JP2011064182A - Control method for engine drive type air compressor and engine drive type air compressor - Google Patents

Control method for engine drive type air compressor and engine drive type air compressor Download PDF

Info

Publication number
JP2011064182A
JP2011064182A JP2009217933A JP2009217933A JP2011064182A JP 2011064182 A JP2011064182 A JP 2011064182A JP 2009217933 A JP2009217933 A JP 2009217933A JP 2009217933 A JP2009217933 A JP 2009217933A JP 2011064182 A JP2011064182 A JP 2011064182A
Authority
JP
Japan
Prior art keywords
pressure
valve
flow path
discharge
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009217933A
Other languages
Japanese (ja)
Other versions
JP5312272B2 (en
Inventor
Yasunori Ono
靖典 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Industries Co Ltd
Original Assignee
Hokuetsu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Industries Co Ltd filed Critical Hokuetsu Industries Co Ltd
Priority to JP2009217933A priority Critical patent/JP5312272B2/en
Publication of JP2011064182A publication Critical patent/JP2011064182A/en
Application granted granted Critical
Publication of JP5312272B2 publication Critical patent/JP5312272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method for an air compressor capable of making rotation speed of an engine maintain at designated low-speed rotation at a designated throttled position (including a blocking position) of a suction valve even if discharge side pressure of a compressor body is purged during unloading operation. <P>SOLUTION: In the control method for an engine drive type air compressor, an end of a control flow passage 23 is communicated with a primary side (discharge flow passage 21) of a check valve 6 arranged on the flow passage extending from the compressor body to a consumption side, the other end of the control flow passage is branched one of the branched other end of the control flow passage is communicated with a valve-closing pressure-receiving chamber of the suction valve 31, and the other of the branched other end is communicated with a work pressure chamber of a speed regulator 41. The suction valve 31 is set to a blocking position when pressure in a discharge flow passage increases at designated unloading-starting pressure or above, and an unloading operation for setting the rotation speed of the engine at designated low-speed rotation starts. Consequently, a purge valve 11 communicated with the discharge flow passage is opened, the compressed air in the discharge flow passage is discharged (purged) through a pressure-retaining flow passage 24 and a discharge flow passage 25, and the compressed air is introduced to the valve-closing pressure-receiving chamber of the suction valve and the work pressure chamber of the speed regulator 41 through control flow passages 23a, 23b. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は,エンジン駆動型空気圧縮機の制御方法及び前記制御方法が実現されるエンジン駆動型空気圧縮機に関し,より詳細には,無負荷運転時に圧縮機本体の吐出側圧力を放気して運転負荷を軽減するパージ機構を備えたエンジン駆動型空気圧縮機の制御方法及び前記制御方法が実現されるエンジン駆動型空気圧縮機に関する。   The present invention relates to a control method for an engine-driven air compressor and an engine-driven air compressor in which the control method is realized, and more specifically, discharges the discharge side pressure of the compressor body during no-load operation. The present invention relates to a control method for an engine-driven air compressor provided with a purge mechanism for reducing an operation load, and an engine-driven air compressor in which the control method is realized.

消費側における圧縮空気の消費量の変化に応じて必要量の圧縮空気を発生させて消費側に安定した圧力の圧縮空気を供給できるようにするために,容量制御装置と速度制御装置を備えたエンジン駆動型の空気圧縮機が提案されており,消費側における圧縮空気の消費量が減少ないしは停止する等して圧縮機本体の吐出側圧力が設定された圧力以上に上昇すると,前述の容量制御装置が圧縮機本体の吸入口に設けた吸入弁を絞り乃至は閉塞位置と成すと共に,速度制御装置がエンジンの回転速度を低下させて低速運転に移行するアンロード(無負荷)運転を行うと共に,消費側における圧縮空気の消費量が再開乃至は増加する等して圧縮機本体の吐出側圧力が設定された圧力未満に低下すると,容量制御装置が圧縮機本体の吸気口を全開位置と成すと共に,速度制御装置がエンジンの回転速度を前記低速運転に対して増加させた高速運転に移行するフルロード(全負荷)運転に移行する制御が行われており,上記制御によって圧縮機本体の二次側圧力を前記設定圧力に近付けるように制御して,前述の設定圧力で略一定した圧力の圧縮空気が消費側に供給できるように構成されている。   A capacity control device and a speed control device are provided in order to generate a required amount of compressed air according to changes in the consumption amount of compressed air on the consumption side and to supply compressed air with a stable pressure to the consumption side. An engine-driven air compressor has been proposed, and when the discharge side pressure of the compressor body rises above a set pressure due to reduction or stoppage of compressed air consumption on the consumption side, the capacity control described above is performed. The device forms a throttle or closed position on the suction valve provided at the suction port of the compressor body, and the speed control device performs unloading (no-load) operation that lowers the rotational speed of the engine and shifts to low-speed operation. When the discharge side pressure of the compressor main body falls below the set pressure due to the restart or increase of the consumption of compressed air on the consumption side, the capacity control device opens the compressor main body to the fully open position. At the same time, the speed control device performs control to shift to full load operation (full load) in which the engine speed is increased compared to the low speed operation. By controlling the secondary side pressure to approach the set pressure, compressed air having a pressure substantially constant at the set pressure described above can be supplied to the consumer side.

このような容量制御装置と速度制御装置を備えたエンジン駆動型の空気圧縮機100の一例として,図6に示すようにエンジン103によって駆動される圧縮機本体102の吐出口にレシーバタンク104を連通し,このレシーバタンク104内の圧力に応じて作動するベロフラム型レギュレータ132を設け,このベロフラム型レギュレータ132の動作と連動して吸入空気量を制御するバタフライ弁131を圧縮機本体102の吸入口に設けて前述の容量制御装置を構成すると共に,前記レシーバタンク104内の圧力に応じて動作するダイヤフラム型のレギュレータ141を設けて前述の速度制御装置を構成し,このダイヤフラム型レギュレータ141の動作に連動してエンジン103の調速装置(ガバナ)103aで回転速度を増減できるように構成したエンジン駆動型の空気圧縮機が提案されている(特許文献1の第1図参照)。   As an example of an engine-driven air compressor 100 having such a capacity control device and a speed control device, a receiver tank 104 is communicated with a discharge port of a compressor body 102 driven by an engine 103 as shown in FIG. In addition, a bellowram type regulator 132 that operates according to the pressure in the receiver tank 104 is provided, and a butterfly valve 131 that controls the amount of intake air in conjunction with the operation of the bellophram type regulator 132 is provided at the suction port of the compressor body 102. The above-described capacity control device is provided, and a diaphragm type regulator 141 that operates in accordance with the pressure in the receiver tank 104 is provided to constitute the speed control device described above, which is linked to the operation of the diaphragm type regulator 141. And increase or decrease the rotational speed with the governor 103a of the engine 103 Configured engine-driven air compressor has been proposed to cut (see FIG. 1 of Patent Document 1).

以上のように容量制御装置と速度制御装置とを備えたエンジン駆動型の空気圧縮機では,フルロード運転時における燃料消費量に対し,アンロード運転時における燃料消費量を約1/3程度に抑えることができ,そのため,容量制御装置や速度制御装置を備えていないエンジン駆動型の空気圧縮機に比較して消費燃料を低減することができるものとなっている。   As described above, in an engine-driven air compressor equipped with a capacity control device and a speed control device, the fuel consumption during unload operation is reduced to about 1/3 of the fuel consumption during full load operation. Therefore, fuel consumption can be reduced as compared with an engine-driven air compressor that does not include a capacity control device or a speed control device.

しかし,前述のアンロード運転は,消費側における圧縮空気の消費再開乃至は消費量の増加に備えた待機運転の状態であり,消費側に対して供給される圧縮空気の発生に貢献しない運転状態であることから,前述のアンロード運転時における圧縮機本体の動力(エンジンに対する負荷)を軽減してさらに燃費の向上を図ることが要望されている。   However, the aforementioned unload operation is a standby operation state in preparation for resumption of compressed air consumption or an increase in consumption on the consumption side, and an operation state that does not contribute to the generation of compressed air supplied to the consumption side. Therefore, it is desired to further improve the fuel consumption by reducing the power (load on the engine) of the compressor body during the aforementioned unload operation.

このようなエンジン駆動型の空気圧縮機ではないが,アンロード運転時,圧縮機の動力を軽減するために圧縮機本体の吐出側(レシーバタンク内)の圧縮空気を大気へ放気(パージ)するパージ機構を備えた空気圧縮機も提案されている。   Although it is not such an engine-driven air compressor, during unloading operation, the compressed air on the discharge side (inside the receiver tank) of the compressor body is vented (purged) to reduce the compressor power. An air compressor provided with a purge mechanism has also been proposed.

このようなパージ機構を備えた空気圧縮機の一例(但し,前述の速度制御装置に相当する構成は備えていない)として,図7に示すように圧縮機本体202の吸入口に負圧検知用の圧力スイッチVSを,レシーバタンク204側には内圧低下検知用の圧力スイッチPSを設け,レシーバタンク204とオートレリーフバルブ211間を,三方電磁弁SVを介してパイロット流路216,216’で接続すると共に,圧縮機の停止信号,前記圧力スイッチVS及びPSからの信号に基づき前記三方電磁弁SVを切り換えてオートレリーフバルブ211を開閉するように構成し,圧縮機の停止時は停止信号により,また,前記圧力スイッチVSの負圧検知信号により前記三方電磁弁SVをオートレリーフバルブ211が開く側に切り換え,一方前記圧力スイッチPSの内圧低下検知時は該信号により前記三方電磁弁SVをオートレリーフバルブ211が閉じる側に切り換えるように構成した空気圧縮機の制御装置が提案されている(特許文献1の図4参照)。   As an example of an air compressor equipped with such a purge mechanism (however, a configuration corresponding to the above-described speed control device is not provided), as shown in FIG. Pressure switch VS, and a pressure switch PS for detecting a decrease in internal pressure is provided on the receiver tank 204 side, and the receiver tank 204 and the auto relief valve 211 are connected by pilot flow paths 216 and 216 ′ via a three-way solenoid valve SV. At the same time, the auto relief valve 211 is opened and closed by switching the three-way solenoid valve SV based on the compressor stop signal and the signals from the pressure switches VS and PS. When the compressor is stopped, Further, the three-way solenoid valve SV is switched to the side where the auto relief valve 211 is opened by the negative pressure detection signal of the pressure switch VS, A control device for an air compressor configured to switch the three-way solenoid valve SV to the side where the auto relief valve 211 is closed by the signal when the internal pressure drop of the pressure switch PS is detected has been proposed (see FIG. 4 of Patent Document 1). ).

実公平6−23755号公報Japanese Utility Model Publication No. 6-23755 実公平5−17435号公報Japanese Utility Model Publication No. 5-17435

以上のように構成された従来技術中,図6を参照して説明した特許文献1に記載の発明にあっては,レシーバタンク104内の圧縮空気をエンジン103の回転速度を制御するダイヤフラム型のレギュレータ141へ導入する流路151にドレーンタンク150を設けると共に,圧縮機の停止時,このドレーンタンク150内の圧縮空気,従って,レシーバタンク104内の圧縮空気を大気へ放気するオートレリーフバルブ111が設けられている。   Among the prior arts configured as described above, in the invention described in Patent Document 1 described with reference to FIG. 6, the diaphragm type of the compressed air in the receiver tank 104 is used to control the rotational speed of the engine 103. A drain tank 150 is provided in the flow path 151 to be introduced into the regulator 141, and when the compressor is stopped, the auto relief valve 111 for releasing the compressed air in the drain tank 150 and thus the compressed air in the receiver tank 104 to the atmosphere. Is provided.

このオートレリーフバルブ111を圧縮機の停止時のみならず,特許文献2の発明のようにアンロード運転時においても開放するものとすれば,圧縮機本体102の吐出側圧力が低下してアンロード運転時における圧縮機本体102の動力,従ってエンジン103にかかる負荷を低減することができるかのようにも見える。   If the auto relief valve 111 is opened not only when the compressor is stopped but also during the unload operation as in the invention of Patent Document 2, the discharge side pressure of the compressor body 102 decreases and the unload is performed. It also appears as if the power of the compressor body 102 during operation, and hence the load on the engine 103, can be reduced.

しかし,図6に示す構成の空気圧縮機100にあっては,レシーバタンク104内の圧力が設定吐出圧力(規定圧力)を超えるとダイヤフラム型レギュレータ141に内蔵するニードルバルブを開き,流路152を介してレシーバタンク104内の圧縮空気をベロフラム型レギュレータ132へ導入するようになっていて,レシーバタンク104内の圧力が設定吐出圧力(規定圧力)より低下すると,ダイヤフラム型レギュレータ141に内蔵するニードルバルブが閉じてエンジン103を高速側(定格回転速度)にすると共に,ベロフラム型レギュレータ132の内圧が降下して吸入弁であるバタフライ弁131を開くことから,アンロード運転時にオートレリーフバルブ111を開放してレシーバタンク104内の圧力が設定吐出圧力よりも低下すると,エンジンガバナ103aのレバー103bが高速位置となり,消費側における圧縮空気の消費再開や消費量の増加が生じる前にフルロード運転に移行してしまい,アンロード運転時間が短くなることでむしろ燃費が悪くなる。   However, in the air compressor 100 having the configuration shown in FIG. 6, when the pressure in the receiver tank 104 exceeds the set discharge pressure (specified pressure), the needle valve built in the diaphragm regulator 141 is opened, and the flow path 152 is opened. The compressed air in the receiver tank 104 is introduced into the bellows type regulator 132 through the needle valve incorporated in the diaphragm type regulator 141 when the pressure in the receiver tank 104 falls below the set discharge pressure (specified pressure). Closes the engine 103 to the high speed side (rated rotational speed), and the internal pressure of the bellophram regulator 132 drops to open the butterfly valve 131 as a suction valve. Therefore, the auto relief valve 111 is opened during the unload operation. The pressure in the receiver tank 104 is the set discharge pressure. As a result, the lever 103b of the engine governor 103a is moved to a high speed position, and the full load operation is started before the consumption side resumes the consumption of compressed air or the consumption increases, thereby shortening the unload operation time. Rather, the fuel economy is worsened.

このような特許文献1に記載の構成に対し,図7に示す特許文献2に記載の空気圧縮機200では,レギュレータ232から吸入弁231のダイヤフラム室231aに至る流路208の逆止弁207の二次側と,レシーバタンク204から消費側に至る流路222の圧力調整弁兼逆止弁206の二次側間を流路210,209によって連通すると共に,この流路210,209間に三方電磁弁SVVを設け,この三方電磁弁SVVの残りのポートNOに流路217を介して圧縮機本体202の吸入口に連通した構成を採用すると共に,フルロード運転時には流路209,217を連通すると共に流路210を閉じ,アンロード運転時には流路209,210間を連通すると共に流路217を閉じる制御を行うことで,アンロード運転時にオートレリーフバルブ211を開放してレシーバタンク204内の圧力が低下しても,吸入弁231を閉塞位置に維持したアンロード運転を継続することができるようになっている。   In contrast to the configuration described in Patent Document 1, in the air compressor 200 described in Patent Document 2 shown in FIG. 7, the check valve 207 of the flow path 208 extending from the regulator 232 to the diaphragm chamber 231 a of the suction valve 231. The secondary side and the secondary side of the pressure regulating valve / check valve 206 in the flow path 222 extending from the receiver tank 204 to the consumption side are communicated with each other by the flow paths 210 and 209, and the three sides between the flow paths 210 and 209 are connected. A solenoid valve SVV is provided, and a configuration is adopted in which the remaining port NO of the three-way solenoid valve SVV communicates with the suction port of the compressor body 202 via the flow path 217, and the flow paths 209 and 217 communicate with each other during full load operation. At the same time, the flow path 210 is closed, and during the unload operation, the flow paths 209 and 210 are communicated with each other and the flow path 217 is closed. Also it decreases the pressure in the receiver tank 204 by opening the relief valve 211, thereby making it possible to continue the unloading operation of maintaining the suction valve 231 in the closed position.

すなわち,圧力調整弁兼逆止弁206の二次側における流路222内の圧力は,圧力調整弁兼逆止弁206の存在によって圧縮空気の逆流が防止されているために,オートレリーフバルブ211の開放によってレシーバタンク204内の圧力が低下しても圧力の低下が生じない。   That is, the pressure in the flow path 222 on the secondary side of the pressure regulating valve / check valve 206 is such that the backflow of compressed air is prevented by the presence of the pressure regulating valve / check valve 206, and therefore the auto relief valve 211. Even if the pressure in the receiver tank 204 decreases due to the release of the pressure, the pressure does not decrease.

そのため,アンロード運転時,三方電磁弁SVVを切り換えて流路210,209,208を介して吸入弁231のダイヤフラム室231a内に圧力調整弁兼逆止弁206の二次側圧力を導入することで,オートレリーフバルブ211の開放によりレシーバタンク204内の圧力が低下しても,ダイヤフラム室231a内の圧力を維持して吸入弁231を閉塞位置とした状態を維持できるようになっている。   Therefore, during the unload operation, the three-way solenoid valve SVV is switched to introduce the secondary pressure of the pressure regulating valve / check valve 206 into the diaphragm chamber 231a of the suction valve 231 via the flow paths 210, 209, 208. Thus, even if the pressure in the receiver tank 204 decreases due to the opening of the auto relief valve 211, the pressure in the diaphragm chamber 231a can be maintained to keep the suction valve 231 in the closed position.

このように,特許文献2に記載の発明にあっては,アンロード運転時,オートレリーフバルブ211の開放によっても吸入弁231を閉塞位置に維持し得る構成を備えるものの,この構成を採用するためには,放気に必要なオートレリーフバルブ211の開閉を制御するための三方電磁弁SVやパイロット流路216,216’を設ける他,フルロード運転時とアンロード運転時とで吸入弁231に対する作動圧の導入経路を切り換えるための流路209,210,217を別途設ける必要があると共に,流路209−217,210−217間の連通・遮断を行うための三方電磁弁SVVを設け,さらに三方電磁弁SVVを,圧力スイッチVS,PS,PSSの動作に関連付けて動作させるための複雑な回路構成が必要となり,装置全体の構成が複雑となると共に,部品点数の増加や製造工程数の増加に伴うコスト増が,空気圧縮機の価格に反映されて市場における価格競争力の点で不利となる。   As described above, the invention described in Patent Document 2 has a configuration capable of maintaining the suction valve 231 in the closed position even when the auto relief valve 211 is opened during the unload operation, but this configuration is employed. In addition to providing a three-way solenoid valve SV and pilot flow paths 216 and 216 ′ for controlling the opening and closing of the auto relief valve 211 necessary for releasing air, the intake valve 231 is controlled during full load operation and unload operation. It is necessary to separately provide flow paths 209, 210, and 217 for switching the working pressure introduction path, and a three-way solenoid valve SVV for performing communication and blocking between the flow paths 209-217 and 210-217, A complicated circuit configuration is required to operate the three-way solenoid valve SVV in association with the operations of the pressure switches VS, PS, and PSS. Formed with becomes complicated, the cost increase due to the increase and an increase in the number of manufacturing steps of the parts becomes a reflected in the price of the air compressor disadvantageous in price competitiveness in the market.

そこで本発明は,上記従来技術における欠点を解消するためになされたものであり,アンロード運転時に圧縮機本体の吐出側を開放して圧縮機本体の吐出側圧力を低下させるパージを行った場合であっても,吸入弁を閉塞位置乃至は所定の絞った状態に維持すると共に,圧縮機本体の回転速度を低速側とした運転の継続を,比較的簡単な方法により,かつ,比較的簡単な装置構成によって行うことができるようにすることで,燃費等の向上を図ることのできるエンジン駆動型空気圧縮機の制御方法及び空気圧縮機を提供することを目的とする。   Therefore, the present invention has been made to eliminate the above-mentioned drawbacks of the prior art, and in the case of performing a purge that lowers the discharge side pressure of the compressor body by opening the discharge side of the compressor body during unload operation. Even so, it is relatively easy to maintain the intake valve in the closed position or in a predetermined throttle state and to continue the operation with the compressor body rotating at a low speed. It is an object of the present invention to provide an engine-driven air compressor control method and an air compressor that can improve fuel efficiency and the like by being able to be performed with a simple apparatus configuration.

