JP2011065028A - Method for manufacturing antireflection member - Google Patents

Method for manufacturing antireflection member Download PDF

Info

Publication number
JP2011065028A
JP2011065028A JP2009217095A JP2009217095A JP2011065028A JP 2011065028 A JP2011065028 A JP 2011065028A JP 2009217095 A JP2009217095 A JP 2009217095A JP 2009217095 A JP2009217095 A JP 2009217095A JP 2011065028 A JP2011065028 A JP 2011065028A
Authority
JP
Japan
Prior art keywords
particles
refractive index
coating
layer
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009217095A
Other languages
Japanese (ja)
Inventor
Yasuyuki Ishida
康之 石田
Hisashi Abe
悠 阿部
Takashi Mimura
尚 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2009217095A priority Critical patent/JP2011065028A/en
Publication of JP2011065028A publication Critical patent/JP2011065028A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an antireflection member, by which an antireflection layer having scratch resistance, wear resistance and low reflectance and being uniform within the plane can be formed on a support substrate in the minimum number of coating processes. <P>SOLUTION: The method aims to manufacture an antireflection member having an antireflection layer comprising two layers having different refractive indices on at least one surface of a support substrate, and the method includes steps of applying a coating liquid once on at least one surface of the support substrate to form one layer of a liquid film and of drying the liquid film, in this sequence. A period of constant rate drying in the step of drying the liquid film includes the time period of 7 seconds or longer when a Peclet number is smaller than 1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、反射防止部材の製造方法に関する   The present invention relates to a method for manufacturing an antireflection member.

反射防止部材、特に反射防止フィルムは一般に、陰極管表示装置(CRT)、プラズマディスプレイパネル(PDP)や液晶表示装置(LCD)のような画像表示装置において、外光の反射によるコントラスト低下や像の映り込みを防止するために、光学干渉の原理を用いて反射率を低減するようにディスプレイの最表面に配置される。   Anti-reflection members, particularly anti-reflection films, are generally used in image display devices such as cathode ray tube display devices (CRT), plasma display panels (PDP), and liquid crystal display devices (LCD). In order to prevent reflection, it is placed on the outermost surface of the display so as to reduce reflectivity using the principle of optical interference.

このような反射防止部材として、特許文献1には支持基材上に(1)ハードコート層、(2)屈折率の高い物質からなる高屈折率層、(3)屈折率の低い物質からなる低屈折率層を順に設けた3層構成、特許文献2には支持基材上に(1)ハードコート層と高屈折率層の2つの機能を兼ねた高屈折率ハードコート層、(2)低屈折率層、を順に設けた2層構成が提案されている。   As such an antireflection member, Patent Document 1 discloses (1) a hard coat layer, (2) a high refractive index layer made of a substance having a high refractive index, and (3) a substance having a low refractive index, on a supporting substrate. A three-layer structure in which a low refractive index layer is provided in order, Patent Document 2 discloses (1) a high refractive index hard coat layer having two functions of a hard coat layer and a high refractive index layer on a supporting substrate, (2) A two-layer structure in which a low refractive index layer is provided in order has been proposed.

そしてさらなる製造工程の簡略化のため、特許文献3から6には、1回の塗工によって屈折率が異なる2つの層、または塗工層中に粒子の偏在部を形成する反射防止部材およびその製造方法が提案されている。   For further simplification of the manufacturing process, Patent Documents 3 to 6 disclose two layers having different refractive indexes by one coating, or an antireflection member for forming unevenly distributed parts of particles in the coating layer and its layers Manufacturing methods have been proposed.

特許文献3には「透明プラスチックフィルム基材上に、低屈折率微粒子と高屈折率微粒子とバインダーとを含有する硬化層が形成されてなり、該硬化層の表面側に低屈折率微粒子が偏在し、基材側に高屈折率微粒子が偏在していることを特徴とする光学フィルム」、が記載されている。   Patent Document 3 states that “a cured layer containing low refractive index fine particles, high refractive index fine particles and a binder is formed on a transparent plastic film substrate, and the low refractive index fine particles are unevenly distributed on the surface side of the cured layer. In addition, an optical film characterized in that high refractive index fine particles are unevenly distributed on the substrate side is described.

特許文献4には「バインダー樹脂中に低屈折率微粒子と中乃至高屈折率微粒子が分散されているコーティング組成物を用いてワンコートにて形成された塗膜を含む反射防止積層体であって、該低屈折率微粒子としてフッ素系化合物により処理されているシリカ微粒子が用いられることにより、比重の差により塗膜の上部乃至中間部において低屈折率微粒子が偏在し、且つ中間部乃至下部において中乃至高屈折率微粒子が偏在していることを特徴とする反射防止積層体」が記載されている。   Patent Document 4 states that “An antireflection laminate including a coating film formed by one coating using a coating composition in which low refractive index fine particles and medium to high refractive index fine particles are dispersed in a binder resin. By using silica fine particles treated with a fluorine-based compound as the low refractive index fine particles, the low refractive index fine particles are unevenly distributed in the upper part to the middle part of the coating film due to the difference in specific gravity, and in the middle part to the lower part. "An antireflection laminate characterized in that high refractive index fine particles are unevenly distributed" is described.

特許文献5には「支持基材の少なくとも片面に、屈折率の異なる2層を有する反射防止フィルムの製造方法であって、塗料組成物を支持基材の少なくとも片面上に1回塗布乾燥硬化する工程を含み、該塗料組成物が2種類以上の無機粒子を含み、該2種類以上の無機粒子における少なくとも一種類の無機粒子が、フッ素化合物により表面処理された無機粒子であり、さらに金属キレート化合物を含むことを特徴とする反射防止フィルムの製造方法」が記載されている。   In Patent Document 5, “a method for producing an antireflection film having two layers having different refractive indexes on at least one side of a supporting substrate, the coating composition is applied and dried and cured once on at least one side of the supporting substrate. The coating composition contains two or more kinds of inorganic particles, and at least one kind of inorganic particles in the two or more kinds of inorganic particles is an inorganic particle surface-treated with a fluorine compound, and further a metal chelate compound The manufacturing method of the anti-reflective film characterized by including this is described.

特許文献6には「透明フィルム支持体上に活性エネルギー線硬化型樹脂を主成分とするハードコート層を形成し、該ハードコート層表面が微細凹凸形状を有しており、かつ該ハードコート層の微細凹凸形状表面上に低屈折率層を形成した防眩性反射防止フィルムにおいて、該低屈折率層は外殻層を有し内部が多孔質または空洞となっている中空球状のシリカ系微粒子を含有し、該中空球状のシリカ系微粒子が該低屈折率層の表面側に多く存在していることを特徴とする防眩性反射防止フィルム」が記載されている。   Patent Document 6 states that “a hard coat layer mainly composed of an active energy ray-curable resin is formed on a transparent film support, the surface of the hard coat layer has a fine uneven shape, and the hard coat layer” Anti-glare antireflection film in which a low refractive index layer is formed on the surface of the fine concavo-convex shape, and the low refractive index layer is a hollow spherical silica-based fine particle having an outer shell layer and being porous or hollow inside And an antiglare antireflection film characterized in that a large amount of the hollow spherical silica-based fine particles are present on the surface side of the low refractive index layer.

一方で、光学機能層の層厚分布が一定で、反射防止性能に優れた反射防止部材の製造方法として特許文献7には「透明支持体上に該透明支持体と異なる屈折率を有する少なくとも1層の光学機能層を塗設する反射防止フィルムの製造方法において、前記光学機能層の少なくとも1層を、下記(1)及び(2)の工程を含む製造方法により製造することを特徴とする、反射防止フィルムの製造方法」が記載されている。
(1)熱および/または電離放射線硬化性化合物、無機微粒子及び有機溶媒を含有し、
固形分濃度が3〜15質量%で、25℃における粘度が0.5〜3.5mPa・sの塗布
組成物を、ウェット塗布量2.5〜5ml/m で塗布する工程
(2)乾燥温度15℃以上35℃未満で、乾燥速度を0.05〜1.0g/m ・secとして乾燥する乾燥工程(A)と、乾燥温度50℃以上130℃以下で乾燥する乾燥工程(B)とを含む乾燥工程
On the other hand, as a method for producing an antireflection member having a constant thickness distribution of the optical functional layer and excellent antireflection performance, Patent Document 7 discloses that “at least 1 having a refractive index different from that of the transparent support on the transparent support”. In the method for producing an antireflection film for coating an optical functional layer, at least one layer of the optical functional layer is produced by a production method including the following steps (1) and (2): "Production method of antireflection film" is described.
(1) containing a heat and / or ionizing radiation curable compound, inorganic fine particles and an organic solvent,
Step of applying a coating composition having a solid content concentration of 3 to 15% by mass and a viscosity at 25 ° C. of 0.5 to 3.5 mPa · s at a wet coating amount of 2.5 to 5 ml / m 2 (2) Drying A drying step (A) for drying at a temperature of 15 ° C. to less than 35 ° C. and a drying rate of 0.05 to 1.0 g / m 2 · sec, and a drying step (B) for drying at a drying temperature of 50 ° C. to 130 ° C. And drying process

特開平9−254324号公報Japanese Patent Laid-Open No. 9-254324 特開平9−226062号公報Japanese Patent Laid-Open No. 9-226062 特開2007−133236号公報JP 2007-133236 A 特開2007−272132号公報JP 2007-272132 A 特開2009−058954号公報JP 2009-058954 A 特開2006−154200号公報JP 2006-154200 A 特開2006−126799号公報JP 2006-126799 A

本発明が対象としている反射防止部材の製造方法では、低コストでの製造を可能にするため簡略化された製造工程にて製造可能であると共に、ディスプレイの最表面に配置されて直接利用者の目に触れるため、高い反射防止機能、耐擦傷性、耐摩耗性を画面全体において均一に達成することが求められる。従って、発明が解決しようとする課題は以下の2つである。   The antireflection member manufacturing method targeted by the present invention can be manufactured by a simplified manufacturing process to enable low-cost manufacturing, and is disposed on the outermost surface of the display and directly used by the user. In order to touch the eyes, it is required to achieve a high antireflection function, scratch resistance, and wear resistance uniformly over the entire screen. Therefore, the problems to be solved by the invention are the following two.

第一課題は、支持基材上に可能な限り少ない塗工回数で面内に均一な反射防止層が形成可能な製造方法を提供することである。   The first problem is to provide a production method capable of forming a uniform antireflection layer in the surface with the smallest possible number of coatings on a supporting substrate.

第二課題は、支持基材上に可能な限り少ない塗工回数で、耐擦傷性、耐摩耗性、低反射率を有する反射防止部材の製造方法を提供することである。   The second problem is to provide a method for producing an antireflection member having scratch resistance, wear resistance, and low reflectance with the smallest possible number of coatings on a supporting substrate.

特に第一課題に対しては、特許文献3〜6に示す1回の塗工により高屈折率層と低屈折率層を同時形成する製造方法においては、製造工程の簡略化の面でメリットがある一方で、塗工後に自発的に2つの層、または粒子の偏在部を形成させることにより反射防止機能を発現させるため、塗工された面内での層の厚み、均一さを制御するために、乾燥、硬化工程に工夫を必要とする。   In particular, for the first problem, in the manufacturing method in which the high refractive index layer and the low refractive index layer are simultaneously formed by a single coating shown in Patent Documents 3 to 6, there is a merit in terms of simplifying the manufacturing process. On the other hand, in order to control the thickness and uniformity of the layer in the coated surface in order to express the antireflection function by spontaneously forming two layers or unevenly distributed parts of particles after coating. In addition, a device is required for the drying and curing processes.

上記第一、第二課題に対し、前述の公知技術は次の状況にある。   With respect to the first and second problems, the above-described known techniques are in the following situations.

特許文献3では上記課題に対し、粒子の偏析を安定して起こすための製造条件として、実施例にて「搬送速度15m/分の条件で塗布し、25℃で60秒間搬送後、60℃で150秒乾燥」との記載があるが、本発明者が確認したところ、これだけの内容では十分な効果は得られず、また、反射防止機能は、450〜650nmの平均反射率が最も低いものでも1.2%程度であり、現在求められている最低反射率0.5%程度以下に対して劣っている。   In patent document 3, with respect to the above-mentioned problem, as a manufacturing condition for causing segregation of particles stably, in Example, “Coating under the condition of a conveyance speed of 15 m / min, conveying at 25 ° C. for 60 seconds, and then at 60 ° C. Although there is a description of “drying for 150 seconds”, the present inventor confirmed that sufficient effects cannot be obtained with this content alone, and the antireflection function has the lowest average reflectance of 450 to 650 nm. It is about 1.2%, which is inferior to the currently required minimum reflectance of about 0.5% or less.

特許文献4、5は、使用に耐えうる耐擦傷性を得るため、基材上にハードコート層を設けた上にワンコート2層同時塗りにて反射防止層を設けており、この結果、支持基材上への塗布回数は合計2回になり、特許文献2に記載の手法と製造工程数は変わらず、簡略化された製造工程としての効果が低下している。   In Patent Documents 4 and 5, in order to obtain scratch resistance that can withstand use, a hard coat layer is provided on a base material, and an anti-reflection layer is provided by simultaneous coating of one coat and two layers. The total number of coatings on the substrate is two times, the technique described in Patent Document 2 and the number of manufacturing steps are not changed, and the effect as a simplified manufacturing step is reduced.

さらに、特許文献4では、乾燥、硬化工程に関して、所望の塗工量で塗布した後、通常は、オーブン等の加熱手段で乾燥し、と記載されているのみで、本発明者が確認したところこれだけの内容では安定して均一な反射防止層を得られない。   Furthermore, in Patent Document 4, regarding the drying and curing processes, after applying at a desired coating amount, it is usually described as drying with heating means such as an oven, and the present inventors have confirmed. With this content alone, a stable and uniform antireflection layer cannot be obtained.

また、特許文献5では、二層を形成する無機粒子の移動に十分な時間を確保するため、風速が低く、できるだけ低温で乾燥することが好ましいとの記載がなされているが、それ以上の詳細は記されていない。   In addition, Patent Document 5 describes that it is preferable to dry at a low temperature as low as possible in order to ensure a sufficient time for the movement of the inorganic particles forming the two layers. Is not marked.

特許文献6には、「中球状のシリカ系微粒子と希釈用の有機溶媒を含有した低屈折率層塗布液を塗布後、塗布面を水平方向に下面となる状態に保持して乾燥固化させることで、シリカ系微粒子の分布を重力により偏在化させることが出来、偏在化は乾燥時の温度、乾燥風量(風速)により制御が可能である」、との記載があるが、1回の塗布により得られる反射防止機能は、450〜650nmの平均反射率にて最も低いものでも1.5%程度であり、現在求められている視感反射率0.5%程度に対して劣っている。   Patent Document 6 states that “after applying a low refractive index layer coating solution containing medium spherical silica-based fine particles and a diluting organic solvent, the coated surface is kept in a state of being a lower surface in the horizontal direction and dried and solidified. The distribution of silica-based fine particles can be unevenly distributed by gravity, and the uneven distribution can be controlled by the temperature during drying and the amount of dry air (wind speed). " The obtained antireflection function is about 1.5% at the lowest at an average reflectance of 450 to 650 nm, which is inferior to the currently required luminous reflectance of about 0.5%.

また、一般的な反射防止部材においても塗工された面内での層の厚み、均一さの制御について工夫がなされており、特許文献7では、塗布時の塗布液の固形分濃度、25℃の粘度、ウェット塗布量、乾燥工程の乾燥温度、乾燥速度について着目しているが、この手法では、1回の塗工により高屈折率層と低屈折率層を同時形成する製造方法においては、十分な効果は得られない、
また、特許文献3から7のいずれにおいても、後述する本発明の手法については着想に至っていない。
Further, in general antireflection members, the thickness and uniformity of the layer within the coated surface are devised. In Patent Document 7, the solid content concentration of the coating solution at the time of coating is 25 ° C. In this manufacturing method, the high refractive index layer and the low refractive index layer are simultaneously formed by a single coating. Not enough effect,
In any of Patent Documents 3 to 7, the method of the present invention described later has not been conceived.

上記課題を解決するために本発明者らは、鋭意研究を重ねた結果、以下の発明を完成させた。すなわち、本発明は以下の通りである。
1)支持基材の少なくとも片面に、屈折率の異なる2層からなる反射防止層を有する反射防止部材の製造方法であって、
該支持基材の少なくとも片面に、塗工液を1回塗工して、1層の液膜を形成する工程、該液膜を乾燥する工程をこの順に有し、
該液膜を乾燥する工程の恒率乾燥期間において、ペクレ数が1よりも小さくなる時間を7秒以上設けることを特徴とする、反射防止部材の製造方法。
2)前記塗工液が、少なくとも2種類以上の粒子と、少なくとも1種類以上のバインダー成分とを含み、
該2種類以上の粒子のうち少なくとも1種類の粒子が、フッ素化合物Aにより表面処理された粒子である(以後、フッ素化合物Aにより表面処理された粒子を、フッ素処理粒子とよぶ)ことを特徴とする、前記1)に記載の反射防止部材の製造方法。
3)前記反射防止層側の最表層から2層目の層の厚みが、500nm以上、2000nm以下であることを特徴とする、前記1)または2)に記載の反射防止部材の製造方法。
4)前記塗工液中での少なくとも1種類の粒子の25℃における動的光散乱法による体積基準分布のメディアン値が、50nm以下であることを特徴とする前記2)又は3)のいずれかに記載の反射防止部材の製造方法。
5)該塗工液が、フルオロアルキル基および反応性部位を有し、数平均分子量が300以上4000以下のフッ素化合物Bを含むことを特徴とする前記1)から4)のいずれかに記載の反射防止部材の製造方法。
6)前記フッ素化合物Bが、下記一般式(A)のモノマー、一般式(B)のモノマー、一般式(A)のモノマーに由来するオリゴマー、及び一般式(B)のモノマーに由来するオリゴマーからなる群より選ばれる少なくとも1つの化合物であることを特徴とする前記5)に記載の反射防止部材の製造方法。
In order to solve the above-mentioned problems, the present inventors have intensively studied and as a result, completed the following invention. That is, the present invention is as follows.
1) A method for producing an antireflection member having an antireflection layer composed of two layers having different refractive indexes on at least one surface of a support substrate,
On at least one side of the supporting substrate, the coating liquid is applied once to form a single layer liquid film, and the liquid film is dried in this order,
A method for producing an antireflective member, characterized in that, in the constant rate drying period of the step of drying the liquid film, a time during which the Peclet number is smaller than 1 is provided for 7 seconds or more.
2) The coating liquid contains at least two kinds of particles and at least one kind of binder component,
At least one of the two or more types of particles is a particle that has been surface-treated with a fluorine compound A (hereinafter, the particles that have been surface-treated with a fluorine compound A are referred to as fluorine-treated particles). The method for producing an antireflection member according to 1) above.
3) The method for producing an antireflection member according to 1) or 2) above, wherein the thickness of the second layer from the outermost layer on the antireflection layer side is 500 nm or more and 2000 nm or less.
4) Either of 2) or 3) above, wherein the median value of the volume reference distribution by dynamic light scattering at 25 ° C. of at least one kind of particles in the coating liquid is 50 nm or less. The manufacturing method of the reflection preventing member as described in any one of.
5) The coating liquid according to any one of 1) to 4), wherein the coating liquid contains a fluorine compound B having a fluoroalkyl group and a reactive site and having a number average molecular weight of 300 or more and 4000 or less. Manufacturing method of antireflection member.
6) From the monomer derived from the following general formula (A), the monomer represented by the general formula (B), the oligomer derived from the monomer represented by the general formula (A), and the oligomer derived from the monomer represented by the general formula (B). The method for producing an antireflection member as described in 5) above, wherein the method is at least one compound selected from the group consisting of:

C=C(R)−COO−R−Rf1 ・・・一般式(A)
A−R−Rf1 ・・・一般式(B)
(式中、Rは水素原子またはメチル基、Rf1は炭素数4〜7の直鎖状または分岐状のフルオロアルキル基、R、Rは、炭素数1〜10のアルキル基、Aは反応性二重結合基である。)
7) 前記乾燥する工程の恒率乾燥期間の乾燥速度を 0.1g/(m.s)以上1.4g/(m.s)以下にすることを特徴とする前記1)〜6)のいずれかに記載の反射防止部材の製造方法。
H 2 C = C (R 1 ) -COO-R 2 -R f1 ··· formula (A)
AR 3 -R f1 ... General formula (B)
(Wherein R 1 is a hydrogen atom or a methyl group, R f1 is a linear or branched fluoroalkyl group having 4 to 7 carbon atoms, R 2 and R 3 are alkyl groups having 1 to 10 carbon atoms, A Is a reactive double bond group.)
7) The above-mentioned 1) to 6), wherein the drying rate during the constant rate drying period in the drying step is 0.1 g / (m 2 .s) or more and 1.4 g / (m 2 .s) or less. The manufacturing method of the antireflection member in any one of.

本発明によれば、耐擦傷性、耐摩耗性、低反射率を有し、かつ支持基材上に最小限の塗工回数で、面内に均一な反射防止性能を有する反射防止部材の製造方法を提供することができる。 According to the present invention, the manufacture of an antireflection member having scratch resistance, abrasion resistance, low reflectance, and uniform antireflection performance in the surface with the minimum number of coatings on the support substrate. A method can be provided.

反射防止部材の例Examples of antireflection members 反射防止部材の例Examples of antireflection members ペクレ数算出に用いるパラメーター算出フローParameter calculation flow for calculating Peclet number 乾燥過程におけるペクレ数変化挙動の1例Example of Peclet number change behavior during drying process 乾燥過程におけるペクレ数変化挙動の1例Example of Peclet number change behavior during drying process 乾燥過程におけるペクレ数変化挙動の1例Example of Peclet number change behavior during drying process

初めに具体的な形態を説明する前に、本発明のメカニズムについて説明する。   Before describing a specific embodiment, the mechanism of the present invention will be described.

まず,公知技術に関して前述の第一から第二課題が達成できない理由を考察する。   First, the reason why the above-mentioned first to second problems cannot be achieved with respect to the known technology will be considered.

特許文献3にて十分な反射防止性能が得られない理由は、表面側に低屈折率粒子が偏在し、基材側に高屈折率粒子が偏在しているため、低屈折率粒子、または高屈折率粒子のみの明確な層構造を形成できずに低屈折率粒子と高屈折率粒子の偏在部の屈折率差が十分に得られていないか、低屈折率粒子と高屈折率粒子間の界面が不明瞭であるため、粒子偏在部の膜厚を一定にすることができずに光学干渉効果が得られていないためと考えられる。   The reason why sufficient antireflection performance cannot be obtained in Patent Document 3 is that low refractive index particles are unevenly distributed on the surface side and high refractive index particles are unevenly distributed on the substrate side. A clear layer structure of only the refractive index particles cannot be formed, and the difference in refractive index between the low refractive index particles and the high refractive index particles is not sufficiently obtained, or between the low refractive index particles and the high refractive index particles. It is considered that because the interface is unclear, the film thickness of the unevenly distributed part of the particles cannot be made constant and the optical interference effect is not obtained.

また、特許文献6にて十分な反射防止性能が得られない理由は、低屈折率粒子をハードコート層内で偏在させているのみであるため、屈折率差が小さく、効果不十分と考えられる。   Further, the reason why sufficient antireflection performance cannot be obtained in Patent Document 6 is that the low refractive index particles are unevenly distributed in the hard coat layer, so that the refractive index difference is small and the effect is considered insufficient. .

次いで、特許文献3、5、6の手法にて面内で均一な反射防止効果が得られない理由は、これら文献に記載の方法は、層構造、または偏在構造の形成を確実にするために乾燥過程の風速や温度を下げることにより乾燥速度を遅くしていると考えられるが、逆に、乾燥速度を低下させたがために、液膜表面近傍の乾燥過程での風の揺らぎや、乾燥工程内でのパスロールからの伝導伝熱などによる乾燥速度の不均一さなどの影響を受け、トレードオフの関係になっていると考えられる。   Next, the reason why a uniform antireflection effect cannot be obtained in the surface by the methods of Patent Documents 3, 5, and 6 is that the method described in these documents is to ensure the formation of a layered structure or an unevenly distributed structure. It is thought that the drying speed is slowed down by lowering the wind speed and temperature in the drying process, but conversely, because the drying speed was reduced, the fluctuation of the wind in the drying process near the liquid film surface and the drying It is considered that there is a trade-off relationship under the influence of non-uniformity of the drying rate due to conduction heat transfer from the pass roll in the process.

以上の結果、公知技術では第一と第二課題のすべてを達成することはできない。   As a result, all of the first and second problems cannot be achieved by the known technology.

次に、本発明が前述の第一課題と第二課題を解決可能な理由を述べる。   Next, the reason why the present invention can solve the above first and second problems will be described.

本発明者らは1回の塗工により高屈折率層と低屈折率層を同時形成する製造方法にて、塗工液膜中からの層構造の形成が、乾燥過程の恒率乾燥期間における液膜中の粒子のブラウン運動の程度に依存することを見出し、その指標として乾燥過程に伴い液膜が収縮することにより発生する流動に対して、液膜中の粒子のブラウン運動が支配的になることが安定した反射防止効果の発現と対応することを発見した。そして、安定して自発的な層構造の形成を行うための指標として、恒率乾燥期間でのペクレ数が1よりも小さくなる時間に着目した。ここでブラウン運動とは、熱運動によって引き起こされる粒子の運動で、溶液中の粒子と溶媒分子がランダムな衝突によってランダムな移動が生じ、粒子は溶液中に拡散していく現象であり、ペクレ数とは、このブラウン運動と乾燥過程に伴い液膜が収縮することにより発生する流動の比を表す無次元数で、数式1により表される。   In the manufacturing method in which the present inventors simultaneously form a high refractive index layer and a low refractive index layer by one coating, the formation of the layer structure from the coating liquid film is performed during the constant rate drying period of the drying process. We found that it depends on the degree of Brownian motion of the particles in the liquid film, and the Brownian motion of the particles in the liquid film is dominant to the flow generated by the shrinkage of the liquid film during the drying process as an indicator. Has been found to correspond to the appearance of a stable antireflection effect. As an index for stably and spontaneously forming a layered structure, attention was paid to the time when the Peclet number during the constant rate drying period is smaller than 1. Here, Brownian motion is the motion of particles caused by thermal motion, and is a phenomenon in which particles in a solution and solvent molecules randomly move due to random collision, and the particles diffuse into the solution. Is a dimensionless number representing the ratio of the flow generated by the contraction of the liquid film during the Brownian motion and the drying process, and is expressed by Equation 1.

Figure 2011065028
Figure 2011065028

数式1で、Peはペクレ数(無次元)、μは粘度(Pa.s)、Rは粒子径(m)、Eは液膜収縮速度(m/s)、Hは液膜厚み(m)、kはボルツマン定数(J/K)、Tは温度(K)を示す。これらの各パラメーターの内容、求め方については、後述する。   In Equation 1, Pe is the Peclet number (dimensionless), μ is the viscosity (Pa.s), R is the particle diameter (m), E is the liquid film shrinkage rate (m / s), and H is the liquid film thickness (m). , K represents Boltzmann constant (J / K), and T represents temperature (K). The contents of these parameters and how to obtain them will be described later.

液膜の乾燥過程においてこのペクレ数の値が1よりも大きい状態とは、液膜の収縮により生じる流動による粒子の運動が支配的となっている状態で、1よりも小さい状態とは液膜中でのブラウン運動による粒子の運動が支配的となっている状態を示している。   The state in which the value of the Peclet number is larger than 1 in the drying process of the liquid film is a state in which the movement of particles due to the flow caused by the contraction of the liquid film is dominant, and the state smaller than 1 is the liquid film. It shows the state in which the particle motion due to the Brownian motion is dominant.

