulation pipe 21 Inner pipe 22 Outer pipe 23 Insulation material 24 Anticorrosion layer
100 superconducting cable
110 Substrate 111 Superconducting phase 112 Normal conducting phase

Claims (8)

中心から順にフォーマと、超電導導体層と、電気絶縁層と、超電導シールド層とを有するケーブルコアを具える超電導ケーブルであって、
前記超電導導体層及び前記超電導シールド層は、超電導相と常電導相とを含む複数の超電導線材で構成され、
前記超電導シールド層を構成する超電導線材の少なくとも1本において常電導相が占める割合が、前記超電導導体層を構成する超電導線材において常電導相が占める割合よりも小さいことを特徴とする超電導ケーブル。
A superconducting cable comprising a cable core having a former, a superconducting conductor layer, an electrical insulating layer, and a superconducting shield layer in order from the center,
The superconducting conductor layer and the superconducting shield layer are composed of a plurality of superconducting wires including a superconducting phase and a normal conducting phase,
A superconducting cable characterized in that the proportion of the normal conducting phase in at least one of the superconducting wires constituting the superconducting shield layer is smaller than the proportion of the normal conducting phase in the superconducting wire constituting the superconducting conductor layer.
前記超電導シールド層を構成する超電導線材において常電導相は、前記超電導ケーブルの使用温度における比抵抗が1×10-8Ω・m以下である常電導材料から構成されていることを特徴とする請求項1に記載の超電導ケーブル。 In the superconducting wire constituting the superconducting shield layer, the normal conducting phase is composed of a normal conducting material having a specific resistance at a working temperature of the superconducting cable of 1 × 10 −8 Ω · m or less. Item 2. The superconducting cable according to item 1. 前記超電導シールド層を構成する超電導線材において、前記常電導相の等価厚さをとったとき、当該等価厚さは、前記超電導導体層を構成する超電導線材における常電導部の等価厚さよりも薄いことを特徴とする請求項1又は2に記載の超電導ケーブル。   In the superconducting wire constituting the superconducting shield layer, when the equivalent thickness of the normal conducting phase is taken, the equivalent thickness is thinner than the equivalent thickness of the normal conducting portion in the superconducting wire constituting the superconducting conductor layer. The superconducting cable according to claim 1 or 2, wherein 前記超電導シールド層を構成する超電導線材は、基板上にRE系酸化物超電導相を具える薄膜線材であることを特徴とする請求項1〜3のいずれか1項に記載の超電導ケーブル。   4. The superconducting cable according to claim 1, wherein the superconducting wire constituting the superconducting shield layer is a thin film wire having a RE-based oxide superconducting phase on a substrate. 前記超電導導体層を構成する超電導線材は、Bi系酸化物超電導相を具える線材であることを特徴とする請求項4に記載の超電導ケーブル。   5. The superconducting cable according to claim 4, wherein the superconducting wire constituting the superconducting conductor layer is a wire having a Bi-based oxide superconducting phase. 前記超電導シールド層を構成する超電導線材において、前記基板の幅に対して前記常電導相の等価厚さをとったとき、前記常電導相の等価厚さが10μm以下であることを特徴とする請求項4又は5に記載の超電導ケーブル。   In the superconducting wire constituting the superconducting shield layer, when the equivalent thickness of the normal conducting phase is taken with respect to the width of the substrate, the equivalent thickness of the normal conducting phase is 10 μm or less. Item 6. The superconducting cable according to item 4 or 5. 前記超電導シールド層を構成する超電導線材は、前記超電導ケーブルの使用温度における比抵抗が1×10-8Ω・m超の材料からなる補強層を具えることを特徴とする請求項1〜6のいずれか1項に記載の超電導ケーブル。 The superconducting wire constituting the superconducting shield layer comprises a reinforcing layer made of a material having a specific resistance at the operating temperature of the superconducting cable of more than 1 × 10 −8 Ω · m. The superconducting cable according to any one of the above. 前記ケーブルコアは、前記超電導シールド層の内周側及び外周側の双方に、常電導材料から構成される常電導シールド層を有していないことを特徴とする請求項1〜7のいずれか1項に記載の超電導ケーブル。   8. The cable core according to any one of claims 1 to 7, wherein the cable core does not have a normal conductive shield layer made of a normal conductive material on both an inner peripheral side and an outer peripheral side of the superconductive shield layer. The superconducting cable described in the section.
JP2009215826A 2009-09-17 2009-09-17 Superconducting cable Expired - Fee Related JP5418772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009215826A JP5418772B2 (en) 2009-09-17 2009-09-17 Superconducting cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009215826A JP5418772B2 (en) 2009-09-17 2009-09-17 Superconducting cable