以下に,課題を解決するための手段を,発明を実施するための形態で使用する符号と共に記載する。この符号は,特許請求の範囲の記載と発明を実施するための形態の記載との対応を明らかにするためのものであり,言うまでもなく,本願発明の特許請求範囲の技術的範囲の解釈に制限的に用いられるものではない。   Hereinafter, means for solving the problem will be described together with reference numerals used in the embodiment for carrying out the invention. This symbol is intended to clarify the correspondence between the description of the claims and the description of the mode for carrying out the invention. Needless to say, it is limited to the interpretation of the technical scope of the claims of the present invention. It is not intended for use.

上記目的を達成するために,本発明のエンジン駆動型空気圧縮機の制御方法は,圧縮機本体2から消費側に至る圧縮空気の流路に一端を連通する制御流路23と,前記圧縮機本体2の吸入口に設けた吸入弁31と,前記圧縮機本体2の吐出側圧力に応じて前記制御流路23を開閉する圧力調整弁32を備え,前記制御流路23の他端に前記吸入弁31の閉弁受圧室(吸入弁31が別途レギュレータ等,弁体の開閉機構を備える場合には,この開閉機構の作動圧室も本発明における「吸入弁31の閉弁受圧室」に含まれる。)を連通して,前記圧縮機本体2の吐出側圧力が前記圧力調整弁32が開動作を開始する圧力である設定吐出圧力(一例として0.69MPa)未満のときに前記吸入弁31を全開とし,前記圧縮機本体2の吐出側圧力が前記設定吐出圧力以上になると前記吸入弁31の閉動作を開始すると共に,前記圧縮機本体2の吐出側圧力が前記設定吐出圧力に対して所定の高い圧力であるアンロード開始圧力(一例として0.79MPa)以上になると,前記吸入弁31を閉塞位置とする容量制御を行う容量制御装置と,前記圧縮機本体2を駆動するエンジン3の調速装置〔ガバナ3a,電子ガバナ(図示せず)等〕によって該エンジン3の回転速度を制御すると共に,前記圧縮機本体2の吐出側圧力が前記アンロード開始圧力以上のとき前記エンジン3の回転速度を所定の低速回転(一例として,高速回転2500min−1に対し,低速回転1200min−1)にする速度制御を行う速度制御装置とを備えた空気圧縮機1において,
前記圧縮機本体2から消費側に至る前記圧縮空気の流路中に逆止弁6を設け,前記逆止弁6の一次側における前記流路を吐出流路21,前記逆止弁6の二次側における前記流路を消費流路22とし,前記制御流路23の前記一端を前記吐出流路21に連通して,前記圧力調整弁32が開いたとき,前記吐出流路21内の圧力に対して減圧した前記吐出流路21内の圧縮空気を前記吸入弁31の閉弁受圧室に導入して前記容量制御を行い,
前記吐出流路21にさらにパージ弁11を連通し,前記容量制御装置が前記吸入弁31を閉塞位置としたとき,前記パージ弁11を開放して前記吐出流路21内の圧縮空気を大気及び/又は前記吸入弁31の一次側の吸入流路26aへ放出することにより前記吐出流路21内の圧力を低下させる圧力低下処理と,前記パージ弁11を開放して放出された前記吐出流路21内の圧縮空気の一部を前記吸入弁31の閉弁受圧室に導入することにより前記吸入弁31の閉弁受圧室内の圧力を保持する保圧処理を行うと共に,
前記パージ弁11の開放時,前記エンジン3の回転速度を前記低速回転又は該低速回転に対して僅かに増速(例えば低速回転に対し10%以下の増速)した回転速度に維持する速度維持処理を行い,
前記パージ弁11の開放により前記吐出流路21内の圧力を,前記設定吐出圧力未満の圧力であって,前記吸入弁31が閉塞位置乃至は該閉塞位置に対して僅かに開いた状態となる所定の下限圧力(一例として0.3MPa)まで低下させると共に,前記パージ弁11が閉弁するまで前記圧力低下処理,保圧処理及び速度維持処理を継続して前記下限圧力に低下した前記吐出流路21内の圧力を前記下限圧力に維持することを特徴とする(請求項1)。
In order to achieve the above object, an engine-driven air compressor control method according to the present invention includes a control flow path 23 having one end communicating with a flow path of compressed air from the compressor body 2 to the consumption side, and the compressor A suction valve 31 provided at the suction port of the main body 2 and a pressure adjusting valve 32 that opens and closes the control flow path 23 according to the discharge side pressure of the compressor main body 2 are provided. Closed pressure receiving chamber of the intake valve 31 (when the intake valve 31 is provided with a valve opening / closing mechanism such as a regulator separately, the operating pressure chamber of this opening / closing mechanism is also referred to as the “closed pressure receiving chamber of the intake valve 31” in the present invention. The suction valve 31 when the discharge side pressure of the compressor body 2 is less than a set discharge pressure (0.69 MPa as an example) that is a pressure at which the pressure regulating valve 32 starts to open. Is fully open, and the discharge side pressure of the compressor body 2 is When the pressure exceeds the discharge pressure, the closing operation of the suction valve 31 is started, and the unloading start pressure (0.79 MPa as an example) in which the discharge side pressure of the compressor body 2 is a predetermined high pressure with respect to the set discharge pressure. When the above-described operation is performed, a capacity control device that performs capacity control with the suction valve 31 in the closed position and a speed control device (a governor 3a, an electronic governor (not shown), etc.) of the engine 3 that drives the compressor body 2 are used. The rotational speed of the engine 3 is controlled, and when the discharge side pressure of the compressor body 2 is equal to or higher than the unload start pressure, the rotational speed of the engine 3 is set to a predetermined low speed rotation (for example, high speed rotation 2500 min −1) . On the other hand, in the air compressor 1 provided with a speed control device that performs speed control for low-speed rotation 1200 min −1 ),
A check valve 6 is provided in the flow path of the compressed air from the compressor body 2 to the consumption side, and the flow path on the primary side of the check valve 6 is connected to the discharge flow path 21 and the check valve 6. When the pressure control valve 32 is opened by connecting the one end of the control flow channel 23 to the discharge flow channel 21 and opening the pressure control valve 32, the pressure in the discharge flow channel 21 is set as the flow channel on the next side. The compressed air in the discharge passage 21 decompressed with respect to the intake valve 31 is introduced into the closed pressure receiving chamber of the suction valve 31 to perform the capacity control,
When the purge valve 11 is further communicated with the discharge flow path 21 and the capacity control device places the suction valve 31 in the closed position, the purge valve 11 is opened to allow the compressed air in the discharge flow path 21 to be And / or a pressure reduction process for lowering the pressure in the discharge flow channel 21 by discharging to the suction flow channel 26a on the primary side of the suction valve 31, and the discharge flow channel discharged by opening the purge valve 11. A pressure holding process for maintaining the pressure in the closed pressure receiving chamber of the intake valve 31 by introducing a part of the compressed air in the closed valve pressure receiving chamber of the intake valve 31;
When the purge valve 11 is opened, the speed of the engine 3 is maintained at a low speed or a speed slightly increased with respect to the low speed (for example, 10% or less with respect to the low speed). Process,
When the purge valve 11 is opened, the pressure in the discharge passage 21 is lower than the set discharge pressure, and the suction valve 31 is in the closed position or slightly opened with respect to the closed position. The discharge flow path that has been reduced to the lower limit pressure by reducing the pressure to a predetermined lower limit pressure (for example, 0.3 MPa) and continuing the pressure reduction process, the pressure holding process, and the speed maintaining process until the purge valve 11 is closed. 21 is maintained at the lower limit pressure (claim 1).

上記構成のエンジン駆動型空気圧縮機の制御方法において,前記圧力調整弁32の二次側における前記制御流路23を前記エンジン3の調速装置(例えばガバナ3a)を動作させるスピードレギュレータ41の作動圧室に連通して前記速度制御装置を形成することにより,前記圧力調整弁32が開いたとき,前記吐出流路21内の圧縮空気を該吐出流路21内の圧力に対して減圧して前記スピードレギュレータ41の作動圧室に導入し,前記吐出流路21内の圧力が前記設定吐出圧力未満のときに前記エンジン3の回転速度を所定の高速回転とし,前記吐出流路21内の圧力が前記設定吐出圧力以上になると前記エンジンの回転速度の減速を開始し,更に前記吐出流路21内の圧力が前記アンロード開始圧力以上のとき前記エンジンの回転速度を前記低速回転(一例として,高速回転2500min−1に対し,低速回転1200min−1)にする前記速度制御を行うと共に,
前記パージ弁11の開放時,該パージ弁11を介して放出された前記吐出流路21内の圧縮空気の一部を,前記スピードレギュレータ41の作動圧室に導入することにより前記速度維持処理を行うように構成することができる(請求項2)。
In the control method of the engine-driven air compressor having the above configuration, the operation of the speed regulator 41 that operates the speed control device (for example, the governor 3a) of the engine 3 in the control flow path 23 on the secondary side of the pressure regulating valve 32. By forming the speed control device in communication with a pressure chamber, when the pressure regulating valve 32 is opened, the compressed air in the discharge passage 21 is reduced with respect to the pressure in the discharge passage 21. The pressure is introduced into the working pressure chamber of the speed regulator 41, and when the pressure in the discharge passage 21 is less than the set discharge pressure, the rotation speed of the engine 3 is set to a predetermined high speed rotation, and the pressure in the discharge passage 21 is increased. Starts to decelerate the rotational speed of the engine when the pressure becomes equal to or higher than the set discharge pressure, and when the pressure in the discharge flow path 21 is equal to or higher than the unload start pressure, the rotational speed of the engine (As an example, with respect to high speed 2500min -1, low speed 1200min -1) the low-speed rotating performs the speed control to,
When the purge valve 11 is opened, a part of the compressed air in the discharge flow passage 21 discharged through the purge valve 11 is introduced into the working pressure chamber of the speed regulator 41 to perform the speed maintaining process. (Claim 2).

ここで,エンジン3の回転速度(min−1:SI単位)は,回転数(rpm:非SI単位)と同義である。 Here, the rotational speed (min −1 : SI unit) of the engine 3 is synonymous with the rotational speed (rpm: non-SI unit).

さらに,上記構成の空気圧縮機の制御方法において,前記パージ弁11を開放して前記吐出流路21内が前記下限圧力のとき,前記パージ弁11を介して大気及び/又は前記吸入弁31の一次側の吸入流路26aへ放出される圧縮空気の放気量の大気圧状態における容積と,前記圧縮機本体2の吸入量を一致させることにより,前記吐出流路21内の圧力を前記下限圧力に維持することができる(請求項3)。   Furthermore, in the control method of the air compressor having the above-described configuration, when the purge valve 11 is opened and the inside of the discharge passage 21 is at the lower limit pressure, the atmosphere and / or the intake valve 31 is controlled via the purge valve 11. By matching the volume of the compressed air discharged into the primary suction passage 26a in the atmospheric pressure state with the suction amount of the compressor body 2, the pressure in the discharge passage 21 is reduced to the lower limit. The pressure can be maintained (Claim 3).

なお,上記の制御方法において,前記パージ弁11の開放を,前記吸入弁31の二次側と前記圧縮機本体2間の吸入流路26b内の圧力が大気圧よりも低い圧力の範囲で予め設定したパージ開始圧力(一例として-0.06MPa)以下になったときに行うと共に,
前記パージ弁11の開放後,前記消費流路22内の圧力が所定の圧力値(一例として0.69MPa)以下に低下したとき,前記パージ弁11を閉じるようにすることができる(請求項4)。
In the above control method, the purge valve 11 is opened in advance in a range where the pressure in the suction passage 26b between the secondary side of the suction valve 31 and the compressor body 2 is lower than the atmospheric pressure. When the pressure falls below the set purge start pressure (-0.06MPa as an example)
After the purge valve 11 is opened, the purge valve 11 can be closed when the pressure in the consumption flow path 22 drops below a predetermined pressure value (0.69 MPa as an example) (Claim 4). .

さらに,前記吐出流路21内の圧力が所定の供給圧力(一例として0.39MPa)以上のときに前記消費流路22に対する圧縮空気の導入を行うようにすると共に,前記下限圧力を前記供給圧力未満の圧力(一例として0.3MPa)とすることができる(請求項5)。   Further, when the pressure in the discharge passage 21 is equal to or higher than a predetermined supply pressure (as an example, 0.39 MPa), compressed air is introduced into the consumption passage 22 and the lower limit pressure is less than the supply pressure. (The pressure is 0.3 MPa as an example) (Claim 5).

また,上記制御方法が実現される本発明のエンジン駆動型空気圧縮機は,圧縮機本体2から消費側に至る圧縮空気の流路に一端を連通する制御流路23と,前記圧縮機本体2の吸入口に設けた吸入弁31と,前記圧縮機本体2の吐出側圧力に応じて前記制御流路23を開閉する圧力調整弁32を備え,前記制御流路23の他端に前記吸入弁31の閉弁受圧室を連通して,前記圧縮機本体2の吐出側圧力が前記圧力調整弁32が開動作を開始する圧力である設定吐出圧力(一例として0.69MPa)未満のとき,前記吸入弁31を全開とし,前記圧縮機本体2の吐出側圧力が前記設定吐出圧力以上となると前記吸入弁31の閉動作を開始すると共に,前記圧縮機本体2の吐出側圧力が前記設定吐出圧力に対して所定の高い圧力であるアンロード開始圧力(一例として0.79MPa)以上になると,前記吸入弁31を閉塞位置とする容量制御装置と,前記圧縮機本体2を駆動するエンジン3の調速装置によって該エンジン3の回転速度を制御すると共に,前記圧縮機本体2の吐出側圧力が前記アンロード開始圧力以上のとき前記エンジン3の回転速度を所定の低速回転にする速度制御装置とを備えた空気圧縮機1において,
前記圧縮機本体2から消費側に至る前記圧縮空気の流路中に逆止弁6を設け,前記逆止弁6の一次側における前記流路を吐出流路21,前記逆止弁6の二次側における前記流路を消費流路22とし,
前記制御流路23の前記一端を前記吐出流路21に連通して前記容量制御装置を形成すると共に,該容量制御装置の前記制御流路23に前記圧力調整弁32の二次側における前記制御流路23内の圧力を該圧力調整弁32の一次側における前記制御流路23内の圧力に対して減圧する減圧手段(実施例では放気流路25)を設け,
さらに,前記吐出流路21に連通すると共に前記容量制御装置が前記吸入弁31を閉塞位置としたときに開放して前記吐出流路21内の圧縮空気を大気及び/又は前記吸入弁31の一次側の吸入流路26aへ放出するパージ弁11と,該パージ弁11の開放時に前記吐出流路21内の圧縮空気を前記吸入弁31の閉弁受圧室に導入する保圧流路24を備えると共に,前記パージ弁11の開放時,前記エンジン3の回転速度を前記低速回転又は該低速回転に対して僅かに増速した回転速度に維持する速度維持機構を備えるパージ機構を設け,
前記パージ機構により,前記パージ弁11の開放時,前記吐出流路21内の圧力を前記設定吐出圧力未満の圧力であって前記吸入弁31を閉塞位置乃至は該閉塞位置に対して僅かに開いた位置とする所定の下限圧力まで低下させると共に,該下限圧力を維持可能としたことを特徴とする(請求項6)。
The engine-driven air compressor of the present invention in which the above control method is realized includes a control flow path 23 having one end communicating with a flow path of compressed air from the compressor body 2 to the consumption side, and the compressor body 2 And a pressure regulating valve 32 for opening and closing the control flow path 23 in accordance with the discharge side pressure of the compressor body 2, and the suction valve at the other end of the control flow path 23. When the valve-closing pressure receiving chamber 31 is communicated and the discharge side pressure of the compressor body 2 is less than a set discharge pressure (0.69 MPa as an example), which is a pressure at which the pressure regulating valve 32 starts to open, the suction When the valve 31 is fully opened and the discharge side pressure of the compressor body 2 becomes equal to or higher than the set discharge pressure, the closing operation of the suction valve 31 is started, and the discharge side pressure of the compressor body 2 becomes the set discharge pressure. Unload starting pressure, which is a predetermined high pressure (0.79 MPa as an example), the rotational speed of the engine 3 is controlled by a capacity control device that places the suction valve 31 in the closed position and a speed control device of the engine 3 that drives the compressor body 2. In the air compressor 1 comprising: a speed control device for setting the rotational speed of the engine 3 to a predetermined low speed when the discharge side pressure of the compressor body 2 is equal to or higher than the unload start pressure.
A check valve 6 is provided in the flow path of the compressed air from the compressor body 2 to the consumption side, and the flow path on the primary side of the check valve 6 is connected to the discharge flow path 21 and the check valve 6. The flow path on the next side is a consumption flow path 22,
The one end of the control flow path 23 is communicated with the discharge flow path 21 to form the capacity control device, and the control on the secondary side of the pressure regulating valve 32 is added to the control flow path 23 of the capacity control device. Pressure reducing means for reducing the pressure in the flow path 23 relative to the pressure in the control flow path 23 on the primary side of the pressure regulating valve 32 (air release flow path 25 in the embodiment);
Further, it communicates with the discharge flow path 21 and is opened when the capacity control device places the suction valve 31 in the closed position so that the compressed air in the discharge flow path 21 is discharged into the atmosphere and / or primary of the suction valve 31. A purge valve 11 that discharges to the suction channel 26a on the side, and a pressure holding channel 24 that introduces compressed air in the discharge channel 21 into the closed pressure-receiving chamber of the suction valve 31 when the purge valve 11 is opened. A purge mechanism comprising a speed maintaining mechanism for maintaining the rotational speed of the engine 3 at the low speed or a slightly increased speed relative to the low speed when the purge valve 11 is opened;
When the purge valve 11 is opened by the purge mechanism, the pressure in the discharge passage 21 is a pressure lower than the set discharge pressure and the suction valve 31 is opened to the closed position or slightly to the closed position. The lower limit pressure is lowered to a predetermined lower limit pressure, and the lower limit pressure can be maintained (Claim 6).

上記構成の空気圧縮機1において,前記圧力調整弁32の二次側における前記制御流路23を前記エンジン3の調速装置(例えばガバナ3a)を動作させるスピードレギュレータ41の作動圧室に連通することにより,前記吐出流路21内の圧力が前記設定吐出圧力未満のときに前記エンジン3の回転速度を所定の高速回転とし,前記吐出流路21内の圧力が前記設定吐出圧力以上になると前記エンジン3の回転速度を減速し始め,前記吐出流路21内の圧力が前記アンロード開始圧力以上のとき前記エンジン3の回転速度を所定の低速回転にする前記速度制御装置を形成すると共に,
前記保圧流路24を前記スピードレギュレータ41の作動圧室に対し連通することにより前記速度維持機構を構成するものとしても良い(請求項7)。
In the air compressor 1 having the above-described configuration, the control flow path 23 on the secondary side of the pressure regulating valve 32 is communicated with an operating pressure chamber of a speed regulator 41 that operates a speed control device (for example, a governor 3a) of the engine 3. Thus, when the pressure in the discharge passage 21 is less than the set discharge pressure, the rotation speed of the engine 3 is set to a predetermined high speed, and when the pressure in the discharge passage 21 becomes equal to or higher than the set discharge pressure, Forming the speed control device which starts to reduce the rotational speed of the engine 3 and sets the rotational speed of the engine 3 to a predetermined low speed when the pressure in the discharge passage 21 is equal to or higher than the unload start pressure;
The speed maintaining mechanism may be configured by communicating the pressure holding flow path 24 with an operating pressure chamber of the speed regulator 41 (Claim 7).

さらに,上記空気圧縮機1の構成において,前記圧力調整弁32の二次側における前記制御流路23に前記保圧流路24を連通すると共に,前記圧力調整弁及び/又は前記パージ弁の二次側に,他端が大気及び/又は前記吸入弁31の一次側の吸入流路26aに開放された放気流路25の一端を連通した構成とすることができる(請求項8)。   Further, in the configuration of the air compressor 1, the pressure holding valve 24 is communicated with the control flow path 23 on the secondary side of the pressure adjusting valve 32, and the pressure adjusting valve and / or the purge valve is secondary. On the other hand, the other end may be communicated with the atmosphere and / or one end of the discharge passage 25 opened to the suction passage 26a on the primary side of the suction valve 31 (Claim 8).

さらに,前記パージ弁11を開放して吐出流路21内の圧力が前記下限圧力(一例として0.3MPa)のときの前記圧縮機本体2の吸気量と,前記パージ弁11を介して大気及び/又は前記吸入弁31の一次側の吸入流路26aへ放出される圧縮空気の放気量の大気圧状態における容積とが一致するよう,前記パージ弁11による放気量を設定することができる(請求項9)。   Further, when the purge valve 11 is opened and the pressure in the discharge passage 21 is the lower limit pressure (for example, 0.3 MPa), the intake air amount of the compressor body 2 and the atmosphere and / or the Alternatively, the air discharge amount by the purge valve 11 can be set so that the air discharge amount of the compressed air discharged to the primary suction passage 26a on the primary side of the intake valve 31 matches the volume in the atmospheric pressure state ( Claim 9).

また,前記パージ弁11の開閉を行うために,
前記パージ弁11を電磁開閉弁によって構成すると共に,
前記吸入弁31の二次側と前記圧縮機本体2間の吸入流路26b内の圧力を検知する圧力センサ乃至は圧力スイッチである吸入圧力検知手段51,51’と,前記消費流路22内の圧力を検知する圧力センサ乃至は圧力スイッチである消費側圧力検知手段52,52’を有し,例えば,前記吸入圧力検知手段51’や消費側圧力検知手段52’を組込んだ電気回路や,前記吸入圧力検知手段51や消費側圧力検知手段52と電子制御装置との組合せから成り,前記吸入弁31の二次側と前記圧縮機本体2間の吸入流路26b内の圧力が大気圧よりも低い圧力の範囲で予め設定したパージ開始圧力以下になったときに前記パージ弁11を開放すると共に,前記消費流路22内の圧力が所定の圧力値以下に低下したときに前記パージ弁11を閉塞するパージ弁11の開閉手段をさらに設けることができる(請求項10)。
In order to open and close the purge valve 11,
The purge valve 11 is constituted by an electromagnetic on-off valve,
Suction pressure detection means 51 and 51 ′ that are pressure sensors or pressure switches for detecting the pressure in the suction flow path 26 b between the secondary side of the suction valve 31 and the compressor body 2, and the consumption flow path 22 For example, an electric circuit incorporating the suction pressure detecting means 51 ′ and the consumption pressure detecting means 52 ′. The suction pressure detection means 51 and the consumption side pressure detection means 52 are combined with an electronic control unit, and the pressure in the suction passage 26b between the secondary side of the suction valve 31 and the compressor body 2 is atmospheric pressure. The purge valve 11 is opened when the purge start pressure falls below a preset purge start pressure in a lower pressure range, and the purge valve when the pressure in the consumption flow path 22 falls below a predetermined pressure value 11 to block 11 Further, an opening / closing means for the cage valve 11 can be provided (claim 10).

また,前記逆止弁6に,前記吐出流路21内の圧縮空気の圧力が所定の供給圧力(一例として0.39MPa)以上のときに開弁する保圧弁の機能を付加すると共に,前記下限圧力(一例として0.3MPa)を前記供給圧力(一例として0.39MPa)未満の圧力とすることができる(請求項11)。   Further, the check valve 6 is provided with a function of a pressure holding valve that opens when the pressure of the compressed air in the discharge passage 21 is equal to or higher than a predetermined supply pressure (for example, 0.39 MPa), and the lower limit pressure (For example, 0.3 MPa) can be set to a pressure lower than the supply pressure (for example, 0.39 MPa).

以上説明した構成により,本発明の制御方法が行われるエンジン駆動型空気圧縮機1では,パージ弁11の開放時,吐出流路21内の圧縮空気を大気及び/又は前記吸入弁31の一次側の吸入流路26aへ放出すると共に,パージ弁11を介して放出された吐出流路21内の圧縮空気の一部を吸入弁31の閉弁受圧室に導入し,圧縮機本体2の吐出側圧力を低下させて圧縮機本体2の動力を低下させつつ,パージによる吐出流路21内の圧力低下によっても吸入弁31を閉塞位置乃至は閉塞位置に対して僅かに開いた状態と,エンジン3の回転速度を前記低速回転又は該低速回転に対して僅かに増速した回転速度に維持できることから,圧縮機本体2の動力,従ってこの圧縮機本体2を駆動するエンジン3の負荷を低減した状態でパージ運転を継続してフルロード運転へ移行することが防止できた。   With the configuration described above, in the engine-driven air compressor 1 in which the control method of the present invention is performed, when the purge valve 11 is opened, the compressed air in the discharge passage 21 is discharged to the atmosphere and / or the primary side of the intake valve 31. And a part of the compressed air in the discharge passage 21 released through the purge valve 11 is introduced into the closed pressure receiving chamber of the suction valve 31, and the discharge side of the compressor body 2 is discharged. While the pressure of the compressor main body 2 is reduced by lowering the pressure, the suction valve 31 is slightly opened with respect to the closed position or the closed position even when the pressure in the discharge flow path 21 is reduced by the purge, and the engine 3 The rotational speed of the engine can be maintained at the low speed or the speed slightly increased with respect to the low speed, so that the power of the compressor body 2 and thus the load of the engine 3 that drives the compressor body 2 is reduced. Purge operation It was prevented to migrate to full-load operation to continue.

また,エンジン3の調速装置3aをスピードレギュレータ41で動作させる場合にあっては,パージ弁11の開放時,保圧流路24を介して吐出流路21内の圧縮空気を前記スピードレギュレータ41の作動圧室に導入することで,パージにより吐出流路21内の圧力が低下しても,エンジン3の回転速度を低速乃至は該低速に対して僅かに増速した状態に維持する前述の速度維持処理を容易に行うことができた。   When the speed regulator 3a of the engine 3 is operated by the speed regulator 41, when the purge valve 11 is opened, the compressed air in the discharge passage 21 is supplied to the speed regulator 41 through the holding pressure passage 24. By introducing the pressure into the working pressure chamber, even if the pressure in the discharge flow path 21 is reduced by purging, the speed of the engine 3 is maintained at a low speed or slightly increased with respect to the low speed. The maintenance process was easy.

その結果,パージによる圧縮機本体2の吐出側圧力の低下と相俟って,圧縮機本体2の動力を大幅に軽減することができ,その結果,空気圧縮機の燃費を大幅に向上させることができた。   As a result, the power of the compressor body 2 can be greatly reduced in combination with a decrease in the discharge side pressure of the compressor body 2 due to the purge, and as a result, the fuel consumption of the air compressor can be greatly improved. I was able to.

しかも,このような制御を,例えばパージ弁11の二次側に連通した保圧流路24を圧力調整弁32の二次側における制御流路23に連結する等して,パージ弁11の開放時,吐出流路21内の圧縮空気を吸入弁31の閉弁受圧室やスピードレギュレータ41の作動圧室に導入するという比較的簡単な構成によって実現することができ,三方電磁弁等を使用した流路の切換や複雑な制御が不要である結果,装置構成を簡略化して製造,保守点検作業等を容易とすることができた。   In addition, such control is performed when the purge valve 11 is opened, for example, by connecting the holding pressure channel 24 communicating with the secondary side of the purge valve 11 to the control channel 23 on the secondary side of the pressure regulating valve 32. The compressed air in the discharge passage 21 can be realized by a relatively simple configuration in which the compressed air in the discharge valve 21 is introduced into the closed pressure receiving chamber of the suction valve 31 or the operating pressure chamber of the speed regulator 41, and a flow using a three-way solenoid valve or the like. As a result of eliminating the need for path switching and complicated control, the system configuration was simplified and manufacturing, maintenance, and inspection work could be facilitated.

パージ時(パージ弁の開放時)における吐出流路21内の圧力を前記下限圧力に維持するために,前記パージ弁11を開放して前記吐出流路21内が前記下限圧力のとき,前記吸入弁31の一次側の吸入流路26a内の空気を前記圧縮機本体2へ吸入し,前記パージ弁11を介して大気及び/又は前記吸入弁31の一次側の吸入流路26aへ放出される圧縮空気の放気量の大気圧状態における容積と,前記圧縮機本体が吸入する空気の吸入量を一致させることにより行う構成とした場合には,空気圧縮機に設けられている容量制御装置の構成をそのまま利用して前述した吸入弁31及びスピードレギュレータ41の動作状態を維持することができ,装置構成を単純化することができた。   In order to maintain the pressure in the discharge passage 21 at the time of purging (when the purge valve is opened) at the lower limit pressure, when the purge valve 11 is opened and the inside of the discharge passage 21 is at the lower limit pressure, the suction Air in the suction passage 26a on the primary side of the valve 31 is sucked into the compressor body 2 and is released to the atmosphere and / or the suction passage 26a on the primary side of the suction valve 31 through the purge valve 11. If the configuration is such that the volume of compressed air discharged in the atmospheric pressure state matches the amount of air sucked into the compressor body, the capacity control device provided in the air compressor The operation state of the intake valve 31 and the speed regulator 41 described above can be maintained by using the configuration as it is, and the device configuration can be simplified.

吸入圧力検知手段51を設ける等して,前記パージ弁11の開放を前記吸入弁31の二次側と前記圧縮機本体間の吸入流路26b内の圧力が大気圧よりも低い圧力の範囲で予め設定したパージ開始圧力以下になったときに行うように構成することで,パージの開始を吸入弁31の動作に確実に連動させることができると共に,消費側圧力検知手段52を設けることにより前記パージ弁11の開放後,前記消費流路22内の圧力が所定の圧力値以下に低下したとき,前記パージ弁11を閉じることにより,消費流路22内の圧力低下,従って,消費側における圧縮空気の消費再開や消費量の増加に連動して確実にパージを終了することができた。   For example, by providing the suction pressure detecting means 51, the purge valve 11 is opened in a range where the pressure in the suction flow path 26b between the secondary side of the suction valve 31 and the compressor body is lower than the atmospheric pressure. By configuring so as to be performed when the pressure becomes equal to or lower than a preset purge start pressure, the start of purge can be reliably linked to the operation of the intake valve 31 and the consumption side pressure detection means 52 is provided to provide the above-described operation. After the purge valve 11 is opened, when the pressure in the consumption flow path 22 drops below a predetermined pressure value, the purge valve 11 is closed to reduce the pressure in the consumption flow path 22, and thus compression on the consumption side. The purge could be completed reliably in conjunction with the resumption of air consumption and the increase in consumption.

前記吐出流路21内の圧力が所定の供給圧力(一例として0.39MPa)以上のときに前記消費流路22に対する圧縮空気の導入を行うと共に,前記下限圧力を前記供給圧力未満の圧力(一例として0.3MPa)とした構成にあっては,パージにより,圧縮機本体2の吐出側圧力を充分に低い圧力に低下させることができ,圧縮機本体2の動力,従ってエンジン3の負荷を低減させて,燃費の向上を確実に行うことができた。   When the pressure in the discharge passage 21 is equal to or higher than a predetermined supply pressure (as an example, 0.39 MPa), compressed air is introduced into the consumption passage 22 and the lower limit pressure is set to a pressure lower than the supply pressure (as an example). In the configuration of 0.3 MPa), the discharge side pressure of the compressor body 2 can be lowered to a sufficiently low pressure by purging, and the power of the compressor body 2 and thus the load on the engine 3 can be reduced. , I was able to improve the fuel consumption reliably.

本発明のエンジン駆動型空気圧縮機(実施形態1)の概略説明図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic explanatory drawing of the engine drive type air compressor (Embodiment 1) of this invention. 本発明のエンジン駆動型空気圧縮機(実施形態1)の動作を表したタイミングチャート。The timing chart showing operation of the engine drive type air compressor (Embodiment 1) of the present invention. 本発明のエンジン駆動型空気圧縮機(実施形態2)の概略説明図。The schematic explanatory drawing of the engine drive type air compressor (Embodiment 2) of this invention. エンジン及び圧縮機本体の出力乃至は動力と回転速度の相関図。FIG. 3 is a correlation diagram between the output of the engine and the compressor main body or power and rotation speed. 燃料消費量と負荷率の相関図。The correlation diagram of fuel consumption and load factor. 従来の空気圧縮機(特許文献1)の概略説明図。Schematic explanatory drawing of the conventional air compressor (patent document 1). 従来の圧縮機の概略説明図(特許文献2の第4図に対応)。Schematic explanatory drawing of a conventional compressor (corresponding to FIG. 4 of Patent Document 2).

次に,添付図面を参照しながら,本発明のエンジン駆動型空気圧縮機の制御装置について説明する。   Next, a control device for an engine-driven air compressor according to the present invention will be described with reference to the accompanying drawings.

実施形態1
〔エンジン駆動型空気圧縮機の全体構造〕
図1中の符号1は,本発明の制御方法が実現される本発明のエンジン駆動型空気圧縮機であり,図示の実施形態にあっては,一例として,エンジン駆動型の油冷式空気圧縮機を示している。
Embodiment 1
[Overall structure of engine-driven air compressor]
Reference numeral 1 in FIG. 1 denotes an engine-driven air compressor of the present invention in which the control method of the present invention is realized. In the illustrated embodiment, as an example, an engine-driven oil-cooled air compressor Showing the machine.

このエンジン駆動型の油冷式空気圧縮機1は,空気を圧縮して得られた圧縮空気を,作用空間を密封・冷却するための冷却油と共に気液混合流体として吐出する圧縮機本体(一例としてスクリュ圧縮機本体)2と,この圧縮機本体2を駆動するエンジン3を備えていると共に,前記圧縮機本体2の吐出口より消費側に至る流路中に,圧縮機本体2より冷却油との気液混合流体として吐出された圧縮空気を貯留すると共に冷却油を分離するレシーバタンク4,レシーバタンク4で油が分離された圧縮空気中にミスト状の状態で含まれる油をさらに分離するセパレータ5を備えると共に,前記セパレータ5の下流側に逆止弁6を設けて,消費側から圧縮機本体2側に圧縮空気が逆流することを防止している。   This engine-driven oil-cooled air compressor 1 is a compressor body that discharges compressed air obtained by compressing air as a gas-liquid mixed fluid together with cooling oil for sealing and cooling the working space (an example) As a screw compressor main body) 2 and an engine 3 for driving the compressor main body 2, and cooling oil is supplied from the compressor main body 2 into the flow path from the discharge port of the compressor main body 2 to the consumption side. The oil contained in the mist state is further separated in the compressed air from which the oil is separated in the receiver tank 4 and the receiver tank 4 that store the compressed air discharged as a gas-liquid mixed fluid and separate the cooling oil. A separator 5 is provided, and a check valve 6 is provided on the downstream side of the separator 5 to prevent the compressed air from flowing backward from the consumption side to the compressor body 2 side.

図示の実施形態において,この逆止弁6は,その一次側の圧力が消費側に対する圧縮空気の供給圧力として設定された所定の圧力(本発明において,「供給圧力」という。)以上になったとき,弁座から弁体が離れて二次側に対する圧縮空気の導入を可能とした保圧弁付きの逆止弁を使用しており,本実施形態にあっては,この供給圧力を一例として0.39MPaに設定している。   In the illustrated embodiment, the check valve 6 has a pressure on the primary side equal to or higher than a predetermined pressure (referred to as “supply pressure” in the present invention) set as the supply pressure of compressed air to the consumption side. In this embodiment, a check valve with a pressure holding valve that allows introduction of compressed air to the secondary side by separating the valve body from the valve seat is used. Set to MPa.

なお,本発明において,前述の逆止弁6の一次側(圧縮機本体側)における前記流路(レシーバタンク4やセパレータ5を含む)を吐出流路21と,逆止弁6の二次側(消費側)における前記流路を消費流路22として説明する。   In the present invention, the flow path (including the receiver tank 4 and the separator 5) on the primary side (compressor main body side) of the check valve 6 is defined as the discharge flow path 21 and the secondary side of the check valve 6. The flow path on the (consumption side) will be described as the consumption flow path 22.

このような空気圧縮機1においては,消費側に対して一定の圧力の圧縮空気を供給することができるよう,圧縮機本体2の吸入口に設けた吸入弁31を開閉制御して,消費側における圧縮空気の消費等により圧縮機本体2の吐出側圧力が所定の設定吐出圧力未満になると,圧縮機本体2の吸入口を全開した運転状態(フルロード運転)となり,エアフィルタ7を介して圧縮機本体2内に空気を吸い込んで圧縮してこの圧縮機本体2より吐出された圧縮空気を吐出流路21に導入して消費された分の圧縮空気を補充すると共に,吐出流路21内の圧力が予め設定された設定吐出圧力以上になると,圧縮機本体2の吸入口を絞り,吐出流路21に対する圧縮空気の導入を制限すると共に,吐出流路21内の圧力が前記設定吐出圧力に対して所定の高い圧力であるアンロード開始圧力以上になると,吸入弁31を閉塞位置として圧縮機本体2の吸気を停止する運転状態(アンロード運転)とする容量制御を行う容量制御装置が設けられている。   In such an air compressor 1, the intake valve 31 provided at the intake port of the compressor body 2 is controlled to be opened and closed so that compressed air having a constant pressure can be supplied to the consumer side. When the discharge side pressure of the compressor main body 2 becomes less than a predetermined set discharge pressure due to consumption of compressed air in the engine, an operation state (full load operation) with the suction port of the compressor main body 2 fully opened is entered via the air filter 7. The compressed air discharged from the compressor main body 2 is sucked into the compressor main body 2 and compressed, and the consumed compressed air is replenished. When the pressure becomes equal to or higher than a preset set discharge pressure, the suction port of the compressor body 2 is throttled to restrict the introduction of compressed air into the discharge passage 21 and the pressure in the discharge passage 21 is set to the set discharge pressure. Against the given Becomes equal to or larger than the unload starting pressure is had pressure, capacity control device for performing the capacity control of the operating state (unloaded operation) to stop the intake of the compressor body 2 is provided a suction valve 31 as the closed position.

また,図示の実施形態にあっては,前述の容量制御装置と共に,吐出流路21内の圧力が設定吐出圧力未満のとき圧縮機本体2を駆動するエンジン3の回転速度を所定の高速回転(一例として2500min−1)とし,圧縮機本体2より吐出される圧縮空気の吐出量を増加する一方,吐出流路21内の圧力が設定吐出圧力以上になると,圧縮機本体2を駆動するエンジン3の回転速度を前記高速回転から減速し始めて,圧縮機本体2より吐出される圧縮空気の吐出量を減少させ,前記吐出流路21内の圧力が前記アンロード開始圧力以上のとき,エンジン3の回転速度を所定の低速回転(一例として1200min−1)に維持する速度制御装置が設けられている。 In the illustrated embodiment, together with the above-described capacity control device, when the pressure in the discharge passage 21 is less than the set discharge pressure, the rotational speed of the engine 3 that drives the compressor body 2 is set at a predetermined high speed ( As an example, 2500 min −1 ) is set, and the discharge amount of compressed air discharged from the compressor main body 2 is increased. On the other hand, when the pressure in the discharge passage 21 becomes equal to or higher than the set discharge pressure, the engine 3 that drives the compressor main body 2 When the pressure in the discharge passage 21 is equal to or higher than the unload start pressure, the engine 3 starts to decelerate the rotational speed of the engine 3 from the high speed rotation. A speed control device is provided that maintains the rotational speed at a predetermined low speed (for example, 1200 min −1 ).

本発明において,この容量制御装置は圧縮機本体2の吸入口に設けられた吸入弁31と,吐出流路21と前記吸入弁31の閉弁受圧室間を連通する制御流路23(図示の例では制御流路23及びその分岐流路23a),及び前記制御流路23中に設けられた圧力調整杆32aを有する圧力調整弁32によって構成している。   In the present invention, this capacity control device includes a suction valve 31 provided at the suction port of the compressor body 2, a control flow path 23 (not shown) that communicates between the discharge flow path 21 and the valve-closing pressure receiving chamber of the suction valve 31. In the example, the control flow path 23 and its branch flow path 23 a), and a pressure adjustment valve 32 having a pressure adjustment rod 32 a provided in the control flow path 23 are configured.

また,図1に示す例において,前述の速度制御装置は,前述の容量制御装置と構成を一部共通するものとして構成されており,エンジン3に設けられた調速装置であるガバナ(機械式カバナ)3aのガバナレバー3bを揺動動作するスピードレギュレータ41を備え,このスピードレギュレータ41の作動圧室に,前述の制御流路23の分岐流路23bを連通することで,圧力調整弁32及び制御流路23が,前述した容量制御装置としてのみならず,速度制御装置の構成要素の一部としても機能するように構成されている。   In the example shown in FIG. 1, the speed control device described above is configured to share a part of the configuration with the capacity control device described above, and a governor (mechanical type) that is a speed control device provided in the engine 3. A speed regulator 41 that swings the governor lever 3b of the governor 3a is provided. By connecting the branch flow path 23b of the control flow path 23 to the working pressure chamber of the speed regulator 41, the pressure regulating valve 32 and the control The flow path 23 is configured to function not only as the capacity control device described above but also as a part of the components of the speed control device.

このような容量制御装置,及び速度制御装置を設けることにより,例えば消費側において圧縮空気の消費が行われることにより吐出流路21内の圧力が圧力調整弁32が開弁動作を開始する圧力である前述の設定吐出圧力(一例として0.69MPa)未満となっている状態では圧力調整弁32が全閉となり吐出流路21内の圧縮空気が圧力調整弁32を通過せず,吸入弁31の閉弁受圧室及びスピードレギュレータ41の作動圧室に対する圧縮空気の導入が停止して,圧縮機本体2の吸入口を全開としたフルロード運転が行われると共に,スピードレギュレータ41によりエンジン3のガバナレバー3bが高速側に移動されて,エンジン3,従って圧縮機本体2は高速(一例として2500min−1)で運転される。 By providing such a capacity control device and a speed control device, for example, when the compressed air is consumed on the consumption side, the pressure in the discharge passage 21 is the pressure at which the pressure regulating valve 32 starts the valve opening operation. In a state where the pressure is less than a certain set discharge pressure (0.69 MPa as an example), the pressure adjustment valve 32 is fully closed and the compressed air in the discharge passage 21 does not pass through the pressure adjustment valve 32 and the intake valve 31 is closed. The introduction of the compressed air to the valve pressure chamber and the working pressure chamber of the speed regulator 41 is stopped, and the full load operation is performed with the intake port of the compressor body 2 fully opened, and the governor lever 3b of the engine 3 is moved by the speed regulator 41. Moving to the high speed side, the engine 3 and hence the compressor body 2 are operated at high speed (2500 min −1 as an example).

一方,消費側における圧縮空気の消費が停止乃至は減少する等して吐出流路21内の圧力が圧力調整弁32が開弁動作を開始する圧力である前述の設定吐出圧力以上に上昇すると,前記設定吐出圧力に対して上昇した圧力の程度に応じて圧力調整弁32が制御流路23を開き,吐出流路21内の圧縮空気が圧力調整弁32を通過して吸入弁31の閉弁受圧室内及びスピードレギュレータ41の作動圧室内に導入されて,圧縮機本体2の吸入口を閉じる動作が開始すると共に,スピードレギュレータ41がエンジン3のガバナレバー3bを低速側に移動させる動作を開始する。   On the other hand, when consumption of compressed air on the consumption side stops or decreases, the pressure in the discharge passage 21 rises above the set discharge pressure, which is the pressure at which the pressure regulating valve 32 starts opening, The pressure adjustment valve 32 opens the control flow path 23 according to the degree of the pressure increased with respect to the set discharge pressure, and the compressed air in the discharge flow path 21 passes through the pressure adjustment valve 32 and the intake valve 31 is closed. The pressure regulator 41 is introduced into the pressure receiving chamber and the operating pressure chamber of the speed regulator 41 to start closing the suction port of the compressor body 2, and the speed regulator 41 starts to move the governor lever 3b of the engine 3 to the low speed side.

そして,さらに吐出流路21内の圧力が上昇して,前記設定吐出圧力よりも高いアンロード開始圧力(一例として0.79MPa)以上になると,吸入弁31が閉塞位置となり,圧縮機本体2の吸入口を閉じたアンロード運転に移行すると共に,スピードレギュレータ41がガバナレバー3bを低速の位置としてエンジン3及び圧縮機本体2が低速(一例として1200min−1)で運転される。 When the pressure in the discharge flow path 21 further increases and becomes higher than the unload start pressure (0.79 MPa as an example) higher than the set discharge pressure, the suction valve 31 is in the closed position, and the suction of the compressor body 2 While shifting to the unloading operation with the mouth closed, the speed regulator 41 operates the engine 3 and the compressor main body 2 at a low speed (for example, 1200 min −1 ) with the governor lever 3 b at a low speed position.

これとは逆に,例えば消費側における圧縮空気の消費が再開乃至は増加する等して吐出流路21内の圧力が前述のアンロード開始圧力未満に低下すると,圧力調整弁32が閉じ始めて吸入弁31が開き始めると共に,スピードレギュレータ41によるカバナレバー3bの高速側への移動が開始して,吐出流路21内の圧力が前述の設定吐出圧力未満に迄低下すると,圧縮機本体2が吸気口を全開としたフルロード運転に移行すると共に,スピードレギュレータ41がガバナレバー3bを高速の位置として,エンジン3及び圧縮機本体を高速回転で運転する。   On the other hand, when the pressure in the discharge passage 21 falls below the unload start pressure due to, for example, restarting or increasing the consumption of compressed air on the consumption side, the pressure regulating valve 32 starts to close and suction is performed. When the valve 31 starts to open and the speed regulator 41 starts to move the cover lever 3b to the high speed side, and the pressure in the discharge passage 21 drops below the set discharge pressure, the compressor body 2 is brought into the intake port. The speed regulator 41 operates the engine 3 and the compressor main body at high speed rotation with the governor lever 3b at a high speed position.

このような容量制御装置及び速度制御装置の動作により,吐出流路21内の圧力は前述の設定吐出圧力となるように制御されており,これにより消費側に対して安定した圧力の圧縮空気を供給することができるようになっている。   By such operations of the capacity control device and the speed control device, the pressure in the discharge flow passage 21 is controlled to be the above-mentioned set discharge pressure, and this allows compressed air having a stable pressure to the consumption side. It can be supplied.

ここで,本発明の容量制御装置及び速度制御装置では,圧力調整弁32の二次側における制御流路23内の圧力を該圧力調整弁の一次側における前記制御流路内の圧力に対して減圧する減圧手段が設けられており,図1に示す実施形態にあっては,この減圧手段として,制御流路23の分岐流路23aより分岐された放気流路25を設け,この放気流路25を吸入弁31の一次側の吸入流路26aに連通することにより開放して,圧力調整弁32の二次側における制御流路23内の圧縮空気を放気することで,圧力調整弁32の二次側圧力が,放気流路25の流路面積によって設定された放気量に従い圧力調整弁32の一次側圧力(吐出流路21内の圧力)に対して所定の低い圧力となるように設定されている。   Here, in the capacity control device and the speed control device of the present invention, the pressure in the control flow path 23 on the secondary side of the pressure regulating valve 32 is set to the pressure in the control flow path on the primary side of the pressure regulating valve. In the embodiment shown in FIG. 1, a depressurizing means for depressurizing is provided. As the depressurizing means, an air discharge flow path 25 branched from the branch flow path 23 a of the control flow path 23 is provided. 25 is opened by communicating with the suction passage 26 a on the primary side of the suction valve 31, and the compressed air in the control passage 23 on the secondary side of the pressure adjustment valve 32 is discharged to thereby release the pressure adjustment valve 32. The secondary side pressure of the air pressure becomes a predetermined low pressure with respect to the primary side pressure of the pressure regulating valve 32 (pressure in the discharge flow passage 21) according to the air discharge amount set by the flow passage area of the air discharge flow passage 25. Is set to

本発明では,この圧力調整弁32の二次側における圧力が,前述の設定吐出圧力(一例として0.69MPa)未満であって,常に吐出流路21内の圧力よりも低い圧力の範囲で前記圧力調整弁32の開度に応じて可変となるように設定されており,従って,この圧力調整弁32の二次側における制御流路23内の圧力によって作動する前述の吸入弁31及びスピードレギュレータ41も,設定吐出圧力未満,好ましくは設定吐出圧力に対して充分に低い圧力で動作を開始すると共に,吸入弁31を閉塞位置に,ガバナレバー3bを低速位置にするようになっている。   In the present invention, the pressure on the secondary side of the pressure regulating valve 32 is less than the above-described set discharge pressure (0.69 MPa as an example), and the pressure is always in a range lower than the pressure in the discharge passage 21. It is set so as to be variable according to the opening degree of the regulating valve 32. Therefore, the suction valve 31 and the speed regulator 41 are operated by the pressure in the control flow path 23 on the secondary side of the pressure regulating valve 32. However, the operation is started at a pressure lower than the set discharge pressure, preferably sufficiently lower than the set discharge pressure, and the suction valve 31 is set to the closed position and the governor lever 3b is set to the low speed position.

なお,図1を参照して説明した容量制御装置の構成において,制御流路23の分岐流路23aを吸入弁31の閉弁受圧室(図示せず)に対して連通する構成としているが,例えば図6を参照して説明した空気圧縮機のように吸入弁の本体とは別にレギュレータ等の開閉機構を備えている場合には,この開閉機構の作動圧室も,本発明で言う吸入弁31の閉弁受圧室に含まれる。   In the configuration of the capacity control device described with reference to FIG. 1, the branch flow path 23 a of the control flow path 23 is configured to communicate with the closed pressure receiving chamber (not shown) of the suction valve 31. For example, when an open / close mechanism such as a regulator is provided separately from the main body of the intake valve as in the air compressor described with reference to FIG. 6, the operating pressure chamber of the open / close mechanism is also referred to in the present invention. It is contained in 31 valve-closing pressure receiving chambers.

また,図示の構成にあっては,調速装置として機械式の調速装置(機械式のガバナ3a)を設けているが,これに代えて例えば既知の電子ガバナ等の電子制御式の調速装置を設けるものとしても良い。   In the configuration shown in the figure, a mechanical speed governor (mechanical governor 3a) is provided as a speed governor. Instead, for example, an electronically controlled speed governor such as a known electronic governor is used. A device may be provided.

ここで電子ガバナとは,入力された制御信号に基づいてエンジン3に対する燃料の供給量を制御することにより,前述の機械式のガバナと同様,エンジン3の回転速度を制御するものであり,このような電子ガバナを採用する場合には,例えば制御流路23による作動圧力の導入による制御に代えて,例えば消費流路22内の圧力を検知する圧力センサ,又は圧力調整弁32の二次側の制御流路23内の圧力を検知する圧力センサ等を設け,該センサで検知した圧力に応じてエンジン3,従って圧縮機本体2の回転速度を制御するように構成し,容量制御装置とは別に速度制御装置を構成するものとしても良い。   Here, the electronic governor controls the rotational speed of the engine 3 by controlling the amount of fuel supplied to the engine 3 based on the input control signal, like the mechanical governor described above. When such an electronic governor is employed, for example, instead of the control by introducing the operating pressure through the control flow path 23, for example, a pressure sensor for detecting the pressure in the consumption flow path 22 or the secondary side of the pressure regulating valve 32 A pressure sensor or the like for detecting the pressure in the control flow path 23 is provided, and the rotational speed of the engine 3 and thus the compressor body 2 is controlled according to the pressure detected by the sensor. Alternatively, a speed control device may be configured.

〔パージ機構〕
本発明の空気圧縮機1は,前述した容量制御装置及び速度制御装置の他,さらに,容量制御装置の吸入弁31が閉塞位置となったとき,圧縮機本体2の吐出口に連通された吐出流路21内の圧縮空気を大気へ放出して,圧縮機本体2の吐出側圧力を低下させる圧力低下処理と,吸入弁31を閉塞位置又は前記閉塞位置に対して僅かに開いた位置と成すように吸入弁31の閉弁受圧室内の圧力を維持する保圧処理を行うと共に,ガバナレバー3bを低速位置乃至は低速位置に対して僅かに高速側に揺動させた位置に維持する速度維持処理を行う,パージ機構が設けられている。
[Purge mechanism]
In addition to the capacity control device and the speed control device described above, the air compressor 1 according to the present invention further includes a discharge communicated with the discharge port of the compressor body 2 when the suction valve 31 of the capacity control device is in the closed position. A pressure reduction process for releasing the compressed air in the flow path 21 to the atmosphere to lower the discharge side pressure of the compressor body 2 and the suction valve 31 in the closed position or a position slightly opened with respect to the closed position. As described above, the pressure maintaining process for maintaining the pressure in the closed pressure receiving chamber of the suction valve 31 is performed, and the speed maintaining process for maintaining the governor lever 3b at the low speed position or the position slightly swung to the high speed side with respect to the low speed position. A purge mechanism is provided.

このパージ機構は,吐出流路21内の圧力がアンロード開始圧力(一例として0.79MPa)以上に上昇して容量制御装置を構成する吸入弁31が圧縮機本体2の吸入口を閉じると,圧縮機本体2の吐出側を開放して放気(パージ)を開始するもので,前記吐出流路21に連通されたパージ弁11と,該パージ弁11の開放時,前記吐出流路21内の圧縮空気を前記吸入弁31の閉弁受圧室やスピードレギュレータ41の作動圧室に導入する保圧流路24を備えており,前記パージ弁11の開放によって吐出流路21内の圧力を所定の下限圧力(一例として0.3MPa)に低下させると共に,この圧力に維持することができるように構成されている。   When the pressure in the discharge flow path 21 rises to an unload start pressure (0.79 MPa as an example) and the suction valve 31 constituting the capacity control device closes the suction port of the compressor body 2, The discharge side of the machine main body 2 is opened to start venting (purging). When the purge valve 11 communicates with the discharge passage 21 and the purge valve 11 is opened, A pressure holding channel 24 is provided for introducing compressed air into the closed pressure receiving chamber of the suction valve 31 and the working pressure chamber of the speed regulator 41. By opening the purge valve 11, the pressure in the discharge channel 21 is reduced to a predetermined lower limit. The pressure is reduced to 0.3 MPa (as an example) and can be maintained at this pressure.

図示の実施形態にあっては,パージ弁11の一次側を流路27を介して圧力調整弁32の一次側における前記制御流路23に連通すると共に,パージ弁の二次側に連通された前述の保圧流路24を,圧力調整弁32の二次側における制御流路23に連通している。   In the illustrated embodiment, the primary side of the purge valve 11 communicates with the control flow path 23 on the primary side of the pressure regulating valve 32 via the flow path 27 and also communicates with the secondary side of the purge valve. The aforementioned pressure holding channel 24 communicates with the control channel 23 on the secondary side of the pressure regulating valve 32.

従って,パージ弁11を開放すると,吐出流路21内の圧縮空気が圧力調整弁32をバイパスして圧力調整弁32の二次側における制御流路23内に導入されて,前述の放気流路25を介して圧縮空気の放気が行われると共に,パージ弁11,保圧流路24,制御流路23,23aを介して吐出流路21内の圧力が吸入弁31の閉弁受圧室に,さらに制御流路23の分岐流路23bを介してスピードレギュレータ41の作動圧室にそれぞれ導入されるようになっている。   Therefore, when the purge valve 11 is opened, the compressed air in the discharge flow path 21 bypasses the pressure adjustment valve 32 and is introduced into the control flow path 23 on the secondary side of the pressure adjustment valve 32, so Compressed air is discharged through the valve 25, and the pressure in the discharge channel 21 is supplied to the closed pressure receiving chamber of the suction valve 31 through the purge valve 11, the pressure holding channel 24, and the control channels 23 and 23 a. Further, the pressure is introduced into the working pressure chamber of the speed regulator 41 via the branch flow path 23 b of the control flow path 23.

なお,図示の構成では,パージ弁11の一次側,二次側共に制御流路23に対して連通するものとしているが,例えばパージ弁11の一次側を直接吐出流路21に連通するものとしても良く,また,保圧流路24を直接,吸入弁31の閉弁受圧室やスピードレギュレータ41の作動圧室に連通するものとしても良い。   In the configuration shown in the figure, both the primary side and the secondary side of the purge valve 11 communicate with the control flow path 23. However, for example, the primary side of the purge valve 11 communicates with the discharge flow path 21 directly. Alternatively, the pressure holding channel 24 may be directly communicated with the valve closing pressure receiving chamber of the suction valve 31 or the working pressure chamber of the speed regulator 41.

このように,保圧流路24を直接吸入弁31の閉弁受圧室やスピードレギュレータ41の作動圧室と連通する場合には,保圧流路24に連通する放気流路を設ける等して,パージ弁11の開放によって吐出流路21内の圧縮空気を放気することができるように構成する。   In this way, when the pressure retaining channel 24 is directly communicated with the closed pressure receiving chamber of the suction valve 31 or the working pressure chamber of the speed regulator 41, an air vent channel communicating with the pressure retaining channel 24 is provided, for example. The configuration is such that the compressed air in the discharge passage 21 can be discharged by opening the valve 11.

ここで,前述の保圧流路24は,パージ弁11の開放時,パージ弁11を介して導出された吐出流路21内の圧力を,吸入弁31の閉弁受圧室やスピードレギュレータ41の作動圧室に導入するもので,この圧力の導入により,閉弁受圧室や作動圧室内の圧力を保持して,吸入弁31を閉塞位置乃至は前記閉塞位置に対して僅かに吸入口を開いた状態に,前記スピードレギュレータ41によるガバナレバー3bを低速位置,又は前記低速位置に対して僅かに高速側に揺動させた位置に保持することができるようにしている。   Here, the above-described pressure holding flow path 24 uses the pressure in the discharge flow path 21 led out through the purge valve 11 when the purge valve 11 is opened, to actuate the closed pressure receiving chamber of the suction valve 31 and the speed regulator 41. This pressure is introduced into the pressure chamber. By introducing this pressure, the pressure in the valve closing pressure receiving chamber and the working pressure chamber is maintained, and the suction valve 31 is opened to the closed position or slightly to the closed position. In this state, the governor lever 3b by the speed regulator 41 can be held at a low speed position or a position slightly swung to the high speed side with respect to the low speed position.

このようなパージ時(パージ弁の開放時)における吸入弁31及びスピードレギュレータ41の動作を実現するために,吸入弁31を閉塞位置にする該吸入弁31の閉弁受圧室内の圧力と,ガバナレバー3bを低速位置に作動するスピードレギュレータ41の作動圧室の圧力は,前記下限圧力(一例として0.3MPa)よりも低い所定の圧力となっており,吐出流路内の圧力が下限圧力になったときに,閉弁受圧室や作動圧室に供給する吐出流路21内の圧縮空気が前述の所定の圧力に減圧されるよう前記減圧手段である放気流路25の流路面積を設定している。   In order to realize the operation of the suction valve 31 and the speed regulator 41 during such a purge (when the purge valve is opened), the pressure in the closed pressure receiving chamber of the suction valve 31 that brings the suction valve 31 into the closed position, the governor lever The pressure in the working pressure chamber of the speed regulator 41 that operates 3b to the low speed position is a predetermined pressure lower than the lower limit pressure (for example, 0.3 MPa), and the pressure in the discharge flow path becomes the lower limit pressure. Sometimes, the flow passage area of the discharge passage 25 which is the pressure reducing means is set so that the compressed air in the discharge passage 21 supplied to the valve closing pressure receiving chamber or the working pressure chamber is reduced to the predetermined pressure. Yes.

なお,以上の説明では吸入弁31が閉塞位置乃至は閉塞位置に対して僅かに開いた状態となるよう吸入弁31の閉弁受圧室内の圧力を維持する圧力保持処理と,エンジン3の速度維持処理とを,いずれも保圧流路24を介して吐出流路21内の圧縮空気を吸入弁31の閉弁受圧室及びスピードレギュレータ41の作動圧室に導入することにより行うものとしているが,速度維持処理を行う構成は,前述の保圧処理を行う構成とは別個に設けるものとしても良い。   In the above description, the pressure holding process for maintaining the pressure in the closed pressure receiving chamber of the suction valve 31 and the speed maintenance of the engine 3 so that the suction valve 31 is in the closed position or slightly opened with respect to the closed position. Both processes are performed by introducing the compressed air in the discharge passage 21 into the closed pressure receiving chamber of the suction valve 31 and the working pressure chamber of the speed regulator 41 via the pressure holding passage 24. The configuration for performing the maintenance process may be provided separately from the configuration for performing the pressure holding process.

ここで,吸入弁31が例えばバタフライ弁である場合には,弁体を閉塞位置とした場合にも,弁体と弁座の間には弁体を開閉動作させるために必要な開閉許容間隔が設けられており,また,その他の吸入弁31の構成においても,吸入弁31が閉塞位置にあるとき,圧縮機本体2の吸入口に生じる負圧を低減する目的で弁体に細孔を設けることも行われており,このような吸入弁31を採用した空気圧縮機にあっては,吸入弁31を閉塞位置とした状態においても僅かに吸入弁31の一次側の空気を圧縮機本体2に吸気している。   Here, when the intake valve 31 is a butterfly valve, for example, even when the valve body is in the closed position, an opening / closing allowable interval required for opening and closing the valve body is between the valve body and the valve seat. Also, in other configurations of the intake valve 31, when the intake valve 31 is in the closed position, pores are provided in the valve body for the purpose of reducing negative pressure generated at the intake port of the compressor body 2. In the air compressor employing such a suction valve 31, even when the suction valve 31 is in the closed position, the air on the primary side of the suction valve 31 is slightly discharged from the compressor body 2. Inhaling.

従って,このように,吸入弁31を閉塞位置とした場合に圧縮機本体2に対する僅かな吸気が生じ得る吸入弁31を使用する場合には,パージ時に吸入弁31を閉塞位置としたときの吐出流路21内の圧力を前述の下限圧力とし,閉塞位置において圧縮機本体2に対する吸気が遮断される吸入弁31を使用する場合には,パージ時に吸入弁31を前述の開閉許容間隔や細孔に対応した僅かな開度で開いたときの吐出流路21内の圧力を前述の下限圧力とし,パージ時には圧縮機本体2に僅かに吸気を発生させると共に,この状態における吸入弁31の開度及び圧縮機本体2の回転速度によって生じる圧縮機本体2の吸気量と,パージ弁11の開放時に前記吸入弁31の一次側の吸入流路26aに放出される圧縮空気の放気量の大気圧状態における容積とが一致するように,例えば放気流路25の流路面積を調整することで,吐出流路21内の圧力を一定の圧力(下限圧力)に維持することが可能となる。   Therefore, when the suction valve 31 that can generate a slight amount of intake air to the compressor body 2 when the suction valve 31 is in the closed position is used, the discharge when the suction valve 31 is set in the closed position during purging. When the suction valve 31 is used in which the pressure in the flow path 21 is the above-mentioned lower limit pressure and the intake to the compressor body 2 is shut off at the closed position, the suction valve 31 is set to the above-described permissible opening / closing intervals and pores during purging The pressure in the discharge flow passage 21 when opened with a slight opening corresponding to the above is the above-mentioned lower limit pressure, and during the purge, a slight amount of intake air is generated in the compressor body 2 and the opening of the intake valve 31 in this state And the intake air amount of the compressor body 2 generated by the rotational speed of the compressor body 2 and the atmospheric pressure of the compressed air discharged to the primary suction passage 26a of the suction valve 31 when the purge valve 11 is opened. In state That as volume and matches, by adjusting the flow passage area of the air flow path 25 release example, it is possible to maintain the pressure in the discharge passage 21 at a constant pressure (lower pressure).

前述のパージ弁11は,電気信号の受信によって動作する電磁開閉弁として構成されており,本実施形態において前述のパージ機構は,さらに,吸入弁31の二次側における吸入流路26b内の圧力を検知する吸入圧力検知手段51,消費流路内の圧力を検知する消費側圧力検知手段52を備えると共に,吸入圧力検知手段51及び消費側圧力検知手段52からの検知信号に基づいてパージ弁11を開閉制御する電子制御装置等によって実現されるパージ動作制御手段12を備えており,これらによってパージ弁11の開閉手段が実現されている。   The purge valve 11 is configured as an electromagnetic on-off valve that operates by receiving an electrical signal. In this embodiment, the purge mechanism further includes a pressure in the suction flow path 26b on the secondary side of the suction valve 31. And a consumption side pressure detection means 52 for detecting the pressure in the consumption flow path, and the purge valve 11 based on detection signals from the suction pressure detection means 51 and the consumption side pressure detection means 52. A purge operation control means 12 realized by an electronic control device or the like for controlling opening / closing of the purge valve 11 is realized.

このうち,前述の吸入圧力検知手段51,及び消費側圧検知手段52は,図示の実施形態にあってはいずれも圧力センサによって構成されるものであり,例えばダイヤフラムゲージのように,ダイヤフラムに加わる圧力を膜の変形量を静電容量の変化やひずみゲージによって測定して電気信号に変換する等,圧力の変化を電気信号に変換することができるものであれば各種のセンサを使用することができる。   Among these, the suction pressure detecting means 51 and the consumption side pressure detecting means 52 described above are each constituted by a pressure sensor in the illustrated embodiment. For example, a pressure applied to the diaphragm, such as a diaphragm gauge. Various sensors can be used as long as they can convert pressure changes into electrical signals, such as measuring the amount of deformation of a film with a change in capacitance or a strain gauge and converting it into an electrical signal. .

測定する圧力は,絶対圧乃至はゲージ圧いずれで測定するものであっても良く,吸入圧力検知手段51については,大気圧以下の負圧のみを計測する負圧センサとして構成するものとしても良い。   The pressure to be measured may be either an absolute pressure or a gauge pressure, and the suction pressure detection means 51 may be configured as a negative pressure sensor that measures only a negative pressure below atmospheric pressure. .

前述のパージ動作制御手段12は,前述したように電子制御装置などによって実現されるもので,吸入圧力検知手段51からの検知信号に基づいて,吸入弁31の二次側における吸入流路26b内の圧力を監視し,この圧力を記憶手段に記憶されている所定のパージ開始圧力と比較してパージ開始圧力以下になるとパージ弁11を開く制御信号を出力する。   The purge operation control means 12 described above is realized by an electronic control device or the like as described above. Based on the detection signal from the suction pressure detection means 51, the purge operation control means 12 is provided in the suction passage 26b on the secondary side of the suction valve 31. , And a control signal for opening the purge valve 11 is output when the pressure is equal to or lower than the purge start pressure compared with a predetermined purge start pressure stored in the storage means.

また,消費側圧力検知手段52からの検知信号に基づいて消費流路22内の圧力を監視し,パージ弁11の開放後,消費流路内の圧力が記憶手段に記憶された所定のパージ停止圧力以下に低下すると,前記パージ弁11を閉じる制御信号をパージ弁11に対して出力する。   Further, the pressure in the consumption flow path 22 is monitored based on the detection signal from the consumption side pressure detection means 52, and after the purge valve 11 is opened, the pressure in the consumption flow path is stored in the storage means for a predetermined purge stop. When the pressure drops below the pressure, a control signal for closing the purge valve 11 is output to the purge valve 11.

なお,本実施形態にあっては,前述のパージ動作制御手段12は,吸入圧力検知手段51からの検知信号に基づいて,吸入弁31の二次側における吸入流路26b内の圧力が前記パージ開始圧力以下となった状態の継続時間をタイマーによってカウントし,この継続時間が所定時間(本実施形態において30秒)継続していると判断した場合のみ,パージ弁11を開く制御信号を出力するように構成して,例えば消費側における圧縮空気の消費が停止した後,比較的短時間で消費が再開されて吸入弁31の二次側圧力が比較的短時間で上昇した場合にはパージを行わないようにしている。   In the present embodiment, the purge operation control means 12 is configured so that the pressure in the suction flow path 26b on the secondary side of the suction valve 31 is based on the detection signal from the suction pressure detection means 51. The duration of the state below the starting pressure is counted by a timer, and a control signal for opening the purge valve 11 is output only when it is determined that this duration has continued for a predetermined time (in this embodiment, 30 seconds). Thus, for example, after the consumption of compressed air on the consumption side is stopped, the consumption is resumed in a relatively short time, and when the secondary pressure of the suction valve 31 rises in a relatively short time, purge is performed. I do not do it.

以上のような動作を可能とするために,電子制御装置によって実現されるパージ動作制御手段12には,前述したパージ開始圧力,設定低下値,タイマーによりカウントする設定時間,パージ停止圧力等を記憶する記憶手段,吸入弁31の二次側における吸入流路26b内の圧力が前記パージ開始圧力以下となっている状態の継続時間をカウントするタイマー,及び,パージ弁11に対してこれを開閉する制御信号を出力する制御信号出力手段等がさらに実現されている。   In order to enable the operation as described above, the purge operation control means 12 realized by the electronic control device stores the purge start pressure, the set decrease value, the set time counted by the timer, the purge stop pressure, etc. Storage means, a timer for counting the duration of the state in which the pressure in the suction passage 26b on the secondary side of the suction valve 31 is equal to or lower than the purge start pressure, and the purge valve 11 are opened and closed. Control signal output means for outputting a control signal is further realized.

パージ動作制御手段12を実現する電子制御装置等には,前述のパージ開始圧力を可変する調整ツマミ,タイマーによりカウントする時間を調整する調整ツマミ,前記停止圧力を可変する調整ツマミ等を設けてもよく,作業者が空気圧縮機の使用状況や好みに応じて各調整ツマミを調整できるように構成しても良い。   The electronic control device or the like that realizes the purge operation control means 12 may be provided with the adjustment knob for changing the purge start pressure, the adjustment knob for adjusting the time counted by the timer, the adjustment knob for changing the stop pressure, and the like. Of course, it may be configured such that the operator can adjust each adjustment knob according to the use situation and preference of the air compressor.

なお,図1中,符号8はエンジン3に供給される燃料が充填された燃料タンクであり,また,符号9は,レシーバタンク4で回収された冷却油を圧縮機本体2の給油口に戻す給油流路中に設けられたオイルクーラである。   In FIG. 1, reference numeral 8 is a fuel tank filled with fuel to be supplied to the engine 3, and reference numeral 9 is a cooling oil recovered by the receiver tank 4 for returning to the fuel filler port of the compressor body 2. An oil cooler provided in the oil supply passage.

〔動作・作用等〕
以上のように構成された本発明のエンジン駆動型空気圧縮機1の動作を,図1,2を参照しながら以下に説明する。
[Operation / Action, etc.]
The operation of the engine-driven air compressor 1 of the present invention configured as described above will be described below with reference to FIGS.

消費側において圧縮空気の消費が行われ,圧縮機本体2の吐出側の圧力(吐出流路21内の圧力)を圧力調整弁32の開動作の開始圧力である設定吐出圧力(一例として0.69MPa)に維持するように容量制御及び速度制御が行われていた運転状態から,消費側における圧縮空気の消費が減少又は停止すると(T1),圧縮機本体2の吐出側圧力(吐出流路21及び消費流路22内の圧力)が上昇してやがて設定吐出圧力以上に上昇する(T2)。   Compressed air is consumed on the consumption side, and the pressure on the discharge side of the compressor body 2 (pressure in the discharge flow path 21) is set to a set discharge pressure (0.69 MPa as an example) that is the starting pressure of the pressure regulating valve 32 opening operation. When the consumption of compressed air on the consumption side is reduced or stopped from the operating state in which the capacity control and the speed control are performed so as to be maintained at (), the discharge side pressure (discharge flow path 21 and The pressure in the consumption flow path 22) rises and eventually rises above the set discharge pressure (T2).

この圧力上昇によって,圧力調整弁32の受圧室内の圧力が上昇して圧力調整弁32内の通路を開き始め,これに伴い逆止弁6の一次側に設けられた吐出流路21内の圧縮空気が制御流路23を介して減圧されて吸入弁31及びスピードレギュレータ41に導入される。   Due to this pressure rise, the pressure in the pressure receiving chamber of the pressure regulating valve 32 rises and the passage in the pressure regulating valve 32 starts to open, and along with this, the compression in the discharge passage 21 provided on the primary side of the check valve 6 Air is decompressed through the control flow path 23 and introduced into the intake valve 31 and the speed regulator 41.

吐出流路21内の圧力上昇に伴って,圧力調整弁32内の流路が広がり,これに伴い吸入弁31及びスピードレギュレータ41に供給される圧力も上昇して,吸入弁31の受圧室内の圧力が上昇すると弁体が圧縮機本体2の吸入口を閉じる方向に作動し,受圧室内の圧力に応じて作動量(開度)が変化する。スピードレギュレータ41の受圧室内の圧力が上昇するとロッドを押し出してエンジン3のガバナレバー3bを高速回転(一例として2500min−1)を実現する高速位置から低速側へ回動し,受圧室内の圧力上昇に伴ってエンジンの回転速度が低下する。 As the pressure in the discharge passage 21 rises, the passage in the pressure regulating valve 32 widens, and the pressure supplied to the suction valve 31 and the speed regulator 41 also rises accordingly, and the pressure in the pressure receiving chamber of the suction valve 31 increases. When the pressure rises, the valve body operates in a direction to close the suction port of the compressor body 2, and the operation amount (opening) changes according to the pressure in the pressure receiving chamber. When the pressure in the pressure receiving chamber of the speed regulator 41 rises, the rod is pushed out and the governor lever 3b of the engine 3 is rotated from the high speed position at which high speed rotation (for example, 2500 min −1 ) is realized to the low speed side. The engine speed decreases.

制御流路23は放気流路25を介して吸入弁31の一次側の吸入流路26aと連通していることから,圧力調整弁32の一次側における制御流路23内の圧力(吐出流路21内の圧力)に対して圧力調整弁32の二次側における制御流路23内の圧力は低く,前述した設定吐出圧力(一例として0.69MPa)に対して低い圧力,好ましくは充分に低い圧力となっており,吸入弁31やスピードレギュレータ41の作動圧力についても,この圧力調整弁32の二次側における制御流路23内の圧力によって動作可能な比較的低い圧力に設定されている。   Since the control channel 23 communicates with the primary suction channel 26 a of the suction valve 31 via the air release channel 25, the pressure (discharge channel) in the control channel 23 on the primary side of the pressure regulating valve 32. The pressure in the control flow path 23 on the secondary side of the pressure regulating valve 32 is lower than the set discharge pressure (for example, 0.69 MPa), preferably a sufficiently low pressure. The operating pressures of the suction valve 31 and the speed regulator 41 are also set to a relatively low pressure that can be operated by the pressure in the control flow path 23 on the secondary side of the pressure regulating valve 32.

吸入弁31の動作と,スピードレギュレータ41の動作は,例えば吸入弁31の作動よりも先にスピードレギュレータ41が作動して,エンジン3及び圧縮機本体2の回転速度を低下させて吸入空気量を低下させた後で吸入流路26を絞るようにするものとしても良いが,それぞれが同時であっても,吸入弁31が先に作動するようにしてもよく,エンジン3の出力特性と圧縮機本体2の動力特性により,いずれの運転状態であってもエンジン3がストール(停止を含む減速)しないように調整されていればよい。   The operation of the intake valve 31 and the operation of the speed regulator 41 are performed, for example, by operating the speed regulator 41 prior to the operation of the intake valve 31 to reduce the rotational speeds of the engine 3 and the compressor body 2 to reduce the intake air amount. The suction flow passage 26 may be throttled after the reduction, but the suction valve 31 may be operated first even if they are simultaneously, the output characteristics of the engine 3 and the compressor It is only necessary to adjust the engine 3 so that it does not stall (decelerate including stop) in any operating state, depending on the power characteristics of the main body 2.

吸入弁31が絞られると,吸入弁31を通過する空気量が減少して吸入弁31の二次側における吸入流路26b内の圧力が徐々に低下する。   When the suction valve 31 is throttled, the amount of air passing through the suction valve 31 decreases, and the pressure in the suction flow path 26b on the secondary side of the suction valve 31 gradually decreases.

なお,図2中吸入流路26b内の圧力はT2−T3間において直線で示されているが,吸入弁31がバタフライタイプやピストンタイプのものである場合には,吸入弁31の弁体が全開している状態から絞り始めても吸入弁31の二次側における吸入流路26b内の圧力低下はほとんどなく,弁体が全閉となる近傍において該吸入流路26b内の圧力が急激に低下し,吸入空気量が急激に減少する。   In FIG. 2, the pressure in the suction passage 26b is shown as a straight line between T2 and T3. However, when the suction valve 31 is of a butterfly type or a piston type, the valve body of the suction valve 31 is Even if the throttle is started from the fully opened state, there is almost no pressure drop in the suction flow path 26b on the secondary side of the suction valve 31, and the pressure in the suction flow path 26b rapidly decreases in the vicinity where the valve element is fully closed. However, the amount of intake air decreases rapidly.

吸入弁31が閉動作すると共に,圧縮機本体2の回転が低速側に移行するに従い,吐出流路21及び消費流路22内の圧力上昇も緩やかとなるが,圧縮機本体2からの圧縮空気の吐出自体は継続しているために,圧縮機本体2の吐出側圧力(吐出流路21内圧力,消費流路22内圧力)はさらに上昇し,圧力調整弁32が全開となる圧力であるアンロード運転圧力(一例として0.79MPa)以上になると,圧力調整弁32が全開となり,吸入弁31は閉塞位置となると共に,スピードレギュレータ41はガバナレバー3bを低速位置と成しエンジン3の回転速度が低速(一例として1200min−1)となる(T3)。 As the suction valve 31 closes and the rotation of the compressor body 2 shifts to the low speed side, the pressure rise in the discharge passage 21 and the consumption passage 22 also becomes moderate, but the compressed air from the compressor body 2 Since the discharge itself continues, the pressure on the discharge side of the compressor body 2 (pressure in the discharge flow path 21 and pressure in the consumption flow path 22) further increases, and the pressure regulating valve 32 is fully opened. When the pressure exceeds the unloading operation pressure (0.79 MPa as an example), the pressure adjustment valve 32 is fully opened, the intake valve 31 is in the closed position, and the speed regulator 41 has the governor lever 3b at the low speed position so that the rotational speed of the engine 3 is The speed is low (for example, 1200 min −1 ) (T3).

吸入弁31が閉塞位置となることにより変化する吸入弁31の二次側における吸入流路26b内の圧力は,吸入圧力検知手段51によって測定されており,この吸入圧力検知手段51からの検知信号を受信したパージ動作制御手段12は,予め設定されたパージ開始圧力(一例として-0.06MPa)と,吸入圧力検知手段51が検知した吸入流路26b内の圧力とを比較し,吸入圧力検知手段51によって検知された圧力がパージ開始圧力以下になるとタイマーによりカウントを開始する(T4)。   The pressure in the suction flow path 26b on the secondary side of the suction valve 31 that changes when the suction valve 31 is in the closed position is measured by the suction pressure detection means 51, and a detection signal from the suction pressure detection means 51 is detected. The purge operation control means 12 that has received the pressure compares the preset purge start pressure (-0.06 MPa as an example) with the pressure in the suction flow path 26b detected by the suction pressure detection means 51, and the suction pressure detection means When the pressure detected by 51 becomes equal to or lower than the purge start pressure, the timer starts counting (T4).

このパージ開始圧力以下の圧力検知が所定の設定時間(例えば30秒)継続して行われると,パージ動作制御手段12はパージ弁11に対して開弁信号を出力してパージ弁11を開放する(T5)。   When pressure detection below the purge start pressure is continuously performed for a predetermined set time (for example, 30 seconds), the purge operation control means 12 outputs a valve opening signal to the purge valve 11 to open the purge valve 11. (T5).

なお,タイマーによる設定時間(一例として30秒)のカウント前に,吸入圧力検知手段51が検知した吸入弁31の二次側における吸入流路26b内の圧力が前述のパージ開始圧力(-0.06MPa)を超えると,タイマーによるカウントがリセットされ,次にパージ開始圧力以下の圧力が検知される迄,待機状態となりパージ弁11の開放は行われない。   Note that the pressure in the suction flow path 26b on the secondary side of the suction valve 31 detected by the suction pressure detection means 51 before the count of the set time (for example, 30 seconds) by the timer is the aforementioned purge start pressure (−0.06 MPa). ), The timer count is reset, and the purge valve 11 is not opened until a pressure equal to or lower than the purge start pressure is detected.

パージ弁11の内部通路は圧力調整弁32の内部通路よりも流路面積が広く形成されており,圧力調整弁32に対して流量が大きくなっていることから,パージ弁11が開くと保圧流路24に吐出流路21内の圧縮空気が流れ,この圧縮空気は制御流路23,放気流路25を介して吸入弁31一次側の吸入流路26aに放気される。このようにして吸入弁31の一次側における吸入流路26aに放気された圧縮空気は,例えば前述した吸入弁31の開閉許容間隔等を介して一部は圧縮機本体2へ吸い込まれ,他はエアフィルタ7から大気放出される。   The internal passage of the purge valve 11 has a larger flow area than the internal passage of the pressure regulating valve 32, and the flow rate is larger than the pressure regulating valve 32. The compressed air in the discharge passage 21 flows through the passage 24, and the compressed air is discharged to the suction passage 26 a on the primary side of the suction valve 31 through the control passage 23 and the discharge passage 25. In this way, a part of the compressed air discharged into the suction passage 26a on the primary side of the suction valve 31 is sucked into the compressor body 2 through the above-described allowable opening / closing interval of the suction valve 31, for example. Are released from the air filter 7 into the atmosphere.

このようにして,パージ弁11が開放されて吐出流路21内の圧縮空気が放出されると,吸入流路26が吸入弁31で絞られ又は塞がれることにより吸入空気量が僅かな状態となっている圧縮機本体2より吐出される圧縮空気に対し,大気放出される圧縮空気の量が上回り,次第に吐出流路21内の圧力及びこれに連通する圧縮機本体2の吐出室内の圧力が低下して圧縮機本体2の消費動力が減少する。   Thus, when the purge valve 11 is opened and the compressed air in the discharge passage 21 is released, the suction passage 26 is throttled or closed by the suction valve 31 so that the amount of intake air is small. The amount of compressed air released to the atmosphere is greater than the compressed air discharged from the compressor main body 2, and the pressure in the discharge flow passage 21 and the pressure in the discharge chamber of the compressor main body 2 communicating with this gradually increase. Decreases and the power consumption of the compressor body 2 decreases.

なお,パージ弁11の開放によって吐出流路21内の圧縮空気が放気された状態においても,逆止弁6の二次側に設けられた消費流路22内の圧力はパージ弁11の開放による影響を受けずに,パージ弁11の開放直前における吐出流路21内の圧力状態を維持する。   Even in the state where the compressed air in the discharge passage 21 is released by opening the purge valve 11, the pressure in the consumption passage 22 provided on the secondary side of the check valve 6 remains open. The pressure state in the discharge passage 21 immediately before the purge valve 11 is opened is maintained without being affected by the above.

パージ弁11の開放によって吐出流路21内の圧力が設定吐出圧力(例えば0.69MPa)未満になると,圧力調整弁32の内部通路が全閉となる(T6)。   When the pressure in the discharge passage 21 becomes less than the set discharge pressure (for example, 0.69 MPa) by opening the purge valve 11, the internal passage of the pressure regulating valve 32 is fully closed (T6).

しかし,パージ弁11の二次側に設けた保圧流路24を吸入弁31の閉弁受圧室やスピードレギュレータ41の作動圧室に連通(図1の例では,保圧流路24を圧力調整弁32の二次側において制御流路23に連通し,制御流路23を介して吸入弁31の閉弁受圧室とスピードレギュレータ41の作動圧室に連通)した本発明の構成にあっては,パージ弁11の開放によって吐出流路21内の圧縮空気が吸入弁31の閉弁受圧室とスピードレギュレータ41の作動圧室に導入されて圧力が保持され,吸入弁31によって吸入流路26が塞がれた状態が維持されると共に,エンジン3のガバナレバー3bが低速側へ回動した状態に維持される。   However, the pressure holding passage 24 provided on the secondary side of the purge valve 11 communicates with the closed pressure receiving chamber of the suction valve 31 and the working pressure chamber of the speed regulator 41 (in the example of FIG. 1, the pressure holding passage 24 is connected to the pressure regulating valve). 32 on the secondary side communicates with the control flow path 23 and communicates with the closed pressure receiving chamber of the suction valve 31 and the working pressure chamber of the speed regulator 41 via the control flow path 23). When the purge valve 11 is opened, the compressed air in the discharge passage 21 is introduced into the closed pressure receiving chamber of the suction valve 31 and the operating pressure chamber of the speed regulator 41 to maintain the pressure. The suction valve 31 closes the suction passage 26. While the peeled state is maintained, the governor lever 3b of the engine 3 is maintained in a state of rotating to the low speed side.

パージ弁11の開放状態が継続することにより吐出流路21内の圧力がさらに低下してやがて下限圧力(一例として0.3MPa)となると,吐出流路21内の圧力低下は,この下限圧力で停止すると共に,この下限圧力に維持される。   If the pressure in the discharge flow path 21 further decreases due to continued opening of the purge valve 11 and eventually reaches a lower limit pressure (0.3 MPa as an example), the pressure drop in the discharge flow path 21 stops at this lower limit pressure. At the same time, this lower limit pressure is maintained.

この下限圧力に吐出流路21内の圧力が維持されることにより,吸入弁31は閉塞位置乃至は前記閉塞位置に対して僅かに開いた状態を維持すると共に,スピードレギュレータ41は,ガバナレバー3bを低速位置乃至は低速位置に対して僅かに高速側に揺動させた位置に維持される。   By maintaining the pressure in the discharge flow path 21 at this lower limit pressure, the suction valve 31 maintains the closed position or slightly opened with respect to the closed position, and the speed regulator 41 allows the governor lever 3b to move. The low speed position or the position slightly swung to the high speed side with respect to the low speed position is maintained.

このような下限圧力の維持は,一例として吐出流路21内の圧力が前記下限圧力に低下したとき,吸入弁31の一次側の空気を圧縮機本体2に吸気する吸気量が,放気流路25を介して吸入流路26aへ放気される圧縮空気放気量の大気圧状態における容積とを一致させることにより実現することができ,この吸気量と放気量とが一致すると,吐出流路21内の圧力が前記下限圧力(例えば0.3MPa)で維持され,吸入弁31及びスピードレギュレータ41の受圧室に導入される作動圧が一定となる(T7)。   Such a lower limit pressure is maintained, for example, when the pressure in the discharge passage 21 decreases to the lower limit pressure, the amount of intake air that sucks the air on the primary side of the suction valve 31 into the compressor body 2 is determined as the discharge passage. 25, the volume of the compressed air discharged to the intake passage 26a through the volume in the atmospheric pressure state can be made to coincide with each other. The pressure in the passage 21 is maintained at the lower limit pressure (for example, 0.3 MPa), and the operating pressure introduced into the pressure receiving chambers of the suction valve 31 and the speed regulator 41 becomes constant (T7).

なお,吐出流路21内の圧力が下限圧力に低下したときの圧縮機本体2の吸気量は,吸入弁31が閉塞位置にある場合には吸入弁31の開閉許容間隔や弁体に設けた細孔で形成される流路面積,又は,吸入弁31が僅かに開いた状態にある場合にはこの開度において生じる流路面積,及び,スピードレギュレータ41によって実現されるエンジン3(圧縮機本体2)の回転速度によって決まる。   The intake air amount of the compressor body 2 when the pressure in the discharge passage 21 is reduced to the lower limit pressure is provided in the opening / closing allowable interval of the intake valve 31 or the valve body when the intake valve 31 is in the closed position. The flow path area formed by the pores, or the flow path area generated at this opening when the suction valve 31 is slightly open, and the engine 3 (compressor body) realized by the speed regulator 41 It depends on the rotation speed of 2).

以上のように,パージ弁11の開放によって,吐出流路21内の圧力は前述した下限圧力迄低下するが,このパージ弁11の開放によって吐出流路21内の圧力が低下しても,逆止弁6によって消費流路22内の圧縮空気は吐出流路21側へは逆流せずに,消費流路22内の圧力はパージ弁11の開放直前における吐出流路21内の圧力(図示の例では一例として0.79MPa)を維持する。   As described above, when the purge valve 11 is opened, the pressure in the discharge passage 21 is reduced to the above-described lower limit pressure. However, even if the pressure in the discharge passage 21 is lowered by opening the purge valve 11, The stop valve 6 does not cause the compressed air in the consumption flow path 22 to flow back to the discharge flow path 21 side, and the pressure in the consumption flow path 22 is the pressure in the discharge flow path 21 immediately before the purge valve 11 is opened (not shown). In the example, 0.79 MPa) is maintained as an example.

パージ動作制御手段12は,消費側圧力検知手段52の検知信号に基づいて消費流路22内の圧力を監視すると共に,記憶手段に記憶したパージ停止圧力(例えば0.69MPa)を消費側圧力検知手段52によって検知された消費流路22内の圧力と比較する。   The purge operation control means 12 monitors the pressure in the consumption flow path 22 based on the detection signal of the consumption side pressure detection means 52 and also uses the purge stop pressure (for example, 0.69 MPa) stored in the storage means as consumption side pressure detection means. The pressure in the consumption flow path 22 detected by 52 is compared.

以上の状態から,消費側における圧縮空気の消費が再開すると(T8),消費流路22内の圧力が低下し,消費側圧力検知手段52がこの圧力の低下を検知してパージ動作制御手段12に対して出力される検知信号に変化が生じる。そして,消費流路22内の圧力が,前述したパージ停止圧力(一例として0.69MPa)未満になると,パージ動作制御手段12は,パージ弁11に対して閉弁信号を出力して,パージ弁を閉じる(T9)。   From the above state, when the consumption of compressed air on the consumption side resumes (T8), the pressure in the consumption flow path 22 decreases, and the consumption-side pressure detecting means 52 detects this decrease in pressure and the purge operation control means 12 is detected. A change occurs in the detection signal output for. When the pressure in the consumption flow path 22 becomes less than the purge stop pressure (0.69 MPa as an example) described above, the purge operation control means 12 outputs a valve closing signal to the purge valve 11 to turn off the purge valve. Close (T9).

このようにしてパージ弁11が閉じると,吸入弁31及びスピードレギュレータ41に対する圧縮空気の供給が停止して,吸入弁31が吸入流路26を開くと共に,スピードレギュレータ41はガバナレバー3bを高速側へ回動し,エンジン3及び圧縮機本体2の回転速度を上昇させ吸入空気量を増加したフルロード運転に移行する。   When the purge valve 11 is closed in this way, the supply of compressed air to the suction valve 31 and the speed regulator 41 is stopped, the suction valve 31 opens the suction passage 26, and the speed regulator 41 moves the governor lever 3b to the high speed side. It rotates, and the rotational speed of the engine 3 and the compressor main body 2 is increased to shift to the full load operation in which the intake air amount is increased.

そして,吐出流路21内の圧力が上昇し消費流路22内の圧力以上に上昇すると逆止弁6を開いて消費流路22を介して消費側に対して圧縮空気が供給されて,消費流路22内の圧力低下が停止すると共に,吐出流路21内の圧力と消費流路内の圧力とが一致した状態となり(T10),吐出流路21内の圧力が設定吐出圧力(一例として0.69MPa)を維持するように容量制御及び速度制御が行われる。   When the pressure in the discharge flow path 21 rises and rises above the pressure in the consumption flow path 22, the check valve 6 is opened and compressed air is supplied to the consumption side via the consumption flow path 22. While the pressure drop in the flow path 22 stops, the pressure in the discharge flow path 21 and the pressure in the consumption flow path coincide with each other (T10), and the pressure in the discharge flow path 21 becomes the set discharge pressure (as an example) Capacity control and speed control are performed so as to maintain 0.69 MPa).

本発明の制御装置は,以上のように構成されているために,比較的簡単な構成でありながら,アンロード運転時にパージ弁11を開放して吐出流路21内の圧力を低下させても,吸入弁31を閉塞位置又は閉塞位置に対して僅かに開いた位置に維持することができると共に,エンジン3の回転速度を低速回転に維持することができ,その結果,空気圧縮機の燃費を大幅に低減することができた。   Since the control device of the present invention is configured as described above, the control device of the present invention has a relatively simple configuration, and even if the purge valve 11 is opened during the unload operation to reduce the pressure in the discharge passage 21. , The intake valve 31 can be maintained at the closed position or a position slightly opened with respect to the closed position, and the rotational speed of the engine 3 can be maintained at a low speed. As a result, the fuel consumption of the air compressor can be reduced. It was possible to greatly reduce.

以上の構成を備えた本発明の制御装置によって制御した空気圧縮機における燃費の向上について,図4,5を参照して説明する。   The improvement of the fuel consumption in the air compressor controlled by the control device of the present invention having the above configuration will be described with reference to FIGS.

図4は,速度制御装置の動作に遅れて容量制御装置が作動するように構成した空気圧縮機におけるエンジン3及び圧縮機本体2の出力及び動力と回転速度との相関関係を示したもので,A点は吸入弁31を全開とした状態で,且つ,エンジン及び圧縮機本体が高速(フルロード回転速度:一例として2500min−1)で運転している状態にある。このときの吐出流路21内の圧力は設定吐出圧力(一例として0.69MPa)で略一定に維持されている。 FIG. 4 shows the correlation between the output of the engine 3 and the compressor main body 2 and the power and the rotational speed in the air compressor configured so that the capacity controller operates after the operation of the speed controller. At point A, the intake valve 31 is fully opened, and the engine and the compressor main body are operating at high speed (full load rotational speed: 2500 min −1 as an example). The pressure in the discharge channel 21 at this time is maintained substantially constant at a set discharge pressure (for example, 0.69 MPa).

このA点において,圧縮機本体2の動力は最大であり,この状態から例えば吐出流路21内の圧力が設定吐出圧力(一例として0.69MPa)より低下すると,速度制御装置はガバナレバーを高速位置に維持するものの,吐出流路21内の圧力低下による背圧の低下により圧縮機本体2の動力は,A点に対して図中右側のエンジンの出力曲線(フルロード運転時)に沿って低下する。   At this point A, the power of the compressor body 2 is maximum, and from this state, for example, when the pressure in the discharge passage 21 drops below the set discharge pressure (0.69 MPa as an example), the speed control device moves the governor lever to the high speed position. Although maintained, the power of the compressor body 2 decreases along the output curve of the engine on the right side in the figure (during full load operation) with respect to point A due to the decrease in the back pressure due to the pressure decrease in the discharge passage 21. .

これとは逆に,吐出流路21内の圧力が前述の設定吐出圧力を超えると,圧力上昇に応じて速度制御装置が吐出流路21内の圧力が設定吐出圧力(一例として0.69MPa)に近付くようにエンジンの回転速度を低下させ,このようにしてエンジンの回転速度を低下させると圧縮機本体2に対する吸入空気量が減少して圧縮機本体の動力も低下する。   On the contrary, when the pressure in the discharge flow path 21 exceeds the above-described set discharge pressure, the speed control device changes the pressure in the discharge flow path 21 to the set discharge pressure (0.69 MPa as an example) in accordance with the pressure increase. When the rotational speed of the engine is lowered so as to approach the engine, and the rotational speed of the engine is lowered in this way, the amount of intake air with respect to the compressor body 2 is reduced and the power of the compressor body is also lowered.

図4中の点A−B間は,吸入弁31を全開とした状態で,吐出流路21内の圧力上昇に応じてエンジンの回転速度のみを制御した場合における圧縮機本体2の動力変化を示している。   Between points A and B in FIG. 4, the change in power of the compressor body 2 when only the rotational speed of the engine is controlled according to the pressure rise in the discharge passage 21 with the suction valve 31 fully opened. Show.

吐出流路21内の圧力がさらに上昇すると,速度制御装置に遅れて容量制御装置が作動して,前述の速度制御と併用して容量制御が行われ,容量制御装置は吐出流路21内の圧力上昇に対して,吐出流路21内の圧力が設定吐出圧力(一例として0.69MPa)に近付くように吸入弁31を絞る。この容量制御の開始点が図中のB点であり,点B−C間は速度制御と容量制御を併用した場合における圧縮機本体2の動力変化の状態を示している。   When the pressure in the discharge flow path 21 further increases, the capacity control apparatus operates after the speed control apparatus, and the capacity control is performed in combination with the speed control described above. The suction valve 31 is throttled so that the pressure in the discharge passage 21 approaches the set discharge pressure (0.69 MPa as an example) as the pressure rises. The starting point of this capacity control is the point B in the figure, and the point B-C shows the state of power change of the compressor body 2 when the speed control and the capacity control are used together.

容量制御の併用が開始されることにより,速度制御のみが行われていた場合に比較して,圧縮機本体2に対する吸入空気量の減少割合が大きくなり,これに伴い圧縮機本体の動力がさらに低下する。   By starting the combined use of the capacity control, the rate of reduction of the intake air amount with respect to the compressor body 2 becomes larger than when only the speed control is performed, and as a result, the power of the compressor body further increases. descend.

そのため,圧縮機本体2の動力性能を示す線図は,B点を境に図中左側において相対的に傾斜が急なものとなり,大幅な動力低下,従ってこれを駆動するエンジンに対する負荷も大幅に軽減されていることが判る。   For this reason, the diagram showing the power performance of the compressor body 2 has a relatively steep slope on the left side of the diagram from the point B, resulting in a significant reduction in power, and thus a large load on the engine that drives it. It can be seen that it has been reduced.

さらに吐出流路21内の圧力が上昇して,アンロード開始圧力(一例として0.79MPa)となると,吸入弁が閉塞位置となり,吸入空気量が最小(ゼロを含む)となると共に,エンジンの回転速度を低速(アンロード回転速度;一例として1200min−1)としたアンロード運転に移行する(C点)。 Further, when the pressure in the discharge flow path 21 rises to an unload start pressure (0.79 MPa as an example), the intake valve becomes the closed position, the intake air amount becomes minimum (including zero), and the engine rotation Transition is made to an unload operation in which the speed is low (unload rotation speed; 1200 min −1 as an example) (point C).

ここで,フルロード運転時における圧縮機本体の動力(A点)を100%とすると,アンロード運転時における圧縮機本体動力(C点)は約33%に減少している。   Here, assuming that the power (point A) of the compressor body during full load operation is 100%, the compressor body power (point C) during unload operation is reduced to about 33%.

アンロード運転に移行したとき,またはアンロード運転を所定時間継続した後にパージ弁11を開放すると,パージ弁11の開放により吐出流路21内の圧力が低下して,この圧力低下に伴い,圧縮機本体2の動力はエンジンの出力曲線(アンロード運転時)に沿って低下する(点C−D間)。   When the purge valve 11 is opened after shifting to the unload operation or after the unload operation has been continued for a predetermined time, the pressure in the discharge passage 21 is reduced by the opening of the purge valve 11, and the compression is accompanied by the pressure drop. The power of the machine main body 2 decreases along the engine output curve (during unload operation) (between points C and D).

D点は,このパージ弁11の開放によって吐出流路21内の圧力が前述の下限圧力(一例として0.3MPa)まで低下し,この圧力を維持している状態であり,この状態の圧縮機本体2の動力(D点)は,前述のフルロード運転時における動力(A点)を100%としたときの約23%である。   Point D is a state in which the pressure in the discharge passage 21 is reduced to the above-mentioned lower limit pressure (for example, 0.3 MPa) by opening the purge valve 11, and this pressure is maintained. The power (point D) of No. 2 is about 23% when the power (point A) in the above-described full load operation is 100%.

ここで,図4の特性を示した空気圧縮機において使用した速度制御装置は,C点,D点のいずれにおいてもガバナレバーを低速位置とした状態を維持していたが,D点におけるエンジンの回転速度は,C点での回転速度(アンロード回転速度;一例として1200min−1)に比較して高い回転速度(一例として1250min−1)となった。従って,この回転速度の増加は,C点に対してD点では,圧縮機本体2の動力が低下したことに伴い,エンジンに対する負荷が軽減されたことにより生じたものであり,速度制御装置によってもたらされる回転速度の増加ではない。 Here, the speed control device used in the air compressor having the characteristics shown in FIG. 4 maintained the governor lever in the low speed position at both points C and D. The speed was higher than the rotation speed at point C (unload rotation speed; 1200 min −1 as an example) (1250 min −1 as an example). Therefore, the increase in the rotational speed is caused by the load on the engine being reduced at the point D with respect to the point C due to the reduction in the power of the compressor main body 2, which is caused by the speed control device. It is not an increase in the resulting rotational speed.

なお,上記の例では,C点,D点のいずれにおいてもガバナレバーの位置は低速位置に維持されているものとして説明したが,前述した下限圧力(一例として0.3MPa)の設定によっては,D点においてガバナレバーを低速位置に対して僅かに高速側に回動した位置となり,これに伴って,エンジン3(圧縮機本体2)の回転速度がさらに増加し得る。   In the above example, the governor lever has been described as being maintained at the low speed position at both the points C and D. However, depending on the setting of the lower limit pressure (as an example, 0.3 MPa), the point D The governor lever is in a position slightly rotated to the high speed side with respect to the low speed position, and accordingly, the rotational speed of the engine 3 (compressor body 2) can be further increased.

しかし,パージを行った運転状態(D点)では,吐出流路21内の圧力低下に伴って圧縮機本体2の動力が大幅に低下しているために,仮にパージ時の回転速度(D点)がアンロード運転時の回転速度(C点)に対して増加しても,この回転速度の増加が10%以下の上昇であれば燃費向上の効果が得られるため,この程度の回転速度の増加は本発明の範囲に含まれる。   However, in the operation state (point D) in which the purge is performed, the power of the compressor body 2 is greatly reduced as the pressure in the discharge passage 21 decreases. ) Increases with respect to the rotational speed (point C) during unloading operation, if this increase in rotational speed is an increase of 10% or less, an effect of improving fuel economy can be obtained. Increases are within the scope of the present invention.

図5は,時間あたりの全負荷運転と無負荷運転との割合(負荷率)に対するエンジン駆動型圧縮機の燃料消費量を示すグラフであって,ア点は時間当たり100%全負荷運転時(図4におけるA点)の燃料消費量であって,イ点はパージ運転を行わない100%無負荷運転時(全負荷0%)(図4における点C)の燃料消費量,ウ点はパージ運転を100%無負荷運転時(全負荷0%)(図4におけるD点)行ったときの燃料消費量である。   FIG. 5 is a graph showing the fuel consumption of the engine-driven compressor with respect to the ratio (load factor) between full load operation and no load operation per hour, and the point A is 100% full load operation per hour ( The fuel consumption at point A in FIG. 4 is the fuel consumption at 100% no-load operation (full load 0%) without the purge operation (point C in FIG. 4). This is the fuel consumption when the operation is performed at 100% no-load operation (0% full load) (point D in FIG. 4).

点ア−イ−ウ内のハッチングはパージ運転を行わない従来の圧縮機に対して本発明の圧縮機による燃費の向上が得られていること(省エネ効果が高いこと)を示している。   The hatching in the point arrow shows that fuel efficiency is improved by the compressor of the present invention (high energy-saving effect) over the conventional compressor that does not perform the purge operation.

実施形態2
本発明のさらに別の構成例を図4〜6を参照して説明する。
図4中の符号1は,本発明の第2実施形態の空気圧縮機(エンジン駆動型圧縮機)であり,図1を参照して説明した構成では,パージ弁11の開閉動作を,電子制御装置によって構成されるパージ動作制御手段12が圧力センサである吸入圧力検知手段51及び消費側圧力検知手段52からの検知信号に基づいて行うものとして説明したが,図4に示す構成では,前述した図1に示す構成に代え,吸入圧力検知手段51’,消費側圧力検知手段52’として,いずれも圧力スイッチを採用し,該圧力スイッチのON,OFFによりパージ弁11が開閉するように構成した点において異なる。
Embodiment 2
Still another configuration example of the present invention will be described with reference to FIGS.
Reference numeral 1 in FIG. 4 denotes an air compressor (engine-driven compressor) according to a second embodiment of the present invention. In the configuration described with reference to FIG. 1, the opening / closing operation of the purge valve 11 is controlled electronically. The purge operation control means 12 constituted by the apparatus has been described as being performed based on the detection signals from the suction pressure detection means 51 and the consumption side pressure detection means 52, which are pressure sensors. In the configuration shown in FIG. Instead of the configuration shown in FIG. 1, the suction pressure detecting means 51 ′ and the consumption side pressure detecting means 52 ′ are both configured to employ pressure switches, and the purge valve 11 is opened and closed by turning the pressure switches on and off. It is different in point.

また,本実施形態の構成にあっては,保圧流路24内に放気サイレンサ13を設け,パージ弁11の開放時,この放気サイレンサ13を介しても吐出流路21内の圧縮空気を放気できるように構成していると共に,放気サイレンサ13を設けた位置に対して下流側の保圧流路24内に逆止弁14を設け,圧力調整弁32を通過して圧力調整弁32の二次側における制御流路23内に導入された圧縮空気が,この放気サイレンサ13を介して放気されないように構成した点で図1を参照して説明した実施形態1の構成とは異なり,その他の構成は,前述の図1を参照して説明した実施形態1の構成と同様である。   Further, in the configuration of the present embodiment, the air release silencer 13 is provided in the pressure holding flow path 24, and when the purge valve 11 is opened, the compressed air in the discharge flow path 21 is also passed through the air release silencer 13. The check valve 14 is provided in the pressure holding flow path 24 on the downstream side of the position where the release silencer 13 is provided, and the pressure adjustment valve 32 passes through the pressure adjustment valve 32. The configuration of the first embodiment described with reference to FIG. 1 in that the compressed air introduced into the control flow path 23 on the secondary side is not released through the release silencer 13. The other configurations are the same as those of the first embodiment described with reference to FIG.

この図3に示す実施形態2の構成において,圧力スイッチである前述の吸入圧力検知手段51’は,一例として-60kPaでON,-20kPaでOFFとなるように設定されており,また,圧力スイッチである消費側圧力検知手段52’は,一例として0.69MPaでON,0.64MPaでOFFとなるように設定されている。   In the configuration of the second embodiment shown in FIG. 3, the above-described suction pressure detecting means 51 ′, which is a pressure switch, is set so as to be ON at −60 kPa and OFF at −20 kPa as an example. As an example, the consumption side pressure detecting means 52 ′ is set to be ON at 0.69 MPa and OFF at 0.64 MPa.

以上のように構成された本実施形態の圧縮機の構成において,消費側における圧縮空気の消費が停止し,又は消費量が減少することにより,吐出流路21内の圧力がアンロード開始圧力以上になると,容量制御手段が吸入弁31を絞り又は閉じ,これにより吸入弁31の二次側と圧縮機本体2間の圧力が-60kPaまで低下すると,吸入圧力検知手段51’を構成する圧力スイッチがONになり,パージ弁11を開放する。   In the configuration of the compressor of the present embodiment configured as described above, the consumption of compressed air on the consumption side is stopped or the amount of consumption is reduced, so that the pressure in the discharge passage 21 is equal to or higher than the unload start pressure. Then, the capacity control means throttles or closes the suction valve 31, and when the pressure between the secondary side of the suction valve 31 and the compressor body 2 drops to -60 kPa, the pressure switch constituting the suction pressure detection means 51 ' Becomes ON and the purge valve 11 is opened.

パージ弁11の開放により,パージ弁11の二次側連通された保圧流路24に設けた放気サイレンサ13から一部の圧縮空気が大気へ放出される。放気サイレンサ13の入口にオリフィスを設ける等して,放気サイレンサ13に対して導入される圧縮空気の流量を調整することで,制御流路23へ流れる圧縮空気と放気サイレンサ13から大気へ放出される圧縮空気との割合を調整することができ,これにより,前述した下限圧力の調整が可能である。   When the purge valve 11 is opened, a part of the compressed air is released to the atmosphere from the exhaust silencer 13 provided in the pressure-holding flow path 24 connected to the secondary side of the purge valve 11. By adjusting the flow rate of the compressed air introduced into the exhaust silencer 13 by providing an orifice at the inlet of the exhaust silencer 13, the compressed air flowing into the control flow path 23 and the exhaust silencer 13 to the atmosphere are adjusted. The ratio of the compressed air to be released can be adjusted, and thus the above-described lower limit pressure can be adjusted.

放気サイレンサ13により放気されずに制御流路23に導入された圧縮空気は,放気流路25を介して放気されると共に,分岐流路23a,23bを介して吸入弁31及びスピードレギュレータ41の作動圧室にそれぞれ導入されて,作動圧室内の圧力を保持する。   The compressed air introduced into the control flow path 23 without being discharged by the discharge silencer 13 is discharged through the discharge flow path 25 and the intake valve 31 and the speed regulator via the branch flow paths 23a and 23b. Introduced into the 41 working pressure chambers, the pressure in the working pressure chamber is maintained.

パージ弁11を開放した運転状態において,消費側における圧縮空気の消費が再開され,又は消費量が増加する等して消費流路22内の圧力0.64MPaまで低下すると,圧力スイッチによって構成された消費側圧力検知手段52’がOFFとなり,パージ弁11が閉じてパージが終了する。   In the operation state in which the purge valve 11 is opened, when the consumption of compressed air is resumed or the pressure in the consumption passage 22 decreases to 0.64 MPa due to an increase in consumption, the consumption constituted by the pressure switch The side pressure detecting means 52 ′ is turned OFF, the purge valve 11 is closed, and the purge is completed.

ここで,圧力調整弁32の作動開始圧力である前述の設定吐出圧力を本実施形態にあっては0.69MPaとしていることから,このとき圧力調整弁32は閉じた状態にあり,パージ弁11が閉じることによって吸入弁31の閉弁受圧室,及びスピードレギュレータ41の作動圧室に対する圧縮空気の導入が停止して,吸入弁31を全開,エンジンを高速としたフルロード運転に復帰する。   Here, since the above-mentioned set discharge pressure, which is the operation start pressure of the pressure adjustment valve 32, is 0.69 MPa in this embodiment, the pressure adjustment valve 32 is closed at this time, and the purge valve 11 is By closing, the introduction of compressed air to the closed pressure receiving chamber of the intake valve 31 and the working pressure chamber of the speed regulator 41 is stopped, and the intake valve 31 is fully opened and the engine is returned to a full load operation at a high speed.

この吸入弁31の開放により,吸入弁31の二次側における吸入流路26b内の圧力は-3kPaに上昇し,圧力スイッチである吸入圧力検知手段51’がOFFとなる圧力である-20kPaよりも大幅に高い圧力となっていることから,フルロード運転時,パージ弁11を確実に閉状態に維持することができる。   By opening the suction valve 31, the pressure in the suction flow path 26b on the secondary side of the suction valve 31 rises to -3 kPa, and from -20 kPa, which is the pressure at which the suction pressure detecting means 51 'as a pressure switch is turned off. Since the pressure is significantly higher, the purge valve 11 can be reliably kept closed during the full load operation.

以上のように構成した実施形態2の構成にあっては,圧力スイッチである吸入圧力検知手段51’,消費側圧力検知手段52’のON,OFFによりパージ弁11を開閉動作させるように構成したことから,実施形態1の構成において採用していた電子制御装置等によって構成されるパージ動作制御手段12が不要となり,より一層装置構成を簡略化することができた。   In the configuration of the second embodiment configured as described above, the purge valve 11 is opened and closed by turning on and off the suction pressure detection means 51 ′ and the consumption side pressure detection means 52 ′ which are pressure switches. Therefore, the purge operation control means 12 constituted by the electronic control unit or the like employed in the configuration of Embodiment 1 is not necessary, and the device configuration can be further simplified.

また,保圧流路24中に放気サイレンサ13を設け,パージ弁11の開放時,この放気サイレンサ13によっても吐出流路21内の圧縮空気を放気可能としたことから,放気サイレンサ13による放気量を調整することで,パージ弁11を介して吸入弁31の閉弁受圧室やスピードレギュレータ41の作動圧室に導入される作動圧(下限圧力)の調整が容易となると共に,放気サイレンサ13を設けることにより,パージ時,吐出流路21内の圧力,従って圧縮機本体2の動力をより速く低下させることができる。   Further, the air release silencer 13 is provided in the pressure holding flow path 24, and when the purge valve 11 is opened, the air release silencer 13 can also release the compressed air in the discharge flow path 21. By adjusting the amount of air discharged by the valve, it becomes easy to adjust the operating pressure (lower limit pressure) introduced into the closed pressure receiving chamber of the intake valve 31 and the operating pressure chamber of the speed regulator 41 via the purge valve 11. By providing the air release silencer 13, the pressure in the discharge flow path 21, and hence the power of the compressor body 2, can be reduced more quickly during purging.

なお,実施形態2において保圧流路24に設けた放気サイレンサ13と逆止弁14は,前述した実施形態1の装置構成においても設けることもできる。   In addition, the air release silencer 13 and the check valve 14 provided in the pressure holding channel 24 in the second embodiment can also be provided in the apparatus configuration of the first embodiment described above.

1 空気圧縮機
2 圧縮機本体
3 駆動源(エンジン)
3a ガバナ
3b ガバナレバー
4 レシーバタンク
5 セパレータ
6 逆止弁
7 エアフィルタ
8 燃料タンク
9 オイルクーラ
11 パージ弁
12 パージ動作制御手段
13 放気サイレンサ
14 逆止弁
21 吐出流路
22 消費流路
23 制御流路
23a 分岐流路(吸入弁側)
23b 分岐流路(スピードレギュレータ側)
24 保圧流路
25 放気流路
26 吸入流路
26a 吸入流路(吸入弁の一次側)
26b 吸入流路(吸入弁の二次側)
27 流路
31 吸入弁
32 圧力調整弁
32a 圧力調整杆
41 スピードレギュレータ
51,51’ 吸入圧力検知手段
52,52’ 消費側圧力検知手段
100 空気圧縮機
102 圧縮機本体
103 エンジン
103a 調速装置(ガバナ)
103b レバー(ガバナの)
104 レシーバタンク
111 オートレリーフバルブ
131 バタフライ弁(吸入弁)
132 レギュレータ(ベロフラム型)
141 レギュレータ(ダイヤフラム型)
150 ドレーンタンク
151,152 流路
200 空気圧縮機
202 圧縮機本体
204 レシーバタンク
206 圧力調整弁兼逆止弁
207 逆止弁
208〜210,217 流路
211 オートレリーフバルブ
216,216’ パイロット流路
222 供給流路
231 吸入弁
231a ダイヤフラム室
232 レギュレータ
VS,PS,PPS 圧力スイッチ
SV,SVV 三方電磁弁
DESCRIPTION OF SYMBOLS 1 Air compressor 2 Compressor body 3 Drive source (engine)
3a Governor 3b Governor lever 4 Receiver tank 5 Separator 6 Check valve 7 Air filter 8 Fuel tank 9 Oil cooler 11 Purge valve 12 Purge operation control means 13 Air release silencer 14 Check valve 21 Discharge flow path 22 Consumption flow path 23 Control flow path 23a Branch channel (suction valve side)
23b Branch flow path (speed regulator side)
24 Holding pressure channel 25 Air discharge channel 26 Suction channel 26a Suction channel (primary side of suction valve)
26b Suction flow path (secondary side of suction valve)
27 Flow path 31 Suction valve 32 Pressure adjustment valve 32a Pressure adjustment valve 41 Speed regulator 51, 51 ′ Suction pressure detection means 52, 52 ′ Consumption side pressure detection means 100 Air compressor 102 Compressor body 103 Engine 103a Speed governor (governor) )
103b Lever (in the governor)
104 Receiver tank 111 Auto relief valve 131 Butterfly valve (suction valve)
132 Regulator (Bellofram type)
141 Regulator (diaphragm type)
150 Drain tanks 151, 152 Flow path 200 Air compressor 202 Compressor body 204 Receiver tank 206 Pressure regulating valve / check valve 207 Check valve 208-210, 217 Flow path 211 Auto relief valve 216, 216 'Pilot flow path 222 Supply channel 231 Suction valve 231a Diaphragm chamber 232 Regulator VS, PS, PPS Pressure switch SV, SVV Three-way solenoid valve

Claims (11)

圧縮機本体から消費側に至る圧縮空気の流路に一端を連通する制御流路と,前記圧縮機本体の吸入口に設けた吸入弁と,前記圧縮機本体の吐出側圧力に応じて前記制御流路を開閉する圧力調整弁を備え,前記制御流路の他端に前記吸入弁の閉弁受圧室を連通して,前記圧縮機本体の吐出側圧力が前記圧力調整弁が開動作を開始する圧力である設定吐出圧力未満のときに前記吸入弁を全開とし,前記圧縮機本体の吐出側圧力が前記設定吐出圧力以上になると前記吸入弁の閉動作を開始すると共に,前記圧縮機本体の吐出側圧力が前記設定吐出圧力に対して所定の高い圧力であるアンロード開始圧力以上になると,前記吸入弁を閉塞位置とする容量制御を行う容量制御装置と,前記圧縮機本体を駆動するエンジンの調速装置によって該エンジンの回転速度を制御すると共に,前記圧縮機本体の吐出側圧力が前記アンロード開始圧力以上のとき前記エンジンの回転速度を所定の低速回転にする速度制御を行う速度制御装置とを備えた空気圧縮機において,
前記圧縮機本体から消費側に至る前記圧縮空気の流路中に逆止弁を設け,前記逆止弁の一次側における前記流路を吐出流路,前記逆止弁の二次側における前記流路を消費流路とし,前記制御流路の前記一端を前記吐出流路に連通して,前記圧力調整弁が開いたとき,前記吐出流路内の圧力に対して減圧した該吐出流路内の圧縮空気を前記吸入弁の閉弁受圧室に導入して前記容量制御を行い,
前記吐出流路にさらにパージ弁を連通し,前記容量制御装置が前記吸入弁を閉塞位置としたとき,前記パージ弁を開放して前記吐出流路内の圧縮空気を大気及び/又は前記吸入弁の一次側の吸入流路へ放出することにより前記吐出流路の圧力を低下させる圧力低下処理と,前記パージ弁を介して放出された前記吐出流路内の圧縮空気の一部を前記吸入弁の閉弁受圧室に導入することにより前記吸入弁の閉弁受圧室内の圧力を保持する保圧処理を行うと共に,,
前記パージ弁の開放時,前記エンジンの回転速度を前記低速回転又は該低速回転に対して僅かに増速した回転速度に維持する速度維持処理を行い,
前記パージ弁の開放により前記吐出流路内の圧力を,前記設定吐出圧力未満の圧力であって,前記吸入弁が閉塞位置乃至は該閉塞位置に対して僅かに開いた状態となる所定の下限圧力まで低下させると共に,前記パージ弁が閉弁するまで前記圧力低下処理,保圧処理及び速度維持処理を継続して前記下限圧力に低下した前記吐出流路内の圧力を前記下限圧力に維持することを特徴とするエンジン駆動型空気圧縮機の制御方法。
A control flow path having one end communicating with a flow path of compressed air from the compressor body to the consumption side, a suction valve provided at a suction port of the compressor body, and the control according to a discharge side pressure of the compressor body A pressure regulating valve for opening and closing the flow path is provided, and a closed pressure receiving chamber of the suction valve is communicated with the other end of the control flow path so that the discharge pressure of the compressor body starts opening the pressure regulating valve The suction valve is fully opened when the pressure is less than the set discharge pressure, and when the discharge side pressure of the compressor body becomes equal to or higher than the set discharge pressure, the suction valve is closed and the compressor body is closed. A capacity control device that performs capacity control with the suction valve as a closed position when the discharge-side pressure is equal to or higher than an unload start pressure that is a predetermined high pressure with respect to the set discharge pressure; and an engine that drives the compressor body The governor of the engine An air compressor comprising: a speed control device that controls a rotation speed and performs a speed control for setting a rotation speed of the engine to a predetermined low speed when a discharge side pressure of the compressor body is equal to or higher than the unload start pressure. In
A check valve is provided in the compressed air flow path from the compressor body to the consumption side, the flow path on the primary side of the check valve is a discharge flow path, and the flow on the secondary side of the check valve is When the pressure regulating valve is opened by connecting the one end of the control flow path to the discharge flow path and opening the pressure adjusting valve, the discharge flow path is depressurized with respect to the pressure in the discharge flow path. The compressed air is introduced into the closed pressure receiving chamber of the intake valve to perform the capacity control,
When a purge valve is further communicated with the discharge flow path, and the capacity control device places the suction valve in a closed position, the purge valve is opened so that the compressed air in the discharge flow path is discharged into the atmosphere and / or the suction valve. A pressure reduction process for reducing the pressure of the discharge flow path by discharging to the suction flow path on the primary side, and a part of the compressed air in the discharge flow path discharged through the purge valve A pressure holding process for holding the pressure in the valve closing pressure chamber of the suction valve by introducing the valve into the valve closing pressure chamber,
When the purge valve is opened, a speed maintaining process is performed to maintain the rotational speed of the engine at the low speed or a speed slightly increased with respect to the low speed.
When the purge valve is opened, the pressure in the discharge flow path is a pressure lower than the set discharge pressure, and the suction valve is in a closed position or in a state of being slightly opened with respect to the closed position. The pressure in the discharge flow path, which has been reduced to the lower limit pressure, is maintained at the lower limit pressure by continuing the pressure reduction process, the pressure holding process, and the speed maintaining process until the purge valve is closed. A control method for an engine-driven air compressor.
前記圧力調整弁の二次側における前記制御流路を前記エンジンの調速装置を動作させるスピードレギュレータの作動圧室に連通して前記速度制御装置を形成することにより,前記圧力調整弁が開いたとき,前記吐出流路内の圧縮空気を該吐出流路内の圧力に対して減圧して前記スピードレギュレータの作動圧室に導入し,前記吐出流路内の圧力が前記設定吐出圧力未満のときに前記エンジンの回転速度を所定の高速回転とし,前記吐出流路内の圧力が前記設定吐出圧力以上になると前記エンジンの回転速度の減速を開始し,更に前記吐出流路内の圧力が前記アンロード開始圧力以上のとき前記エンジンの回転速度を前記低速回転にする前記速度制御を行うと共に,
前記パージ弁の開放時,該パージ弁を介して放出された前記吐出流路内の圧縮空気の一部を,前記スピードレギュレータの作動圧室に導入することにより前記速度維持処理を行うことを特徴とする請求項1記載のエンジン駆動型空気圧縮機の制御方法。
The pressure control valve is opened by communicating the control flow path on the secondary side of the pressure control valve with an operating pressure chamber of a speed regulator that operates the speed control device of the engine to form the speed control device. When the compressed air in the discharge flow path is reduced with respect to the pressure in the discharge flow path and introduced into the working pressure chamber of the speed regulator, and the pressure in the discharge flow path is less than the set discharge pressure When the engine rotation speed is set to a predetermined high speed and the pressure in the discharge flow path becomes equal to or higher than the set discharge pressure, the engine rotation speed starts to be reduced, and the pressure in the discharge flow path is Performing the speed control to make the engine speed at the low speed when the load starting pressure is exceeded,
When the purge valve is opened, the speed maintaining process is performed by introducing a part of the compressed air in the discharge flow path discharged through the purge valve into the working pressure chamber of the speed regulator. The method for controlling an engine-driven air compressor according to claim 1.
前記パージ弁を開放して前記吐出流路内が前記下限圧力のとき,前記パージ弁を介して大気及び/又は前記吸入弁の一次側の吸入流路へ放出される圧縮空気の放気量の大気圧状態における容積と,前記圧縮機本体の吸入量を一致させることにより,前記吐出流路内の圧力を前記下限圧力に維持することを特徴とする請求項1又は2記載のエンジン駆動型空気圧縮機の制御方法。   When the purge valve is opened and the inside of the discharge passage is at the lower limit pressure, the amount of compressed air released to the atmosphere and / or the suction passage on the primary side of the suction valve via the purge valve is reduced. 3. The engine-driven air according to claim 1, wherein the pressure in the discharge flow path is maintained at the lower limit pressure by matching a volume in an atmospheric pressure state with an intake amount of the compressor body. 4. Compressor control method. 前記パージ弁の開放を前記吸入弁の二次側と前記圧縮機本体間の吸入流路内の圧力が大気圧よりも低い圧力の範囲で予め設定したパージ開始圧力以下になったときに行うと共に,
前記パージ弁の開放後,前記消費流路内の圧力が所定の圧力値以下に低下したとき,前記パージ弁を閉じることを特徴とする請求項1〜3いずれか1項記載のエンジン駆動型空気圧縮機の制御方法。
The purge valve is opened when the pressure in the suction flow path between the secondary side of the suction valve and the compressor body falls below a preset purge start pressure within a pressure range lower than atmospheric pressure. ,
The engine-driven air according to any one of claims 1 to 3, wherein after the purge valve is opened, the purge valve is closed when the pressure in the consumption flow path drops below a predetermined pressure value. Compressor control method.
前記吐出流路内の圧力が所定の供給圧力以上のときに前記消費流路に対する圧縮空気の導入を行うと共に,前記下限圧力を前記供給圧力未満の圧力としたことを特徴とする請求項1〜4いずれか1項記載のエンジン駆動型空気圧縮機の制御方法。   The compressed air is introduced into the consumption flow path when the pressure in the discharge flow path is equal to or higher than a predetermined supply pressure, and the lower limit pressure is set to a pressure lower than the supply pressure. 4. A method for controlling an engine-driven air compressor according to any one of claims 4 to 5. 圧縮機本体から消費側に至る圧縮空気の流路に一端を連通する制御流路と,前記圧縮機本体の吸入口に設けた吸入弁と,前記圧縮機本体の吐出側圧力に応じて前記制御流路を開閉する圧力調整弁を備え,前記制御流路の他端に前記吸入弁の閉弁受圧室を連通して,前記圧縮機本体の吐出側圧力が前記圧力調整弁が開動作を開始する圧力である設定吐出圧力未満のとき,前記吸入弁を全開とし,前記圧縮機本体の吐出側圧力が前記設定吐出圧力以上となると前記吸入弁の閉動作を開始すると共に,前記圧縮機本体の吐出側圧力が前記設定吐出圧力に対して所定の高い圧力であるアンロード開始圧力以上になると,前記吸入弁を閉塞位置とする容量制御装置と,前記圧縮機本体を駆動するエンジンの調速装置によって該エンジンの回転速度を制御すると共に,前記圧縮機本体の吐出側圧力が前記アンロード開始圧力以上のとき前記エンジンの回転速度を所定の低速回転にする速度制御装置とを備えた空気圧縮機において,
前記圧縮機本体から消費側に至る前記圧縮空気の流路中に逆止弁を設け,前記逆止弁の一次側における前記流路を吐出流路,前記逆止弁の二次側における前記流路を消費流路とし,
前記制御流路の前記一端を前記吐出流路に連通して前記容量制御装置を形成すると共に,該容量制御装置の前記制御流路に前記圧力調整弁の二次側における前記制御流路内の圧力を該圧力調整弁の一次側における前記制御流路内の圧力に対して減圧する減圧手段を設け,
さらに,前記吐出流路に連通すると共に前記容量制御装置が前記吸入弁を閉塞位置としたときに開放して前記吐出流路内の圧縮空気を大気及び/又は前記吸入弁の一次側の吸入流路へ放出するパージ弁と,該パージ弁の開放時に前記吐出流路内の圧縮空気を前記吸入弁の閉弁受圧室に導入する保圧流路を備えると共に,前記パージ弁の開放時,前記エンジンの回転速度を前記低速回転又は該低速回転に対して僅かに増速した回転速度に維持する速度維持機構を備えるパージ機構を設け,
前記パージ機構により,前記パージ弁の開放時,前記吐出流路内の圧力を前記設定吐出圧力未満の圧力であって前記吸入弁を閉塞位置乃至は該閉塞位置に対して僅かに開いた位置とする所定の下限圧力まで低下させると共に,該下限圧力を維持可能としたことを特徴とするエンジン駆動型空気圧縮機。
A control flow path having one end communicating with a flow path of compressed air from the compressor body to the consumption side, a suction valve provided at a suction port of the compressor body, and the control according to a discharge side pressure of the compressor body A pressure regulating valve for opening and closing the flow path is provided, and a closed pressure receiving chamber of the suction valve is communicated with the other end of the control flow path so that the discharge pressure of the compressor body starts opening the pressure regulating valve The suction valve is fully opened when the discharge pressure is less than the set discharge pressure, and when the discharge side pressure of the compressor body becomes equal to or higher than the set discharge pressure, the suction valve is closed and the compressor body is closed. When the discharge side pressure becomes equal to or higher than the unload start pressure, which is a predetermined high pressure with respect to the set discharge pressure, a capacity control device that sets the suction valve to a closed position, and a speed control device for the engine that drives the compressor body To control the rotation speed of the engine Rutotomoni, in the compressor air compressor discharge side pressure and a speed control device for the rotational speed of the engine when the above said unload starting pressure to a predetermined low speed rotation of the body,
A check valve is provided in the compressed air flow path from the compressor body to the consumption side, the flow path on the primary side of the check valve is a discharge flow path, and the flow on the secondary side of the check valve is The road is a consumption flow path,
The one end of the control flow path is communicated with the discharge flow path to form the capacity control device, and the control flow path of the capacity control device is connected to the control flow path on the secondary side of the pressure regulating valve. Pressure reducing means for reducing the pressure relative to the pressure in the control flow path on the primary side of the pressure regulating valve is provided;
In addition, the compressed air in the discharge flow path is opened when the capacity control device communicates with the discharge flow path and the capacity control device places the suction valve in the closed position, and the compressed air in the discharge flow path is sucked into the air and / or the suction valve on the primary side. A purge valve that discharges to the passage, and a pressure-holding passage that introduces compressed air in the discharge passage into the valve-closing pressure receiving chamber of the suction valve when the purge valve is opened, and when the purge valve is opened, the engine A purge mechanism comprising a speed maintaining mechanism for maintaining the rotational speed of the motor at a low speed or a speed slightly increased with respect to the low speed.
When the purge valve is opened by the purge mechanism, the pressure in the discharge flow path is a pressure lower than the set discharge pressure, and the suction valve is closed or slightly opened with respect to the closed position. An engine-driven air compressor characterized in that the lower limit pressure can be maintained while the lower limit pressure can be maintained.
前記圧力調整弁の二次側における前記制御流路を前記エンジンの調速装置を動作させるスピードレギュレータの作動圧室に連通することにより,前記吐出流路内の圧力が前記設定吐出圧力未満のときに前記エンジンの回転速度を所定の高速回転とし,前記吐出流路内の圧力が前記設定吐出圧力以上になると前記エンジンの回転速度を減速し始め,前記吐出流路内の圧力が前記アンロード開始圧力以上のとき前記エンジンの回転速度を前記低速回転にする前記速度制御装置を形成すると共に,
前記保圧流路を前記スピードレギュレータの作動圧室に対し連通することにより前記速度維持機構を構成したことを特徴とする請求項6記載のエンジン駆動型空気圧縮機。
When the pressure in the discharge flow path is less than the set discharge pressure by communicating the control flow path on the secondary side of the pressure regulating valve with a working pressure chamber of a speed regulator that operates the speed governor of the engine The engine rotation speed is set to a predetermined high speed, and when the pressure in the discharge passage becomes equal to or higher than the set discharge pressure, the rotation speed of the engine starts to decrease, and the pressure in the discharge passage starts to unload. Forming the speed control device for setting the rotational speed of the engine to the low speed when the pressure is higher than the pressure;
The engine-driven air compressor according to claim 6, wherein the speed maintaining mechanism is configured by communicating the pressure-holding passage with an operating pressure chamber of the speed regulator.
前記圧力調整弁の二次側における前記制御流路に前記保圧流路を連通すると共に,前記圧力調整弁及び/又は前記パージ弁の二次側に,他端が大気及び/又は前記吸入弁の一次側の吸入流路へ開放された放気流路の一端を連通したことを特徴とする請求項6又は7記載のエンジン駆動型空気圧縮機。   The pressure holding valve communicates with the control flow path on the secondary side of the pressure regulating valve, and the other end of the pressure regulating valve and / or the purge valve is connected to the atmosphere and / or the suction valve. The engine-driven air compressor according to claim 6 or 7, wherein one end of an air discharge passage opened to the primary suction passage is communicated. 前記パージ弁を開放して前記吐出流路内の圧力が前記下限圧力のときの前記圧縮機本体の吸気量と,前記パージ弁を介して大気及び/又は前記吸入弁の一次側の吸入流路へ放出される圧縮空気の放気量の大気圧状態における容積とが一致するよう,前記パージ弁による放気量を設定したことを特徴とする請求項6〜8いずれか1項記載のエンジン駆動型空気圧縮機。   The intake amount of the compressor body when the purge valve is opened and the pressure in the discharge passage is the lower limit pressure, and the suction passage on the primary side of the air and / or the suction valve via the purge valve The engine drive according to any one of claims 6 to 8, wherein an air discharge amount by the purge valve is set so that an air discharge amount of the compressed air released to the air matches a volume in an atmospheric pressure state. Type air compressor. 前記パージ弁を電磁開閉弁とし,
前記吸入弁の二次側と前記圧縮機本体間の吸入流路内の圧力を検知する吸入圧力検知手段と,前記消費流路内の圧力を検知する消費側圧力検知手段を有し,前記吸入弁の二次側と前記圧縮機本体間の吸入流路内の圧力が大気圧よりも低い圧力の範囲で予め設定したパージ開始圧力以下になったときに前記パージ弁を開放すると共に,前記消費流路内の圧力が所定の圧力値以下に低下したときに前記パージ弁を閉塞するパージ弁の開閉手段を設けたことを特徴とする請求項6〜9いずれか1項記載の空気圧縮機。
The purge valve is an electromagnetic on-off valve,
A suction pressure detecting means for detecting the pressure in the suction flow path between the secondary side of the suction valve and the compressor body; and a consumption side pressure detecting means for detecting the pressure in the consumption flow path. When the pressure in the suction flow path between the secondary side of the valve and the compressor body falls below a preset purge start pressure within a pressure range lower than atmospheric pressure, the purge valve is opened and the consumption The air compressor according to any one of claims 6 to 9, further comprising a purge valve opening / closing means for closing the purge valve when the pressure in the flow path drops below a predetermined pressure value.
前記逆止弁に,前記吐出流路内の圧縮空気の圧力が所定の供給圧力以上のときに開弁する保圧弁の機能を付加すると共に,前記下限圧力を前記供給圧力未満の圧力としたことを特徴とする請求項6〜10いずれか1項記載の空気圧縮機。   The check valve is added with a function of a pressure holding valve that opens when the pressure of the compressed air in the discharge flow path is equal to or higher than a predetermined supply pressure, and the lower limit pressure is set to a pressure lower than the supply pressure. The air compressor according to any one of claims 6 to 10, wherein:
JP2009217933A 2009-09-18 2009-09-18 Control method for engine-driven air compressor and engine-driven air compressor Active JP5312272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009217933A JP5312272B2 (en) 2009-09-18 2009-09-18 Control method for engine-driven air compressor and engine-driven air compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009217933A JP5312272B2 (en) 2009-09-18 2009-09-18 Control method for engine-driven air compressor and engine-driven air compressor

Publications (2)

Publication Number Publication Date
JP2011064182A true JP2011064182A (en) 2011-03-31
JP5312272B2 JP5312272B2 (en) 2013-10-09

Family

ID=43950670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009217933A Active JP5312272B2 (en) 2009-09-18 2009-09-18 Control method for engine-driven air compressor and engine-driven air compressor

Country Status (1)

Country Link
JP (1) JP5312272B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105545504A (en) * 2015-12-30 2016-05-04 广西玉柴机器股份有限公司 Electronic throttle special for diesel oil driving air compressor and control method
WO2016076249A1 (en) * 2014-11-12 2016-05-19 株式会社マキタ Air compressor
CN108266356A (en) * 2017-12-21 2018-07-10 潍柴动力股份有限公司 The control system and control method of air inlet off-load air compressor machine
CN109320041A (en) * 2018-10-22 2019-02-12 长沙理工大学 A kind of mud disposal system
JP2020015021A (en) * 2018-07-27 2020-01-30 コフロック株式会社 Control method of pressure swing adsorption apparatus and pressure swing adsorption apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6212650B2 (en) 2014-09-03 2017-10-11 北越工業株式会社 Regeneration method of exhaust gas aftertreatment device in engine driven compressor and engine driven compressor provided with the aftertreatment device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5769988U (en) * 1980-10-16 1982-04-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5769988U (en) * 1980-10-16 1982-04-27

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076249A1 (en) * 2014-11-12 2016-05-19 株式会社マキタ Air compressor
CN105545504A (en) * 2015-12-30 2016-05-04 广西玉柴机器股份有限公司 Electronic throttle special for diesel oil driving air compressor and control method
CN108266356A (en) * 2017-12-21 2018-07-10 潍柴动力股份有限公司 The control system and control method of air inlet off-load air compressor machine
JP2020015021A (en) * 2018-07-27 2020-01-30 コフロック株式会社 Control method of pressure swing adsorption apparatus and pressure swing adsorption apparatus
CN109320041A (en) * 2018-10-22 2019-02-12 长沙理工大学 A kind of mud disposal system
CN109320041B (en) * 2018-10-22 2023-04-18 长沙理工大学 Slurry treatment system

Also Published As

Publication number Publication date
JP5312272B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5312272B2 (en) Control method for engine-driven air compressor and engine-driven air compressor
JP3837278B2 (en) Compressor operation method
US20150153005A1 (en) Gas filling apparatus and gas filling method
CN108397368B (en) Method for controlling engine-driven compressor and engine-driven compressor
US20160115913A1 (en) Vehicle
US20190368434A1 (en) Pump module and evaporated fuel processing device
CN100400871C (en) Compressor
KR20120007489A (en) Fresh gas supply device for an internal combustion engine having an exhaust gas turbocharger, and method for the control thereof
WO2015052981A1 (en) Oil supply type compressor
KR102223057B1 (en) Method of Pumping in A System of Vacuum Pumps And System of Vacuum Pumps
JP7075305B2 (en) Compressor operation control method and compressor
TW202043624A (en) A method for controlling a compressor towards an unloaded state
US20160115912A1 (en) Vehicle
JPH0979166A (en) Air compressor
JP2008128085A (en) Oil cooled screw compressor and load reducing method for oil cooled screw compressor
WO2020213353A1 (en) Gas compressor
JP5325701B2 (en) Control method of air compressor and air compressor
WO2013054383A1 (en) Fuel cell system and method for starting same
WO2015141596A1 (en) Air compressor
JP6618347B2 (en) Engine-driven compressor start control method and engine-driven compressor
JP6940686B2 (en) Gas compressor
JP6249671B2 (en) Inverter-driven compressor operation control method and inverter-driven compressor
JP2022185735A (en) Operation control method for engine driven compressor and engine driven compressor
JP5308994B2 (en) air compressor
JP2019190350A (en) Operation control method for oil-cooled type screw compressor and oil-cooled type screw compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Ref document number: 5312272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250