この数式1から、ペクレ数は液膜収縮速度と液膜厚み、粒子径、温度から成り立っているため、同じペクレ数を得ようとした場合に各パラメーターが相補的な関係にある。そのため、公知技術が層構造の形成にて乾燥速度のみに頼っていたのに対して、この概念を導入することによりペクレ数を構成する他のパラメーターを用いても制御することができ、前述の公知技術のような乾燥速度の低下時に発生する乾燥速度の不均一さの影響を回避できる。この結果、1回の塗工により面内に均一な反射防止層が得られる層分離構造を形成することを可能にした。   From Equation 1, since the Peclet number is composed of the liquid film shrinkage rate, the liquid film thickness, the particle diameter, and the temperature, each parameter has a complementary relationship when trying to obtain the same Peclet number. Therefore, while the known technology relied solely on the drying speed in the formation of the layer structure, by introducing this concept, it can also be controlled using other parameters that constitute the Peclet number. It is possible to avoid the influence of the nonuniformity of the drying rate that occurs when the drying rate is lowered as in the known art. As a result, it has become possible to form a layer separation structure in which a uniform antireflection layer can be obtained in one plane by a single coating.

さらに、本発明は総塗工回数をさらに削減するため、公知技術の特許文献4と5のような、支持基材上にハードコート層を設けた上にワンコート2層同時塗りにて反射防止層を設ける構成ではなく、十分な耐傷性を有さない支持基材上にハードコート層と高屈折率層の2層の機能を1層で達成する高屈折率ハードコート層と、低屈折率層を1回の塗工で自発的な層構造を行う場合にも有効である。   Furthermore, in order to further reduce the total number of coatings according to the present invention, as described in Patent Documents 4 and 5 of the publicly known technology, a hard coat layer is provided on a support substrate, and one coat and two layers are simultaneously applied to prevent reflection. A high refractive index hard coat layer that achieves the functions of two layers, a hard coat layer and a high refractive index layer, on a supporting substrate that does not have sufficient scratch resistance, and a low refractive index. This is also effective when a layer structure is spontaneously formed by a single coating.

これは、厚い膜厚を必要とする高屈折率ハードコート層を用いて、1回の塗工で自発的な層構造形成を行う場合には、膜厚が厚くなることにより液膜厚みHが厚くなるため、公知技術のように層構造の形成を乾燥速度のみに依存すると層構造形成が不可能になるのに対し、本発明の製造方法を用いることにより、数式1に示すように、乾燥速度以外のパラメーターを用いて制御することができるため、例えば、粒子径Rを小さくすることや、粘度μを低下させることによって自発的な層構造形成の可能な領域を、実質的に拡大することを可能にした。   This is because when a high refractive index hard coat layer that requires a thick film thickness is used to spontaneously form a layer structure by a single coating, the liquid film thickness H is increased by increasing the film thickness. Since it becomes thicker, the formation of the layer structure becomes impossible if the formation of the layer structure depends only on the drying speed as in the known technique, whereas the formation of the layer structure becomes impossible by using the manufacturing method of the present invention as shown in Formula 1. Since it can be controlled using parameters other than speed, for example, the region where spontaneous layer structure formation is possible can be substantially expanded by reducing the particle diameter R or decreasing the viscosity μ. Made possible.

この結果、耐傷性がない支持基材に対し、1回の塗工によって低屈折率層と高屈折率ハードコート層を、自発的に層構造形成でき、耐擦傷性、耐摩耗性、低反射率を達成しつつ、総塗工回数を減らすことができる。   As a result, a low refractive index layer and a high refractive index hard coat layer can be spontaneously formed on a supporting substrate having no scratch resistance by a single coating, resulting in scratch resistance, abrasion resistance, and low reflection. The total number of coatings can be reduced while achieving the rate.

以上の結果、本発明によって、前述の第一課題と第二課題を解決可能となった。ここで、以下、本発明について実施の形態について具体的に述べる。
[反射防止部材]
本発明の対象物である反射防止部材とは、各種支持基材の少なくとも片面に、屈折率の異なる2層からなる反射防止層を有する部材である。基材がプラスチックフィルムの場合には一般に反射防止フィルムと呼ばれる。その必要性や要求される性能などは特開昭59−50401号公報に記載されている様に、好ましくは0.03以上、より好ましくは0.05以上の屈折率差を有する2層を支持基材上に積層させることで構成された様態である。また支持基材上の2層の屈折率差は5.0以下であることが好ましい。この屈折率差とは、隣接する層間の屈折率を相対的に比較した値であり、相対的に屈折率が低い層を低屈折率層と呼び、相対的に屈折率が高い層を高屈折率層と呼ぶ。そして、反射防止部材においては、反射防止層側の最表層(1層目の層)が低屈折率層であり、反射防止層側の最表層から2層目の層(つまり、1層目の層と支持基材の間の層)が高屈折率層であることで、低反射率を実現することができる。
As a result, the first and second problems described above can be solved by the present invention. Hereafter, embodiments of the present invention will be specifically described.
[Antireflection member]
The antireflection member, which is an object of the present invention, is a member having an antireflection layer composed of two layers having different refractive indexes on at least one surface of various supporting substrates. When the substrate is a plastic film, it is generally called an antireflection film. The necessity and required performance are supported by two layers having a refractive index difference of preferably 0.03 or more, more preferably 0.05 or more, as described in JP-A-59-50401. It is the aspect comprised by making it laminate | stack on a base material. Moreover, it is preferable that the refractive index difference of two layers on a support base material is 5.0 or less. This refractive index difference is a value obtained by relatively comparing the refractive indexes of adjacent layers. A layer having a relatively low refractive index is called a low refractive index layer, and a layer having a relatively high refractive index is highly refracted. Called the rate layer. In the antireflection member, the outermost layer (first layer) on the antireflection layer side is a low refractive index layer, and the second layer from the outermost layer on the antireflection layer side (that is, the first layer) A low reflectance can be realized because the layer between the layer and the supporting substrate is a high refractive index layer.

図1に本発明の反射防止部材の構造の1例を示す。反射防止部材1は支持基材2の片面に、屈折率の異なる2層からなる反射防止層が形成されている。反射防止層は、最表面側に低屈折率層4(前述の1層目の層)、次いで高屈折率層3(前述の反射防止層側の最表層から2層目の層)から構成される。   FIG. 1 shows an example of the structure of the antireflection member of the present invention. In the antireflection member 1, an antireflection layer composed of two layers having different refractive indexes is formed on one side of a support base 2. The antireflection layer is composed of a low refractive index layer 4 (the first layer described above) on the outermost surface side, and then a high refractive index layer 3 (the second layer from the outermost layer on the antireflection layer side described above). The

さらに高屈折率層が、支持基材に高屈折率の機能の付与に加えて、耐傷性を付与する場合には、高屈折率ハードコート層と呼び、その場合の構成を図2に示す。高屈折率ハードコート層5は、支持基材2と低屈折率層4との接着を強化する機能も有してもよい。高屈折率ハードコート層の強度は、1kg荷重の鉛筆硬度で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。   Further, when the high refractive index layer imparts scratch resistance in addition to the function of the high refractive index to the support substrate, it is called a high refractive index hard coat layer, and the configuration in that case is shown in FIG. The high refractive index hard coat layer 5 may also have a function of strengthening the adhesion between the support base 2 and the low refractive index layer 4. The strength of the high refractive index hard coat layer is preferably 1 or higher, more preferably H or higher, more preferably 2H or higher, and most preferably 3H or higher.

反射防止部材の反射防止層側の最表層から2層目の層の厚み、つまり高屈折率層、または高屈折率ハードコート層の厚みは、好ましくは500nm以上2000nm以下、さらに好ましくは600nm以上2000nm以下、特に好ましくは600nm以上1500nm以下であることが望ましい。反射防止層側の最表層から2層目の層の厚みを500nm以上2000nm以下とすることで、耐擦傷性、耐摩耗性と、反射防止部材のカールや反射率、透過率の改善、塗膜表面のクラック発生を抑制することができるために望ましい。   The thickness of the second layer from the outermost layer on the antireflection layer side of the antireflection member, that is, the thickness of the high refractive index layer or the high refractive index hard coat layer is preferably 500 nm or more and 2000 nm or less, more preferably 600 nm or more and 2000 nm. Hereinafter, it is particularly preferable that the thickness is 600 nm or more and 1500 nm or less. By setting the thickness of the second layer from the outermost layer on the antireflection layer side to 500 nm or more and 2000 nm or less, scratch resistance, wear resistance, curl and reflectance of the antireflection member, improvement of transmittance, coating film It is desirable because the occurrence of cracks on the surface can be suppressed.

上述した反射防止部材の製造方法は、支持基材の少なくとも片面に、1層の液膜からなる塗工液を1回塗工する工程、乾燥する工程を、この順に有し、これにより支持基材上に屈折率の異なる2層からなる反射防止層を形成することができる。そして前述の塗工液は、少なくとも2種類以上の粒子と、少なくとも1種類以上のバインダー成分を含み、該2種類以上の粒子のうち少なくとも1種類の粒子が、フッ素化合物により表面処理された粒子である(以後、フッ素化合物により表面処理された粒子を、フッ素処理粒子とよぶ)ことが好ましい。なお塗工液は、当然に溶媒を含むことも可能である。本発明の製造方法によれば、耐擦傷性、耐摩耗性、反射防止性が、面内で均一な反射防止部材を製造することができる。   The above-described method for producing an antireflection member has, in this order, a step of applying a coating liquid composed of a single layer of liquid film on at least one surface of a support substrate, and a step of drying in this order. An antireflection layer comprising two layers having different refractive indexes can be formed on the material. And the above-mentioned coating liquid is a particle containing at least two or more kinds of particles and at least one or more kinds of binder components, and at least one of the two or more kinds of particles is surface-treated with a fluorine compound. It is preferable that particles (hereinafter referred to as particles treated with a fluorine compound are referred to as fluorine-treated particles). The coating solution can naturally contain a solvent. According to the production method of the present invention, it is possible to produce an antireflection member having scratch resistance, abrasion resistance, and antireflection properties that are uniform in the plane.

ここで、塗工液を1回塗工して、1層の液膜を形成する工程とは、基材に対して1種類の塗工液を1回だけ塗工することによって、1層の液膜を形成することを指し、1回の塗工によって、複数層からなる液膜を同時に形成する多層同時塗工や、1回の塗工時に1層の液膜を複数回の塗工、乾燥する連続逐次塗工、1回の塗工時に1層の液膜を複数回塗工後に乾燥する、ウェットオンウェット塗工などを行わないことを指す。   Here, the step of applying the coating liquid once to form a single-layer liquid film means that one type of coating liquid is applied only once to the base material. It refers to the formation of a liquid film. Multi-layer simultaneous coating that simultaneously forms a liquid film composed of a plurality of layers by a single coating, or a single layer of liquid film applied multiple times during one coating, It means that continuous sequential coating to dry, wet-on-wet coating, etc., in which a single layer of liquid film is applied a plurality of times at the time of one application, are not performed.

本発明は、前述の乾燥する工程において、恒率乾燥期間でのペクレ数が1よりも小さくなる時間を7秒以上設けることが重要である。なお恒率乾燥期間でのペクレ数は、好ましくは10秒以上、より好ましくは12秒以上確保した態様である。   In the present invention, it is important that the time for the Peclet number in the constant rate drying period to be less than 1 is set to 7 seconds or longer in the drying step. The Peclet number in the constant rate drying period is preferably 10 seconds or more, more preferably 12 seconds or more.

ペクレ数が1よりも小さくなる時間が7秒よりも短くなると、自発的な層構造の形成による反射防止構造の形成、特に明確な界面を面内で均一に形成することが不可能になり、反射防止部材に屈折率の異なる2層を明確に形成することができず、反射防止機能が低下する。一方、ペクレ数が1よりも小さくなる時間が7秒以上である場合には、自発的な層構造の形成には影響がないが、乾燥速度を下げることによってペクレ数を低下させた場合には、生産性の低下によるコスト上昇や、液膜表面の大気の揺らぎ、支持基材の搬送にともなる同伴気流の乱れ、基材搬送用のパスロールからの伝熱ムラ、乾燥装置内の機器からの輻射熱などのムラなどにより、乾燥速度を塗工面内で均一に保つことが難しくなり、結果として、面内で均一な反射防止性能が得られなくなる。また粒子径、粘度での調整にも限界があり、ペクレ数が1よりも小さくなる時間は現実的には60秒程度が限界と考えられる。   When the time when the Peclet number is less than 1 is shorter than 7 seconds, it becomes impossible to form an antireflection structure by spontaneous formation of a layer structure, particularly to form a clear interface uniformly in a plane, Two layers having different refractive indexes cannot be clearly formed on the antireflection member, and the antireflection function is deteriorated. On the other hand, when the time when the Peclet number is less than 1 is 7 seconds or more, there is no effect on the spontaneous formation of the layer structure, but when the Peclet number is decreased by lowering the drying speed. , Cost increase due to lower productivity, fluctuation of air on the surface of the liquid film, disturbance of entrained airflow accompanying the transport of the support substrate, uneven heat transfer from the pass roll for transporting the substrate, from equipment in the dryer Due to unevenness such as radiant heat, it becomes difficult to keep the drying speed uniform within the coating surface, and as a result, uniform antireflection performance cannot be obtained within the surface. In addition, there is a limit to the adjustment of the particle diameter and the viscosity, and the time when the Peclet number becomes smaller than 1 is actually considered to be about 60 seconds.

ここで、ペクレ数とは前述のとおりである。また、恒率乾燥期間とは液膜の乾燥が液膜表面から大気中への溶媒の拡散律速になっている状態を指し、この過程では乾燥速度は液膜の構造によらず外部条件により支配され、この過程では一定になる。   Here, the Peclet number is as described above. The constant rate drying period refers to the state in which the drying of the liquid film is controlled by the diffusion of the solvent from the surface of the liquid film to the atmosphere. In this process, the drying rate is governed by external conditions regardless of the structure of the liquid film. In this process, it becomes constant.

この恒率乾燥期間における乾燥速度は、単位時間、単位面積当たりの溶媒蒸発量を表わしたもので、g/(m.s)の次元からなる。 The drying rate in this constant rate drying period represents the amount of solvent evaporation per unit time and unit area, and has a dimension of g / (m 2 .s).

この恒率乾燥期間の乾燥速度にも好ましい範囲があり、0.1g/(m.s)以上1.4g/(m.s)以下であることが好ましく、0.3g/(m.s)以上0.9g/(m.s)以下であることがより好ましい。 There is also a preferable range for the drying rate during this constant rate drying period, and it is preferably 0.1 g / (m 2 .s) or more and 1.4 g / (m 2 .s) or less, 0.3 g / (m 2 .S) to 0.9 g / (m 2 .s) or less.

恒率乾燥期間における乾燥速度をこの範囲にすることにより、乾燥速度の不均一さに起因するムラを防ぎ、かつ自発的な層構造を起こすことに必要な時間を十分に確保することができる。   By setting the drying speed in the constant rate drying period within this range, it is possible to prevent unevenness due to non-uniformity of the drying speed and to sufficiently secure the time required to cause a spontaneous layer structure.

本発明において上記塗工液を1回塗工して、1層の液膜を形成して、乾燥して、屈折率の異なる2層を構成する原理は、塗工液中の2種類以上の粒子が、液膜中をブラウン運動により運動し、気液、固液界面に到達した粒子が、表面自由エネルギー差によって、低表面エネルギー粒子は大気側へ、高表面エネルギーな粒子は基材側へ固定されることにより、自発的な層構造が形成できると考えている。   In the present invention, the coating liquid is applied once to form a liquid film of one layer and dried to form two layers having different refractive indexes. Particles move in the liquid film by Brownian motion, and particles that have reached the gas-liquid / solid-liquid interface are moved to the atmosphere side by the surface free energy difference. We believe that by fixing, a spontaneous layer structure can be formed.

本発明の製造方法に用いる塗工液が粒子を含有する場合において、塗工液中での少なくとも1種類の粒子の25℃における動的光散乱法による体積基準分布のメディアン値が、50nm以下であることが好ましく、より好ましくは20nmである。これは、動的光散乱法による体積基準分布のメディアン値が、50nm以下であることにより、液膜中での粒子のブラウン運動性が向上し、粒子の表面への移動が容易になるためである。より好ましくは、塗工液中での全ての種類の粒子の25℃における動的光散乱法による体積基準分布のメディアン値が、50nm以下であることが好ましく、より好ましくは20nmである。   When the coating liquid used in the production method of the present invention contains particles, the median value of the volume-based distribution by dynamic light scattering at 25 ° C. of at least one kind of particles in the coating liquid is 50 nm or less. It is preferable that it is 20 nm. This is because, when the median value of the volume reference distribution by the dynamic light scattering method is 50 nm or less, the Brownian mobility of the particles in the liquid film is improved, and the movement of the particles to the surface becomes easy. is there. More preferably, the median value of the volume reference distribution by dynamic light scattering method at 25 ° C. of all kinds of particles in the coating liquid is preferably 50 nm or less, more preferably 20 nm.

ここで、動的光散乱法とは、ブラウン運動中の粒子に、レーザ光を粒子群に当てその散乱光を光電子増倍管で検出することにより、散乱強度のゆらぎなどから拡散係数を測定し、さらに粒子径を求めるもので、濃厚系での数nm〜数μmの粒子の液体中での分散状態を測定するのに適した方法である。体積基準分布とは粒子径分布の表現方法の一つで、各粒子径の粒子の占める体積が、粒子の総体積に占める割合を示すものである。   Here, the dynamic light scattering method measures the diffusion coefficient from fluctuations in the scattering intensity, etc., by applying a laser beam to particles in Brownian motion and detecting the scattered light with a photomultiplier tube. Further, the particle diameter is obtained, and this is a method suitable for measuring the dispersion state of particles of several nm to several μm in a liquid in a concentrated system. Volume reference distribution is one of the methods for expressing particle size distribution, and indicates the ratio of the volume occupied by particles of each particle size to the total volume of particles.

さらに、メディアン値とは、50%径または中位径ともいい、粒径分布においてある粒子径より大きい粒子径を有する粒子の個数又は質量が,全粒子のそれ(個数、又は質量)の50%をしめるときの粒子径を指す。即ち、体積基準分布のメディアン値とは、その粒子径より大きい粒子径を有する粒子の体積が、全粒子の体積の50%を占める粒子径を指す。   Further, the median value is also referred to as a 50% diameter or a median diameter, and the number or mass of particles having a particle size larger than a certain particle size in the particle size distribution is 50% of that (number or mass) of all particles. It refers to the particle diameter when That is, the median value of the volume-based distribution refers to a particle diameter in which the volume of particles having a particle diameter larger than the particle diameter occupies 50% of the total particle volume.

一方で、体積基準分布のメディアン値が小さい分にはそれほど大きな影響はないが、粒子形成における結晶核のサイズの限界から、塗工液中での粒子の25℃における動的光散乱法による体積基準分布のメディアン値は、現実的に入手可能な粒子である5nm程度が下限となる。   On the other hand, although the median value of the volume-based distribution is small, there is not much influence, but due to the limit of the size of crystal nuclei in particle formation, the volume of particles in the coating solution by dynamic light scattering at 25 ° C. The lower limit of the median value of the reference distribution is about 5 nm, which is a practically available particle.

また本発明の製造方法に用いる塗工液は、フルオロアルキル基および反応性部位を有し、数平均分子量が300以上4000以下であるフッ素化合物Bを含むことが好ましい。このフッ素化合物Bは、前述のフッ素処理粒子に対して、フッ素化合物Bの有する親和力により吸着し、フッ素処理粒子同士の粒子間相互作用を抑制して塗工液の粘度を低下させ、フッ素処理粒子の運動性を確保し、自発的な層構造の形成を容易にする効果がある。   Moreover, it is preferable that the coating liquid used for the manufacturing method of this invention contains the fluorine compound B which has a fluoroalkyl group and a reactive site | part, and whose number average molecular weight is 300-4000. This fluorine compound B is adsorbed by the affinity of the fluorine compound B with respect to the above-mentioned fluorine-treated particles, suppresses the interparticle interaction between the fluorine-treated particles, and decreases the viscosity of the coating liquid. This has the effect of ensuring the mobility of the material and facilitating the formation of a spontaneous layer structure.

なお、本発明でいうフルオロアルキル基とは、アルキル基が持つ全ての水素がフッ素に置き換わった置換基であり、フッ素原子と炭素原子のみから構成される置換基である。   In addition, the fluoroalkyl group as used in the field of this invention is a substituent in which all the hydrogen which an alkyl group has was substituted with the fluorine, and is a substituent comprised only from a fluorine atom and a carbon atom.

また、本発明でいう反応性部位とは、熱または光などの外部エネルギーにより塗料組成物中のバインダーなど他の成分と反応する部位をさす。このような反応性部位として、反応性の観点からアルコキシシリル基及びアルコキシシリル基が加水分解されたシラノール基や、カルボキシル基、水酸基、エポキシ基、ビニル基、アリル基、アクリロイル基、メタクリロイル基などが挙げられる。   Moreover, the reactive site as used in this invention refers to the site | part which reacts with other components, such as a binder in a coating composition, by external energy, such as a heat | fever or light. Examples of such reactive sites include alkoxysilyl groups and silanol groups in which alkoxysilyl groups are hydrolyzed from the viewpoint of reactivity, carboxyl groups, hydroxyl groups, epoxy groups, vinyl groups, allyl groups, acryloyl groups, methacryloyl groups, and the like. Can be mentioned.

本発明の製造方法により得られる反射防止部材中の屈折率の異なる2層は、反射分光膜厚計によって、300〜800nmの範囲での反射率を測定し、該装置付属のソフトウェア[FE−Analysis]を用いて得られる屈折率が異なる2つの層をさす。   The two layers having different refractive indexes in the antireflection member obtained by the production method of the present invention were measured for the reflectance in the range of 300 to 800 nm with a reflection spectral film thickness meter, and the software [FE-Analysis included with the apparatus was used. ] Refers to two layers having different refractive indexes.

具体的には、反射分光膜厚計(FE−3000、大塚電子株式会社製)を用いて300〜800nmの範囲で反射率を測定し、大塚電子株式会社製[膜厚測定装置 総合カタログP6(非線形最小二乗法)]に記載の方法に従い、屈折率の波長分散の近似式としてCauchyの分散式(式1)を用い最小二乗法(カーブフィッティング法)により、光学定数(C、C、C)を計算することで屈折率を測定することができる。なお、屈折率は、550nmにおける値を用いた。 Specifically, the reflectance is measured in the range of 300 to 800 nm using a reflection spectral film thickness meter (FE-3000, manufactured by Otsuka Electronics Co., Ltd.), and the film thickness measuring device general catalog P6 (manufactured by Otsuka Electronics Co., Ltd. Non-linear least square method)], the optical constants (C 1 , C 2 , C 2 , C 2 , C 2 , The refractive index can be measured by calculating C 3 ). In addition, the value in 550 nm was used for the refractive index.

Figure 2011065028
Figure 2011065028

ここで、λは波長、C、C、Cは光学定数を表す。 Here, λ represents a wavelength, and C 1 , C 2 , and C 3 represent optical constants.

各層の屈折率が測定可能な測定装置として、反射分光膜厚計(FE−3000 大塚電子株式会社製)、高精度屈折率測定装置(Film Teck Scientific Computing International社製)などが挙げられるが、この限りではない。   Examples of the measuring device capable of measuring the refractive index of each layer include a reflection spectral film thickness meter (FE-3000, manufactured by Otsuka Electronics Co., Ltd.), a high-precision refractive index measuring device (manufactured by Film Tec Scientific Computing International), and the like. Not as long.

なお、このような本発明の製造方法によって得られる反射防止部材には、屈折率の異なる2層である高屈折率層(または高屈折率ハードコート層)と低屈折率層との間には、粒子の配列による明確な界面があることが好ましい。   In addition, in the antireflection member obtained by such a manufacturing method of the present invention, a high refractive index layer (or a high refractive index hard coat layer) that is two layers having different refractive indexes and a low refractive index layer are provided. It is preferable that there is a clear interface due to the arrangement of the particles.

本発明における明確な界面とは、1つの層と他の層とが区別可能な状態をいう。区別可能な界面とは、透過型電子顕微鏡(TEM)を用いて断面を観察することにより判断することができる界面を表し、以下の方法に従い判断することができる。   A clear interface in the present invention refers to a state in which one layer can be distinguished from another layer. The distinguishable interface represents an interface that can be determined by observing a cross section using a transmission electron microscope (TEM), and can be determined according to the following method.

TEMにより20万倍の倍率で撮影した画像を、ソフトウェア(EasyAccsess)にて、ホワイトバランスを最明部と最暗部が8bitのトーンカーブに収まるように調整した。さらに2種類の粒子が明確に見分けられるようにコントラストを調節した。   An image taken with a TEM at a magnification of 200,000 times was adjusted with software (Easy Access) so that the white balance was within the 8-bit tone curve in the brightest and darkest areas. Furthermore, the contrast was adjusted so that two types of particles could be clearly distinguished.

このとき1つの層と他の層との界面に明確な境界を引くことができる場合を、明確な界面があるとみなした。   At this time, when a clear boundary could be drawn at the interface between one layer and the other layer, it was considered that there was a clear interface.

反射防止部材として良好な性能を示すには、分光測定に置いて最低反射率が好ましくは0%以上1.0%以下、より好ましくは0%以上0.7%以下、さらに好ましくは0%以上0.6%以下であり、特に好ましくは0%以上0.5%以下であることが望ましい。   In order to exhibit good performance as an antireflection member, the minimum reflectance is preferably 0% or more and 1.0% or less, more preferably 0% or more and 0.7% or less, and even more preferably 0% or more in spectroscopic measurement. It is 0.6% or less, and particularly preferably 0% or more and 0.5% or less.

また、反射防止部材として良好な性質を示すには更に、透明性が高いことが望ましい。透明性が低いと画像表示装置として用いた場合、画像彩度の低下などによる画質低下が生じるために好ましくない。本発明の製造方法により得られる反射防止部材の透明性の評価にはヘイズ値を用いることができる。ヘイズはJIS K 7136(2000)に規定された透明性材料の濁りの指標である。ヘイズは小さいほど透明性が高いことを示す。反射防止部材のヘイズ値としては、好ましくは3.0%以下であり、より好ましくは2.0%未満、更に好ましくは1.0%未満であり、値が小さいほど透明性の点で良好であるものの、0%とすることは困難であり、現実的な下限値は0.01%程度と思われる。ヘイズ値が3.0%以上であると、画像劣化が生じる可能性が高くなるため好ましくない。   Moreover, in order to exhibit good properties as an antireflection member, it is further desirable that the transparency is high. If the transparency is low, it is not preferable when used as an image display device because image quality is deteriorated due to a decrease in image saturation. A haze value can be used for evaluating the transparency of the antireflection member obtained by the production method of the present invention. Haze is an index of turbidity of a transparent material defined in JIS K 7136 (2000). The smaller the haze, the higher the transparency. The haze value of the antireflection member is preferably 3.0% or less, more preferably less than 2.0%, still more preferably less than 1.0%, and the smaller the value, the better the transparency. Although it is, it is difficult to set it to 0%, and a realistic lower limit value seems to be about 0.01%. If the haze value is 3.0% or more, there is a high possibility that image degradation will occur.

反射防止部材として良好な性質を示すには、高屈折率層、低屈折率の厚みが特定の厚みであることが望ましい。反射防止部材の反射防止層側の最表層(1層目の層)である低屈折率層の厚みは、好ましくは50nm以上200nm以下、さらに好ましくは70nm以上150nm以下であり、特に好ましくは90nm以上130nm以下であることが望ましい。低屈折率層の厚みが50nm未満であると光の干渉効果が得られず反射防止効果が得られず画像の映り込みが大きくなるために好ましくない。また反射防止部材の反射防止層側の最表層(1層目の層)である低屈折率層の厚みは、200nmを超える場合も光の干渉効果が得られなくなるため画像の映り込みが大きくなるために好ましくない。   In order to exhibit good properties as an antireflection member, it is desirable that the thickness of the high refractive index layer and the low refractive index is a specific thickness. The thickness of the low refractive index layer which is the outermost layer (first layer) on the antireflection layer side of the antireflection member is preferably 50 nm or more and 200 nm or less, more preferably 70 nm or more and 150 nm or less, and particularly preferably 90 nm or more. It is desirable that it is 130 nm or less. If the thickness of the low refractive index layer is less than 50 nm, the light interference effect cannot be obtained, the antireflection effect cannot be obtained, and the reflection of the image becomes large. Further, when the thickness of the low refractive index layer, which is the outermost layer (first layer) on the antireflection layer side of the antireflection member, exceeds 200 nm, the effect of light interference cannot be obtained, so that the reflection of the image is increased. Therefore, it is not preferable.

本発明の反射防止部材には、さらに、易接着層、防湿層、帯電防止層、シールド層、下塗り層や保護層などを設けてもよい。シールド層は、電磁波や赤外線を遮蔽するために設けられる。
[ペクレ数を構成する各パラメーターの算出方法とペクレ数の変化挙動]
ペクレ数を構成する各パラメーターは前述の数式1に記載の通りである。
The antireflection member of the present invention may further be provided with an easy adhesion layer, a moisture proof layer, an antistatic layer, a shield layer, an undercoat layer, a protective layer, and the like. The shield layer is provided to shield electromagnetic waves and infrared rays.
[Calculation method of each parameter composing Peclet number and change behavior of Peclet number]
Each parameter constituting the Peclet number is as described in Equation 1 above.

この数式1で、Peはペクレ数、μは塗工からの時間tにおける液膜の粘度(Pa.s)、Eは塗工からの時間tにおける液膜収縮速度(m/s)、Hは塗工からの時間tにおける液膜厚み(m)、Tは塗工からの時間tにおける液膜温度(K)、kはボルツマン定数(J/K)、Rは塗工液中の粒子径(m)を示す。これらの各パラメーターの算出フローを図3に示す。   In Equation 1, Pe is the Peclet number, μ is the viscosity (Pa.s) of the liquid film at time t after coating, E is the liquid film shrinkage rate (m / s) at time t after coating, and H is Liquid film thickness (m) at time t after coating, T is the liquid film temperature (K) at time t after coating, k is Boltzmann's constant (J / K), R is the particle size in the coating liquid ( m). The calculation flow of each of these parameters is shown in FIG.

塗工からの時間tにおける液膜厚みHは、乾燥過程の各瞬間の液膜厚みを連続的に測定して求めたものである。その測定は乾燥過程での液膜厚みの変化を、塗工した液膜までの距離を非接触測定で連続的に測定することで求めてもよいし、塗工乾燥過程の質量変化を測定し、それを液膜厚みに換算して求めてもよいが、測定精度の関係から非接触測定の方が好ましい。   The liquid film thickness H at time t after coating is obtained by continuously measuring the liquid film thickness at each instant of the drying process. The measurement may be obtained by measuring the change in the thickness of the liquid film during the drying process by continuously measuring the distance to the coated liquid film by non-contact measurement, or by measuring the mass change during the coating and drying process. Although it may be obtained by converting it to the thickness of the liquid film, non-contact measurement is preferred from the viewpoint of measurement accuracy.

塗工からの時間tにおける液膜収縮速度Eは、乾燥過程の各瞬間の液膜収縮速度を指し、数式3に示すように前述の液膜厚みHの微小時間当たりの変化から求めることができる。   The liquid film contraction speed E at time t after coating indicates the liquid film contraction speed at each instant of the drying process, and can be obtained from the change per minute time of the liquid film thickness H as shown in Equation 3. .

Figure 2011065028
Figure 2011065028

塗工からの時間tにおける液膜の粘度μは、乾燥過程のその各瞬間の液膜のせん断速度0.1s−1の粘度を指している。乾燥過程での各瞬間の液膜の粘度を直接計測することは現実的に難しいため、事前に溶媒量のみを変えて固形分濃度を変化させた塗工液を各温度で測定して、温度と固形分濃度に対する粘度の検量線を作成しておき、乾燥過程の各瞬間の液膜厚み変化の実測値から求めた各瞬間の液膜の固形分濃度、乾燥過程の各瞬間の膜面温度から、各瞬間の塗工液の粘度μを求めることができる。 The viscosity μ of the liquid film at time t after coating refers to the viscosity of the liquid film at a shear rate of 0.1 s −1 at each instant of the drying process. Since it is practically difficult to directly measure the viscosity of the liquid film at each moment in the drying process, measure the coating liquid with the solid content concentration changed by changing only the solvent amount in advance at each temperature, And a viscosity calibration curve with respect to the solid content concentration, the solid content concentration of the liquid film at each moment obtained from the measured value of the change in the thickness of the liquid film at each moment of the drying process, and the film surface temperature at each moment of the drying process From this, the viscosity μ of the coating liquid at each moment can be determined.

粘度と固形分濃度、膜面温度の検量線は次の近似式で近似することもできる   Calibration curves for viscosity, solid content concentration, and film surface temperature can be approximated by the following approximate expression:

Figure 2011065028
Figure 2011065028

数式4で、μは塗工からの時間tにおける粘度(mPa.s)、xは塗工からの時間tにおける固形分濃度(%)、Tは塗工からの時間tにおける温度(℃)、a、a、a、a、b、b、b、b は実験により決定した温度―固形分濃度指数を示す。 In Equation 4, μ is the viscosity (mPa.s) at time t after coating, x is the solid content concentration (%) at time t after coating, T is the temperature (° C.) at time t after coating, a 1 , a 2 , a 3 , a 4 , b 1 , b 2 , b 3 , b 4 represent temperature-solid content concentration indexes determined by experiments.

ここで必要とする乾燥過程の塗工からの時間tにおける固形分濃度xは次の式により求めることができる。   The solid content concentration x at time t after coating in the drying process required here can be obtained by the following equation.

Figure 2011065028
Figure 2011065028

数式5で、xは塗工からの時間tにおける液膜の固形分濃度(%)、xは塗工液の固形分濃度(%)、Hは塗工直後の液膜厚み(m)、Hは時間tにおける液膜厚み(m)、dliqは塗工液の密度(kg/m)、dsolidは反射防止層の見かけ密度(kg/m)、dsolvは溶媒の密度(kg/m)を示す。 In Equation 5, x is the solid content concentration (%) of the liquid film at time t after coating, x 0 is the solid content concentration (%) of the coating liquid, and H 0 is the liquid film thickness (m) immediately after coating. , H is the liquid film thickness (m) at time t, d liq is the coating liquid density (kg / m 3 ), d solid is the apparent density of the antireflection layer (kg / m 3 ), and d solv is the solvent density. (Kg / m 3 ) is shown.

塗工液、溶媒の密度はJISK0061:2001に基づき、浮ひょうや振動式密度計等の各種液体密度測定器にて測定可能であり、反射防止層の見かけ密度は、シャーレ等に入れた塗工液を乾燥、硬化させることにより、シート状の固形物を作り、これをJISK0061:2001に基づき、比重瓶法などの固体の密度の測定器にて測定することにより求められる。   The density of the coating liquid and solvent can be measured with various liquid density measuring instruments such as a float and a vibration type density meter based on JISK0061: 2001, and the apparent density of the antireflection layer is applied to a petri dish or the like. The liquid is dried and cured to produce a sheet-like solid, which is determined by measuring with a solid density measuring device such as a specific gravity bottle method based on JISK0061: 2001.

さらに、塗工からの時間tにおける塗膜の固形分濃度から、塗工からの時間tにおける塗膜の溶媒蒸発量を求め、その微小時間当たりの変化から乾燥速度vを求めることができる。さらに恒率乾燥期間の平均乾燥速度は、この乾燥速度vを恒率乾燥期間にて平均した値である。   Furthermore, from the solid content concentration of the coating film at time t after coating, the solvent evaporation amount of the coating film at time t after coating can be determined, and the drying speed v can be determined from the change per minute time. Furthermore, the average drying speed in the constant rate drying period is a value obtained by averaging the drying speed v in the constant rate drying period.

Figure 2011065028
Figure 2011065028

Figure 2011065028
Figure 2011065028

数式6で、sは塗工からの時間tにおける溶媒蒸発量、Hは塗工直後の液膜厚み(m)、dliqは塗工液の密度(kg/m)、xは塗工からの時間tにおける液膜の固形分濃度(%)、xは塗工液の固形分濃度(%)を示す。 In Equation 6, s is the amount of solvent evaporation at time t after coating, H 0 is the thickness of the liquid film immediately after coating (m), d liq is the density of the coating solution (kg / m 3 ), and x is the coating. The solid content concentration (%) of the liquid film at time t from the beginning, x 0 indicates the solid content concentration (%) of the coating solution.

数式1に記載の粒子径Rは、塗工液中の粒子の代表径を示し、具体的には塗工液の動的光散乱法による体積基準分布のメディアン値を示す。動的光散乱法、体積基準分布およびメディアン値については前述の通りである。   The particle diameter R described in Equation 1 represents the representative diameter of the particles in the coating liquid, and specifically represents the median value of the volume reference distribution by the dynamic light scattering method of the coating liquid. The dynamic light scattering method, the volume reference distribution, and the median value are as described above.

温度Tは、具体的には乾燥過程での各瞬間の膜面温度を非接触温度計にて連続的に計測することができる。   Specifically, the temperature T can be measured continuously with a non-contact thermometer at the instant film surface temperature in the drying process.

これらのパラメーターを用いて求めた乾燥過程のペクレ数変化の挙動の1例を図4に示す。   An example of the behavior of the change in the Peclet number during the drying process determined using these parameters is shown in FIG.

図4は、液膜厚み変化曲線6とペクレ数の変化曲線7を示す。液膜厚み変化曲線6は、前半の直線的な減少を示す区間が恒率乾燥期間8、後半の緩やかな減少を示す区間が減率乾燥期間9に、さらにその変化点が臨界乾燥点10に該当する。このときのペクレ数の変化曲線7の挙動は、塗工直後にはペクレ数の値は1よりも大きく、乾燥の進行に伴い1よりも小さくなり、さらに乾燥が進行し、恒率乾燥期間の終了と共に急激に上昇して再び1を超える。このときのペクレ数が1よりも小さくなる時間11は、図4に示すように、ペクレ数の変化曲線が1よりも小さくなっている期間に対応する。   FIG. 4 shows a liquid film thickness change curve 6 and a Peclet number change curve 7. In the liquid film thickness change curve 6, a section showing a linear decrease in the first half is a constant rate drying period 8, a section showing a gradual decrease in the latter half is a reduced rate drying period 9, and the change point is a critical drying point 10. Applicable. The behavior of the change curve 7 of the Peclet number at this time is that the value of the Peclet number is larger than 1 immediately after coating, becomes smaller than 1 with the progress of drying, further proceeds with drying, and the constant rate drying period It rises rapidly with the end and exceeds 1 again. The time 11 when the Peclet number becomes smaller than 1 at this time corresponds to a period during which the change curve of the Peclet number is smaller than 1, as shown in FIG.

また、図5に乾燥速度を変化させた場合のペクレ数変化の挙動を示す。   FIG. 5 shows the behavior of the change in the Peclet number when the drying speed is changed.

図5にて乾燥速度を高くすることにより、乾燥過程の液膜厚み変化が12,13,14の順で急になった場合(乾燥速度は、12<13<14、の順である。)、ペクレ数の変化曲線は15,16,17のように勾配が急になると共に(12に対応するペクレ数の変化曲線が15、13に対応するペクレ数の変化曲線が16、14に対応するペクレ数の変化曲線が17、である。)、その急激に上昇する点が移動し、ペクレ数が1よりも小さくなる期間が18、19、20の順で短くなる。   In FIG. 5, when the drying speed is increased, the liquid film thickness change in the drying process becomes steep in the order of 12, 13, and 14 (the drying speed is in the order of 12 <13 <14). The change curve of the Peclet number becomes steep like 15, 16, and 17 (the change curve of the Peclet number corresponding to 12 corresponds to 15, and the change curve of the Peclet number corresponding to 12, 13 corresponds to 16, 14). The change curve of the Peclet number is 17, and the point where the Peclet number rises rapidly moves, and the period in which the Peclet number is smaller than 1 becomes shorter in the order of 18, 19, and 20.

さらに、図6に、粒子径、塗工液粘度を変化させた場合のペクレ数変化の挙動を示す。
粒子径、塗工液粘度を変化させても、乾燥速度が同じ場合に、乾燥過程の液膜厚み変化には差が現れないが、ペクレ数の変化曲線は、粒子径を小径化、または塗工液粘度を低下させることにより、ペクレ数の変化曲線は22から23のように変化し、ペクレ数が1よりも小さくなる時間が、24、25の順で長くなる。
[塗工液の構成]
本発明の製造方法に用いる塗工液は、少なくとも2種類以上の粒子を含むことが好ましい。この粒子とは、有機粒子、無機粒子のいずれでもよい。ここで、有機粒子とは有機化合物、すなわち高分子化合物により形成された粒子を指し、無機粒子とは無機化合物により形成された粒子を指す。
Furthermore, FIG. 6 shows the behavior of the change in the Peclet number when the particle diameter and the coating solution viscosity are changed.
Even if the particle size and the coating solution viscosity are changed, if the drying speed is the same, there will be no difference in the change in the thickness of the liquid film during the drying process. By reducing the viscosity of the working fluid, the change curve of the Peclet number changes from 22 to 23, and the time when the Peclet number becomes smaller than 1 becomes longer in the order of 24 and 25.
[Composition of coating liquid]
The coating liquid used in the production method of the present invention preferably contains at least two kinds of particles. These particles may be either organic particles or inorganic particles. Here, the organic particles refer to particles formed of an organic compound, that is, a polymer compound, and the inorganic particles refer to particles formed of an inorganic compound.

粒子の種類数としては2種以上20種以下が好ましく、より好ましくは2種以上10種以下、さらに好ましくは2種以上3種以下であり、最も好ましくは2種類である。   The number of types of particles is preferably 2 or more and 20 or less, more preferably 2 or more and 10 or less, still more preferably 2 or more and 3 or less, and most preferably 2 types.

ここで粒子の種類とは、粒子を構成する元素の種類によって決まる。(後述するフッ素処理粒子においては、表面処理される前の粒子を構成する元素の種類によって決まる。)。例えば、酸化チタン(TiO)と酸化チタンの酸素の一部をアニオンである窒素で置換した窒素ドープ酸化チタン(TiO2−x)とでは、粒子を構成する元素が異なるために、異なる種類の粒子である。また、同一の元素、例えばZn、Oのみからなる粒子(ZnO)であれば、その粒径が異なる粒子が複数存在しても、またZnとOとの組成比が異なっていても、これらは同一種類の粒子である。また酸化数の異なるZn粒子が複数存在しても、粒子を構成する元素が同一である限りは(この例ではZn以外の元素が全て同一である限りは)、これらは同一種類の粒子である。 Here, the type of particle is determined by the type of element constituting the particle. (For fluorine-treated particles to be described later, it depends on the type of elements constituting the particles before being surface-treated). For example, titanium oxide (TiO 2 ) is different from nitrogen-doped titanium oxide (TiO 2−x N x ) in which part of oxygen in titanium oxide is replaced by nitrogen as an anion because the elements constituting the particles are different. It is a kind of particle. In addition, if particles (ZnO) consisting only of the same element, for example, Zn or O, even if there are a plurality of particles having different particle diameters or the composition ratio of Zn and O is different, these are The same type of particles. Even if there are a plurality of Zn particles having different oxidation numbers, as long as the elements constituting the particles are the same (in this example, all elements other than Zn are the same), these are the same kind of particles. .

そして、本発明の製造方法において塗工液は、高屈折率層構成成分と、更には低屈折層構成成分とが混合されており、これにより本発明の塗工液を1回のみ塗工する工程と乾燥する工程によって、高屈折率層、低屈折率層、といった屈折率の異なる2層からなる反射防止層を支持基材上に有する反射防止部材を得ることができる。   And in the manufacturing method of this invention, the coating liquid of the high refractive index layer and also the low refractive index layer component are mixed, and, thereby, the coating liquid of this invention is applied only once. By the step and the step of drying, an antireflection member having an antireflection layer composed of two layers having different refractive indexes, such as a high refractive index layer and a low refractive index layer, on a supporting substrate can be obtained.

本発明の製造方法において用いる塗工液における、低屈折率層構成成分及び高屈折率層構成成分は、異なる種類の粒子で各々構成されることが好ましい。
[低屈折率層構成成分]
初めに低屈折率層構成成分として好適に使用される粒子に関して説明する。本発明の製造方法に用いる塗工液の、2種類以上の粒子における少なくとも1種類は、フッ素化合物Aにより表面処理された粒子(フッ素化合物Aにより表面処理された粒子をフッ素処理粒子とする)であることが重要であり、このフッ素処理粒子が低屈折率層構成成分として好適である。(フッ素化合物Aについては後述。)このフッ素処理粒子を製造する際に好適な粒子(フッ素化合物Aにより処理される前の粒子)としては、Si,Na,K,Ca,およびMgから選択される元素を含む無機粒子が好ましく挙げられ、さらに好ましくは、シリカ粒子(SiO)、アルカリ金属フッ化物(NaF,KFなど)、およびアルカリ土類金属フッ化物(CaF、MgFなど)から選ばれる化合物を含む無機粒子であり、耐久性、屈折率などの点からシリカ粒子が特に好ましい。なお、フッ素化合物Aにより表面処理されたシリカ粒子は、以後フッ素処理シリカ粒子とよぶ。
It is preferable that the low refractive index layer constituent component and the high refractive index layer constituent component in the coating liquid used in the production method of the present invention are each composed of different types of particles.
[Low refractive index layer component]
First, the particles suitably used as the low refractive index layer component will be described. At least one of the two or more types of particles of the coating liquid used in the production method of the present invention is a particle surface-treated with the fluorine compound A (the particle surface-treated with the fluorine compound A is a fluorine-treated particle). It is important that this fluorinated particle is suitable as a component of the low refractive index layer. (The fluorine compound A will be described later.) The particles (the particles before being treated with the fluorine compound A) suitable for producing the fluorine-treated particles are selected from Si, Na, K, Ca, and Mg. Inorganic particles containing elements are preferably exemplified, and more preferably selected from silica particles (SiO 2 ), alkali metal fluorides (NaF, KF, etc.), and alkaline earth metal fluorides (CaF 2 , MgF 2, etc.). Silica particles are particularly preferred from the viewpoints of durability, refractive index and the like, which are inorganic particles containing a compound. The silica particles surface-treated with the fluorine compound A are hereinafter referred to as fluorine-treated silica particles.

フッ素処理粒子の構成材料の無機粒子として好ましく用いられるシリカ粒子とは、ケイ素化合物又は有機珪素化合物の重合(縮合)体のいずれかからなる組成物を含み成る粒子を指し、一般例として、SiOなどのケイ素化合物から導出される粒子の総称である。 The silica particles preferably used as the inorganic particles of the constituent material of the fluorine-treated particles refer to particles comprising a composition comprising either a silicon compound or a polymerized (condensed) organic silicon compound. As a general example, SiO 2 It is a general term for particles derived from silicon compounds such as

フッ素処理粒子の構成材料である粒子の、表面処理される前の形状は特に限定されるものではないが、本発明の製造方法により得られる反射防止部材に形成される反射防止層の屈折率の観点から、球状が好ましい。より好ましくは、フッ素処理粒子の構成材料である粒子がシリカ粒子であり、該シリカ粒子が中空及び/又は多孔質の形状であることが好ましい(中空シリカ粒子とは、粒子の内部に空洞を有するシリカ粒子であり、多孔質シリカ粒子とは、粒子の表面及び内部に細孔を有するシリカ粒子である。)。   The shape of the particles constituting the fluorine-treated particles before the surface treatment is not particularly limited, but the refractive index of the antireflection layer formed on the antireflection member obtained by the production method of the present invention is not limited. From the viewpoint, a spherical shape is preferable. More preferably, the particle that is a constituent material of the fluorinated particle is a silica particle, and the silica particle preferably has a hollow and / or porous shape (the hollow silica particle has a cavity inside the particle). It is a silica particle, and the porous silica particle is a silica particle having pores on the surface and inside of the particle).

また、中空及び/又は多孔質を有するシリカ粒子などの無機粒子を用いることにより、得られる反射防止層の密度を下げる効果が得られる。特にフッ素処理粒子の構成材料である粒子として、内部に空洞を有するシリカ粒子、並びに/または、表面及び内部に細孔を有するシリカ粒子を用いることが、該フッ素処理シリカ粒子が本発明の製造方法により得られる反射防止部材の低屈折率層(反射防止層側の最表層(1層目の層)に含有されやすく、低屈折率層を好適に形成することとなるために好ましい。なお、中空及び/又は多孔質を有するシリカ粒子のことを、以下中空粒子と記載する。   Moreover, the effect of lowering the density of the obtained antireflection layer can be obtained by using inorganic particles such as hollow and / or porous silica particles. In particular, silica particles having cavities inside and / or silica particles having pores on the surface and inside are used as the particles that are constituent materials of the fluorinated particles. This is preferable because it is easily contained in the low refractive index layer (the outermost layer (first layer) on the antireflective layer side) of the antireflective member obtained by the above, and the low refractive index layer is suitably formed. The silica particles having porosity are hereinafter referred to as hollow particles.

続いて、低屈折率層に好適なフッ素処理粒子の構成材料である粒子の数平均粒子径について説明する。粒子の数平均粒子径(表面処理される前の粒子の数平均粒子径)が200nmよりも大きくなると、光散乱により良好な透明性が得られなくなり好ましくない。また、粒子径が小さい分には特に影響はないが、現実的に安定して得られる粒子の数平均粒子径は1〜5nm程度が下限である。   Then, the number average particle diameter of the particle | grains which are the constituent material of the fluorine treatment particle | grains suitable for a low refractive index layer is demonstrated. When the number average particle diameter of the particles (number average particle diameter of the particles before being surface-treated) is larger than 200 nm, it is not preferable because good transparency cannot be obtained due to light scattering. In addition, although there is no particular influence on the small particle size, the lower limit of the number average particle size of particles that can be obtained in a practically stable manner is about 1 to 5 nm.

本発明の塗工液中の、フッ素化合物Aにより表面処理される粒子は、数平均粒子径(表面処理される前の数平均粒子径)が、好ましくは1nmから200nm、より好ましくは5nmから180nm、更に好ましくは5nmから100nmである。   The particles surface-treated with the fluorine compound A in the coating liquid of the present invention preferably have a number average particle size (number average particle size before surface treatment) of 1 nm to 200 nm, more preferably 5 nm to 180 nm. More preferably, it is 5 nm to 100 nm.

本発明における粒子の数平均粒子径とは、透過型電子顕微鏡により求めた粒子径をいう。倍率は50万倍とし、その画面に存在する10個の粒子の外径を測定しその平均値とした。   The number average particle diameter of the particles in the present invention refers to the particle diameter determined by a transmission electron microscope. The magnification was 500,000 times, and the outer diameters of 10 particles present on the screen were measured and used as the average value.

ここで外径とは、粒子の最大の径(つまり粒子の長径であり、粒子中の最も長い径を示す)を表し、内部に空洞を有する粒子の場合も同様に、粒子の最大の径を表す。   Here, the outer diameter means the maximum diameter of the particle (that is, the longest diameter of the particle and indicates the longest diameter in the particle). Similarly, in the case of a particle having a cavity inside, the maximum diameter of the particle is also defined. To express.

フッ素処理粒子は、好適に空気側(最表層)へ移動して、好適に低屈折率層を形成することができるため、塗工液に用いられる2種類以上の粒子の少なくとも1種類の粒子には、フッ素化合物Aによる表面処理がされたフッ素処理粒子であることが好ましい。なお、2種類以上の粒子の全ての粒子がフッ素処理粒子であるよりも、フッ素処理粒子と、該フッ素化合物Aによる表面処理をされていない他の粒子の両方を含む塗工液を用いる方が、屈折率差の大きい2層を得ることができるために反射防止性の点で好ましい。つまり、本発明の製造方法に用いる塗工液においては、フッ素処理粒子とフッ素処理粒子以外の他の粒子の両方を各々少なくとも1種類含むことが好ましい。   The fluorine-treated particles are preferably moved to the air side (the outermost layer) and can preferably form a low refractive index layer, so that at least one kind of particles of two or more kinds of particles used in the coating liquid is used. Are preferably fluorine-treated particles that have been surface-treated with the fluorine compound A. In addition, it is better to use a coating liquid containing both fluorine-treated particles and other particles that have not been surface-treated with the fluorine compound A, rather than all of the two or more types of particles being fluorine-treated particles. Since two layers having a large difference in refractive index can be obtained, it is preferable in terms of antireflection properties. That is, the coating liquid used in the production method of the present invention preferably contains at least one kind of both fluorinated particles and other particles other than fluorinated particles.

また、フッ素化合物Aによる表面処理を施した粒子としては、中空シリカ粒子などのシリカ粒子であることが、つまりフッ素処理粒子としては、フッ素処理中空シリカ粒子であることが特に好ましい。   Further, the particles subjected to the surface treatment with the fluorine compound A are silica particles such as hollow silica particles, that is, the fluorine-treated particles are particularly preferably fluorine-treated hollow silica particles.

中空シリカなどの粒子に対するフッ素化合物Aによる表面処理工程は、一段階で行われても良いし、多段階で行われても良い。また、複数の段階でフッ素化合物Aを用いても良いし、一つの段階のみでフッ素化合物Aを用いても良い。   The surface treatment step with the fluorine compound A for particles such as hollow silica may be performed in one step or may be performed in multiple steps. Further, the fluorine compound A may be used in a plurality of stages, or the fluorine compound A may be used only in one stage.

また中空シリカなどの粒子の表面処理工程にて好ましく用いられるフッ素化合物Aは、単一化合物でも良いし複数の異なる化合物を用いても良い。   Moreover, the fluorine compound A preferably used in the surface treatment step of particles such as hollow silica may be a single compound or a plurality of different compounds.

フッ素化合物Aによる表面処理とは、中空シリカ粒子などの粒子を化学的に修飾し、中空シリカ粒子などの粒子にフッ素化合物Aを導入する工程をさす。   The surface treatment with the fluorine compound A refers to a step of chemically modifying particles such as hollow silica particles and introducing the fluorine compound A into particles such as hollow silica particles.

中空シリカ粒子などの粒子に直接フッ素化合物Aを導入する方法としては、1分子中にフッ素セグメントとシリルエーテル基(シリルエーテル基が加水分解されたシラノール基を含む)との両方を持つフルオロアルコキシシラン化合物を少なくとも1種類以上と開始剤とを共に撹拌することにより成される方法がある。しかし中空シリカ粒子などの無機粒子に直接フッ素化合物Aを導入する場合、反応性の制御が困難になったり、塗料化後塗工時に塗工斑等が発生しやすくなったりする場合がある。   As a method of directly introducing fluorine compound A into particles such as hollow silica particles, fluoroalkoxysilane having both a fluorine segment and a silyl ether group (including a silanol group obtained by hydrolyzing a silyl ether group) in one molecule There is a method in which at least one compound and an initiator are stirred together. However, when the fluorine compound A is directly introduced into inorganic particles such as hollow silica particles, it may be difficult to control the reactivity, or coating spots may easily occur during coating after coating.

また中空シリカ粒子などの粒子を化学的に修飾して、中空シリカ粒子などの粒子にフルオロアルキル基を導入する更なる方法としては、中空シリカ粒子などの粒子を架橋成分にて処理し、フッ素化合物Aとつなぎ合わせる方法がある。官能基を有したフッ素化合物Aとしては、フルオロアルキルアルコール、フルオロアルキルエポキシド、フルオロアルキルハライド、フルオロアルキルアクリレート、フルオロアルキルメタクリレート、フルオロアルキルカルボキシレート(酸無水物及びエステル類を含む)、などを用いることができる。   Further, as a further method of chemically modifying particles such as hollow silica particles and introducing fluoroalkyl groups into the particles such as hollow silica particles, the particles such as hollow silica particles are treated with a crosslinking component, and a fluorine compound There is a method to connect with A. As the fluorine compound A having a functional group, fluoroalkyl alcohol, fluoroalkyl epoxide, fluoroalkyl halide, fluoroalkyl acrylate, fluoroalkyl methacrylate, fluoroalkyl carboxylate (including acid anhydrides and esters), and the like are used. Can do.

架橋成分としては、分子内にフッ素は無いが、フッ素化合物Aと反応可能な部位と、中空シリカ粒子などの粒子と反応可能な部位を少なくとも一カ所ずつ持っている化合物を指し、中空シリカ粒子などの粒子と反応可能な部位としては反応性の観点からシリルエーテル及びシリルエーテルの加水分解物であることが好ましい。これら化合物は一般的にシランカップリング剤と呼ばれ、例としては、グリシドキシアルコキシシラン類、アミノアルコキシシラン類、アクリロイルシラン類、メタクリロイルシラン類、ビニルシラン類、メルカプトシラン類、などを用いることができる。   The cross-linking component refers to a compound having no fluorine in the molecule but having at least one site capable of reacting with the fluorine compound A and one site capable of reacting with particles such as hollow silica particles. The site capable of reacting with the particles is preferably silyl ether or a hydrolyzate of silyl ether from the viewpoint of reactivity. These compounds are generally called silane coupling agents. For example, glycidoxyalkoxysilanes, aminoalkoxysilanes, acryloylsilanes, methacryloylsilanes, vinylsilanes, mercaptosilanes, etc. may be used. it can.

本発明の製造方法に用いる塗工液に好適なフッ素処理粒子のより好ましい形態は、シリカ粒子(特に中空シリカ粒子)を下記一般式(I)で示される化合物で処理し、更に下記一般式(II)で示されるフッ素化合物Aで処理した粒子である。
B−R−SiR (OR3−n 一般式(I)
D−R−Rf2 一般式(II)
(上記一般式中のB、Dは反応性二重結合基を示し、R、Rは炭素数1から3のアルキレン基及びそれらから導出されるエステル構造を示し、R、Rは水素又は炭素数が1から4のアルキル基を示し、Rf2はフルオロアルキル基を示し、nは0から2の整数を示し、それぞれ側鎖を構造中に持っても良い。)
本発明における反応性二重結合基とは、光または熱などのエネルギーをうけて発生したラジカルなどにより化学反応する官能基であり、具体例としては、ビニル基、アリル基、アクリロイル基、メタクリロイル基などが挙げられる。
A more preferable form of the fluorine-treated particles suitable for the coating liquid used in the production method of the present invention is that silica particles (particularly hollow silica particles) are treated with a compound represented by the following general formula (I), and the following general formula ( Particles treated with the fluorine compound A represented by II).
B—R 4 —SiR 5 n (OR 6 ) 3-n General Formula (I)
D—R 7 —R f2 general formula (II)
(B and D in the above general formula represent a reactive double bond group, R 4 and R 7 represent an alkylene group having 1 to 3 carbon atoms and an ester structure derived therefrom, and R 5 and R 6 represent Hydrogen or an alkyl group having 1 to 4 carbon atoms, R f2 represents a fluoroalkyl group, n represents an integer of 0 to 2, and each may have a side chain in the structure.
The reactive double bond group in the present invention is a functional group that chemically reacts with radicals generated by receiving energy such as light or heat, and specific examples include vinyl group, allyl group, acryloyl group, methacryloyl group. Etc.

一般式(I)の具体例としては、アクリロキシエチルトリメトキシシラン、アクリロキシプロピルトリメトキシシラン、アクリロキシブチルトリメトキシシラン、アクリロキシペンチルトリメトキシシラン、アクリロキシヘキシルトリメトキシシラン、アクリロキシヘプチルトリメトキシシラン、メタクリロキシエチルトリメトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシブチルトリメトキシシラン、メタクリロキシヘキシルトリメトキシシラン、メタクリロキシヘプチルトリメトキシシラン、メタクリロキシプロピルメチルジメトキシシラン、メタクリロキシプロピルメチルジメトキシシラン及びこれら化合物中のメトキシ基が他のアルコキシル基及び水酸基に置換された化合物を含むものなどが挙げられる。   Specific examples of the general formula (I) include acryloxyethyltrimethoxysilane, acryloxypropyltrimethoxysilane, acryloxybutyltrimethoxysilane, acryloxypentyltrimethoxysilane, acryloxyhexyltrimethoxysilane, acryloxyheptyltri Methoxysilane, methacryloxyethyltrimethoxysilane, methacryloxypropyltrimethoxysilane, methacryloxybutyltrimethoxysilane, methacryloxyhexyltrimethoxysilane, methacryloxyheptyltrimethoxysilane, methacryloxypropylmethyldimethoxysilane, methacryloxypropylmethyldimethoxy Examples include silane and compounds in which the methoxy group in these compounds is substituted with other alkoxyl groups and hydroxyl groups.

一般式(II)の具体例としては、2,2,2−トリフルオロエチルアクリレート、2,2,3,3,3−ペンタフロオロプロピルアクリレート、2−パーフルオロブチルエチルアクリレート、3−パーフルオロブチル−2−ヒドロキシプロピルアクリレート、2−パーフルオロヘキシルエチルアクリレート、3−パーフルオロヘキシル−2−ヒドロキシプロピルアクリレート、2−パーフルオロオクチルエチルアクリレート、3−パーフルオロオクチル−2−ヒドロキシプロピルアクリレート、2−パーフルオロデシルエチルアクリレート、2−パーフルオロ−3−メチルブチルエチルアクリレート、3−パーフルオロ−3−メトキシブチル−2−ヒドロキシプロピルアクリレート、2−パーフルオロ−5−メチルヘキシルエチルアクリレート、3−パーフルオロ−5−メチルヘキシル−2−ヒドロキシプロピルアクリレート、2−パーフルオロ−7−メチルオクチル−2−ヒドロキシプロピルアクリレート、テトラフルオロプロピルアクリレート、オクタフルオロペンチルアクリレート、ドデカフルオロヘプチルアクリレート、ヘキサデカフルオロノニルアクリレート、ヘキサフルオロブチルアクリレート、2,2,2−トリフルオロエチルメタクリレート、2,2,3,3,3−ペンタフルオロプロピルメタクリレート、2−パーフルオロブチルエチルメタクリレート、3−パーフルオロブチル−2−ヒドロキシプロピルメタクリレート、2−パーフルオロオクチルエチルメタクリレート、3−パーフルオロオクチル−2−ヒドロキシプロピルメタクリレート、2−パーフルオロデシルエチルメタクリレート、2−パーフルオロ−3−メチルブチルエチルメタクリレート、3−パーフルオロ−3−メチルブチル−2−ヒドロキシプロピルメタクリレート、2−パーフルオロ−5−メチルヘキシルエチルメタクリレート、3−パーフルオロ−5−メチルヘキシル−2−ヒドロキシプロピルメタクリレート、2−パーフルオロ−7−メチルオクチルエチルメタクリレート、3−パーフルオロ−7−メチルオクチルエチルメタクリレート、テトラフルオロプロピルメタクリレート、オクタフルオロペンチルメタクリレート、オクタフルオロペンチルメタクリレート、ドデカフルオロヘプチルメタクリレート、ヘキサデカフルオロノニルメタクリレート、1−トリフルオロメチルトリフルオロエチルメタクリレート、ヘキサフルオロブチルメタクリレートなどが挙げられる。   Specific examples of the general formula (II) include 2,2,2-trifluoroethyl acrylate, 2,2,3,3,3-pentafluoropropyl acrylate, 2-perfluorobutylethyl acrylate, 3-perfluoro Butyl-2-hydroxypropyl acrylate, 2-perfluorohexylethyl acrylate, 3-perfluorohexyl-2-hydroxypropyl acrylate, 2-perfluorooctylethyl acrylate, 3-perfluorooctyl-2-hydroxypropyl acrylate, 2- Perfluorodecylethyl acrylate, 2-perfluoro-3-methylbutylethyl acrylate, 3-perfluoro-3-methoxybutyl-2-hydroxypropyl acrylate, 2-perfluoro-5-methylhexylethyl acrylate 3-perfluoro-5-methylhexyl-2-hydroxypropyl acrylate, 2-perfluoro-7-methyloctyl-2-hydroxypropyl acrylate, tetrafluoropropyl acrylate, octafluoropentyl acrylate, dodecafluoroheptyl acrylate, hexa Decafluorononyl acrylate, hexafluorobutyl acrylate, 2,2,2-trifluoroethyl methacrylate, 2,2,3,3,3-pentafluoropropyl methacrylate, 2-perfluorobutylethyl methacrylate, 3-perfluorobutyl- 2-hydroxypropyl methacrylate, 2-perfluorooctylethyl methacrylate, 3-perfluorooctyl-2-hydroxypropyl methacrylate, 2-perful Rhodecylethyl methacrylate, 2-perfluoro-3-methylbutylethyl methacrylate, 3-perfluoro-3-methylbutyl-2-hydroxypropyl methacrylate, 2-perfluoro-5-methylhexylethyl methacrylate, 3-perfluoro-5 -Methylhexyl-2-hydroxypropyl methacrylate, 2-perfluoro-7-methyloctylethyl methacrylate, 3-perfluoro-7-methyloctylethyl methacrylate, tetrafluoropropyl methacrylate, octafluoropentyl methacrylate, octafluoropentyl methacrylate, dodeca Fluoroheptyl methacrylate, hexadecafluorononyl methacrylate, 1-trifluoromethyltrifluoroethyl methacrylate, hexaf Examples include bromobutyl methacrylate.

分子中にフルオロアルキル基Rf2を有さない一般式(I)で表される化合物を用いることにより、簡便な反応条件で、中空シリカなどのシリカ粒子表面を修飾することが可能となるばかりではなく、シリカ粒子表面に反応性を制御しやすい官能基を導入することが可能となり、その結果、反応性二重結合及びフルオロアルキル基Rf2を有するフッ素化合物Aをシリカ粒子表面で反応させることが可能になる。 By using the compound represented by the general formula (I) having no fluoroalkyl group R f2 in the molecule, it becomes possible to modify the surface of silica particles such as hollow silica under simple reaction conditions. It is possible to introduce a functional group whose reactivity is easy to control on the surface of the silica particle, and as a result, the fluorine compound A having a reactive double bond and a fluoroalkyl group R f2 can be reacted on the surface of the silica particle. It becomes possible.

本発明の製造方法に用いる塗工液にはフッ素処理粒子を含むことが好ましい。塗工液中にフッ素化合物Aにより表面処理された粒子(フッ素処理粒子)を含むことで、これらの粒子が低屈折率層を好適に形成可能であるためである。ここで、前述したシリカ粒子及び一般式(I)で表される化合物、一般式(II)で表される化合物は、本発明で用いられる塗工液中では、シリカ粒子を一般式(I)で表される化合物と一般式(II)で表される化合物により表面処理した縮合体および/または重合体として存在していることが、低屈折率層を好適に形成可能であるため好ましい。
[高屈折率層構成成分]
続いて前記フッ素処理粒子を除いた他の粒子に関して説明する。フッ素処理粒子を除いた他の粒子は、高屈折率層構成成分として好適に用いられる。
The coating liquid used in the production method of the present invention preferably contains fluorinated particles. It is because these particles can suitably form a low refractive index layer by including particles (fluorine-treated particles) surface-treated with the fluorine compound A in the coating liquid. Here, the silica particles, the compound represented by the general formula (I), and the compound represented by the general formula (II) are represented by the general formula (I) in the coating liquid used in the present invention. It is preferable to exist as a condensate and / or a polymer surface-treated with the compound represented by formula (II) and the compound represented by the general formula (II) because the low refractive index layer can be suitably formed.
[High refractive index layer component]
Subsequently, other particles excluding the fluorinated particles will be described. Other particles excluding the fluorinated particles are preferably used as a component of the high refractive index layer.

前記フッ素処理粒子を除いた他の粒子は、特に限定されないが、無機化合物、とくに金属、半金属酸化物、窒化物、ホウ素化物であることが好ましく、Zr,Ti,Al,In,Zn,Sb,Sn,およびCeよりなる群から選ばれる少なくとも一つの金属の酸化物粒子であることがさらに好ましい。また高屈折率層構成成分として好適に用いられる粒子としては、シリカ粒子よりも屈折率が高い粒子が好ましく、具体的には酸化ジルコニウム(ZrO)、酸化チタン(TiO)、酸化アルミニウム(Al)、酸化インジウム(In)、酸化亜鉛(ZnO)、酸化スズ(SnO)、酸化アンチモン(Sb)、およびインジウムスズ酸化物(In)から選ばれる少なくとも一つの無機化合物、あるいはこれらの無機化合物間の固溶体、および一部元素を置換、侵入、欠損した固溶体であり、特に好ましくはアンチモン含有酸化スズ(ATO)や酸化チタン(TiO)である。 The other particles excluding the fluorinated particles are not particularly limited, but are preferably inorganic compounds, particularly metals, metalloid oxides, nitrides, borides, and Zr, Ti, Al, In, Zn, Sb. More preferably, it is oxide particles of at least one metal selected from the group consisting of Sn, Sn, and Ce. Further, as the particles suitably used as the high refractive index layer component, particles having a refractive index higher than that of silica particles are preferable. Specifically, zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ), antimony oxide (Sb 2 O 3 ), and indium tin oxide (In 2 O 3 ). At least one inorganic compound, or a solid solution between these inorganic compounds, and a solid solution in which some elements are substituted, intruded, or deficient, antimony-containing tin oxide (ATO) or titanium oxide (TiO 2 ) are particularly preferable.

本発明においては、これらフッ素処理粒子を除いた他の粒子(無機化合物からなる粒子など)を少なくとも1種類含むことが好ましい。より好ましくはフッ素処理粒子を除いた他の粒子を1種類以上5種類以下含む態様であり、特に好ましくは1種類含む態様である。   In the present invention, it is preferable to include at least one kind of other particles (such as particles made of an inorganic compound) excluding these fluorinated particles. More preferably, it is an embodiment containing one or more and five or less other types of particles excluding the fluorinated particles, and an embodiment containing one type is particularly preferred.

塗工液中の高屈折率ハードコート層構成成分として好適な粒子の数平均粒子径、特に低屈折率層構成成分として好適なシリカ粒子よりも屈折率が高い無機化合物からなる粒子の平均粒子径としては、好ましくは150nm以下、より好ましく20nm以下である。無機粒子の数平均粒子径が小さい分には問題がないが、現実的に製造可能な粒子径は1nm程度が下限である。無機粒子の数平均粒子径が20nmよりも大きくなると、乾燥過程における自発的な層構造形成が難しくなる。   The number average particle diameter of particles suitable as a high refractive index hard coat layer constituent in the coating liquid, especially the average particle diameter of particles made of an inorganic compound having a higher refractive index than silica particles suitable as a low refractive index layer constituent Is preferably 150 nm or less, more preferably 20 nm or less. Although there is no problem if the number average particle diameter of the inorganic particles is small, the lower limit of the particle diameter that can be practically produced is about 1 nm. When the number average particle diameter of the inorganic particles is larger than 20 nm, it becomes difficult to form a spontaneous layer structure in the drying process.

塗工液中の高屈折率層構成成分として好適な粒子の屈折率、特にシリカ粒子よりも屈折率が高い無機化合物からなる粒子の屈折率としては、好ましくは1.58〜2.80、より好ましくは1.60〜2.50である。粒子の屈折率が1.58よりも小さくなると、高屈折率ハードコート層の屈折率が低下することがあり、粒子の屈折率が2.80よりも大きくなると、高屈折率ハードコート層と支持基材との屈折率差が上昇し、良好な反射防止性能が得られなくなり、またわずかな膜厚の変化が干渉色の変化を引き起こし、これに起因する干渉縞が検知されて発生し外観が悪化することがある。   The refractive index of particles suitable as a constituent component of the high refractive index layer in the coating liquid, particularly the refractive index of particles made of an inorganic compound having a higher refractive index than silica particles is preferably 1.58 to 2.80, and more. Preferably it is 1.60-2.50. When the refractive index of the particles is smaller than 1.58, the refractive index of the high refractive index hard coat layer may be lowered. When the refractive index of the particles is larger than 2.80, the high refractive index hard coat layer and the support are supported. The difference in refractive index with the base material increases, resulting in poor antireflection performance, and a slight change in film thickness causes a change in interference color. May get worse.

塗工液中の高屈折率層構成成分として用いられる粒子については前述した通りだが、フッ素化合物Aによる表面処理がされた粒子がシリカ粒子の場合は、該シリカ粒子よりも屈折率が高い粒子であることが特に好ましく、このような該シリカ粒子よりも屈折率が高い粒子としては、数平均粒子径が20nm以下で、かつ屈折率が1.60から2.80の無機化合物が好ましく用いられる。そのような無機化合物の具体例としては、アンチモン含有酸化スズ(ATO)、酸化ジルコニウム(ZrO)、及び/または酸化チタン(TiO)が挙げられ、特に反射防止性の点から屈折率が高い酸化チタンがより好ましい。 The particles used as the high refractive index layer constituting component in the coating liquid are as described above. However, when the particles subjected to the surface treatment with the fluorine compound A are silica particles, the particles having a higher refractive index than the silica particles. It is particularly preferable that an inorganic compound having a number average particle diameter of 20 nm or less and a refractive index of 1.60 to 2.80 is preferably used as such particles having a higher refractive index than the silica particles. Specific examples of such inorganic compounds include antimony-containing tin oxide (ATO), zirconium oxide (ZrO 2 ), and / or titanium oxide (TiO 2 ), and the refractive index is particularly high from the viewpoint of antireflection properties. Titanium oxide is more preferable.

本発明の製造方法に用いる塗工液において、フッ素化合物Aによる表面処理がされた粒子がシリカ粒子であり、他の粒子が該シリカ粒子よりも屈折率が高い粒子である場合、支持基材の少なくとも片面上に該塗工液を1回塗工乾燥することで、フッ素処理シリカ粒子を含有した低屈折率層と、該シリカ粒子よりも屈折率が高い粒子を含有する高屈折率層を、支持基材、高屈折率層、低屈折率層の順に好適に形成できるため好ましい態様である。
[フッ素化合物B]
本発明の製造方法に用いる塗工液は、前述の2種類以上の粒子に加えて、フルオロアルキル基及び反応性部位を有し、数平均分子量が300以上4000以下であるフッ素化合物Bを含むことが好ましい。
In the coating liquid used in the production method of the present invention, when the particles subjected to the surface treatment with the fluorine compound A are silica particles, and the other particles are particles having a higher refractive index than the silica particles, By coating and drying the coating liquid once on at least one surface, a low refractive index layer containing fluorinated silica particles and a high refractive index layer containing particles having a higher refractive index than the silica particles, Since it can form suitably in order of a support base material, a high refractive index layer, and a low refractive index layer, it is a preferable aspect.
[Fluorine compound B]
The coating liquid used in the production method of the present invention contains a fluorine compound B having a fluoroalkyl group and a reactive site and having a number average molecular weight of 300 or more and 4000 or less in addition to the two or more kinds of particles described above. Is preferred.

フッ素化合物Bを含むことにより、フッ素化合物Bの親和力により、フッ素化合物Bがフッ素処理粒子の表面に吸着し、フッ素処理粒子同士の相互作用を抑制する。その結果、塗工液の乾燥時の流動性を向上させることにより、屈折率差の大きな2層を、面内で均一な層構造として形成することが可能になり、優れた反射防止性を発現することが可能となるため、フッ素化合物Bを含むことが好ましい。   By including the fluorine compound B, the fluorine compound B is adsorbed on the surface of the fluorine-treated particles due to the affinity of the fluorine compound B, and the interaction between the fluorine-treated particles is suppressed. As a result, by improving the fluidity of the coating liquid during drying, it is possible to form two layers with a large difference in refractive index as a uniform layer structure in the surface, and exhibit excellent antireflection properties. Therefore, the fluorine compound B is preferably included.

前述のようにフッ素化合物Bの数平均分子量は、300以上4000以下であることが好ましい。フッ素化合物Bの数平均分子量を上記範囲にすることにより、液膜中での運動性と粒子間相互作用の抑制効果を両立させることができ、反射防止性を向上させることができる。   As described above, the number average molecular weight of the fluorine compound B is preferably 300 or more and 4000 or less. By setting the number average molecular weight of the fluorine compound B within the above range, both the mobility in the liquid film and the effect of suppressing the interaction between particles can be achieved, and the antireflection property can be improved.

前述の数平均分子量は、テトラヒドロフランを溶媒にし、分子量既知の単分散ポリスチレンを標準物質として用い、ゲルパーミエーションクロマトグラフ(GPC)法により測定して求めたものである。その他氷点降下、沸点上昇、浸透圧、末端基定量の蒸気圧オスモメトリーなどで求められる。また、数平均分子量とは、分子量Mの分子数をNとした際に、M=ΣM/ΣNで定義されるものである。 The above-mentioned number average molecular weight is obtained by measurement by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent and monodisperse polystyrene having a known molecular weight as a standard substance. In addition, it can be obtained by freezing point depression, boiling point rise, osmotic pressure, vapor pressure osmometry of terminal group determination. The number average molecular weight is defined by M n = ΣM i N i / ΣN i where N i is the number of molecules of the molecular weight M i .

また本発明におけるフッ素化合物Bは、以下の一般式(A)のモノマー、一般式(B)のモノマー、一般式(A)のモノマーに由来するオリゴマー、及び一般式(B)のモノマーに由来するオリゴマーからなる群より選ばれる少なくとも1つの化合物であることがより好ましい。
C=C(R)−COO−R−Rf1 ・・・一般式(A)
A−R−Rf1 ・・・一般式(B)
(式中、Rは水素原子またはメチル基、Rf1は炭素数4〜8の直鎖状または分岐状のフルオロアルキル基、Rは炭素数1〜10のアルキル基、Rは炭素数1〜10のアルキル基、Aは反応性二重結合基である。)
一般式(A)のモノマーの具体例としては、2,2,2−トリフルオロエチルアクリレート、2,2,3,3,3−ペンタフロオロプロピルアクリレート、2−パーフルオロブチルエチルアクリレート、3−パーフルオロブチル−2−ヒドロキシプロピルアクリレート、2−パーフルオロヘキシルエチルアクリレート、3−パーフルオロヘキシル−2−ヒドロキシプロピルアクリレート、2−パーフルオロオクチルエチルアクリレート、3−パーフルオロオクチル−2−ヒドロキシプロピルアクリレート、2−パーフルオロデシルエチルアクリレート、2−パーフルオロ−3−メチルブチルエチルアクリレート、3−パーフルオロ−3−メトキシブチル−2−ヒドロキシプロピルアクリレート、2−パーフルオロ−5−メチルヘキシルエチルアクリレート、3−パーフルオロ−5−メチルヘキシル−2−ヒドロキシプロピルアクリレート、2−パーフルオロ−7−メチルオクチル−2−ヒドロキシプロピルアクリレート、テトラフルオロプロピルアクリレート、オクタフルオロペンチルアクリレート、ドデカフルオロヘプチルアクリレート、ヘキサデカフルオロノニルアクリレート、ヘキサフルオロブチルアクリレート、2,2,2−トリフルオロエチルメタクリレート、2,2,3,3,3−ペンタフルオロプロピルメタクリレート、2−パーフルオロブチルエチルメタクリレート、3−パーフルオロブチル−2−ヒドロキシプロピルメタクリレート、2−パーフルオロオクチルエチルメタクリレート、3−パーフルオロオクチル−2−ヒドロキシプロピルメタクリレート、2−パーフルオロデシルエチルメタクリレート、2−パーフルオロ−3−メチルブチルエチルメタクリレート、3−パーフルオロ−3−メチルブチル−2−ヒドロキシプロピルメタクリレート、2−パーフルオロ−5−メチルヘキシルエチルメタクリレート、3−パーフルオロ−5−メチルヘキシル−2−ヒドロキシプロピルメタクリレート、2−パーフルオロ−7−メチルオクチルエチルメタクリレート、3−パーフルオロ−7−メチルオクチルエチルメタクリレート、テトラフルオロプロピルメタクリレート、オクタフルオロペンチルメタクリレート、オクタフルオロペンチルメタクリレート、ドデカフルオロヘプチルメタクリレート、ヘキサデカフルオロノニルメタクリレート、1−トリフルオロメチルトリフルオロエチルメタクリレート、ヘキサフルオロブチルメタクリレートなどが挙げられる。
Further, the fluorine compound B in the present invention is derived from the monomer of the following general formula (A), the monomer of the general formula (B), the oligomer derived from the monomer of the general formula (A), and the monomer of the general formula (B). More preferably, it is at least one compound selected from the group consisting of oligomers.
H 2 C = C (R 1 ) -COO-R 2 -R f1 ··· formula (A)
AR 3 -R f1 ... General formula (B)
(Wherein R 1 is a hydrogen atom or a methyl group, R f1 is a linear or branched fluoroalkyl group having 4 to 8 carbon atoms, R 2 is an alkyl group having 1 to 10 carbon atoms, and R 3 is a carbon number. 1-10 alkyl groups, A is a reactive double bond group.)
Specific examples of the monomer of the general formula (A) include 2,2,2-trifluoroethyl acrylate, 2,2,3,3,3-pentafluoropropyl acrylate, 2-perfluorobutyl ethyl acrylate, 3- Perfluorobutyl-2-hydroxypropyl acrylate, 2-perfluorohexylethyl acrylate, 3-perfluorohexyl-2-hydroxypropyl acrylate, 2-perfluorooctylethyl acrylate, 3-perfluorooctyl-2-hydroxypropyl acrylate, 2-perfluorodecylethyl acrylate, 2-perfluoro-3-methylbutylethyl acrylate, 3-perfluoro-3-methoxybutyl-2-hydroxypropyl acrylate, 2-perfluoro-5-methylhexylethyl Chlorate, 3-perfluoro-5-methylhexyl-2-hydroxypropyl acrylate, 2-perfluoro-7-methyloctyl-2-hydroxypropyl acrylate, tetrafluoropropyl acrylate, octafluoropentyl acrylate, dodecafluoroheptyl acrylate, hexa Decafluorononyl acrylate, hexafluorobutyl acrylate, 2,2,2-trifluoroethyl methacrylate, 2,2,3,3,3-pentafluoropropyl methacrylate, 2-perfluorobutylethyl methacrylate, 3-perfluorobutyl- 2-hydroxypropyl methacrylate, 2-perfluorooctylethyl methacrylate, 3-perfluorooctyl-2-hydroxypropyl methacrylate, 2- -Fluorodecylethyl methacrylate, 2-perfluoro-3-methylbutylethyl methacrylate, 3-perfluoro-3-methylbutyl-2-hydroxypropyl methacrylate, 2-perfluoro-5-methylhexylethyl methacrylate, 3-perfluoro- 5-methylhexyl-2-hydroxypropyl methacrylate, 2-perfluoro-7-methyloctylethyl methacrylate, 3-perfluoro-7-methyloctylethyl methacrylate, tetrafluoropropyl methacrylate, octafluoropentyl methacrylate, octafluoropentyl methacrylate, Dodecafluoroheptyl methacrylate, hexadecafluorononyl methacrylate, 1-trifluoromethyltrifluoroethyl methacrylate, Examples include hexafluorobutyl methacrylate.

また一般式(A)のモノマーに由来するオリゴマーとしては、上記(A)の具体例のモノマーをラジカル重合などの高分子反応により得られる平均重合度2〜10程度の化合物をさす。   The oligomer derived from the monomer of the general formula (A) refers to a compound having an average degree of polymerization of about 2 to 10 obtained by a polymer reaction such as radical polymerization of the monomer of the specific example (A).

一般式(B)のモノマーとしては、ヘプタデカフルオロデシルトリメトキシシラン(TSL8233、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)、トリデカフルオロオクチルトリメトキシシラン(TSL8257、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)などをはじめとしたフルオロアルキル基を有するフルオロアルキルシランが例示される。   As the monomer of the general formula (B), heptadecafluorodecyltrimethoxysilane (TSL8233, manufactured by Momentive Performance Materials Japan GK), tridecafluorooctyltrimethoxysilane (TSL8257, Momentive Performance Materials, Inc.) Examples thereof include fluoroalkylsilanes having a fluoroalkyl group, such as those manufactured by Japan GK.

また一般式(B)のモノマーに由来するオリゴマーは、上述のフルオロアルキルシランに所定量の水を加え酸触媒の存在下にて副生するアルコールを留去しながら反応させることにより得られる化合物である。この反応により、フルオロアルキルシランの一部が加水分解し、更にこれらが縮合反応を起こしオリゴマーが得られる。加水分解率は使用する水の量によって調節することができる。加水分解に用いる水の量は、通常、シランカップリング剤に対して1.5モル倍以上である。さらに得られるオリゴマーの平均重合度は2〜10の化合物であることが好ましい。
[溶媒]
本発明の反射防止部材の製造方法に使用する塗工液は、前述の2種類以上の粒子に加えて、さらに溶媒を含むことが好ましい。ここでいう溶媒とは、塗工後の乾燥工程にてほぼ大部分を蒸発させることが可能な液体を指す。塗工液に溶媒を含むことにより、液膜の展延が容易になるため膜厚制御精度が向上し、また、フッ素処理粒子の空気側(最表面層への移動が容易になるため、反射防止性能が向上する。
The oligomer derived from the monomer of the general formula (B) is a compound obtained by reacting while adding a predetermined amount of water to the above-mentioned fluoroalkylsilane and distilling off the alcohol produced as a by-product in the presence of an acid catalyst. is there. By this reaction, a part of the fluoroalkylsilane is hydrolyzed and further undergoes a condensation reaction to obtain an oligomer. The hydrolysis rate can be adjusted by the amount of water used. The amount of water used for hydrolysis is usually 1.5 mol times or more with respect to the silane coupling agent. Furthermore, it is preferable that the average degree of polymerization of the oligomer obtained is a compound of 2-10.
[solvent]
The coating liquid used in the method for producing an antireflection member of the present invention preferably further contains a solvent in addition to the two or more kinds of particles described above. A solvent here refers to the liquid which can evaporate almost most in the drying process after coating. By including a solvent in the coating liquid, it is easy to spread the liquid film, so the film thickness control accuracy is improved, and the fluorinated particles are reflected on the air side (because it is easy to move to the outermost surface layer. Prevention performance is improved.

溶媒は、特に限定されるものではないが、通常、常圧での沸点が200℃以下の溶媒が好ましい。具体的には、水、アルコール類、ケトン類、エーテル類、エステル類、炭化水素類、アミド類、フッ素類等が用いられる。これらは、1種、または2種以上を組み合わせて用いることができる。具体的には、例えば、プロピレングリコールモノメチルエーテル(PGME)、シクロヘキサノン、メチルエチルケトン、メチルイソブチルケトン、メタノール、イソプロピルアルコール等が挙げられ、特に粒子の分散安定性の点からイソプロピルアルコール、プロピレングリコールなどが特に好ましい。   The solvent is not particularly limited, but usually a solvent having a boiling point of 200 ° C. or less at normal pressure is preferable. Specifically, water, alcohols, ketones, ethers, esters, hydrocarbons, amides, fluorines and the like are used. These can be used alone or in combination of two or more. Specific examples include propylene glycol monomethyl ether (PGME), cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone, methanol, isopropyl alcohol and the like, and isopropyl alcohol, propylene glycol and the like are particularly preferable from the viewpoint of dispersion stability of the particles. .

アルコール類としては、例えば、メタノール、エタノール、イソプロピルアルコール、イソブタノール、n−ブタノール、tert−ブタノール、エトキシエタノール、ブトキシエタノール、ジエチレングリコールモノエチルエーテル、ベンジルアルコール、フェニチルアルコール等を挙げることができる。ケトン類としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等を挙げることができる。エーテル類としては、例えば、ジブチルエーテル、プロピレングリコールモノエチルエーテルアセテートなどを挙げることができる。エステル類としては、例えば、酢酸エチル、酢酸ブチル、乳酸エチル、アセト酢酸メチル、アセト酢酸エチル等を挙げることができる。芳香族類としては、例えば、トルエン、キシレン等を挙げることができる。アミド類としては、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等を挙げることができる。
[バインダー成分]
本発明の反射防止部材の製造方法に用いる塗工液は、少なくとも1種類以上のバインダー成分を含むことが望ましい。つまり、本発明の塗工液により得られる反射防止部材の低屈折率層および高屈折率層には、前記した物質以外に塗工液中のバインダー成分に由来するバインダー成分を含んでいてもよい。塗工液中のバインダー成分としては特に限定するものではないが、製造性の観点より、熱及び/または活性エネルギー線などにより、硬化可能なバインダー成分であることが好ましく、バインダー成分は一種類であっても良いし、二種類以上を混合して用いても良い。
Examples of alcohols include methanol, ethanol, isopropyl alcohol, isobutanol, n-butanol, tert-butanol, ethoxyethanol, butoxyethanol, diethylene glycol monoethyl ether, benzyl alcohol, phenethyl alcohol, and the like. Examples of ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Examples of ethers include dibutyl ether and propylene glycol monoethyl ether acetate. Examples of the esters include ethyl acetate, butyl acetate, ethyl lactate, methyl acetoacetate, and ethyl acetoacetate. Examples of aromatics include toluene and xylene. Examples of amides include N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like.
[Binder component]
The coating liquid used in the method for producing an antireflection member of the present invention preferably contains at least one binder component. That is, the low refractive index layer and the high refractive index layer of the antireflection member obtained by the coating liquid of the present invention may contain a binder component derived from the binder component in the coating liquid in addition to the aforementioned substances. . Although it does not specifically limit as a binder component in a coating liquid, From a viewpoint of manufacturability, it is preferable that it is a binder component which can be hardened | cured with a heat | fever and / or active energy ray, etc., and a binder component is one kind. It may be present, or two or more kinds may be mixed and used.

また、本発明における前記フッ素処理粒子や、前記フッ素処理粒子以外の他の粒子を膜中に保持する観点より、分子中にアルコキシシランやアルコキシシランの加水分解物や反応性二重結合を有しているバインダー成分であることが好ましい。またUV線により硬化する場合は、酸素阻害を防ぐことができることから酸素濃度ができるだけ低い方が好ましく、嫌気性雰囲気下で硬化する方がより好ましい。酸素濃度を下げることにより最表面の硬化状態が向上し、耐アルカリ性が良化する場合がある。このような塗工液中のバインダー成分として、多官能アクリレートを用いるのが好ましく、代表的なものを以下に例示する。1分子中に、3(より好ましくは4または5)個以上の(メタ)アクリロイルオキシ基を有する多官能アクリレートおよびその変性ポリマー、具体的な例としては、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリアクリレートヘキサンメチレンジイソシアネートウレタンポリマーなどを用いることができる。これらの単量体は、1種または2種以上を混合して使用することができる。また、市販されている多官能アクリル系組成物としては三菱レイヨン株式会社;(商品名”ダイヤビーム”シリーズなど)、長瀬産業株式会社;(商品名”デナコール”シリーズなど)、新中村化学株式会社;(商品名”NKエステル”シリーズなど)、DIC株式会社;(商品名”UNIDIC”など)、東亜合成化学工業株式会社;(”アロニックス”シリーズなど)、日本油脂株式会社;(”ブレンマー”シリーズなど)、日本化薬株式会社;(商品名”KAYARAD”シリーズなど)、共栄社化学株式会社;(商品名”ライトエステル”シリーズなど)などを挙げることができ、これらの製品を利用することができる。
[開始剤、硬化剤、他添加剤]
本発明の反射防止部材の製造方法に用いる塗工液は、更に開始剤や硬化剤や触媒を含むことが好ましい。開始剤及び触媒は、フッ素処理粒子であるフッ素処理シリカ粒子とバインダー成分との反応を促進したり、バインダー成分間の反応を促進するために用いられる。該開始剤としては、塗工液をアニオン、カチオン、ラジカル反応等による重合および/または縮合および/または架橋反応を開始あるいは促進できるものが好ましい。
In addition, from the viewpoint of retaining the fluorinated particles in the present invention and other particles other than the fluorinated particles in the film, alkoxysilane, a hydrolyzate of alkoxysilane, or a reactive double bond is included in the molecule. It is preferable that it is a binder component. In the case of curing with UV rays, it is preferable that the oxygen concentration is as low as possible because oxygen inhibition can be prevented, and it is more preferable to cure in an anaerobic atmosphere. By reducing the oxygen concentration, the cured state of the outermost surface is improved and the alkali resistance may be improved. As the binder component in such a coating liquid, it is preferable to use a polyfunctional acrylate, and typical ones are exemplified below. Polyfunctional acrylate having 3 (more preferably 4 or 5) or more (meth) acryloyloxy groups in one molecule and a modified polymer thereof, for example, pentaerythritol tri (meth) acrylate, pentaerythritol Tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, trimethylolpropane tri (meth) acrylate Pentaerythritol triacrylate hexanemethylene diisocyanate urethane polymer and the like can be used. These monomers can be used alone or in combination of two or more. In addition, commercially available polyfunctional acrylic compositions include Mitsubishi Rayon Co., Ltd. (trade name “Diabeam” series, etc.), Nagase Sangyo Co., Ltd. (trade name “Denacol” series, etc.), Shin-Nakamura Chemical Co., Ltd. (Product name “NK Ester” series, etc.), DIC Corporation; (Product name “UNIDIC”, etc.), Toa Gosei Chemical Industry Co., Ltd. (“Aronix” series, etc.), Nippon Oil & Fats Corporation; (“Blemmer” series) Etc.), Nippon Kayaku Co., Ltd .; (trade name “KAYARAD” series, etc.), Kyoeisha Chemical Co., Ltd. (trade name “light ester” series, etc.), etc., and these products can be used. .
[Initiator, curing agent, other additives]
It is preferable that the coating liquid used for the manufacturing method of the antireflection member of this invention contains an initiator, a hardening | curing agent, and a catalyst further. The initiator and the catalyst are used for accelerating the reaction between the fluorinated silica particles, which are fluorinated particles, and the binder component, or for promoting the reaction between the binder components. As the initiator, those capable of initiating or accelerating polymerization and / or condensation and / or crosslinking reaction by anion, cation, radical reaction, etc. in the coating liquid are preferable.

該開始剤及び該硬化剤及び触媒は、種々のものを使用できる。また、複数の開始剤を同時に用いても良いし、単独で用いても良い。さらに、酸性触媒や、熱重合開始剤や光重合開始剤を併用しても良い。酸性触媒の例としては、塩酸水溶液、蟻酸、酢酸などが挙げられる。熱重合開始剤の例としては、過酸化物、アゾ化合物が挙げられる。また、光重合開始剤の例としては、アルキルフェノン系化合物、含硫黄系化合物、アシルホスフィンオキシド系化合物、アミン系化合物などが挙げられるがこれらに限定されるものではないが、硬化性の点から、アルキルフェノン系化合物が好ましく、具体例としては、2.2−ジメトキシ−1.2−ジフェニルエタン−1−オン、2−メチル−1−(4−メチルチオフェニル)−2−モルフォリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−フェニル)−1−ブタン、2−(ジメチルアミノ)−2−[(4−メチルフェニル)メチル]−1−(4−フェニル)−1−ブタン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−1−ブタン、2−(ジメチルアミノ)−2−[(4−メチルフェニル)メチル]−1−[4−(4−モルフォリニル)フェニル]−1−ブタン、1−シクロヒキシル−フェニルケトン、2−メチル−1−フェニルプロパン−1−オン、1−[4−(2−エトキシ)−フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン、などが挙げられる。   Various initiators and curing agents and catalysts can be used. A plurality of initiators may be used at the same time or may be used alone. Furthermore, you may use together an acidic catalyst, a thermal-polymerization initiator, and a photoinitiator. Examples of acidic catalysts include aqueous hydrochloric acid, formic acid, acetic acid and the like. Examples of the thermal polymerization initiator include peroxides and azo compounds. Examples of the photopolymerization initiator include alkylphenone compounds, sulfur-containing compounds, acylphosphine oxide compounds, and amine compounds, but are not limited thereto, but from the viewpoint of curability. Alkylphenone compounds are preferred, and specific examples include 2.2-dimethoxy-1.2-diphenylethane-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1 -One, 2-benzyl-2-dimethylamino-1- (4-phenyl) -1-butane, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- (4-phenyl) -1-butane, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butane, 2- (dimethylamino) -2-[(4-methylphenyl) Nyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butane, 1-cyclohexyl-phenylketone, 2-methyl-1-phenylpropan-1-one, 1- [4- (2- Ethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, and the like.

なお、該開始剤及び該硬化剤の添加割合は、塗工液中のバインダー成分量100質量部に対して0.001質量部から30質量部が好ましく、より好ましくは0.05質量部から20質量部であり更に好ましくは0.1質量部から10質量部である。   In addition, the addition ratio of the initiator and the curing agent is preferably 0.001 to 30 parts by mass, more preferably 0.05 to 20 parts by mass with respect to 100 parts by mass of the binder component in the coating liquid. It is a mass part, More preferably, it is 0.1 mass part-10 mass parts.

その他として、本発明の製造方法に用いる塗工液には更に、界面活性剤、増粘剤、レベリング剤、紫外線吸収剤、酸化防止剤、重合禁止剤、pH調製剤などの添加剤を必要に応じて適宜添加しても良い。
[塗工液中の各成分の含有量]
フッ素処理粒子を除いた粒子を他の粒子とした際に、フッ素処理粒子/他の粒子の含有比率(質量比率)が、フッ素処理粒子/他の粒子=1/30〜1/1であることが好ましい。
In addition, the coating liquid used in the production method of the present invention further requires additives such as a surfactant, a thickener, a leveling agent, an ultraviolet absorber, an antioxidant, a polymerization inhibitor, and a pH adjuster. You may add suitably according to it.
[Content of each component in coating liquid]
When the particles excluding the fluorinated particles are used as other particles, the content ratio (mass ratio) of the fluorinated particles / other particles is fluorinated particles / other particles = 1/30 to 1/1. Is preferred.

フッ素処理粒子/他の粒子の含有比率(質量比率)を上記範囲にすることにより、優れた反射防止性を維持しながら耐擦傷性、耐摩耗性を確保することが可能になる。   By setting the content ratio (mass ratio) of the fluorinated particles / other particles within the above range, it becomes possible to ensure scratch resistance and wear resistance while maintaining excellent antireflection properties.

好ましくは、本発明の塗工液100質量%において、(フッ素処理粒子を含む)全ての粒子(ここでいう全ての粒子には、フッ素化合物Aによる表面処理によって、フッ素処理粒子中の粒子と結合したフッ素化合物Aなど有機化合物も含めたフッ素処理粒子全体の質量も含める。)の合計が0.2質量%〜40質量%、有機溶媒を40〜98質量%、フッ素化合物Bを1質量%〜30質量%、バインダー成分、開始剤、硬化剤、及び触媒などのその他の成分を0.1質量%〜20質量%含む態様であり、より好ましくは、(フッ素処理無機粒子を含む)全ての粒子の合計が1質量%〜35質量%、溶媒を50〜97質量%、フッ素化合物Bを2〜25質量%、その他の成分を1〜15質量%含む態様である。   Preferably, in 100% by mass of the coating liquid of the present invention, all the particles (including the fluorine-treated particles) (all the particles here are bonded to the particles in the fluorine-treated particles by the surface treatment with the fluorine compound A). The total mass of the fluorine-treated particles including the organic compound such as the fluorine compound A is also included.) Is 0.2 to 40% by mass, the organic solvent is 40 to 98% by mass, and the fluorine compound B is 1% by mass to 30% by mass, an aspect including 0.1% by mass to 20% by mass of other components such as a binder component, an initiator, a curing agent, and a catalyst, and more preferably all particles (including fluorinated inorganic particles) Is 1 to 35% by mass, the solvent is 50 to 97% by mass, the fluorine compound B is 2 to 25% by mass, and other components are 1 to 15% by mass.

さらに好ましい態様としては、2種類以上の粒子が無機化合物粒子とフッ素処理シリカ粒子であり、これらの合計が本発明の塗工液100質量%において2〜30質量%、有機溶媒が60〜95質量%、フッ素化合物Bを3〜20質量%、その他の成分が2〜10質量%の態様である。   In a more preferred embodiment, two or more kinds of particles are inorganic compound particles and fluorinated silica particles, and the total of these is 2 to 30% by mass in 100% by mass of the coating liquid of the present invention, and the organic solvent is 60 to 95% by mass. %, Fluorine compound B is 3 to 20% by mass, and other components are 2 to 10% by mass.

フッ素処理粒子は、これを含む塗工液を支持基材に塗工して乾燥した際に、好適に空気側(最表面層)へ固定され、好適に低屈折率層を形成することができるため、本発明の塗工液に用いられる2種類以上の粒子の少なくとも1種類の粒子(特にシリカ粒子)には、フッ素化合物Aによる表面処理がされていることが重要である。   Fluorine-treated particles can be suitably fixed to the air side (outermost surface layer) when a coating liquid containing the same is applied to a support substrate and dried to form a low refractive index layer. Therefore, it is important that at least one kind of particles (particularly silica particles) of two or more kinds used in the coating liquid of the present invention is surface-treated with the fluorine compound A.

なお、2種類以上の粒子の全ての粒子がフッ素化合物Aによる表面処理を施された場合よりも、フッ素化合物Aによる表面処理を施された粒子(特にシリカ粒子)と該表面処理をされていない粒子(特に金属酸化物)の両方を含む塗工液を用いる方が、屈折率差の大きい2層を得ることができるために反射防止性の点で好ましい。
[支持基材]
反射防止部材をCRT画像表示面やレンズ表面に直接設ける場合を除き、反射防止部材は支持基材を有することが重要である。支持基材に特に限定はないが、ガラス板よりもプラスチックフィルムの方が好ましい。プラスチックフィルムの材料の例には、セルロースエステル(例、トリアセチルセルロース、ジアセチルセルロース、プロピオニルセルロース、ブチリルセルロース、アセチルプロピオニルセルロース、ニトロセルロース)、ポリアミド、ポリカーボネート、ポリエステル(例、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリ−1,4−シクロヘキサンジメチレンテレフタレート、ポリエチレン−1,2−ジフェノキシエタン−4,4’−ジカルボキシレート、ポリブチレンテレフタレート)、ポリスチレン(例、シンジオタクチックポリスチレン)、ポリオレフィン(例、ポリプロピレン、ポリエチレン、ポリメチルペンテン)、ポリスルホン、ポリエーテルスルホン、ポリアリレート、ポリエーテルイミド、ポリメチルメタクリレート及びポリエーテルケトンなどが含まれるが、これらの中でも得にトリアセチルセルロース、ポリカーボネート、ポリエチレンテレフタレートおよびポリエチレンナフタレートが好ましい。
In addition, the surface treatment with the fluorine compound A (particularly silica particles) and the surface treatment with the fluorine compound A are not performed compared to the case where all of the two or more types of particles are subjected to the surface treatment with the fluorine compound A. The use of a coating liquid containing both particles (particularly metal oxide) is preferable in terms of antireflection properties because two layers having a large refractive index difference can be obtained.
[Supporting substrate]
Except for the case where the antireflection member is provided directly on the CRT image display surface or the lens surface, it is important that the antireflection member has a supporting base material. Although there is no limitation in particular in a support base material, a plastic film is more preferable than a glass plate. Examples of plastic film materials include cellulose esters (eg, triacetyl cellulose, diacetyl cellulose, propionyl cellulose, butyryl cellulose, acetyl propionyl cellulose, nitrocellulose), polyamides, polycarbonates, polyesters (eg, polyethylene terephthalate, polyethylene naphthalate). , Poly-1,4-cyclohexanedimethylene terephthalate, polyethylene-1,2-diphenoxyethane-4,4′-dicarboxylate, polybutylene terephthalate), polystyrene (eg, syndiotactic polystyrene), polyolefin (eg, Polypropylene, polyethylene, polymethylpentene), polysulfone, polyethersulfone, polyarylate, polyetherimide, polymethylmethene Tacrylate and polyetherketone are included, but among these, triacetyl cellulose, polycarbonate, polyethylene terephthalate and polyethylene naphthalate are particularly preferable.

本発明の製造方法の好ましい態様では、上述のような耐擦傷性が十分でないプラスチックを直接、支持基材に使用しても、反射防止性に加えて耐擦傷性も付与できるため、公知技術のように、支持基材上にハードコート層を設ける必要はない。また上述のように、支持基材は接着層、シールド層、滑り層などの各種機能層を有するフィルムとすることもできる。   In a preferred embodiment of the production method of the present invention, since a plastic having insufficient scratch resistance as described above can be directly used as a support substrate, scratch resistance can be imparted in addition to antireflection properties. Thus, it is not necessary to provide a hard coat layer on the support substrate. Further, as described above, the supporting base material can be a film having various functional layers such as an adhesive layer, a shield layer, and a sliding layer.

支持基材の光透過率は、80%以上100%以下であることが好ましく、86%以上100%以下であることがさらに好ましい。ここで光透過率とは、光を照射した際に試料を透過する光の割合のことであり、JIS K 7361−1(1997)に従い測定することができる透明材料の透明性の指標である。反射防止部材の光透過率としては値が大きいほど良好であり、値が小さいとヘイズ値が上昇、画像劣化が生じる可能性が高くなるため好ましくない。ヘイズはJIS K 7136(2000)に規定された透明材料の濁りの指標である。ヘイズは小さいほど透明性が高いことを示す。   The light transmittance of the supporting substrate is preferably 80% or more and 100% or less, and more preferably 86% or more and 100% or less. Here, the light transmittance is a ratio of light transmitted through the sample when irradiated with light, and is an index of transparency of a transparent material that can be measured according to JIS K 7361-1 (1997). The larger the value of the light transmittance of the antireflection member, the better. The smaller value is not preferable because the haze value increases and the possibility of image deterioration increases. Haze is an index of turbidity of a transparent material defined in JIS K 7136 (2000). The smaller the haze, the higher the transparency.

支持基材のヘイズは、0.01%以上2.0%以下であることが好ましく、0.05%以上1.0%以下であることがさらに好ましい。   The haze of the support substrate is preferably 0.01% or more and 2.0% or less, and more preferably 0.05% or more and 1.0% or less.

支持基材の屈折率は、1.4〜1.7であることが好ましい。なお、ここでいう屈折率とは、光が空気中からある物質中に進む時、その界面で進行方向の角度を変える割合のことであり、JIS K 7142(1996)に規定されている方法により測定することができる。   The refractive index of the supporting substrate is preferably 1.4 to 1.7. Here, the refractive index is a ratio of changing the angle of the traveling direction at the interface when light travels from the air to a certain substance, according to the method defined in JIS K 7142 (1996). Can be measured.

支持基材には、赤外線吸収剤あるいは紫外線吸収剤を添加してもよい。赤外線吸収剤の添加量は、支持基材の全成分100質量%において0.01〜20質量%であることが好ましく、0.05〜10質量%であることがさらに好ましい。滑り剤として、不活性無機化合物の粒子を支持基材に添加してもよい。無機化合物の例には、SiO、TiO、BaSO、CaCO、タルクおよびカオリンが含まれる。更に、支持基材に、表面処理を実施してもよい。 An infrared absorber or an ultraviolet absorber may be added to the support substrate. The addition amount of the infrared absorber is preferably 0.01 to 20% by mass and more preferably 0.05 to 10% by mass with respect to 100% by mass of all the components of the support substrate. As a slip agent, particles of an inert inorganic compound may be added to the support substrate. Examples of the inorganic compound, SiO 2, TiO 2, BaSO 4, CaCO 3, talc and kaolin. Furthermore, the support substrate may be subjected to a surface treatment.

支持基材の表面には、各種の表面処理を施すことも可能である。表面処理の例には、薬品処理、機械的処理、コロナ放電処理、火焔処理、紫外線照射処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理、混酸処理およびオゾン酸化処理が含まれる。これらの中でもグロー放電処理、紫外線照射処理、コロナ放電処理および火焔処理が好ましく、グロー放電処理と紫外線処理がさらに好ましい。
[本発明の塗工液を用いた反射防止部材の製造方法]
本発明の製造方法では、支持基材の少なくとも片面に、1層の液膜からなる塗工液を1回塗工する工程と乾燥する工程をこの順に行なうことにより、支持基材上に屈折率の異なる2層を同時に形成することができる。
Various surface treatments can be applied to the surface of the support substrate. Examples of the surface treatment include chemical treatment, mechanical treatment, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency treatment, glow discharge treatment, active plasma treatment, laser treatment, mixed acid treatment and ozone oxidation treatment. Among these, glow discharge treatment, ultraviolet irradiation treatment, corona discharge treatment and flame treatment are preferred, and glow discharge treatment and ultraviolet treatment are more preferred.
[Method for producing antireflection member using coating liquid of the present invention]
In the production method of the present invention, the refractive index is formed on the supporting base material by performing a coating step consisting of a single layer of liquid film once and a drying step in this order on at least one surface of the supporting base material. Can be formed simultaneously.

ここで、1層の液膜からなる塗工液を1回塗工する工程とは、基材に対して1回の塗工工程にて1種類の塗工液からなる1層の液膜を1回だけ塗工することを指し、1回の塗工工程にて複数層からなる液膜を同時に1回塗工する多層同時塗工や、1回の塗工時に1層の液膜を複数回の塗工、乾燥工程を有する連続逐次塗工、1回の塗工時に1層の液膜を複数回の塗工し、次いで乾燥する、ウェットオンウェット塗工などを行わないことを指す。   Here, the process of applying the coating liquid consisting of one layer of liquid film once means that the liquid film of one layer consisting of one kind of coating liquid is applied to the base material once in the coating process. This refers to coating only once. Multi-layer simultaneous coating in which multiple layers of liquid film are applied at the same time in a single coating process, and multiple layers of liquid film at the same time. It means that wet-on-wet coating or the like is not performed, in which one layer of liquid film is applied a plurality of times at the time of one coating, followed by drying.

まず、各層を形成するための成分を含有した塗工液は前述の要領で調製され、この塗工液をディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やダイコート法(米国特許2681294号明細書参照)などにより支持基材上に塗工する。   First, a coating solution containing components for forming each layer is prepared as described above, and this coating solution is prepared by a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, Coating is carried out on a supporting substrate by a gravure coating method or a die coating method (see US Pat. No. 2,681,294).

これらの塗工方式のうち、グラビアコート法または、ダイコート法が塗工方法として好ましい。グラビアコート法は反射防止層のような塗工量の少ない塗工液を均一な膜厚で塗工することに優れており、グラビアコート法の中でもダイレクトグラビア法で、グラビアロール直径の小さい小径グラビアロールを用いることが、メニスカス部の安定性確保の面からより好ましい。このような塗工方法としては、マイクログラビア法が提案されている。   Of these coating methods, the gravure coating method or the die coating method is preferable as the coating method. The gravure coating method is excellent for coating a coating solution with a small coating amount, such as an antireflection layer, with a uniform film thickness. Among the gravure coating methods, the direct gravure method is a small-diameter gravure with a small gravure roll diameter. It is more preferable to use a roll from the viewpoint of securing the stability of the meniscus portion. As such a coating method, a microgravure method has been proposed.

また、ダイコート法は、反射防止層のような塗工量の少ない場合には工夫を要するが、前計量方式のためコーティングダイへの供給液量にて膜厚の制御が可能であり、また、原理的に塗工液の滞留部、蒸発部がないため、塗工液の安定性の面からも優れている。   In addition, the die coating method requires a device when the coating amount is small, such as an antireflection layer, but the film thickness can be controlled by the amount of liquid supplied to the coating die because of the pre-measuring method, In principle, since there is no staying part or evaporation part of the coating liquid, it is also excellent in terms of the stability of the coating liquid.

次いで、支持基材上に塗工された液膜を乾燥する。得られる反射防止部材中から完全に溶媒を除去する事に加え、自発的に層構造を形成させるために液膜中での粒子の運動を促進するという観点からも、乾燥工程では液膜の加熱を伴うことが好ましい。   Next, the liquid film coated on the support substrate is dried. In addition to completely removing the solvent from the resulting antireflective member, the drying process also heats the liquid film from the viewpoint of promoting the movement of particles in the liquid film to spontaneously form a layer structure. Is preferably accompanied.

この乾燥工程は一般的に、(A)恒率乾燥期間、(B)減率乾燥期間に分けられ、前者は、液膜表面において溶媒分子の大気中への拡散が乾燥の律速になっているため、乾燥速度は、この区間において一定で、乾燥速度は大気中の被蒸発溶媒分圧、風速、温度により支配され、膜面温度は熱風温度と大気中の被蒸発溶媒分圧により決まる値で一定になる。後者は、液膜中での溶媒の拡散が律速となっているため、乾燥速度はこの区間において一定値を示さず低下し続け、液膜中の溶媒の拡散係数により支配され、膜面温度は上昇する。ここで乾燥速度とは、単位時間、単位面積当たりの溶媒蒸発量を表わしたもので、g/(m.s)の次元からなる。 This drying process is generally divided into (A) constant rate drying period and (B) reduced rate drying period. In the former, diffusion of solvent molecules into the atmosphere on the liquid film surface is the rate-limiting rate of drying. Therefore, the drying speed is constant in this section, the drying speed is governed by the partial pressure of the solvent to be evaporated in the atmosphere, the wind speed and the temperature, and the film surface temperature is a value determined by the hot air temperature and the partial pressure of the solvent to be evaporated in the atmosphere. It becomes constant. In the latter, since the diffusion of the solvent in the liquid film is rate-limiting, the drying rate does not show a constant value in this section and continues to decrease, and is governed by the diffusion coefficient of the solvent in the liquid film, and the film surface temperature is To rise. Here, the drying rate represents the amount of solvent evaporation per unit time and unit area, and has a dimension of g / (m 2 · s).

本発明の製造方法では、自発的な層構造の形成は恒率乾燥期間において発生していると推定しており、この区間における乾燥速度には、好ましい範囲があり、1.4g/(m.s)以下であることが好ましく、0.9g/(m.s)以下であることがより好ましく、0.1g/(m.s)以上であることが好ましい。恒率乾燥期間における乾燥速度をこの範囲にすることにより、乾燥速度の不均一さに起因するムラを防ぎ、かつ自発的な層構造を起こすことに必要な時間を十分に確保することができる。 In the production method of the present invention, it is presumed that the formation of the spontaneous layer structure occurs during the constant rate drying period, and there is a preferred range for the drying rate in this section, 1.4 g / (m 2 .S) or less, more preferably 0.9 g / (m 2 .s) or less, and preferably 0.1 g / (m 2 .s) or more. By setting the drying speed in the constant rate drying period within this range, it is possible to prevent unevenness due to non-uniformity of the drying speed and to sufficiently secure the time required to cause a spontaneous layer structure.

0.1g/(m.s)以上1.4g/(m.s)以下の範囲の乾燥速度が得られるならば、特に特定の風速、温度に限定されない。 As long as a drying rate in the range of 0.1 g / (m 2 .s) or more and 1.4 g / (m 2 .s) or less can be obtained, the wind speed and temperature are not particularly limited.

本発明の製造方法では、減率乾燥期間では、残存溶媒の蒸発と共に、粒子の配列による層構造の緻密化が行われる。この過程においては粒子の配列のため、粒子の運動性と共に、配列のための時間を必要とするため、減率乾燥期間における膜面温度上昇速度には好ましい範囲が存在し、5℃/秒以下であることが好ましく、1℃/秒以下であることがより好ましい。   In the production method of the present invention, the layer structure is densified by the arrangement of particles during evaporation of the remaining solvent and the evaporation of the residual solvent. In this process, because of the arrangement of particles, it takes time for the arrangement along with the mobility of the particles. Therefore, there is a preferable range for the film surface temperature increase rate during the decremental drying period, and it is 5 ° C./second or less. Preferably, it is 1 ° C./second or less.

乾燥方法については、伝熱乾燥(高熱物体への密着)、対流伝熱(熱風)、輻射伝熱(赤外線)、その他(マイクロ波、誘導加熱)などが挙げられる。この中でも、本発明の製造方法では、精密に幅方向で乾燥速度を均一にする必要から、対流伝熱、または輻射伝熱を使用した方式が好ましく、さらに恒率乾燥期間においては、幅方向で均一な乾燥速度を達成するため、対流伝熱による乾燥の場合には、制御可能な風速を維持しつつ、乾燥時の総括物質移動係数を下げることが可能な方法として、支持基材に対して平行で、基材の搬送方向に対して平行、あるいは垂直な方向に熱風を送風する方式が望ましい。   Examples of the drying method include heat transfer drying (adherence to a high-temperature object), convection heat transfer (hot air), radiant heat transfer (infrared rays), and others (microwave, induction heating). Among these, in the production method of the present invention, a method using convective heat transfer or radiant heat transfer is preferable because it is necessary to make the drying speed uniform in the width direction. In order to achieve a uniform drying rate, in the case of drying by convective heat transfer, as a method that can reduce the overall mass transfer coefficient during drying while maintaining a controllable wind speed, A method of blowing hot air in a direction that is parallel and parallel or perpendicular to the conveyance direction of the substrate is desirable.

さらに、乾燥工程後に形成された支持基材上の2層に対して、熱またはエネルギー線を照射する事によるさらなる硬化操作(硬化工程)を行ってもよい。硬化工程において、熱で硬化する場合には、室温から200℃であることが好ましく、硬化反応の活性化エネルギーの観点から、より好ましくは100℃以上200℃以下、さらに好ましくは130℃以上200℃以下である。   Furthermore, you may perform the further hardening operation (curing process) by irradiating a heat | fever or an energy ray with respect to two layers on the support base material formed after the drying process. When curing with heat in the curing step, the temperature is preferably from room temperature to 200 ° C, more preferably from 100 ° C to 200 ° C, and even more preferably from 130 ° C to 200 ° C, from the viewpoint of the activation energy of the curing reaction. It is as follows.

また、エネルギー線により硬化する場合には汎用性の点から電子線(EB線)及び/又は紫外線(UV線)であることが好ましい。また紫外線により硬化する場合は、酸素阻害を防ぐことができることから酸素濃度ができるだけ低い方が好ましく、窒素雰囲気下(窒素パージ)で硬化する方がより好ましい。酸素濃度が高い場合には、最表面の硬化が阻害され、硬化が不十分となり、耐擦傷性、耐アルカリ性が不十分となる場合がある。また、紫外線を照射する際に用いる紫外線ランプの種類としては、例えば、放電ランプ方式、フラッシュ方式、レーザー方式、無電極ランプ方式等が挙げられる。放電ランプ方式である高圧水銀灯を用いて紫外線硬化させる場合、紫外線の照度が100〜3000mW/cm、好ましくは200〜2000mW/cm、さらに好ましくは300〜1500mW/cmとなる条件で紫外線照射を行うことが好ましく、紫外線の積算光量が100〜3000mJ/cm、好ましく200〜2000mJ/cm、さらに好ましくは300〜1500mJ/cmとなる条件で紫外線照射を行うことがより好ましい。ここで、紫外線照度とは、単位面積当たりに受ける照射強度で、ランプ出力、発光スペクトル効率、発光バルブの直径、反射鏡の設計及び被照射物との光源距離によって変化する。しかし、搬送スピードによって照度は変化しない。また、紫外線積算光量とは単位面積当たりに受ける照射エネルギーで、その表面に到達するフォトンの総量である。積算光量は、光源下を通過する照射速度に反比例し、照射回数とランプ灯数に比例する。 Moreover, when hardening with an energy ray, it is preferable that it is an electron beam (EB ray) and / or an ultraviolet-ray (UV ray) from a versatility point. In the case of curing with ultraviolet rays, the oxygen concentration is preferably as low as possible because oxygen inhibition can be prevented, and curing in a nitrogen atmosphere (nitrogen purge) is more preferable. When the oxygen concentration is high, the curing of the outermost surface is inhibited, the curing becomes insufficient, and the scratch resistance and alkali resistance may be insufficient. Examples of the ultraviolet lamp used when irradiating ultraviolet rays include a discharge lamp method, a flash method, a laser method, and an electrodeless lamp method. When the discharge lamp type to ultraviolet cured using a high pressure mercury lamp is, illuminance 100~3000mW / cm 2 of ultraviolet, ultraviolet irradiation under the conditions preferably 200~2000mW / cm 2, further preferably a 300~1500mW / cm 2 preferably performing, integrated light quantity of ultraviolet 100~3000mJ / cm 2, preferably 200~2000mJ / cm 2, more preferably it is more preferable to carry out ultraviolet irradiation under the condition that the 300~1500mJ / cm 2. Here, the ultraviolet illuminance is the irradiation intensity received per unit area, and changes depending on the lamp output, the emission spectral efficiency, the diameter of the light emitting bulb, the design of the reflector, and the light source distance to the irradiated object. However, the illuminance does not change depending on the conveyance speed. Further, the UV integrated light amount is irradiation energy received per unit area, and is the total amount of photons reaching the surface. The integrated light quantity is inversely proportional to the irradiation speed passing under the light source, and is proportional to the number of irradiations and the number of lamps.

硬化を熱により行う場合、乾燥工程と硬化工程とを同時におこなってもよい。   When curing is performed by heat, the drying step and the curing step may be performed simultaneously.

また本発明の製法により得られた反射防止部材は、PDPなどの各種画像表示装置の視認側表面に設けることで、反射防止性に優れた画像表示装置を提供することができる。なおこの際は、反射防止部材における支持基材側を画像表示装置側として、反射防止部材などを設けることが重要である。   Moreover, the antireflection member obtained by the production method of the present invention can be provided on the viewing side surface of various image display devices such as PDP, thereby providing an image display device having excellent antireflection properties. In this case, it is important to provide an antireflection member or the like with the support base material side of the antireflection member as the image display device side.

次に、実施例に基づいて本発明を説明するが、本発明は必ずしもこれらに限定されるものではない。   Next, although this invention is demonstrated based on an Example, this invention is not necessarily limited to these.

[高屈折率層構成成分(A−8)の調整]
下記材料を混合し、高屈率層構成成分(A−8)を得た。
二酸化チタン粒子分散物 72質量部
(ELCOM 日揮触媒化成株式会社製:固形分30質量%、数平均粒子径 8nm)
バインダー成分A 18質量部
(カヤラッドDPHA 日本化薬株式会社製:固形分100質量%)
2−プロパノール 1質量部
エチレングリコールモノブチルエーテル 9質量部
[高屈折率層構成成分(A−15)の調整]
前記、高屈折率層構成成分(A−8)に対し、二酸化チタン粒子分散物を下記の二酸化ジルコニウム粒子分散物に変えた以外は同様にして、高屈率層構成成分(A−15)を得た。
二酸化ジルコニウム粒子分散物
(ELCOM 日揮触媒化成株式会社製:固形分30質量%、数平均粒子径 15nm)
[高屈折率層構成成分(A−25)の調整]
前記、高屈折率層構成成分(A−8)に対し、二酸化チタン粒子分散物を下記のATO粒子分散物に変えた以外は同様にして、高屈率層構成成分(A−15)を得た。
ATO粒子分散物
(リオデュラス 東洋インキ株式会社製:固形分30質量%、数平均粒子径 25nm)
[高屈折率層構成成分(A−40)の調整]
前記、高屈折率層構成成分(A−8)に対し、二酸化チタン粒子分散物を下記のATO粒子分散物に変えた以外は同様にして、高屈率層構成成分(A−40)を得た
ATO粒子分散物
(ELCOM 日揮触媒化成株式会社製:固形分30質量%、数平均粒子径 38nm)
[高屈折率層構成成分(A−50)の調整]
下記材料を混合し、メディア分散機(直径0.1mmのジルコニアビーズ使用)を用いて、上記液中のATO粒子を分散してATO分散液を得た。
導電性微粒子ATO 20質量部
(アンチモンドープ酸化錫T−1 三菱マテリアル(株)製)
テトラアルコキシシラン 3.0質量部
メチルイソブチルケトン 77質量部
さらに、前記ATO分散液に多官能アクリレートであるカヤラッドDPHA(日本化薬株式会社製:固形分100質量%)を質量比8:2で混合して、高屈率層構成成分(A−50)を得た。
[Adjustment of high refractive index layer component (A-8)]
The following materials were mixed to obtain a high refractive index layer constituent (A-8).
72 parts by mass of titanium dioxide particle dispersion
(ELCOM JGC Catalysts & Chemicals Co., Ltd .: solid content 30% by mass, number average particle size 8 nm)
Binder component A 18 parts by mass (Kayarad DPHA Nippon Kayaku Co., Ltd .: solid content 100% by mass)
2-Propanol 1 part by mass Ethylene glycol monobutyl ether 9 parts by mass [Adjustment of high refractive index layer component (A-15)]
For the high refractive index layer constituent component (A-8), the high refractive index layer constituent component (A-15) was changed in the same manner except that the titanium dioxide particle dispersion was changed to the following zirconium dioxide particle dispersion. Obtained.
Zirconium dioxide particle dispersion
(ELCOM JGC Catalysts & Chemicals Co., Ltd .: solid content 30% by mass, number average particle size 15 nm)
[Adjustment of high refractive index layer component (A-25)]
The high refractive index layer constituent component (A-15) is obtained in the same manner except that the titanium dioxide particle dispersion is changed to the following ATO particle dispersion with respect to the high refractive index layer constituent component (A-8). It was.
ATO particle dispersion (Ryoduras Toyo Ink Co., Ltd .: solid content 30% by mass, number average particle size 25 nm)
[Adjustment of high refractive index layer component (A-40)]
The high refractive index layer constituent component (A-40) is obtained in the same manner except that the titanium dioxide particle dispersion is changed to the following ATO particle dispersion with respect to the high refractive index layer constituent component (A-8). ATO particle dispersion
(ELCOM JGC Catalysts & Chemicals Co., Ltd .: solid content 30% by mass, number average particle size 38 nm)
[Adjustment of High Refractive Index Layer Component (A-50)]
The following materials were mixed, and ATO dispersion liquid was obtained by dispersing ATO particles in the liquid using a media disperser (using zirconia beads having a diameter of 0.1 mm).
20 parts by mass of conductive fine particles ATO (antimony-doped tin oxide T-1 manufactured by Mitsubishi Materials Corporation)
Tetraalkoxysilane 3.0 parts by mass Methyl isobutyl ketone 77 parts by mass Furthermore, Kayrad DPHA (Nippon Kayaku Co., Ltd .: solid content 100% by mass), which is a polyfunctional acrylate, is mixed with the ATO dispersion at a mass ratio of 8: 2. And the high refractive index layer structural component (A-50) was obtained.

[高屈折率層構成成分(A−70)の調整]
前記、高屈折率層構成成分(A−8)に対し、二酸化チタン粒子分散物を下記PTO粒子分散物に変えた以外は同様にして、高屈率層構成成分(A−70)を得た。
PTO粒子分散物 80質量部
(ELCOM 日揮触媒化成株式会社製:固形分30質量%、平均粒子径 70nm)
[高屈折率層構成成分(B−8)の調整]
前記、高屈折率層構成成分(A−8)に対し、バインダー成分Aを下記材料に変えた以 外は同様にして、高屈折率層構成成分(B−8)を得た。
バインダー成分B
(アロニックス M405 東亜合成株式会社製:固形分100質量%)
[高屈折率層構成成分(B−50)の調整]
前記、高屈折率層構成成分(A−50)に対し、バインダー成分Aを下記材料に変えた以外は同様にして、高屈折率層構成成分(B−50)を得た。
バインダー成分B
(アロニックス M405 東亜合成株式会社製:固形分100質量%)
[高屈折率層構成成分(B−15)の調整]
前記、高屈折率層構成成分(A−15)に対し、バインダー成分Aを下記材料に変えた以 外は同様にして、高屈折率層構成成分(B−15)を得た。
バインダー成分B
(アロニックス M405 東亜合成株式会社製:固形分100質量%)
[高屈折率層構成成分(C−15)の調整]
前記、高屈折率層構成成分(A−15)に対し、バインダー成分Aを下記材料に変えた以 外は同様にして、高屈折率層構成成分(C−15)を得た。
バインダー成分C
(アロニックス M350 東亜合成株式会社製:固形分100質量%)
[高屈折率層構成成分(X)の調整]
下記材料を混合し、高屈率層構成成分(X)を得た。
[Adjustment of high refractive index layer component (A-70)]
The high refractive index layer constituent component (A-8) was obtained in the same manner except that the titanium dioxide particle dispersion was changed to the following PTO particle dispersion with respect to the high refractive index layer constituent component (A-8). .
80 parts by mass of PTO particle dispersion
(ELCOM JGC Catalysts & Chemicals Co., Ltd .: solid content 30% by mass, average particle size 70 nm)
[Adjustment of High Refractive Index Layer Component (B-8)]
A high refractive index layer constituent component (B-8) was obtained in the same manner as the high refractive index layer constituent component (A-8) except that the binder component A was changed to the following material.
Binder component B
(Aronix M405 manufactured by Toa Gosei Co., Ltd .: solid content 100% by mass)
[Adjustment of high refractive index layer component (B-50)]
A high refractive index layer constituent component (B-50) was obtained in the same manner except that the binder component A was changed to the following material with respect to the high refractive index layer constituent component (A-50).
Binder component B
(Aronix M405 manufactured by Toa Gosei Co., Ltd .: solid content 100% by mass)
[Adjustment of high refractive index layer component (B-15)]
A high refractive index layer constituent component (B-15) was obtained in the same manner as in the high refractive index layer constituent component (A-15) except that the binder component A was changed to the following material.
Binder component B
(Aronix M405 manufactured by Toa Gosei Co., Ltd .: solid content 100% by mass)
[Adjustment of high refractive index layer component (C-15)]
The high refractive index layer constituent component (A-15) was obtained in the same manner as the high refractive index layer constituent component (A-15) except that the binder component A was changed to the following material.
Binder component C
(Aronix M350 manufactured by Toagosei Co., Ltd .: solid content 100% by mass)
[Adjustment of high refractive index layer component (X)]
The following materials were mixed to obtain a high refractive index layer component (X).

オプスターTU4005 (JSR株式会社) 1.0質量部
2−プロパノール 1.0質量部
エチレングリコールモノブチルエーテル 0.11質量部
[低屈折率層構成成分の調整]
[低屈折率層構成成分(a)の調整]
中空シリカであるスルーリア4110(日揮触媒化成株式会社製:固形分濃度20質量%)15gに、メタクリロキシプロピルトリメトキシシラン1.37gと10質量%蟻酸水溶液0.17gを混合し、70℃にて1時間撹拌した。ついで、HC=CH−COO−CH−(CFF 1.38g及び2,2−アゾビスイソブチロニトリル0.057gを加えた後、60分間90℃にて加熱撹拌した。その後、イソプロピルアルコールを加え希釈し、固形分14質量%の低屈折率層構成成分(a)とした。
Opstar TU4005 (JSR Corporation) 1.0 part by mass 2-propanol 1.0 part by mass ethylene glycol monobutyl ether 0.11 part by mass [adjustment of low refractive index layer components]
[Adjustment of low refractive index layer component (a)]
1.37 g of methacryloxypropyltrimethoxysilane and 0.17 g of 10% by mass aqueous formic acid solution were mixed with 15 g of through silica 4110 (manufactured by JGC Catalysts & Chemicals Co., Ltd .: solid content concentration 20% by mass), which is hollow silica, at 70 ° C. Stir for 1 hour. Next, 1.38 g of H 2 C═CH—COO—CH 2 — (CF 2 ) 8 F and 0.057 g of 2,2-azobisisobutyronitrile were added, followed by heating and stirring at 90 ° C. for 60 minutes. . Thereafter, isopropyl alcohol was added for dilution to obtain a low refractive index layer constituting component (a) having a solid content of 14% by mass.

[低屈折率層構成成分(b)の調整]
低屈折率層構成成分(a)に対し、HC=CH−COO−CH−(CFF をHC=CH−COO−CH−(CFFに置き換えた以外は同様にして、低屈折率層構成成分(b)を得た。
[Adjustment of low refractive index layer component (b)]
H 2 C═CH—COO—CH 2 — (CF 2 ) 8 F was replaced with H 2 C═CH—COO—CH 2 — (CF 2 ) 6 F for the low refractive index layer component (a). The low refractive index layer constituent component (b) was obtained in the same manner as above.

[塗工液1]
下記材料を混合し塗工液1を得た。
低屈折率層構成成分(a) 7.1質量部
高屈折率層構成成分(A−25) 29質量部
2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン 0.36質量部
フッ素化合物B−1 7.6質量部
(HC=CH−COO−CH−(CFF 数平均分子量:518 )
2−プロパノール 57質量部
[塗工液2]
塗工液1に対し、高屈折率層構成成分(A−25)を 高屈折率層構成成分(A−15)に置き換えた以外は同様にして、塗工液2を得た。
[Coating fluid 1]
The following materials were mixed and the coating liquid 1 was obtained.
Low refractive index layer component (a) 7.1 parts by mass High refractive index layer component (A-25) 29 parts by mass 2-hydroxy-2-methyl-1-phenyl-propan-1-one 0.36 parts by mass 7.6 parts by mass of fluorine compound B-1 (H 2 C═CH—COO—CH 2 — (CF 2 ) 8 F number average molecular weight: 518)
2-Propanol 57 parts by mass [Coating fluid 2]
A coating liquid 2 was obtained in the same manner as in the coating liquid 1, except that the high refractive index layer constituent (A-25) was replaced with the high refractive index layer constituent (A-15).

[塗工液3]
塗工液1に対し、高屈折率層構成成分(A−25)を 高屈折率層構成成分(B−15)に置き換えた以外は同様にして、塗工液3を得た。
[Coating fluid 3]
A coating liquid 3 was obtained in the same manner as in the coating liquid 1, except that the high refractive index layer constituent component (A-25) was replaced with the high refractive index layer constituent component (B-15).

[塗工液4]
塗工液1に対し、高屈折率層構成成分(A−25)を 高屈折率層構成成分(C−15)に置き換えた以外は同様にして、塗工液4を得た。
[Coating fluid 4]
A coating liquid 4 was obtained in the same manner as in the coating liquid 1, except that the high refractive index layer constituent (A-25) was replaced with the high refractive index layer constituent (C-15).

[塗工液5]
塗工液1に対し、高屈折率層構成成分(A−25)を 高屈折率層構成成分(A−8)に置き換えた以外は同様にして、塗工液5を得た。
[Coating fluid 5]
A coating liquid 5 was obtained in the same manner as in the coating liquid 1, except that the high refractive index layer constituent component (A-25) was replaced with the high refractive index layer constituent component (A-8).

[塗工液6]
下記材料を混合し、塗工液6を得た。
低屈折率層構成成分(a) 7.1質量部
高屈折率層構成成分(A−15) 18質量部
2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン 0.22質量部
フッ素化合物B−1 4.8質量部
(HC=CH−COO−CH−(CFF 数平均分子量:518 )
2−プロパノール 70.3質量部
[塗工液7]
下記材料を混合し、塗工液7を得た。
低屈折率層構成成分(a) 7.1質量部
高屈折率層構成成分(A−15) 49.8質量部
2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン 0.63質量部
フッ素化合物B−1 13.1質量部
(HC=CH−COO−CH−(CFF 数平均分子量:518 )
2−プロパノール 3.00質量部
[塗工液8]
下記材料を混合し、塗工液8を得た。
低屈折率層構成成分(a) 7.1質量部
高屈折率層構成成分(A−15) 14質量部
2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン 0.18質量部
フッ素化合物B−1 3.8質量部
(HC=CH−COO−CH−(CFF 数平均分子量:518 )
2−プロパノール 7.5質量部
[塗工液9]
下記材料を混合し、塗工液9を得た。
低屈折率層構成成分(a) 7.1質量部
高屈折率層構成成分(A−15) 75質量部
2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン 0.95質量部
フッ素化合物B−1 13質量部
(HC=CH−COO−CH−(CFF 数平均分子量:518 )
2−プロパノール 5質量部
[塗工液10]
塗工液6に対し、高屈折率層構成成分(A−15)を 高屈折率層構成成分(A−40)に置き換えた以外は同様にして、塗工液10を得た。
[Coating fluid 6]
The following materials were mixed and the coating liquid 6 was obtained.
Low refractive index layer component (a) 7.1 parts by mass High refractive index layer component (A-15) 18 parts by mass 2-hydroxy-2-methyl-1-phenyl-propan-1-one 0.22 parts by mass 4.8 parts by mass of fluorine compound B-1 (H 2 C═CH—COO—CH 2 — (CF 2 ) 8 F number average molecular weight: 518)
2-Propanol 70.3 parts by mass [Coating fluid 7]
The following materials were mixed and the coating liquid 7 was obtained.
Low Refractive Index Layer Component (a) 7.1 parts by mass High Refractive Index Layer Component (A-15) 49.8 parts by mass 2-hydroxy-2-methyl-1-phenyl-propan-1-one 0.63 Parts by mass fluorine compound B-1 13.1 parts by mass (H 2 C═CH—COO—CH 2 — (CF 2 ) 8 F number average molecular weight: 518)
2-300 parts by mass of 2-propanol [Coating liquid 8]
The following materials were mixed and the coating liquid 8 was obtained.
Low refractive index layer component (a) 7.1 parts by mass High refractive index layer component (A-15) 14 parts by mass 2-hydroxy-2-methyl-1-phenyl-propan-1-one 0.18 parts by mass 3.8 parts by mass of fluorine compound B-1 (H 2 C═CH—COO—CH 2 — (CF 2 ) 8 F number average molecular weight: 518)
7.5 parts by mass of 2-propanol [Coating liquid 9]
The following materials were mixed and the coating liquid 9 was obtained.
Low refractive index layer constituent (a) 7.1 parts by mass High refractive index layer constituent (A-15) 75 parts by mass 2-hydroxy-2-methyl-1-phenyl-propan-1-one 0.95 parts by mass Fluorine compound B-1 13 parts by mass (H 2 C═CH—COO—CH 2 — (CF 2 ) 8 F number average molecular weight: 518)
2-propanol 5 parts by mass [Coating solution 10]
A coating liquid 10 was obtained in the same manner as in the coating liquid 6, except that the high refractive index layer constituent component (A-15) was replaced with the high refractive index layer constituent component (A-40).

[塗工液11]
塗工液6に対し、高屈折率層構成成分(A−15)を 高屈折率層構成成分(B−50)に置き換えた以外は同様にして、塗工液11を得た。
[Coating liquid 11]
A coating liquid 11 was obtained in the same manner as in the coating liquid 6, except that the high refractive index layer constituent (A-15) was replaced with the high refractive index layer constituent (B-50).

[塗工液12]
下記材料を混合し、塗工液12を得た。
低屈折率層構成成分(a) 7.1質量部
高屈折率層構成成分(B−8) 18質量部
2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン 0.22質量部
ヒドロキシルプロピルアクリレート 4.8質量部
2−プロパノール 70.3質量部
[塗工液13]
下記材料を混合し、塗工液13を得た。
低屈折率層構成成分(a) 7.1質量部
高屈折率層構成成分(B−8) 18質量部
2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン 0.22質量部
フッ素化合物B−2 4.8質量部
(メガファックF408 DIC株式会社)
2−プロパノール 70.3質量部
[塗工液14]
下記材料を混合し塗工液14を得た。
低屈折率層構成成分(a) 7.1質量部
高屈折率層構成成分(A−15) 29質量部
2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン 0.36質量部
フッ素化合物B−3 7.6質量部
(HC=CH−COO−CH−(CFF 数平均分子量:318 )
2−プロパノール 57質量部
[塗工液15]
下記材料を混合し塗工液15を得た。
低屈折率層構成成分(a) 7.1質量部
高屈折率層構成成分(A−15) 29質量部
2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン 0.36質量部
フッ素化合物B−4 7.6質量部
(CF(CFCHCHSi(OH)の7量体オリゴマー
数平均分子量:4000 )
2−プロパノール 57質量部
[塗工液16]
下記材料を混合し、塗工液16を得た。
低屈折率層構成成分(a) 7.1質量部
高屈折率層構成成分(B−8) 18質量部
2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン 0.22質量部
フッ素化合物B−5 4.8質量部
(HC=CH−COO−CH−CF 数平均分子量 150)
2−プロパノール 70.3質量部
[塗工液17]
下記材料を混合し、塗工液17を得た。
低屈折率層構成成分(a) 7.1質量部
高屈折率層構成成分(B−8) 18質量部
2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン 0.22質量部
フッ素化合物B−6 4.8質量部
(CF(CFCHCHSi(OH)の9量体オリゴマー
数平均分子量:4500 )
2−プロパノール 70.3質量部
[塗工液18]
下記材料を混合し、塗工液18を得た。
低屈折率層構成成分(a) 7.1質量部
高屈折率層構成成分(B−8) 18質量部
2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン 0.22質量部
フッ素化合物B−1 4.8質量部
(HC=CH−COO−CH−(CFF 数平均分子量:518 )
2−プロパノール 70.3質量部
[塗工液19]
下記材料を混合し塗工液19を得た。
低屈折率層構成成分(a) 7.1質量部
高屈折率層構成成分(x) 7.1質量部
2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン 0.10質量部
2−プロパノール 85.8質量部
[塗工液20]
下記材料を混合し塗工液20(低屈折率層塗工液)を得た。
低屈折率層構成成分(a) 7.1質量部
2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン 0.10質量部
多官能アクリレート 18質量部
(カヤラッドDPHA 日本化薬株式会社製:固形分100質量%)
2−プロパノール 65質量部
[塗工液21]
下記材料を混合し塗工液21(高屈折率層塗工液)を得た。
高屈折率層構成成分(A−25) 29質量部
2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン 0.36質量部
2−プロパノール 65質量部
[塗工液22]
塗工液1対し、高屈折率層構成成分(A−25)を 高屈折率層構成成分(A−70)に置き換えた以外は同様にして、塗工液22を得た。
[Coating fluid 12]
The following materials were mixed and the coating liquid 12 was obtained.
Low refractive index layer component (a) 7.1 parts by mass High refractive index layer component (B-8) 18 parts by mass 2-hydroxy-2-methyl-1-phenyl-propan-1-one 0.22 parts by mass Hydroxylpropyl acrylate 4.8 parts by mass 2-propanol 70.3 parts by mass [Coating liquid 13]
The following materials were mixed to obtain a coating liquid 13.
Low refractive index layer component (a) 7.1 parts by mass High refractive index layer component (B-8) 18 parts by mass 2-hydroxy-2-methyl-1-phenyl-propan-1-one 0.22 parts by mass 4.8 parts by mass of fluorine compound B-2 (Megafac F408 DIC Corporation)
70.3 parts by mass of 2-propanol [Coating liquid 14]
The following materials were mixed and the coating liquid 14 was obtained.
Low Refractive Index Layer Component (a) 7.1 parts by mass High Refractive Index Layer Component (A-15) 29 parts by mass 2-hydroxy-2-methyl-1-phenyl-propan-1-one 0.36 parts by mass 7.6 parts by mass of fluorine compound B-3 (H 2 C═CH—COO—CH 2 — (CF 2 ) 4 F number average molecular weight: 318)
2-Propanol 57 parts by mass [Coating fluid 15]
The following materials were mixed to obtain a coating solution 15.
Low Refractive Index Layer Component (a) 7.1 parts by mass High Refractive Index Layer Component (A-15) 29 parts by mass 2-hydroxy-2-methyl-1-phenyl-propan-1-one 0.36 parts by mass Fluorine compound B-4 7.6 parts by mass (CF 3 (CF 2 ) 7 CH 2 CH 2 Si (OH) 3 7-mer oligomer
Number average molecular weight: 4000)
2-Propanol 57 parts by mass [Coating fluid 16]
The following materials were mixed to obtain a coating liquid 16.
Low refractive index layer component (a) 7.1 parts by mass High refractive index layer component (B-8) 18 parts by mass 2-hydroxy-2-methyl-1-phenyl-propan-1-one 0.22 parts by mass 4.8 parts by mass of fluorine compound B-5 (H 2 C═CH—COO—CH 2 —CF 3 number average molecular weight 150)
2-Propanol 70.3 parts by mass [Coating fluid 17]
The following materials were mixed to obtain a coating liquid 17.
Low refractive index layer component (a) 7.1 parts by mass High refractive index layer component (B-8) 18 parts by mass 2-hydroxy-2-methyl-1-phenyl-propan-1-one 0.22 parts by mass 4.8 parts by mass of fluorine compound B-6 (CF 3 (CF 2 ) 7 CH 2 CH 2 Si (OH) 3 9-mer oligomer
Number average molecular weight: 4500)
2-Propanol 70.3 parts by mass [Coating fluid 18]
The following materials were mixed to obtain a coating liquid 18.
Low refractive index layer component (a) 7.1 parts by mass High refractive index layer component (B-8) 18 parts by mass 2-hydroxy-2-methyl-1-phenyl-propan-1-one 0.22 parts by mass 4.8 parts by mass of fluorine compound B-1 (H 2 C═CH—COO—CH 2 — (CF 2 ) 8 F number average molecular weight: 518)
70.3 parts by mass of 2-propanol [Coating liquid 19]
The following materials were mixed to obtain a coating liquid 19.
Low refractive index layer component (a) 7.1 parts by mass High refractive index layer component (x) 7.1 parts by mass 2-hydroxy-2-methyl-1-phenyl-propan-1-one 0.10 parts by mass 2-Propanol 85.8 parts by mass [Coating fluid 20]
The following materials were mixed to obtain a coating liquid 20 (low refractive index layer coating liquid).
Low Refractive Index Layer Constituent (a) 7.1 parts by mass 2-hydroxy-2-methyl-1-phenyl-propan-1-one 0.10 parts by mass polyfunctional acrylate 18 parts by mass (Kayarad DPHA Nippon Kayaku Co., Ltd. (Product: Solid content 100% by mass)
2-propanol 65 parts by mass [Coating fluid 21]
The following materials were mixed to obtain a coating liquid 21 (high refractive index layer coating liquid).
High refractive index layer component (A-25) 29 parts by mass 2-hydroxy-2-methyl-1-phenyl-propan-1-one 0.36 parts by mass 2-propanol 65 parts by mass [Coating liquid 22]
A coating liquid 22 was obtained in the same manner except that the high refractive index layer constituent (A-25) was replaced with the high refractive index layer constituent (A-70) for one coating liquid.

[塗工液23]
下記材料を混合し、塗工液23(ハードコート塗工液)を得た。
ペンタエリスリトールトリアクリレート(PETA) 30.0質量部
イルガキュア907(商品名、チバスペシャリティケミカルズ社製) 1.5質量部
メチルイソブチルケトン 73.5質量部
[塗工液24]
塗工液5に対し、低屈折率層構成成分(a)を低屈折率層構成成分(b)に置き換えた以外は同様にして、塗工液24を得た。
[Coating fluid 23]
The following materials were mixed to obtain a coating solution 23 (hard coat coating solution).
Pentaerythritol triacrylate (PETA) 30.0 parts by mass Irgacure 907 (trade name, manufactured by Ciba Specialty Chemicals) 1.5 parts by mass Methyl isobutyl ketone 73.5 parts by mass [Coating liquid 24]
A coating liquid 24 was obtained in the same manner as in the coating liquid 5, except that the low refractive index layer constituent component (a) was replaced with the low refractive index layer constituent component (b).

反射防止部材の作成方法
以下、反射防止部材の作成方法を示す。各サンプルの構成については、表1にまとめる。
Hereinafter, a method for producing an antireflection member will be described. The composition of each sample is summarized in Table 1.

[反射防止部材の作製1]
支持基材としてPET樹脂フィルム上に易接着性塗料が塗工されているU46(東レフィルム株式会社製)を用いた。この支持基材の易接着塗料が塗工されている面上に、塗工液をバーコーター(#10)を用いて塗工後、液膜厚み測定用のセンサーと膜面温測定用のセンサーを取り付けた乾燥装置にて、下記に示す第一段階の乾燥を行い、次いで第二段階の乾燥を行った。
第一段階
熱風温度 25℃
熱風風速 0.5m/s
風向 塗工面に対して平行
乾燥時間 2分間
第二段階
熱風温度 130℃
熱風風速 5m/s
風向 塗工面に対して垂直
乾燥時間 2分間
なお、熱風の風速は動静圧管による測定値を使用した。
[Preparation of antireflection member 1]
U46 (manufactured by Toray Film Co., Ltd.) in which an easy-adhesive paint was coated on a PET resin film was used as a support substrate. After applying the coating liquid onto the surface of the supporting substrate on which the easy-adhesive paint is applied using a bar coater (# 10), a liquid film thickness measurement sensor and a film surface temperature measurement sensor The first stage of drying shown below was performed using a drying apparatus equipped with a, and then the second stage of drying was performed.
1st stage Hot air temperature 25 ℃
Hot air speed 0.5m / s
Wind direction Parallel to coated surface Drying time 2 minutes 2nd stage Hot air temperature 130 ° C
Hot air wind speed 5m / s
Wind direction Vertical to coating surface Drying time 2 minutes
In addition, the measured value by a dynamic / static pressure tube was used for the wind velocity of hot air.

乾燥後、160W/cmの高圧水銀灯ランプ(アイグラフィックス(株)製)を用いて、照度600W/cm、積算光量800mJ/cmの紫外線を、酸素濃度0.1体積%の下で照射して硬化させた。 After drying, using a 160 W / cm high-pressure mercury lamp lamp (manufactured by Eye Graphics Co., Ltd.), irradiating ultraviolet rays with an illuminance of 600 W / cm 2 and an integrated light amount of 800 mJ / cm 2 under an oxygen concentration of 0.1% by volume. And cured.

塗工液1、10、11、12、13、17を用い、実施例1、12、13、14,15,19の反射防止部材を作成した。   Using the coating liquids 1, 10, 11, 12, 13, and 17, antireflection members of Examples 1, 12, 13, 14, 15, and 19 were prepared.

[反射防止部材の作製2]
前記反射防止部材の作成1に対し、第一段階の乾燥条件を下記条件に変えた以外は同様にして反射防止部材を作成した。
[Preparation of antireflection member 2]
An antireflective member was prepared in the same manner as in Preparation 1 of the antireflective member, except that the drying conditions at the first stage were changed to the following conditions.

熱風温度 35℃
熱風風速 1m/s
風向 塗工面に対して平行
乾燥時間 1。5分間
塗工液1、2、4、6、7、8、9、14、15、16、22、24を用い、実施例2、3、6,8,9、10,11,16,17,18、22、比較例4の反射防止部材を作成した。
Hot air temperature 35 ℃
Hot air speed 1m / s
Wind direction Parallel to coating surface Drying time 1.5 minutes Coating liquids 1, 2, 4, 6, 7, 8, 9, 14, 15, 16, 22, 24, Examples 2, 3, 6, 8, 9, 10, 11, 16, 17, 18, 22, and the antireflection member of Comparative Example 4 were prepared.

[反射防止部材の作製3]
前記反射防止部材の作成1に対し、第一段階の乾燥条件を下記条件に変えた以外は同様にして、反射防止部材を作成した。
[Preparation of antireflection member 3]
An antireflection member was prepared in the same manner as in Preparation 1 of the antireflection member, except that the drying conditions at the first stage were changed to the following conditions.

熱風温度 40℃
熱風風速 2m/s
風向 塗工面に対して平行
乾燥時間 1分間
ここでは、塗工液2、3を用い、実施例4,5の反射防止部材を作成した。
Hot air temperature 40 ℃
Hot air speed 2m / s
Wind direction Parallel to coated surface Drying time 1 minute Here, the coating liquids 2 and 3 were used to prepare the antireflection members of Examples 4 and 5.

[反射防止部材の作製4]
前記反射防止部材の作成1に対し、第一段階の乾燥条件を下記条件に変えた以外は同様にして、反射防止部材を作成した。
[Preparation of antireflection member 4]
An antireflection member was prepared in the same manner as in Preparation 1 of the antireflection member, except that the drying conditions at the first stage were changed to the following conditions.

熱風温度 60℃
熱風風速 2m/s
風向 塗工面に対して平行
乾燥時間 1分間
ここでは、塗工液5を用い、実施例7の反射防止部材を作成した。
Hot air temperature 60 ℃
Hot air speed 2m / s
Wind direction Parallel to coated surface Drying time 1 minute Here, the coating solution 5 was used to prepare the antireflection member of Example 7.

[反射防止部材の作製5]
前記反射防止部材の作成1に対し、第一段階の乾燥条件を下記条件に変えた以外は同様にして、反射防止部材を作成した。
[Preparation of antireflection member 5]
An antireflection member was prepared in the same manner as in Preparation 1 of the antireflection member, except that the drying conditions at the first stage were changed to the following conditions.

熱風温度 25℃
熱風風速 0.1m/s
風向 塗工面に対して平行
乾燥時間 3分間
ここでは、塗工液2を用い、実施例20の反射防止部材を作成した。
Hot air temperature 25 ℃
Hot air wind speed 0.1m / s
Wind direction Parallel to the coating surface Drying time 3 minutes Here, the coating solution 2 was used to prepare the antireflection member of Example 20.

[反射防止部材の作製6]
前記反射防止部材の作成1に対し、第一段階の乾燥条件を下記条件に変えた以外は同様にして、反射防止部材を作成した。
[Preparation of antireflection member 6]
An antireflection member was prepared in the same manner as in Preparation 1 of the antireflection member, except that the drying conditions at the first stage were changed to the following conditions.

熱風温度 70℃
熱風風速 5m/s
風向 塗工面に対して平行
乾燥時間 1分間
ここでは、塗工液18を用い、実施例21の反射防止部材を作成した。
Hot air temperature 70 ℃
Hot air wind speed 5m / s
Wind direction Parallel to the coated surface Drying time 1 minute Here, the antireflection member of Example 21 was prepared using the coating liquid 18.

[反射防止部材の作製7]
支持基材としてPET樹脂フィルム上に易接着性塗料が塗工されているU46(東レフィルム株式会社製)をもちいた。この支持基材の易接着塗料が塗工されている面上に、前記塗工液23(ハードコート塗工液)をバーコーター(#16)を用いて塗工後、下記に示す第一段階の乾燥を行い、次いで第二段階の乾燥を行った。
[Preparation of antireflection member 7]
U46 (manufactured by Toray Film Co., Ltd.) in which an easy-adhesive paint was coated on a PET resin film was used as a supporting substrate. The coating liquid 23 (hard coat coating liquid) is applied on the surface of the supporting substrate on which the easy-adhesive coating is applied using a bar coater (# 16), and then the first step shown below. And then the second stage of drying.

第一段階
熱風温度 70℃
熱風風速 2m/s
風向 塗工面に対して平行
乾燥時間 1.5分間
第二段階
熱風温度 130℃
熱風風速 5m/s
風向 塗工面に対して垂直
乾燥時間 1.5分間
乾燥後、160W/cmの高圧水銀灯ランプ(アイグラフィックス(株)製)を用いて、照度600W/cm、積算光量500mJ/cmの紫外線を、酸素濃度0.1体積%の下で照射して硬化させた。
1st stage Hot air temperature 70 ℃
Hot air speed 2m / s
Wind direction Parallel to the coating surface Drying time 1.5 minutes Second stage Hot air temperature 130 ° C
Hot air wind speed 5m / s
Wind direction Vertical to coated surface Drying time 1.5 minutes
After drying, using a 160 W / cm high-pressure mercury lamp lamp (manufactured by Eye Graphics Co., Ltd.), irradiating ultraviolet rays with an illuminance of 600 W / cm 2 and an integrated light amount of 500 mJ / cm 2 under an oxygen concentration of 0.1 vol%. And cured.

次いで、このハードコート塗工液が塗工、乾燥、硬化されている面上に、塗工液19をバーコーター(#10)を用いて塗工後、液膜厚み測定用のセンサーと膜面温測定用のセンサーを取り付けた乾燥装置にて、下記に示す第一段階の乾燥を行い、次いで第二段階の乾燥を行った。   Next, after coating the coating liquid 19 on the surface on which the hard coat coating liquid is coated, dried and cured using a bar coater (# 10), a sensor for measuring the thickness of the liquid film and the film surface In a drying apparatus equipped with a temperature measurement sensor, the first stage of drying shown below was performed, followed by the second stage of drying.

第一段階
熱風温度 35℃
熱風風速 1m/s
風向 塗工面に対して平行
乾燥時間 1.5分間
第二段階
熱風温度 130℃
熱風風速 5m/s
風向 塗工面に対して垂直
乾燥時間 2分間
乾燥後、160W/cmの高圧水銀灯ランプ(アイグラフィックス(株)製)を用いて、照度600W/cm、積算光量800mJ/cmの紫外線を、酸素濃度0.1体積%の下で照射して硬化させた。これにより比較例1の反射防止部材を作成した。
First stage Hot air temperature 35 ℃
Hot air speed 1m / s
Wind direction Parallel to the coating surface Drying time 1.5 minutes Second stage Hot air temperature 130 ° C
Hot air wind speed 5m / s
Wind direction Vertical to coating surface Drying time 2 minutes
After drying, using a 160 W / cm high-pressure mercury lamp lamp (manufactured by Eye Graphics Co., Ltd.), irradiating ultraviolet rays with an illuminance of 600 W / cm 2 and an integrated light amount of 800 mJ / cm 2 under an oxygen concentration of 0.1% by volume. And cured. Thereby, the antireflection member of Comparative Example 1 was prepared.

[反射防止部材の作製8]
支持基材としてPET樹脂フィルム上に易接着性塗料が塗工されているU46(東レフィルム株式会社製)をもちいた。この支持基材の易接着塗料が塗工されている面上に、塗工液21をバーコーター(#10)を用いて塗工後、液膜厚み測定用のセンサーと膜面温測定用のセンサーを取り付けた乾燥装置にて、下記条件で乾燥を行った。
[Preparation of antireflection member 8]
U46 (manufactured by Toray Film Co., Ltd.) in which an easy-adhesive paint was coated on a PET resin film was used as a supporting substrate. After coating the coating liquid 21 on the surface of the supporting substrate on which the easy-adhesive paint is coated using a bar coater (# 10), a liquid film thickness measuring sensor and a film surface temperature measuring sensor are used. Drying was performed under the following conditions in a drying apparatus equipped with a sensor.

第一段階
熱風温度 35℃
熱風風速 1m/s
風向 塗工面に対して平行
乾燥時間 1.5分間
第二段階
熱風温度 130℃
熱風風速 5m/s
風向 塗工面に対して垂直
乾燥時間 2分間
乾燥後、160W/cmの高圧水銀灯ランプ(アイグラフィックス(株)製)を用いて、照度600W/cm、積算光量800mJ/cmの紫外線を、酸素濃度0.1体積%の下で照射して硬化させた。
First stage Hot air temperature 35 ℃
Hot air speed 1m / s
Wind direction Parallel to the coating surface Drying time 1.5 minutes Second stage Hot air temperature 130 ° C
Hot air wind speed 5m / s
Wind direction Vertical to coating surface Drying time 2 minutes
After drying, using a 160 W / cm high-pressure mercury lamp lamp (manufactured by Eye Graphics Co., Ltd.), irradiating ultraviolet rays with an illuminance of 600 W / cm 2 and an integrated light amount of 800 mJ / cm 2 under an oxygen concentration of 0.1% by volume. And cured.

次いで、この塗工液21が塗工、乾燥、硬化されている面上に、塗工液20をバーコーター(#10)を用いて塗工後、同乾燥装置にて、下記条件で乾燥を行った。
第一段階
熱風温度 35℃
熱風風速 1m/s
風向 塗工面に対して平行
乾燥時間 1.5分間
第二段階
熱風温度 130℃
熱風風速 5m/s
風向 塗工面に対して垂直
乾燥時間 2分間
乾燥後、160W/cmの高圧水銀灯ランプ(アイグラフィックス(株)製)を用いて、照度600W/cm、積算光量800mJ/cmの紫外線を、酸素濃度0.1体積%の下で照射して硬化させた。これにより比較例2の反射防止部材を作成した。
Next, after coating the coating liquid 20 on the surface on which the coating liquid 21 is coated, dried and cured using a bar coater (# 10), the coating liquid is dried under the following conditions in the same drying apparatus. went.
First stage Hot air temperature 35 ℃
Hot air speed 1m / s
Wind direction Parallel to the coating surface Drying time 1.5 minutes Second stage Hot air temperature 130 ° C
Hot air wind speed 5m / s
Wind direction Vertical to coating surface Drying time 2 minutes
After drying, using a 160 W / cm high-pressure mercury lamp lamp (manufactured by Eye Graphics Co., Ltd.), irradiating ultraviolet rays with an illuminance of 600 W / cm 2 and an integrated light amount of 800 mJ / cm 2 under an oxygen concentration of 0.1% by volume. And cured. Thereby, the antireflection member of Comparative Example 2 was prepared.

[反射防止部材の作製9]
前記反射防止部材の作成1に対し、第一段階の乾燥条件を下記条件に変えた以外は同様にして、反射防止部材を作成した
熱風温度 100℃
熱風風速 10m/s
風向 塗工面に対して垂直
乾燥時間 1分間
塗工液1を用い、比較例3の反射防止部材を作成した。
[Preparation of antireflection member 9]
An antireflection member was prepared in the same manner as for the preparation 1 of the antireflection member, except that the drying conditions at the first stage were changed to the following conditions.
Hot air temperature 100 ℃
Hot wind speed 10m / s
Wind direction Perpendicular to coated surface Drying time: 1 minute Coating solution 1 was used to prepare an antireflection member of Comparative Example 3.

[反射防止部材作成過程におけるパラメーター計測方法]
反射防止部材作成過程でのパラメーターについて、表1中に示す。以下、計測方法について示す。
[Parameter measurement method in the process of making anti-reflective members]
Table 1 shows parameters in the process of creating the antireflection member. The measurement method will be described below.

[塗工液中の粒子の動的光散乱法による体積基準分布のメディアン値]
塗工液中の粒子の25℃における動的光散乱法による体積基準分布のメディアン値は、動的光散乱式粒径分布測定装置(株式会社堀場製作所製 LB550)を使用して測定した。測定において必要とする塗工液のパラメーターである溶媒屈折率は、アッベ屈折率計(株式会社アタゴ製 アッベ屈折計 NAR-3T)により、25℃における測定値を求めた。また、測定において必要とする塗工液のパラメーターである粒子屈折率は、JIS K7142「プラスチックの屈折率測定方法」のうち、B法(顕微鏡を用いる液浸法(ベッケ線法))による。但し、JIS K7142で使用される浸液に代えて、島津デバイス製造社製「接触液」を使用し、温度が15〜20℃の条件で測定した。顕微鏡は、偏光顕微鏡「オプチフォト」(ニコン製)を使用した。
これらの値を用いて測定回数1000回で測定を行った。測定結果の解析は、体積基準分布モードで計算を行い、体積基準分布のメディアン値を求めた。
[Median value of volume-based distribution of particles in coating solution by dynamic light scattering method]
The median value of the volume reference distribution by the dynamic light scattering method at 25 ° C. of the particles in the coating solution was measured using a dynamic light scattering type particle size distribution measuring device (LB550, manufactured by Horiba, Ltd.). The solvent refractive index, which is a parameter of the coating liquid required in the measurement, was measured at 25 ° C. using an Abbe refractometer (Abego Co., Ltd., Abbe Refractometer NAR-3T). In addition, the particle refractive index, which is a parameter of the coating liquid required for the measurement, is based on Method B (immersion method using a microscope (Becke's line method)) in JIS K7142 “Method for measuring refractive index of plastic”. However, instead of the immersion liquid used in JIS K7142, a “contact liquid” manufactured by Shimadzu Device Manufacturing Co., Ltd. was used, and the temperature was measured at 15 to 20 ° C. As a microscope, a polarizing microscope “Optiphoto” (manufactured by Nikon) was used.
Using these values, the measurement was performed at 1000 times. The analysis of the measurement results was performed in the volume-based distribution mode, and the median value of the volume-based distribution was obtained.

[数平均分子量]
本発明における数平均分子量は、テトラヒドロフランを溶媒にし、分子量既知の単分散ポリスチレンを標準物質として用い、ゲルパーミエーションクロマトグラフ(GC−2010 株式会社島津製作所)により測定して求めた。
[Number average molecular weight]
The number average molecular weight in the present invention was determined by measurement with a gel permeation chromatograph (GC-2010, Shimadzu Corporation) using tetrahydrofuran as a solvent and monodisperse polystyrene having a known molecular weight as a standard substance.

[塗工からの時間tにおける液膜厚み、液膜収縮速度の測定]
液膜厚みの測定は、株式会社キーエンス製 マイクロヘッド型分光干渉レーザー変位計SI−F1000を使用した。測定は、乾燥装置内に前記レーザー変位計を設置し、センサーヘッドと塗工液膜の距離を連続的に測定することにより乾燥過程における液膜厚みを求めた。データは1KHzの周期で収集し、ノイズ除去のための平滑化処理演算後、0.1秒毎の液膜厚み変化を出力しこれを液膜厚みとした。
さらに、液膜収縮速度は前記液膜厚みの各点に対し、前後0.5秒分の液膜厚みを含めて線形近似を行い、その傾きを、各点における液膜収縮速度とした。
[Measurement of liquid film thickness and liquid film shrinkage rate at time t after coating]
The liquid film thickness was measured using a micro head type spectral interference laser displacement meter SI-F1000 manufactured by Keyence Corporation. In the measurement, the laser displacement meter was installed in the drying apparatus, and the distance between the sensor head and the coating liquid film was continuously measured to obtain the liquid film thickness in the drying process. Data was collected at a frequency of 1 KHz, and after a smoothing calculation for noise removal, a change in the liquid film thickness was output every 0.1 seconds, which was defined as the liquid film thickness.
Further, the liquid film contraction speed was linearly approximated including the liquid film thickness for 0.5 seconds before and after each point of the liquid film thickness, and the inclination was defined as the liquid film contraction speed at each point.

[塗工液の固形分濃度、反射防止層の見かけ密度]
塗工液の固形分濃度xは、塗工液を約20gを精秤した値(x)と、これを80℃にて30分乾燥後、160W/cmの高圧水銀灯ランプ(アイグラフィックス(株)製)を用いて、照度600W/cm、積算光量800mJ/cmの紫外線を、酸素濃度0.1体積%の下で照射して硬化させて得られた固形物の質量(x)から、数式8に従って求めた。
[Solid content concentration of coating liquid, apparent density of antireflection layer]
The solid content concentration x 0 of the coating liquid is a value (x l ) obtained by precisely weighing about 20 g of the coating liquid, and after drying this at 80 ° C. for 30 minutes, a 160 W / cm high-pressure mercury lamp lamp (eye graphics) The mass of the solid matter obtained by irradiating and curing ultraviolet rays with an illuminance of 600 W / cm 2 and an integrated light amount of 800 mJ / cm 2 under an oxygen concentration of 0.1 vol% (x) From s ), it calculated | required according to Numerical formula 8.

Figure 2011065028
Figure 2011065028

反射防止層の見かけ密度は、上記の方法により乾燥、硬化させた固形物について、JIS K 0061(2001)に基づき、ゲーリュサック型ピクノメーターを用いて測定を行い、反射防止層の見かけ密度dsolidを求めた。 The apparent density of the antireflective layer is measured by using a Gerysac type pycnometer based on JIS K 0061 (2001) for the solid material dried and cured by the above method, and the apparent density d solid of the antireflective layer is measured. Asked.

[塗工液密度dliqの測定]
塗工液密度は、25℃の環境下にて密度比重計(京都電子工業株式会社製、DA―130N)を用いて測定し、塗工液の密度dliqを求めた。
[Measurement of coating liquid density d liq ]
The coating liquid density was measured using a density specific gravity meter (manufactured by Kyoto Electronics Co., Ltd., DA-130N) under an environment of 25 ° C., and the density d liq of the coating liquid was determined.

[膜面温度Tの測定]
膜面温度Tの測定は、Fluke社製非接触温度計を使用した。測定は、乾燥装置内に前記非接触温度計を設置し、膜面温度を連続的に測定した。データは0.1秒毎に測定した。なお、前述の液膜厚みの測定と膜面温度の測定は、両測定器をデータロガーに接続して同時にデータを収集することにより同期させた。
[Measurement of film surface temperature T]
The film surface temperature T was measured using a non-contact thermometer manufactured by Fluke. In the measurement, the non-contact thermometer was installed in the drying apparatus, and the film surface temperature was continuously measured. Data was measured every 0.1 seconds. The liquid film thickness measurement and the film surface temperature measurement described above were synchronized by connecting both measuring devices to a data logger and collecting data simultaneously.

[塗工からの時間tにおける液膜の粘度μの測定]
液膜の粘度は、前述のペクレ数を構成する各パラメーターの算出方法とペクレ数の変化挙動の項に記載の方法により求めた。
[Measurement of viscosity μ of liquid film at time t after coating]
The viscosity of the liquid film was determined by the method described in the section of the calculation method of each parameter constituting the Peclet number and the change behavior of the Peclet number.

この算出のため数式4に用いるパラメーターa、a、a、a、b、b、b、bは次の方法で測定した。測定装置にはティー・エイ・インスツルメント・ジャパン株式会社製レオメーターAR2000を使用し、測定用ジオメトリーには、直径40mm 角度2°のコーンアンドプレートを使用した。 For this calculation, parameters a 1 , a 2 , a 3 , a 4 , b 1 , b 2 , b 3 , and b 4 used in Equation 4 were measured by the following method. A rheometer AR2000 manufactured by TA Instruments Japan Co., Ltd. was used as the measuring device, and a cone and plate having a diameter of 40 mm and an angle of 2 ° was used as the measuring geometry.

測定は、溶媒添加量(2−プロパノール添加量)を変えることにより、固形分濃度を10、20、30、40%調整した塗工液を作り、これについて25℃、35℃、45℃、55℃にて、ステップ状にせん断速度を変化させた定常流測定で行った。具体的には、せん断速度100s−1で予備せん断後、せん断速度1000s−1から0.01s−1に向けて、一桁当たり対数間隔で3点のステップで、せん断粘度の測定を行った。この結果から、各代表組成、各温度、各濃度での0.1s−1の粘度を求め、固形分濃度に対してプロットし、その結果を数式9の三次曲線で近似し、さらに各温度での測定データに対して求めた数式9のA,B,C,Dについて、温度Tに対して直線近似することによりパラメーターa、a、a、a、b、b、b、bを求めた。この結果と乾燥過程の固形分濃度x、温度Tから、塗工からの時間tにおける液膜の粘度μを求めた。 The measurement is performed by changing the solvent addition amount (2-propanol addition amount) to make a coating solution with a solid content concentration adjusted by 10, 20, 30, 40%, and this is 25 ° C, 35 ° C, 45 ° C, 55 ° C. The measurement was performed at a steady flow with the shear rate changed stepwise at ° C. Specifically, after preliminary shearing at a shear rate of 100 s −1 , the shear viscosity was measured in steps of 3 points at a logarithmic interval per digit from the shear rate of 1000 s −1 to 0.01 s −1 . From this result, the viscosity of 0.1 s −1 at each representative composition, each temperature, and each concentration was obtained, plotted against the solid content concentration, and the result was approximated by a cubic curve of Formula 9, and further at each temperature. The parameters a 1 , a 2 , a 3 , a 4 , b 1 , b 2 , b are obtained by linearly approximating the temperature T for A, B, C, and D of Equation 9 obtained from the measured data of 3, was asked to b 4. From this result and the solid content concentration x in the drying process and the temperature T, the viscosity μ of the liquid film at time t after coating was determined.

Figure 2011065028
Figure 2011065028

Figure 2011065028
Figure 2011065028

[塗工からの時間tにおける固形分濃度x、液膜の粘度μ、ペクレ数が1より小さくなる時間、恒率乾燥期間の平均乾燥速度の測定]
前述の方法により求めた液膜厚みから、液膜厚みと時間の変化曲線を作成し、塗工から最初の変曲点が現れるまでの期間を恒率乾燥期間とした。
そして前述の液膜厚み変化の値から、前述の[ペクレ数を構成する各パラメーターの算出方法とペクレ数の変化挙動]の項に記載の方法により、塗工からの時間tにおける固形分濃度x、液膜の粘度μ、ペクレ数が1より小さくなる時間、恒率乾燥期間の平均乾燥速度を求めた。
[Measurement of solid content concentration x at coating time t, liquid film viscosity μ, time when Peclet number is less than 1 and average drying rate during constant rate drying period]
From the liquid film thickness obtained by the above-mentioned method, a change curve of the liquid film thickness and time was prepared, and the period from the coating until the first inflection point appeared was defined as the constant rate drying period.
From the value of the change in the thickness of the liquid film described above, the solid content concentration x at time t after coating is determined by the method described in the above section [Calculation method of each parameter constituting the Peclet number and change behavior of the Peclet number]. The viscosity μ of the liquid film, the time when the Peclet number is smaller than 1, and the average drying rate during the constant rate drying period were determined.

[反射防止部材の評価]
作製した反射防止部材について次に示す性能評価を実施し、得られた結果を表2、表3に示す。特に断りのない場合を除き、測定は各実施例・比較例において1つのサンプルについて場所を変えて3回測定を行い、その平均値を用いた。
[Evaluation of antireflection member]
The following performance evaluation was performed on the manufactured antireflection member, and the obtained results are shown in Tables 2 and 3. Unless otherwise specified, the measurement was performed three times by changing the location of one sample in each example and comparative example, and the average value was used.

[反射防止層の各層の厚み]
透過型電子顕微鏡(TEM)を用いて断面を観察することにより、支持基材上の2層の各層の厚みを測定した。各層の厚みは、以下の方法に従い測定した。TEMにより20万倍の倍率で撮影した画像から各層の厚みを読み取った。合計で10点の層厚みを測定して平均値とした。
[Thickness of each layer of the antireflection layer]
By observing the cross section using a transmission electron microscope (TEM), the thickness of each of the two layers on the support substrate was measured. The thickness of each layer was measured according to the following method. The thickness of each layer was read from an image taken with a TEM at a magnification of 200,000 times. A total of 10 layer thicknesses were measured and averaged.

[支持基材上の2層個々の屈折率]
本発明における支持基材上の2層個々の屈折率は、反射分光膜厚計(大塚電子製、商品名[FE−3000])により、300〜800nmの範囲での反射率を測定し、該装置付属のソフトウェア[FE−Analysis]を用い、大塚電子株式会社製[膜厚測定装置 総合カタログP6(非線形最小二乗法)]に記載の方法に従い、550nmにおける屈折率を求めた。
[Individual refractive indexes of two layers on a supporting substrate]
The refractive index of each of the two layers on the supporting substrate in the present invention is measured by a reflectance spectral film thickness meter (trade name [FE-3000], manufactured by Otsuka Electronics Co., Ltd.), and the reflectance in the range of 300 to 800 nm is measured. Using the software [FE-Analysis] attached to the apparatus, the refractive index at 550 nm was determined according to the method described in [Film thickness measuring apparatus general catalog P6 (nonlinear least squares method)] manufactured by Otsuka Electronics Co., Ltd.

屈折率の波長分散の近似式としてCauchyの分散式(式1)を用い最小二乗法(カーブフィッティング法)により、光学定数(C、C、C)を計算し、550nmにおける屈折率を測定した。 The optical constants (C 1 , C 2 , C 3 ) are calculated by the least square method (curve fitting method) using Cauchy's dispersion formula (Formula 1) as an approximate expression of the wavelength dispersion of the refractive index, and the refractive index at 550 nm is calculated. It was measured.

[2層の界面の形成状態]
透過型電子顕微鏡(TEM)を用いて断面を観察することにより、支持基材上の2層の界面の有無を判断した。界面の有無の判断は以下の方法に従い判断した。TEMにより20万倍の倍率で撮影した画像を、ソフトウェア(EasyAccsess)にて、ホワイトバランスを最明部と最暗部が8bitのトーンカーブに収まるように調整した。さらに2種類の粒子が明確に見分けられるようにコントラストを調節した。
このとき1つの層と他の層との界面に明確な境界を引くことができる場合を、明確な界面があるとみなした。
[Formation of interface between two layers]
By observing the cross section using a transmission electron microscope (TEM), the presence or absence of the two-layer interface on the support substrate was determined. The presence / absence of the interface was determined according to the following method. An image taken with a TEM at a magnification of 200,000 times was adjusted with software (Easy Access) so that the white balance was within the 8-bit tone curve in the brightest and darkest areas. Furthermore, the contrast was adjusted so that two types of particles could be clearly distinguished.
At this time, when a clear boundary could be drawn at the interface between one layer and the other layer, it was considered that there was a clear interface.

明確な境界を引くことができる場合 「○」
明確な境界を引くことができない場合 「×」
[耐擦傷性]
反射防止部材に250g/cm荷重となるスチールウール(#0000)を垂直にあて、1cmの長さを10往復した際に目視される傷の概算本数を記載し、下記のクラス分けを行い3点以上を合格とした。
When a clear boundary can be drawn
“×” when a clear boundary cannot be drawn
[Abrasion resistance]
Describe the approximate number of scratches that can be seen when steel wool (# 0000) with a load of 250 g / cm 2 is placed vertically on the anti-reflective member and make 10 reciprocations of the length of 1 cm. The score was passed.

5点: 0本
4点: 1本以上 5本未満
3点: 5本以上 10本未満
2点: 10本以上 20本未満
1点: 20本以上
[耐摩耗性]
本光製作所製消しゴム摩耗試験機の先端(先端部面積 1cm)に、白ネル〔興和(株)製〕を取り付け、500gの荷重をかけて反射防止部材上を5cm、5000回往復摩擦し、下記のクラス分けを行い3点以上を合格とした。
5 points: 0 4 points: 1 or more, less than 5
3 points: 5 or more, less than 10
2 points: 10 or more and less than 20
1 point: 20 or more [Abrasion resistance]
At the tip of the eraser abrasion tester manufactured by Honko Seisakusho (tip part area 1 cm 2 ), Shiranell (manufactured by Kowa Co., Ltd.) is attached, and a 500 g load is applied to the antireflection member 5 cm and rubbed back and forth 5000 times The following classification was made and 3 or more points were accepted.

5点: 以下の「1点」以外であり、傷なし
4点: 以下の「1点」以外であり、1〜10本の傷
3点: 以下の「1点」以外であり、11〜20本の傷
2点: 以下の「1点」以外であり、21本以上の傷
1点: 試験部分の反射防止層が全面剥離
[透明性]
透明性はヘイズ値を測定することにより判定した。測定はJIS K 7136(2000)に基づき、日本電色工業(株)製 ヘイズメーターを用いて、反射防止部材サンプルの支持基材とは反対側(反射防止層側)から光を透過するように装置に置いて測定を行い、ヘイズ値が2%未満を合格とした。
5 points: other than the following “1 point”, no scratch 4 points: other than the following “1 point”, 1-10 scratches
3 points: Other than “1 point” below, 11 to 20 scratches
2 points: Other than “1 point” below, 21 or more scratches
1 point: Anti-reflective layer in the test part peels off [transparency]
Transparency was determined by measuring the haze value. The measurement is based on JIS K 7136 (2000), using a Nippon Denshoku Industries Co., Ltd. haze meter so that light is transmitted from the side opposite to the support base of the antireflection member sample (antireflection layer side). The measurement was performed by placing it on the apparatus, and a haze value of less than 2% was regarded as acceptable.

[反射防止性能]
反射防止性能の評価は島津製作所製分光光度計UV−3100を用いて400nmから800nmの波長範囲にて行い、最低反射率(ボトム反射率)を測定し、0.8%未満を合格とした。
[Antireflection performance]
The antireflection performance was evaluated using a spectrophotometer UV-3100 manufactured by Shimadzu Corporation in the wavelength range of 400 nm to 800 nm, the minimum reflectance (bottom reflectance) was measured, and less than 0.8% was accepted.

[面内均一性の評価]
各々5枚のフィルム表面をフィルムの全幅方向に目視で観察し、面内均一性を下記5段階の評価基準でムラを見ることにより評価し、3点以上を合格とした。
[Evaluation of in-plane uniformity]
Each of the five film surfaces was visually observed in the full width direction of the film, and the in-plane uniformity was evaluated by looking at unevenness according to the following five-stage evaluation criteria, and three or more points were accepted.

5点:全サンプルにムラが全く認められない
4点:一部サンプルにわずかにムラが認められる
3点:全サンプルにわずかにムラが認められる
2点:全サンプルにムラが認められ、一部サンプルに強いムラがある
1点:全サンプルに強いムラが認められる
[経済性]
支持基材上への塗工回数、1回の塗布に要する総乾燥時間、支持基材上への総塗工厚みの3つの観点から下記の基準に基づいて評価を行い、(総塗工厚みの評点+総乾燥時間の評点)×(塗工回数の評点)を求め、この値が6点以上を合格とした。
5 points: no unevenness is observed in all samples 4 points: slight unevenness is observed in some samples 3 points: slight unevenness is observed in all samples
2 points: Unevenness is observed in all samples, and strong unevenness is present in some samples 1 point: Strong unevenness is observed in all samples [Economic]
The total number of coatings on the supporting substrate, the total drying time required for one application, and the total coating thickness on the supporting substrate are evaluated based on the following criteria: (Score of total drying time) x (score of the number of coating times) was determined, and this value was 6 or more.

総塗工厚み:1000nm以下 3点
3000nm以下 2点
それ以上 1点
総乾燥時間:3分以下 3点
4分以下 2点
それ以上 1点
塗工回数: 支持基材上への総塗工回数が2回 1点
支持基材上への総塗工回数が1回 2点
表3に反射防止部材の評価結果をまとめた。評価項目において1項目でも合格とならないものについて、課題未達成と判断した。
Total coating thickness: 1000 nm or less 3 points
3000nm or less 2 points
1 point or more Total drying time: 3 minutes or less 3 points
Less than 4 minutes 2 points
More than that 1 point Number of times of coating: Total number of times of coating on the support substrate is 2 times 1 point
The total number of coatings on the supporting substrate is 1 time 2 points Table 3 summarizes the evaluation results of the antireflection member. Regarding evaluation items that did not pass even one item, it was judged that the problem was not achieved.

表3に示すように、耐擦傷性、耐摩耗性、透明性、反射防止性能、面内均一性、経済性のいずれにおいても、実施例は合格しており、第一課題である「支持基材上に可能な限り少ない塗工回数で面内に均一な反射防止層が形成可能な製造方法を提供すること」と、第二課題である「支持基材上に可能な限り少ない塗工回数で、耐擦傷性、耐摩耗性、低反射率を有する反射防止部材の製造方法を提供すること」の両方を達成している。   As shown in Table 3, in all of the scratch resistance, abrasion resistance, transparency, antireflection performance, in-plane uniformity, and economic efficiency, the examples have passed, and the first problem is “support base” To provide a production method capable of forming a uniform antireflection layer on the surface with the smallest possible number of coatings on the material, ”and the second issue,“ The smallest possible number of coatings on the support substrate And providing a method for producing an antireflection member having scratch resistance, abrasion resistance, and low reflectance ”.

該反射防止部材の高屈折率層の厚みが、本発明の好ましい範囲より薄い実施例10の反射防止部材の製造方法では、耐擦傷性がやや劣っていたが、許容できる範囲であった。   In the method for producing an antireflection member of Example 10 in which the thickness of the high refractive index layer of the antireflection member was thinner than the preferred range of the present invention, the scratch resistance was slightly inferior, but was in an acceptable range.

該反射防止部材の高屈折率層の厚みが、本発明の好ましい範囲より厚い実施例11の反射防止部材の製造方法では、面内均一性と経済性がやや劣っていたが、許容できる範囲であった。   In the antireflection member manufacturing method of Example 11, where the thickness of the high refractive index layer of the antireflection member is thicker than the preferred range of the present invention, in-plane uniformity and economy were slightly inferior, but within an acceptable range. there were.

該塗工液の動的光散乱法による粒子の体積基準分布のメディアン値が、本発明の好ましい範囲より大きい実施例13の反射防止部材の製造方法では、反射防止性能と面内均一性がやや劣っていたが、許容できる範囲であった。   In the production method of the antireflection member of Example 13 in which the median value of the volume-based distribution of particles by the dynamic light scattering method of the coating liquid is larger than the preferred range of the present invention, the antireflection performance and in-plane uniformity are slightly higher. Although it was inferior, it was an acceptable range.

該塗工液に本発明の好ましい様態であるフルオロアルキル基を有さない化合物、および反応性部位を有さない化合物を含有する、実施例14、15の反射防止部材の製造方法では、透明性、反射防止性能がやや劣っていたが、許容できる範囲であった。   In the method for producing an antireflection member of Examples 14 and 15, wherein the coating solution contains a compound having no fluoroalkyl group and a compound having no reactive site, which is a preferred embodiment of the present invention, The antireflection performance was slightly inferior, but was in an acceptable range.

該塗工液に本発明の好ましい様態であるフルオロアルキル基と反応性部位を有するが数平均分子量が小さい化合物、フルオロアルキル基と反応性部位を有するが数平均分子量が大きい化合物を含有する、実施例18、19の反射防止部材の製造方法では、透明性、反射防止性能がやや劣っていたが、許容できる範囲であった。   The coating liquid contains a compound having a fluoroalkyl group and a reactive site but having a small number average molecular weight, a compound having a fluoroalkyl group and a reactive site but having a large number average molecular weight, which is a preferred embodiment of the present invention. In the methods for producing the antireflection members of Examples 18 and 19, the transparency and antireflection performance were somewhat inferior, but were within an acceptable range.

恒率乾燥期間の平均乾燥速度が本発明の好ましい様態である、1.0g/m・sを超える実施例21の反射防止部材の製造方法では、透明性、反射防止性能がやや劣っていたが、許容できる範囲であった。 In the production method of the antireflection member of Example 21 in which the average drying rate during the constant rate drying period is a preferable aspect of the present invention and exceeds 1.0 g / m 2 · s, the transparency and the antireflection performance were slightly inferior. However, it was an acceptable range.

恒率乾燥期間の平均乾燥速度が本発明の好ましい様態である、0.1g/m・sを下回る実施例20の反射防止部材の製造方法では、面内均一性がやや劣っていたが、許容できる範囲であった。 In the method for producing an antireflective member of Example 20 in which the average drying rate during the constant rate drying period is less than 0.1 g / m 2 · s, which is a preferable aspect of the present invention, the in-plane uniformity is slightly inferior, It was an acceptable range.

Figure 2011065028
Figure 2011065028

Figure 2011065028
Figure 2011065028

Figure 2011065028
Figure 2011065028

1 反射防止部材
2 支持基材
3 高屈折率層
4 低屈折率層
5 高屈折率ハードコート層
6、12、13、14、21 液膜厚み変化曲線
7、15、16、17、22、23 ペクレ数変化曲線
8 恒率乾燥期間
9 減率乾燥期間
10 臨界乾燥点
11、18、19、20、24、25 ペクレ数が1よりも小さくなる時間
DESCRIPTION OF SYMBOLS 1 Antireflection member 2 Support base material 3 High refractive index layer 4 Low refractive index layer 5 High refractive index hard coat layer 6, 12, 13, 14, 21 Liquid film thickness change curve 7, 15, 16, 17, 22, 23 Peclet number change curve 8 Constant rate drying period 9 Decrease rate drying period 10 Critical drying point 11, 18, 19, 20, 24, 25 Time when the Peclet number becomes less than 1

Claims (7)

支持基材の少なくとも片面に、屈折率の異なる2層からなる反射防止層を有する反射防止部材の製造方法であって、
該支持基材の少なくとも片面に、塗工液を1回塗工して、1層の液膜を形成する工程、該液膜を乾燥する工程をこの順に有し、
該液膜を乾燥する工程の恒率乾燥期間において、ペクレ数が1よりも小さくなる時間を7秒以上設けることを特徴とする、反射防止部材の製造方法。
A method for producing an antireflection member having an antireflection layer composed of two layers having different refractive indexes on at least one surface of a support substrate,
On at least one side of the supporting substrate, the coating liquid is applied once to form a single layer liquid film, and the liquid film is dried in this order,
A method for producing an antireflective member, characterized in that, in the constant rate drying period of the step of drying the liquid film, a time during which the Peclet number is smaller than 1 is provided for 7 seconds or more.
該塗工液が、少なくとも2種類以上の粒子と、少なくとも1種類以上のバインダー成分とを含み、
該2種類以上の粒子のうち少なくとも1種類の粒子が、フッ素化合物Aにより表面処理された粒子である(以後、フッ素化合物Aにより表面処理された粒子を、フッ素処理粒子とよぶ)ことを特徴とする、請求項1に記載の反射防止部材の製造方法。
The coating liquid contains at least two kinds of particles and at least one kind of binder component,
At least one of the two or more types of particles is a particle that has been surface-treated with a fluorine compound A (hereinafter, the particles that have been surface-treated with a fluorine compound A are referred to as fluorine-treated particles). The manufacturing method of the reflection preventing member of Claim 1.
該反射防止層側の最表層から2層目の層の厚みが、500nm以上、2000nm以下であることを特徴とする、請求項1または2に記載の反射防止部材の製造方法。   The method for producing an antireflection member according to claim 1 or 2, wherein the thickness of the second layer from the outermost layer on the antireflection layer side is 500 nm or more and 2000 nm or less. 該塗工液中での少なくとも1種類の粒子の25℃における動的光散乱法による体積基準分布のメディアン値が、50nm以下であることを特徴とする請求項2または3のいずれかに記載の反射防止部材の製造方法。   4. The median value of volume reference distribution by dynamic light scattering method at 25 ° C. of at least one kind of particles in the coating liquid is 50 nm or less, according to claim 2 or 3. Manufacturing method of antireflection member. 該塗工液が、フルオロアルキル基および反応性部位を有し、数平均分子量が300以上4000以下のフッ素化合物Bを含むことを特徴とする請求項1から4のいずれかに記載の反射防止部材の製造方法。   The antireflection member according to any one of claims 1 to 4, wherein the coating liquid contains a fluorine compound B having a fluoroalkyl group and a reactive site and having a number average molecular weight of 300 to 4000. Manufacturing method. 前記フッ素化合物Bが、下記一般式(A)のモノマー、一般式(B)のモノマー、一般式(A)のモノマーに由来するオリゴマー、及び一般式(B)のモノマーに由来するオリゴマーからなる群より選ばれる少なくとも1つの化合物であることを特徴とする請求項5に記載の反射防止部材の製造方法。
C=C(R)−COO−R−Rf1 ・・・一般式(A)
A−R−Rf1 ・・・一般式(B)
(式中、Rは水素原子またはメチル基、Rf1は炭素数4〜7の直鎖状または分岐状のフルオロアルキル基、R、Rは、炭素数1〜10のアルキル基、Aは反応性二重結合基である。)
The fluorine compound B is composed of a monomer represented by the following general formula (A), a monomer represented by the general formula (B), an oligomer derived from the monomer represented by the general formula (A), and an oligomer derived from the monomer represented by the general formula (B). The method for producing an antireflection member according to claim 5, wherein the method is at least one compound selected from the group consisting of:
H 2 C = C (R 1 ) -COO-R 2 -R f1 ··· formula (A)
AR 3 -R f1 ... General formula (B)
(Wherein R 1 is a hydrogen atom or a methyl group, R f1 is a linear or branched fluoroalkyl group having 4 to 7 carbon atoms, R 2 and R 3 are alkyl groups having 1 to 10 carbon atoms, A Is a reactive double bond group.)
該乾燥する工程の恒率乾燥期間の乾燥速度を 0.1g/(m.s)以上1.4g/(m.s)以下にすることを特徴とする請求項1〜6のいずれかに記載の反射防止部材の製造方法。 The drying rate during the constant rate drying period of the drying step is set to 0.1 g / (m 2 .s) or more and 1.4 g / (m 2 .s) or less. The manufacturing method of the reflection preventing member as described in any one of.
JP2009217095A 2009-09-18 2009-09-18 Method for manufacturing antireflection member Pending JP2011065028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009217095A JP2011065028A (en) 2009-09-18 2009-09-18 Method for manufacturing antireflection member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009217095A JP2011065028A (en) 2009-09-18 2009-09-18 Method for manufacturing antireflection member

Publications (1)

Publication Number Publication Date
JP2011065028A true JP2011065028A (en) 2011-03-31

Family

ID=43951312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009217095A Pending JP2011065028A (en) 2009-09-18 2009-09-18 Method for manufacturing antireflection member

Country Status (1)

Country Link
JP (1) JP2011065028A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004720A (en) * 2013-06-19 2015-01-08 コニカミノルタ株式会社 Method for manufacturing organic photoreceptor
US9482789B2 (en) 2011-08-26 2016-11-01 Lg Chem, Ltd. Anti-reflective coating film
EP3805694A4 (en) * 2018-05-31 2022-03-02 Toray Industries, Inc. Liquid film thickness measurement method, measurement device, film production method
JP2022135211A (en) * 2021-03-04 2022-09-15 株式会社豊田中央研究所 Material measuring apparatus, material measurement method, electrode manufacturing device, and electrode manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9482789B2 (en) 2011-08-26 2016-11-01 Lg Chem, Ltd. Anti-reflective coating film
JP2015004720A (en) * 2013-06-19 2015-01-08 コニカミノルタ株式会社 Method for manufacturing organic photoreceptor
US9201320B2 (en) 2013-06-19 2015-12-01 Konica Minolta, Inc. Production process of organic photoreceptor
EP3805694A4 (en) * 2018-05-31 2022-03-02 Toray Industries, Inc. Liquid film thickness measurement method, measurement device, film production method
US11493327B2 (en) 2018-05-31 2022-11-08 Toray Industries, Inc. Liquid layer thickness measurement method, measurement device, film production method
JP2022135211A (en) * 2021-03-04 2022-09-15 株式会社豊田中央研究所 Material measuring apparatus, material measurement method, electrode manufacturing device, and electrode manufacturing method

Similar Documents

Publication Publication Date Title
JP6061444B2 (en) Antireflection member and method for manufacturing the same
JP6217818B2 (en) MOLDING MATERIAL, COATING COMPOSITION, AND METHOD FOR PRODUCING MOLDING MATERIAL
JP2013519915A (en) Coating layer for antiglare film and antiglare film containing the same
JP2012008158A (en) Method for manufacturing reflection prevention member
JP2013232012A (en) Anti-reflection film and manufacturing method thereof
JP2009058954A (en) Method for producing antireflection film and image display device
JP2011065028A (en) Method for manufacturing antireflection member
JP2003294904A (en) Antireflection layer and antireflection material
JP2011133867A (en) Antireflection member, manufacturing method therefor, and paint composition
JP5703619B2 (en) Coating composition and method for producing antireflection member using the same
JP2009075576A (en) Method for producing antireflection film, image display device and coating composition
JP2009160755A (en) Transparently coated base material
JP5463933B2 (en) Coating composition, method for producing antireflection film, and image display device
JP6003550B2 (en) Molding material and method for producing molding material
JP5757114B2 (en) Laminated body and antireflection member
JP2010122267A (en) Hard coat film, antireflection hard coat film, optical element, and image display
JP2013081913A (en) Method of manufacturing laminate
JP6686884B2 (en) Laminate
JP2018075783A (en) Laminate
JP2011184498A (en) Coating composition, and method for producing antireflective member using the same
JP2012083723A (en) Antireflection member
JP2013072065A (en) Polymer-modified inorganic particles, coating composition containing polymer-modified inorganic particles, and method for manufacturing polymer-modified inorganic particles
JP5659502B2 (en) Coating composition, method for producing antireflection member using the same, and image display device
JP2012185413A (en) Coating composition and method of manufacturing antireflection member using the same
JP5724242B2 (en) Coating composition and method for producing antireflection member using the same