Publications (2)

Publication Number Publication Date
JP2011065879A true JP2011065879A (en) 2011-03-31
JP5418772B2 JP5418772B2 (en) 2014-02-19

Family

ID=43951924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009215826A Expired - Fee Related JP5418772B2 (en) 2009-09-17 2009-09-17 Superconducting cable

Country Status (1)

Country Link
JP (1) JP5418772B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104318982A (en) * 2014-10-20 2015-01-28 常州隆德电气有限公司 Fireproof copper plastic composite belt
CN105336405A (en) * 2015-12-04 2016-02-17 四川明星电缆股份有限公司 Wind power generation flexible cable with nominal voltage of 6-35 kV and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714620A (en) * 1993-06-22 1995-01-17 Chubu Electric Power Co Inc Structure of current supply terminal for oxide superconductor
JP2006331893A (en) * 2005-05-26 2006-12-07 Sumitomo Electric Ind Ltd Superconductive cable
JP2008053215A (en) * 2006-07-24 2008-03-06 Furukawa Electric Co Ltd:The Superconducting wire rod, superconductor, and superconductive cable
JP2008171666A (en) * 2007-01-11 2008-07-24 Sumitomo Electric Ind Ltd Oxide superconducting material, its manufacturing method, superconducting wire rod, and superconducting apparatus
JP2009048793A (en) * 2007-08-13 2009-03-05 Sumitomo Electric Ind Ltd Superconducting compound wire rod and superconducting cable

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714620A (en) * 1993-06-22 1995-01-17 Chubu Electric Power Co Inc Structure of current supply terminal for oxide superconductor
JP2006331893A (en) * 2005-05-26 2006-12-07 Sumitomo Electric Ind Ltd Superconductive cable
JP2008053215A (en) * 2006-07-24 2008-03-06 Furukawa Electric Co Ltd:The Superconducting wire rod, superconductor, and superconductive cable
JP2008171666A (en) * 2007-01-11 2008-07-24 Sumitomo Electric Ind Ltd Oxide superconducting material, its manufacturing method, superconducting wire rod, and superconducting apparatus
JP2009048793A (en) * 2007-08-13 2009-03-05 Sumitomo Electric Ind Ltd Superconducting compound wire rod and superconducting cable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104318982A (en) * 2014-10-20 2015-01-28 常州隆德电气有限公司 Fireproof copper plastic composite belt
CN105336405A (en) * 2015-12-04 2016-02-17 四川明星电缆股份有限公司 Wind power generation flexible cable with nominal voltage of 6-35 kV and manufacturing method thereof

Also Published As

Publication number Publication date
JP5418772B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
US7598458B2 (en) Super-conductive cable
KR100706494B1 (en) Superconducting cable
JP5416509B2 (en) Intermediate connection structure of superconducting cable
JP4201331B2 (en) Phase branching structure of multiphase superconducting cable
KR20120089568A (en) Superconductor cable and ac power transmission cable
JP5115778B2 (en) Superconducting cable
KR101148574B1 (en) Superconducting cable
JP5240008B2 (en) DC superconducting cable
JP4671111B2 (en) Superconducting cable
JP5418772B2 (en) Superconducting cable
JP5356206B2 (en) Method for measuring critical current of superconducting cable
JP5604213B2 (en) Superconducting equipment
JP5385746B2 (en) Superconducting cable
JP5252324B2 (en) Superconducting power transmission system
JP2006216507A (en) Superconductive cable
JP5246453B2 (en) Method for measuring critical current of superconducting cable
JP2011003468A (en) Superconductive cable
JP2012256508A (en) Superconductive wire rod and superconductive cable
JP2008124042A (en) Superconductor
JP2018186037A (en) Superconductive cable line
JP2012174403A (en) Normal temperature insulating type superconducting cable and method for manufacturing the same
JP2011086514A (en) Superconductive cable
JP5041414B2 (en) Superconducting wire and superconducting conductor
JP2022139398A (en) Rare earth-based oxide superconductive multi-core wire rod and method for producing the same
WO2018216064A1 (en) Superconducting wire material and superconducting coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131105

R150 Certificate of patent or registration of utility model

Ref document number: 5418772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees