JP2022185735A - Operation control method for engine driven compressor and engine driven compressor - Google Patents

Operation control method for engine driven compressor and engine driven compressor Download PDF

Info

Publication number
JP2022185735A
JP2022185735A JP2021093532A JP2021093532A JP2022185735A JP 2022185735 A JP2022185735 A JP 2022185735A JP 2021093532 A JP2021093532 A JP 2021093532A JP 2021093532 A JP2021093532 A JP 2021093532A JP 2022185735 A JP2022185735 A JP 2022185735A
Authority
JP
Japan
Prior art keywords
pressure
valve
control
intake
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021093532A
Other languages
Japanese (ja)
Inventor
貢 桐生
Mitsugu Kiryu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Industries Co Ltd
Original Assignee
Hokuetsu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Industries Co Ltd filed Critical Hokuetsu Industries Co Ltd
Priority to JP2021093532A priority Critical patent/JP2022185735A/en
Priority to CN202210427978.0A priority patent/CN115434888A/en
Publication of JP2022185735A publication Critical patent/JP2022185735A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/002Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for driven by internal combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/02Pumping installations or systems specially adapted for elastic fluids having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • F04B49/03Stopping, starting, unloading or idling control by means of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/18Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/05Pressure after the pump outlet

Abstract

To prevent shortage in fuel supply to a compressor body immediately after being shifted from a warm-up operation state with start-up load reduced to a normal operation state.SOLUTION: An engine driven compressor 1 has a pressure control valve 13 which opens and closes a control flow passage 12 communicating a valve closing pressure receiving chamber of an intake control valve 11 controlling intake air of a compressor body 40 with a receiver tank 60. The pressure control valve 13 performs opening and closing control of the intake control valve 11 so as to make pressure inside the receiver tank 60 close to predetermined rated pressure. When warm-up operation is started, control over the intake control valve 11 with the pressure control valve 13 is deactivated and the intake control valve 11 is closed along with a start-up of an engine. Before a warm-up operation stopping condition is met after the start-up, pressure inside the receiver tank 60 is increased to fuel supply start pressure which is less than the rated pressure with the intake control valve 11 opened to a predetermined opening less than a full opening. Then, the warm-up operation is completed and shifted to normal operation in which the intake control valve 11 is controlled with the pressure control valve 13.SELECTED DRAWING: Figure 1

Description

本発明はエンジン駆動型圧縮機の運転制御方法,及び前記運転制御方法を実行するエンジン駆動型圧縮機に関し,より詳細には,始動負荷を軽減した状態での暖機運転を可能としたエンジン駆動型圧縮機の運転制御方法及び該運転制御方法を実行するエンジン駆動型圧縮機に関する。 TECHNICAL FIELD The present invention relates to an operation control method for an engine-driven compressor, and an engine-driven compressor for executing the operation control method. The present invention relates to an operation control method for an engine-driven compressor and an engine-driven compressor that executes the operation control method.

圧縮機本体を駆動する駆動源としてディーゼルエンジン等のエンジンを備えたエンジン駆動型圧縮機は,電源の確保が困難である土木作業現場や建築現場等の屋外における作業等に広く使用されている。 Engine-driven compressors equipped with engines such as diesel engines as a drive source for driving the compressor body are widely used for outdoor work such as civil engineering work sites and construction sites where it is difficult to secure a power source.

このようなエンジン駆動型圧縮機として,被圧縮気体を潤滑油と共に圧縮して気液混合流体として吐出する油冷式の圧縮機本体340を備えたエンジン駆動型圧縮機300の構成例を図9に示す。 As such an engine-driven compressor, FIG. 9 shows an example configuration of an engine-driven compressor 300 equipped with an oil-cooled compressor body 340 that compresses the gas to be compressed together with lubricating oil and discharges it as a gas-liquid mixed fluid. shown in

このエンジン駆動型圧縮機300には,前述した圧縮機本体340とエンジン350の他,圧縮機本体340より圧縮気体と共に吐出された潤滑油を分離するためのレシーバタンク360が設けられており,このレシーバタンク360内で潤滑油が分離された後の圧縮気体を,オイルセパレータ366を介してさらに油分を除去した後,図示せざる空気作業機等が接続された消費側に供給することができるように構成されている。 The engine-driven compressor 300 is provided with a receiver tank 360 for separating lubricating oil discharged from the compressor body 340 together with the compressed gas, in addition to the compressor body 340 and the engine 350 described above. The compressed gas from which the lubricating oil has been separated in the receiver tank 360 is further removed of the oil via the oil separator 366, and then supplied to the consumption side to which an air working machine (not shown) is connected. is configured to

そして,レシーバタンク360内に回収された潤滑油は,レシーバタンク360内の圧力を利用してオイルクーラ363,オイルフィルタ367を備えた給油流路364を介して圧縮機本体340に供給することができるように構成されている。 The lubricating oil collected in the receiver tank 360 can be supplied to the compressor main body 340 through an oil supply passage 364 having an oil cooler 363 and an oil filter 367 using the pressure in the receiver tank 360. configured to allow

このようなエンジン駆動型圧縮機300には,消費側に対し,安定した圧力の圧縮気体を供給することができるようにするために,レシーバタンク360内の圧力に応じて,圧縮機本体340の吸気量を調整する吸気調整装置310が設けられている。 In such an engine-driven compressor 300, in order to be able to supply compressed gas at a stable pressure to the consumer side, the compressor body 340 is controlled according to the pressure in the receiver tank 360. An intake adjusting device 310 is provided to adjust the amount of intake air.

この吸気調整装置310として,図9に示すエンジン駆動型圧縮機300には,圧縮機本体340の吸気口341を開閉する吸気調整弁311と,この吸気調整弁311を開閉制御するアンローダレギュレータ316が設けられている。 As the intake air regulating device 310, the engine-driven compressor 300 shown in FIG. is provided.

このアンローダレギュレータ316は,制御流路312を介してレシーバタンク360に連通されており,制御流路312にはレシーバタンク360内の圧力が所定の定格圧力以上のとき制御流路312を開く圧力調整弁313が設けられている。 The unloader regulator 316 is communicated with the receiver tank 360 via the control channel 312, and the control channel 312 has a pressure regulator that opens the control channel 312 when the pressure in the receiver tank 360 is equal to or higher than a predetermined rated pressure. A valve 313 is provided.

なお,図9中の符号314は逃がし流路であり,圧力調整弁313が制御流路312を閉じてアンローダレギュレータ316に対する圧縮気体の導入が停止した際,アンローダレギュレータ316の受圧室内の圧縮気体を絞り315を介して放気して,アンローダレギュレータ316をリターンスプリング(図示せず)の付勢力によって全開位置に復帰させることができるように構成されている。 9 is a release passage, and when the pressure regulating valve 313 closes the control passage 312 and the introduction of the compressed gas to the unloader regulator 316 is stopped, the compressed gas in the pressure receiving chamber of the unloader regulator 316 is released. Air is released through the throttle 315, and the unloader regulator 316 can be returned to the fully open position by the biasing force of a return spring (not shown).

このように構成された吸気調整装置310を設けることで,レシーバタンク360内の圧力が定格圧力以上になると,圧力調整弁313が開弁動作を開始してアンローダレギュレータ316にレシーバタンク360内の圧縮気体の導入が開始されて,吸気調整弁311が圧縮機本体340の吸気口341を絞り,又は閉じると共に,レシーバタンク360内の圧力が定格圧力未満に低下すると,圧力調整弁313が閉じて吸気調整弁311が圧縮機本体340の吸気口341を開くことで,レシーバタンク360内の圧力が前述の定格圧力に近付くように圧縮機本体340の吸気調整が行われる。 By providing the intake air regulating device 310 configured in this way, when the pressure in the receiver tank 360 becomes equal to or higher than the rated pressure, the pressure regulating valve 313 starts the valve opening operation and the unloader regulator 316 controls the compression of the receiver tank 360. When the introduction of gas is started, the intake regulating valve 311 throttles or closes the intake port 341 of the compressor body 340, and when the pressure in the receiver tank 360 drops below the rated pressure, the pressure regulating valve 313 closes and intake air By opening the intake port 341 of the compressor body 340 with the adjustment valve 311, the intake air of the compressor body 340 is adjusted so that the pressure in the receiver tank 360 approaches the above-described rated pressure.

以上のように構成されたエンジン駆動型圧縮機300において,圧縮機本体340の駆動源であるエンジン350は,低回転域でのトルクが小さく,始動時に負荷がかかると停止(ストール)し易い。 In the engine-driven compressor 300 configured as described above, the engine 350, which is the driving source of the compressor body 340, has a small torque in a low rotation range, and is likely to stall if a load is applied at the time of starting.

特に,排気ガス規制に対応するためのエンジンのダウンサイジング化の要求により,コモンレール方式の採用や過給機の追加によって最大出力を増大させた小型のエンジンを搭載しているエンジン駆動型圧縮機では,エンジンの始動トルクが同程度の最大出力を発生する従来型のエンジンに比較して小さくなっており,始動時の停止(ストール)がより生じ易い。 In particular, due to the demand for downsizing engines to comply with exhaust gas regulations, engine-driven compressors equipped with small engines with increased maximum output by adopting a common rail system or adding a turbocharger. , the starting torque of the engine is smaller than that of a conventional engine that produces a similar maximum output, and stalling at start-up is more likely to occur.

その一方で,エンジン駆動型圧縮機300では,エンジン350に対する負荷である圧縮機本体340がエンジン350に直結されており,エンジン350は,始動開始時より圧縮機本体340の回転に伴う負荷を受けることから,エンジン350の始動時,圧縮機本体340から受ける負荷を可及的に低減することができれば,エンジン350を円滑に始動させることができる。 On the other hand, in the engine-driven compressor 300, the compressor body 340, which is the load on the engine 350, is directly connected to the engine 350, and the engine 350 receives the load associated with the rotation of the compressor body 340 from the start of the engine. Therefore, if the load received from the compressor body 340 can be reduced as much as possible when starting the engine 350, the engine 350 can be started smoothly.

このようなエンジン駆動型圧縮機300の構成に着目し,始動時にエンジン350にかかる負荷を軽減するために,後掲の特許文献1には,図9中に符号320で示した始動負荷軽減装置を設けた構成が開示されている。 Focusing on the configuration of such an engine-driven compressor 300, in order to reduce the load applied to the engine 350 at the time of starting, Patent Document 1 described later discloses a starting load reducing device indicated by reference numeral 320 in FIG. is disclosed.

この始動負荷軽減装置320は,圧力調整弁313をバイパスしてアンローダレギュレータ316とレシーバタンク360間を連通するバイパス流路321と,このバイパス流路321を開閉するバイパスバルブ325によって構成されており,始動時,バイパスバルブ325を操作してバイパス流路321を開くことで,アンローダレギュレータ316を,圧力調整弁313を介さずに直接,レシーバタンク360に連通することができるように構成されている。 The starting load reduction device 320 is composed of a bypass flow path 321 that bypasses the pressure regulating valve 313 and communicates between the unloader regulator 316 and the receiver tank 360, and a bypass valve 325 that opens and closes the bypass flow path 321. By operating the bypass valve 325 to open the bypass flow path 321 at the time of start-up, the unloader regulator 316 can be directly communicated with the receiver tank 360 without passing through the pressure regulating valve 313 .

その結果,このようにバイパス流路321を開いた状態でエンジン350を始動させて圧縮機本体340が回転を開始してレシーバタンク360内の圧力が上昇すると,アンローダレギュレータ316が作動して吸気調整弁311を閉じて圧縮機本体340を無負荷運転とすることで,始動開始時のエンジン350にかかる負荷を軽減することができるように構成されている。 As a result, when the engine 350 is started with the bypass flow path 321 opened in this way, the compressor body 340 starts rotating and the pressure in the receiver tank 360 rises, the unloader regulator 316 operates to adjust the intake air. By closing the valve 311 and putting the compressor main body 340 into no-load operation, the load on the engine 350 at the start of the start can be reduced.

そして,エンジン350の運転状態が安定した後に,始動負荷軽減装置320に設けたバイパスバルブ325を操作してバイパス流路321を閉じ,圧力調整弁313がレシーバタンク360内の圧力に応じて制御流路312を開閉する通常運転に移行することで,既知の吸気調整を行うことができるように構成されている。 After the operating state of the engine 350 is stabilized, the bypass valve 325 provided in the starting load reduction device 320 is operated to close the bypass flow path 321, and the pressure regulating valve 313 is controlled according to the pressure in the receiver tank 360. By shifting to normal operation in which the passage 312 is opened and closed, it is configured to be able to perform a known intake adjustment.

なお,前掲の特許文献1では,前述のバイパスバルブ325として手動式の開閉弁を設ける構成を開示するものであったが,これを電磁弁に変更することで,検出されたエンジンの運転状態に基づいてバイパスバルブ325の開閉動作を電気的に制御できるようにしたエンジン駆動型圧縮機も提案されている(特許文献2参照)。 In addition, the above-mentioned Patent Document 1 discloses a configuration in which a manual on-off valve is provided as the bypass valve 325, but by changing this to a solenoid valve, it is possible to change the detected operating state of the engine. Based on this, an engine-driven compressor has also been proposed in which the opening/closing operation of the bypass valve 325 can be electrically controlled (see Patent Document 2).

特開2002-168177号公報JP-A-2002-168177 特開2017-115598号公報JP 2017-115598 A

前述のように,バイパスバルブ325を電磁弁によって構成し,その開閉を電気的に制御できるようにした構成では,図10(A)に示すように,バイパスバルブ325を開いた状態でエンジンを始動することで,エンジンと共に圧縮機本体が回転を開始すると直ちに吸気調整弁311が閉じられて始動負荷を軽減した状態で暖機運転を行うと共に,暖機が完了してエンジンが安定運転になると,図10(B)に示すようにバイパスバルブ325を閉じて圧力調整弁313がレシーバタンク360内の圧力に応じて制御流路312を開閉する通常運転に移行することができるように構成されている。 As described above, in a configuration in which the bypass valve 325 is configured by a solenoid valve and whose opening and closing can be electrically controlled, the engine is started with the bypass valve 325 open, as shown in FIG. By doing so, as soon as the compressor body starts rotating together with the engine, the intake adjustment valve 311 is closed immediately, and warm-up is performed in a state where the starting load is reduced. As shown in FIG. 10B, the bypass valve 325 is closed so that the pressure regulating valve 313 can switch to normal operation in which the control flow path 312 is opened and closed according to the pressure in the receiver tank 360. .

このように,負荷を可及的に低減した状態でエンジンの始動から暖機運転までを行うことで,エンジンを停止(ストール)させ難い状態で始動させることができる。 In this way, the engine can be started in a state where it is difficult to stop (stall) by starting the engine and performing the warm-up operation while the load is reduced as much as possible.

しかし,このように構成されたエンジン駆動型圧縮機では,図10(A)に示すように,暖機運転中,圧縮機本体340の吸気口341は閉じた状態にあるため,レシーバタンク360内の圧力は一例としてゲージ圧で0.1MPaという低い圧力状態にある〔図11(B)参照〕。 However, in the engine-driven compressor configured in this way, as shown in FIG. is in a low pressure state of 0.1 MPa in gauge pressure as an example [see FIG. 11(B)].

そのため,圧力調整弁313は閉じた状態にあることから,バイパスバルブ325を閉じて暖機運転を終了し,通常運転へ移行すると,吸気調整弁311に対する圧縮気体の導入が行われなくなって吸気調整弁311が開き〔図10(B)〕,圧縮機本体340が圧縮を開始してレシーバタンク360内の圧力は定格圧力以上の圧力まで上昇する〔図11(B)参照〕。 Therefore, since the pressure regulating valve 313 is in a closed state, the bypass valve 325 is closed to terminate the warm-up operation and shift to normal operation. The valve 311 opens (Fig. 10(B)), the compressor main body 340 starts compression, and the pressure in the receiver tank 360 rises to a pressure higher than the rated pressure (see Fig. 11(B)).

このレシーバタンク360内の圧力上昇により,圧縮機本体340に対する給油量が増加することとなるが,圧縮機本体340に対する給油量の増加は,レシーバタンク360内の圧力が上昇した後に生じるものであることから,通常運転に移行してから,レシーバタンク360内の圧力がある程度上昇するまでの間は,十分な潤滑油が供給されていない状態で被圧縮気体の圧縮が行われることとなる。 Due to this pressure increase in the receiver tank 360, the amount of oil supplied to the compressor main body 340 increases, but the increase in the amount of oil supplied to the compressor main body 340 occurs after the pressure inside the receiver tank 360 rises. Therefore, during the period from the shift to normal operation until the pressure in the receiver tank 360 rises to some extent, the gas to be compressed is compressed in a state in which a sufficient amount of lubricating oil is not supplied.

このような給油不足の発生により,圧縮機本体340で生じた圧縮熱の冷却が十分に行われないことで,圧縮機本体340の吐出温度が過度に上昇し,特に高圧の圧縮気体を生成する圧縮機本体340では吐出温度の異常上昇によって,エンジン駆動型圧縮機が非常停止する等の作動不良が生じる原因となっていた。 Due to the lack of oil supply, the compression heat generated in the compressor body 340 is not sufficiently cooled, and the discharge temperature of the compressor body 340 rises excessively, resulting in the generation of particularly high-pressure compressed gas. In the compressor main body 340, an abnormal rise in the discharge temperature causes malfunctions such as an emergency stop of the engine-driven compressor.

そこで,本発明は,上記従来技術における欠点を解消するために成されたものであり,始動負荷を軽減した暖機運転の状態から,暖機運転が終了して通常運転に移行した直後の圧縮機本体に対する給油不足を解消することができ,その結果,給油不足に伴う吐出温度の異常上昇の発生等についても防止することができるエンジン駆動型圧縮機の運転制御方法,及び前記運転制御方法を実行するエンジン駆動型圧縮機を提供することを目的とする。 Therefore, the present invention was made in order to eliminate the drawbacks of the above-mentioned prior art. An operation control method for an engine-driven compressor capable of resolving insufficient lubrication to the main body of the compressor and, as a result, preventing abnormal rise in discharge temperature due to insufficient lubrication, and the operation control method. The object is to provide an engine driven compressor that performs.

以下に,課題を解決するための手段を,発明を実施するための形態で使用する符号と共に記載する。この符号は,特許請求の範囲の記載と,発明を実施するための形態の記載との対応を明らかにするためのものであり,言うまでもなく,本発明の技術的範囲の解釈に制限的に用いられるものではない。 Means for solving the problems are described below together with the symbols used in the mode for carrying out the invention. This code is for clarifying the correspondence between the description of the claims and the description of the mode for carrying out the invention, and needless to say, it is used restrictively to interpret the technical scope of the present invention. It is not something that can be done.

上記目的を達成するために,本発明のエンジン駆動型圧縮機の運転制御方法は,
エンジン(図示せず),前記エンジンによって駆動される油冷式の圧縮機本体40,前記圧縮機本体40が吐出した圧縮気体と潤滑油の気液混合流体を導入して圧縮気体と潤滑油とに分離すると共に,分離した潤滑油を内部の圧力を利用して前記圧縮機本体40に給油するレシーバタンク60,前記圧縮機本体40に対する吸気を制御する吸気調整弁11,前記吸気調整弁11の閉弁受圧室113と前記レシーバタンク60間を連通する制御流路12,及び,前記レシーバタンク60内の圧力が所定の定格圧力以上のときに前記制御流路12を開き,前記定格圧力未満のとき前記制御流路12を閉じることで前記吸気調整弁11の開閉動作を制御する圧力調整弁13を備えたエンジン駆動型圧縮機1の運転制御方法において,
前記圧力調整弁13による前記吸気調整弁11の制御を無効化して,前記エンジンの始動と共に前記吸気調整弁11を閉じて暖機運転を開始すると共に,
該エンジンの始動後,所定の暖機運転終了条件が満たされる前に,前記吸気調整弁11を全開未満の所定の開度で開くことにより,前記レシーバタンク60内の圧力を前記定格圧力に対し所定の低い圧力である給油開始圧力に上昇させる吐出圧力上昇処理を行い,
前記暖機運転終了条件が満たされたとき,前記暖機運転を終了して前記圧力調整弁13による前記吸気調整弁11の制御を行う通常運転に移行することを特徴とする(請求項1)。
In order to achieve the above object, the operation control method for an engine-driven compressor of the present invention comprises:
An engine (not shown), an oil-cooled compressor body 40 driven by the engine, and a gas-liquid mixed fluid of compressed gas and lubricating oil discharged from the compressor body 40 is introduced into the compressed gas and the lubricating oil. a receiver tank 60 for supplying the separated lubricating oil to the compressor body 40 using internal pressure, an intake adjustment valve 11 for controlling the intake air to the compressor body 40, The control flow path 12 communicating between the closing valve pressure receiving chamber 113 and the receiver tank 60, and the control flow path 12 is opened when the pressure in the receiver tank 60 is equal to or higher than a predetermined rated pressure, and the control flow path 12 is opened when the pressure is less than the rated pressure. In the operation control method of the engine-driven compressor 1 having the pressure control valve 13 for controlling the opening/closing operation of the intake control valve 11 by closing the control flow path 12,
Invalidating the control of the intake regulating valve 11 by the pressure regulating valve 13, closing the intake regulating valve 11 when the engine is started, and starting warm-up,
After the engine is started and before a predetermined warm-up termination condition is satisfied, the intake control valve 11 is opened to a predetermined degree of opening less than full opening, thereby reducing the pressure in the receiver tank 60 to the rated pressure. Perform discharge pressure increase processing to increase the lubrication start pressure, which is a predetermined low pressure,
When the warm-up end condition is satisfied, the warm-up operation is ended and the pressure control valve 13 controls the intake control valve 11 to shift to normal operation (claim 1). .

前記圧力調整弁13をバイパスして前記レシーバタンク60と前記吸気調整弁11の前記閉弁受圧室113間を連通するバイパス流路20(21,22)を設け,該バイパス流路20(21,22)を介して前記レシーバタンク60と前記吸気調整弁11の前記閉弁受圧室113間を連通した状態で前記エンジンを始動することにより,前記圧力調整弁13による前記吸気調整弁11の制御を無効化して,前記エンジンの始動と共に前記吸気調整弁11を閉じ,
前記バイパス流路20(21,22)を介して前記吸気調整弁11の前記閉弁受圧室113に導入される圧縮気体の流量を絞ることにより,前記吐出圧力上昇処理を行い,
前記バイパス流路20(21,22)を閉塞することにより前記暖機運転を終了して前記圧力調整弁13による前記吸気調整弁11の制御を行う通常運転に移行するように構成することができる(請求項2)。
A bypass flow path 20 (21, 22) is provided to bypass the pressure regulating valve 13 and communicate between the receiver tank 60 and the closed valve pressure receiving chamber 113 of the intake regulating valve 11, and the bypass flow path 20 (21, 22), the intake control valve 11 is controlled by the pressure control valve 13 by starting the engine in a state where the receiver tank 60 and the valve closing pressure receiving chamber 113 of the intake control valve 11 are in communication. Disabling, closing the intake control valve 11 at the same time as starting the engine,
The discharge pressure increasing process is performed by throttling the flow rate of the compressed gas introduced into the valve closing pressure receiving chamber 113 of the intake control valve 11 through the bypass passage 20 (21, 22),
By closing the bypass flow path 20 (21, 22), the warm-up operation may be terminated and the pressure control valve 13 may control the intake control valve 11 to shift to normal operation. (Claim 2).

又は,
前記圧力調整弁13をバイパスして前記吸気調整弁11の閉弁受圧室113と前記レシーバタンク60間を連通する始動制御流路51と,
前記レシーバタンク60内の圧力が,前記給油開始圧力に対し所定の高い圧力であり,かつ,前記定格圧力に対し所定の低い圧力である始動アンロード圧力以上のときに前記始動制御流路51を開き,前記始動アンロード圧力未満のとき前記始動制御流路51を閉じることで前記吸気調整弁11の開閉動作を制御する始動圧力調整弁52を設け,
前記吐出圧力上昇処理後,前記暖機運転終了条件が満たされる前に,前記始動圧力調整弁52による前記吸気調整弁11の制御を行い,
前記暖機運転終了条件が満たされたとき,前記始動圧力調整弁52による前記吸気調整弁11の制御を終了すると共に前記暖機運転を終了して,前記圧力調整弁13による前記吸気調整弁11の制御を行う前記通常運転に移行するように構成するものとしても良い(請求項3)。
or
a starting control flow path 51 that bypasses the pressure regulating valve 13 and communicates between the closed valve pressure receiving chamber 113 of the intake regulating valve 11 and the receiver tank 60;
When the pressure in the receiver tank 60 is a predetermined high pressure with respect to the oil supply start pressure and is equal to or higher than the starting unload pressure, which is a predetermined low pressure with respect to the rated pressure, the start control flow path 51 is opened. a starting pressure regulating valve 52 that opens and closes the starting control flow path 51 when the starting unload pressure is less than the starting unload pressure, thereby controlling the opening/closing operation of the intake regulating valve 11;
After the discharge pressure increasing process, before the warm-up end condition is satisfied, the intake control valve 11 is controlled by the starting pressure control valve 52,
When the warm-up end condition is satisfied, the control of the intake regulating valve 11 by the starting pressure regulating valve 52 is ended and the warm-up operation is ended. (Claim 3).

前述の始動制御流路51及び始動圧力調整弁52を設けた構成においても,前記圧力調整弁13をバイパスして前記レシーバタンク60と前記吸気調整弁11の前記閉弁受圧室113間を連通するバイパス流路20(21,22)を設け,該バイパス流路20(21,22)を介して前記レシーバタンク60と前記吸気調整弁11の前記閉弁受圧室113間を連通した状態で前記エンジンを始動することにより,前記圧力調整弁13及び前記始動圧力調整弁52による前記吸気調整弁11の制御を無効化して,前記エンジンの始動と共に前記吸気調整弁11を閉じ,
前記バイパス流路20(21,22)を介して前記吸気調整弁11の前記閉弁受圧室113に導入される圧縮気体の流量を絞ることにより,前記吐出圧力上昇処理を行い,
前記吐出圧力上昇処理から所定時間の経過後,前記バイパス流路20(21,22)を閉塞して前記始動圧力調整弁52による前記吸気調整弁11の制御を開始するように構成するものとしても良い(請求項4)。
Even in the configuration in which the starting control flow path 51 and the starting pressure regulating valve 52 are provided, the pressure regulating valve 13 is bypassed and the receiver tank 60 and the valve closing pressure receiving chamber 113 of the intake regulating valve 11 are communicated with each other. A bypass passage 20 (21, 22) is provided, and the engine is operated in a state in which the receiver tank 60 and the valve closing pressure receiving chamber 113 of the intake control valve 11 are communicated through the bypass passage 20 (21, 22). By starting the, the control of the intake regulating valve 11 by the pressure regulating valve 13 and the starting pressure regulating valve 52 is invalidated, and the intake regulating valve 11 is closed at the same time as the engine is started,
The discharge pressure increasing process is performed by throttling the flow rate of the compressed gas introduced into the valve closing pressure receiving chamber 113 of the intake control valve 11 through the bypass passage 20 (21, 22),
After a predetermined time has passed since the discharge pressure increasing process, the bypass flow path 20 (21, 22) may be closed and the control of the intake regulating valve 11 by the starting pressure regulating valve 52 may be started. Good (claim 4).

上記いずれの構成においても,前記吐出圧力上昇処理を,前記吸気調整弁11の開度を段階的に増加させながら行うものとしても良い(請求項5)。 In any of the above configurations, the discharge pressure increasing process may be performed while increasing the degree of opening of the intake control valve 11 stepwise (claim 5).

また,始動制御流路51及び始動圧力調整弁52を設けた構成では,前記始動制御流路51(51a,51b・・・51z)を複数設け,前記始動制御流路51(51a,51b・・・51z)のそれぞれに前記始動圧力調整弁52(52a,52b・・・52z)を設けると共に,前記各始動圧力調整弁52(52a,52b・・・52z)の動作圧力を異なる圧力に設定し,
前記吐出圧力上昇処理後,前記暖機運転終了条件が満たされるまでの間に行う前記始動圧力調整弁52(52a,52b・・・52z)による前記吸気調整弁11の制御を,複数の前記始動圧力調整弁52(52a,52b・・・52z)のうち最も作動圧力の低いものから,作動圧力の高いものに所定時間置きに順次切り替えて行うものとしても良い(請求項6)。
Further, in the configuration in which the starting control flow path 51 and the starting pressure regulating valve 52 are provided, a plurality of the starting control flow paths 51 (51a, 51b . . . 51z) are provided, 51z) are provided with the starting pressure regulating valves 52 (52a, 52b, . ,
After the discharge pressure increasing process, the control of the intake regulating valve 11 by the starting pressure regulating valve 52 (52a, 52b . The pressure control valves 52 (52a, 52b, . . . 52z) may be switched from the one with the lowest operating pressure to the one with the highest operating pressure at predetermined time intervals (Claim 6).

また,本発明のエンジン駆動型圧縮機1は,
エンジン(図示せず),前記エンジンによって駆動される油冷式の圧縮機本体40,前記圧縮機本体40が吐出した圧縮気体と潤滑油の気液混合流体を導入して圧縮気体と潤滑油とに分離すると共に,分離した潤滑油を内部の圧力を利用して前記圧縮機本体40に給油するレシーバタンク60,前記圧縮機本体40に対する吸気を制御する吸気調整弁11,前記吸気調整弁11の閉弁受圧室113と前記レシーバタンク60間を連通する制御流路12,及び,前記レシーバタンク60内の圧力が所定の定格圧力以上のときに前記制御流路12を開き,前記定格圧力未満のとき前記制御流路12を閉じることで前記吸気調整弁11の開閉動作を制御する圧力調整弁13を備えたエンジン駆動型圧縮機1において,
前記圧力調整弁13をバイパスして前記レシーバタンク60と前記吸気調整弁11の閉弁受圧室113間を連通するバイパス流路20と,
前記バイパス流路20の流路面積を可変と成す,流路面積変更装置(23,24)と,
前記流路面積変更装置(23,24)を制御する制御装置(コントローラ)30を設け,
前記制御装置(コントローラ)30が,前記流路面積変更装置(23,24)を制御することにより,
前記エンジンの始動時,前記バイパス流路20の流路面積を最大とすることで前記エンジンの始動と共に前記吸気調整弁11を閉じて暖機運転を開始し,
該エンジンの始動後,所定の暖機運転終了条件が満たされる前に,前記バイパス流路20の流路面積を減少させて前記吸気調整弁11を全開未満の所定の開度に開くことにより,前記レシーバタンク60内の圧力を前記定格圧力に対し所定の低い圧力である給油開始圧力に上昇させる吐出圧力上昇処理を行うと共に,
前記暖機運転終了条件が満たされたとき,前記バイパス流路20を閉塞して前記暖機運転を終了し,前記圧力調整弁13による前記吸気調整弁11の制御を行う通常運転に移行することを特徴とする(請求項7)。
Further, the engine-driven compressor 1 of the present invention is
An engine (not shown), an oil-cooled compressor body 40 driven by the engine, and a gas-liquid mixed fluid of compressed gas and lubricating oil discharged from the compressor body 40 is introduced into the compressed gas and the lubricating oil. a receiver tank 60 for supplying the separated lubricating oil to the compressor body 40 using internal pressure, an intake adjustment valve 11 for controlling the intake air to the compressor body 40, The control flow path 12 communicating between the closing valve pressure receiving chamber 113 and the receiver tank 60, and the control flow path 12 is opened when the pressure in the receiver tank 60 is equal to or higher than a predetermined rated pressure, and the control flow path 12 is opened when the pressure is less than the rated pressure. In the engine-driven compressor 1 equipped with a pressure regulating valve 13 that controls the opening/closing operation of the intake regulating valve 11 by closing the control passage 12,
a bypass passage 20 that bypasses the pressure regulating valve 13 and communicates between the receiver tank 60 and the closed valve pressure receiving chamber 113 of the intake regulating valve 11;
a channel area changing device (23, 24) for making the channel area of the bypass channel 20 variable;
A control device (controller) 30 for controlling the flow path area changing device (23, 24) is provided,
By the control device (controller) 30 controlling the flow path area changing device (23, 24),
When the engine is started, the passage area of the bypass passage 20 is maximized, so that the intake control valve 11 is closed at the same time as the engine is started, and warm-up operation is started;
After the engine is started and before a predetermined warm-up end condition is satisfied, the flow area of the bypass flow path 20 is reduced to open the intake control valve 11 to a predetermined opening degree less than full opening, In addition to performing a discharge pressure increase process for increasing the pressure in the receiver tank 60 to the refueling start pressure, which is a predetermined lower pressure than the rated pressure,
When the warm-up end condition is satisfied, the bypass flow path 20 is closed to end the warm-up operation, and the pressure control valve 13 controls the intake control valve 11 to shift to normal operation. (Claim 7).

また,本発明の別のエンジン駆動型圧縮機1は,
エンジン(図示せず),前記エンジンによって駆動される油冷式の圧縮機本体40,前記圧縮機本体40が吐出した圧縮気体と潤滑油の気液混合流体を導入して圧縮気体と潤滑油とに分離すると共に,分離した潤滑油を内部の圧力を利用して前記圧縮機本体40に給油するレシーバタンク60,前記圧縮機本体40に対する吸気を制御する吸気調整弁11,前記吸気調整弁11の閉弁受圧室113と前記レシーバタンク60間を連通する制御流路12,及び,前記レシーバタンク60内の圧力が所定の定格圧力以上のときに前記制御流路12を開き,前記定格圧力未満のとき前記制御流路12を閉じることで前記吸気調整弁11の開閉動作を制御する圧力調整弁13を備えたエンジン駆動型圧縮機1において,
前記圧力調整弁13をバイパスして前記レシーバタンク60と前記吸気調整弁11の閉弁受圧室113間を連通するバイパス流路20及び始動制御流路51と,
前記バイパス流路20の流路面積を可変と成す,流路面積変更装置(23,24)と,
前記圧縮機本体40の吐出側圧力が前記定格圧力に対し所定の低い圧力である始動アンロード圧力以上のときに開弁し,前記始動アンロード圧力未満のときに閉弁する,前記始動制御流路51に設けた始動圧力調整弁52と,
前記始動制御流路51に設けられ,前記始動圧力調整弁52と直列に連通された始動制御流路用電磁弁53と,
前記流路面積変更装置(23,24)と前記始動制御流路用電磁弁53を制御する制御装置(コントローラ)30を設け,
前記制御装置(コントローラ)30は,
前記エンジンの始動時,前記始動制御流路用電磁弁53を開くと共に,前記流路面積変更装置(23,24)を操作して前記バイパス流路20の流路面積を最大とすることで前記エンジンの始動と共に前記吸気調整弁11を閉じて暖機運転を開始し,
該エンジンの始動後,所定の暖機運転終了条件が満たされる前に,前記流路面積変更装置(23,24)を制御して前記バイパス流路20の流路面積を減少させて前記吸気調整弁11を全開未満の所定の開度に開くことにより,前記レシーバタンク60内の圧力を前記始動アンロード圧力に対し所定の低い圧力である給油開始圧力に上昇させる吐出圧力上昇処理を行い,
前記吐出圧力上昇処理後,前記暖機運転終了条件が満たされる前に前記バイパス流路20を閉塞して,前記始動圧力調整弁52による前記吸気調整弁11の制御に移行し,
前記暖機運転終了条件が満たされたとき,前記始動制御流路用電磁弁53を閉じて前記始動圧力調整弁52による吸気調整弁11の制御を終了すると共に前記暖機運転を終了し,前記圧力調整弁13による前記吸気調整弁11の制御を行う通常運転に移行することを特徴とする(請求項8)。
Further, another engine-driven compressor 1 of the present invention is
An engine (not shown), an oil-cooled compressor body 40 driven by the engine, and a gas-liquid mixed fluid of compressed gas and lubricating oil discharged from the compressor body 40 is introduced into the compressed gas and the lubricating oil. a receiver tank 60 for supplying the separated lubricating oil to the compressor body 40 using internal pressure, an intake adjustment valve 11 for controlling the intake air to the compressor body 40, The control flow path 12 communicating between the closing valve pressure receiving chamber 113 and the receiver tank 60, and the control flow path 12 is opened when the pressure in the receiver tank 60 is equal to or higher than a predetermined rated pressure, and the control flow path 12 is opened when the pressure is less than the rated pressure. In the engine-driven compressor 1 equipped with a pressure regulating valve 13 that controls the opening/closing operation of the intake regulating valve 11 by closing the control passage 12,
a bypass flow path 20 and a start control flow path 51 that bypass the pressure regulating valve 13 and communicate between the receiver tank 60 and the closed valve pressure receiving chamber 113 of the intake regulating valve 11;
a channel area changing device (23, 24) for making the channel area of the bypass channel 20 variable;
The starting control flow that opens when the pressure on the discharge side of the compressor body 40 is equal to or higher than the starting unload pressure, which is a predetermined low pressure relative to the rated pressure, and closes when the pressure is less than the starting unload pressure. a starting pressure regulating valve 52 provided in the passage 51;
a starting control flow path electromagnetic valve 53 provided in the starting control flow path 51 and communicating in series with the starting pressure regulating valve 52;
A control device (controller) 30 for controlling the flow path area changing device (23, 24) and the start control flow path solenoid valve 53 is provided,
The control device (controller) 30 is
When the engine is started, the solenoid valve 53 for the start control flow path is opened, and the flow area changing device (23, 24) is operated to maximize the flow area of the bypass flow path 20. When the engine is started, the intake control valve 11 is closed to start warm-up,
After the engine is started and before a predetermined warm-up end condition is satisfied, the passage area changing device (23, 24) is controlled to reduce the passage area of the bypass passage 20 to adjust the intake air. By opening the valve 11 to a predetermined degree of opening less than full opening, a discharge pressure increase process is performed to increase the pressure in the receiver tank 60 to the refueling start pressure, which is a predetermined lower pressure than the starting unload pressure,
After the discharge pressure increasing process, the bypass flow path 20 is closed before the warm-up end condition is satisfied, and the control of the intake control valve 11 by the starting pressure control valve 52 is started,
When the warm-up end condition is satisfied, the starting control flow solenoid valve 53 is closed to end the control of the intake control valve 11 by the starting pressure control valve 52, and the warm-up is ended. It is characterized by shifting to normal operation in which the intake control valve 11 is controlled by the pressure control valve 13 (Claim 8).

上記いずれのエンジン駆動型圧縮機1共に,前記バイパス流路20を,並列に設けられた複数本の並列流路(第1,第2バイパス流路21,22)の集合体として形成すると共に,前記各並列流路(第1,第2バイパス流路21,22)のそれぞれに並列流路用電磁弁(第1,第2電磁弁23,24)を設けることにより,該並列流路用電磁弁(第1,第2電磁弁23,24)を前記流路面積変更装置とし,
前記制御装置(コントローラ)30が,
前記エンジンの始動時,前記並列流路用電磁弁(第1,第2電磁弁23,24)を全て開いた状態とし,
前記吐出圧力上昇処理を,前記並列流路用電磁弁(第1,第2電磁弁23,24)の少なくとも1つを残し,所定の時間置きに順次閉じることにより実行するように構成するものとしても良い(請求項9)。
In any of the above engine-driven compressors 1, the bypass passage 20 is formed as an assembly of a plurality of parallel passages (first and second bypass passages 21 and 22) provided in parallel, By providing parallel flow path solenoid valves (first and second solenoid valves 23 and 24) in each of the parallel flow paths (first and second bypass flow paths 21 and 22), the parallel flow path electromagnetic valves The valves (first and second solenoid valves 23, 24) are used as the flow passage area changing device,
The control device (controller) 30
When the engine is started, the electromagnetic valves for parallel flow paths (first and second electromagnetic valves 23, 24) are all opened,
The discharge pressure increasing process is configured to be executed by sequentially closing at predetermined time intervals while leaving at least one of the parallel flow path solenoid valves (first and second solenoid valves 23 and 24). is also good (claim 9).

更に,始動制御流路51及び始動圧力調整弁52を設けた構成では,前記始動制御流路51(51a,51b・・・51z)を複数設け,前記始動制御流路51(51a,51b・・・51z)のそれぞれに,該始動制御流路51(51a,51b・・・51z)を開閉する始動制御流路用電磁弁53(53a,53b・・・53z)と,それぞれ作動圧力が異なる前記始動圧力調整弁52(52a,52b・・・52z)を設け,
前記制御装置(コントローラ)30が,
前記エンジンの始動時,前記始動制御流路用電磁弁53(53a,53b・・・53z)の全てを開くと共に,
前記バイパス流路20の閉塞後,最も作動圧力の低い前記始動圧力調整弁52aが設けられた始動制御流路51aに設けられた始動制御流路用電磁弁53aから所定時間置きに順次閉じてゆき,前記暖機運転終了条件が満たされたとき,最も作動圧力の高い前記始動圧力調整弁52zが設けられた始動制御流路51zに設けられた始動制御流路用電磁弁53zを閉じるように構成するものとしても良い(請求項10)。
Furthermore, in the configuration in which the starting control flow path 51 and the starting pressure regulating valve 52 are provided, a plurality of the starting control flow paths 51 (51a, 51b . . . 51z) are provided, 51z) are provided with electromagnetic valves 53 (53a, 53b, . A starting pressure regulating valve 52 (52a, 52b ... 52z) is provided,
The control device (controller) 30
When the engine is started, all of the solenoid valves 53 (53a, 53b . . . 53z) for the start control flow path are opened,
After closing the bypass flow path 20, the start control flow path electromagnetic valve 53a provided in the start control flow path 51a provided with the start pressure regulating valve 52a having the lowest operating pressure is sequentially closed at predetermined time intervals. , when the warm-up end condition is satisfied, the electromagnetic valve 53z for the starting control flow path provided in the starting control flow path 51z having the starting pressure regulating valve 52z with the highest working pressure is closed. (Claim 10).

以上で説明した本発明の構成により,本発明の運転制御方法を実行するエンジン駆動型圧縮機1では,以下の顕著な効果を得ることができた。 With the configuration of the present invention described above, the engine-driven compressor 1 executing the operation control method of the present invention has the following remarkable effects.

暖機運転が終了する前に,吸気調整弁11を全開未満の開度で開いてレシーバタンク60内の圧力を給油開始圧力まで上昇させておく吐出圧力上昇処理を行うことにより,圧縮機本体40の潤滑及び冷却に必要な潤滑油の供給量を確保しておくことで,その後,暖機運転解除条件が満たされることにより圧力調整弁13による吸気調整弁11の制御に移行した場合であっても,潤滑油の給油不足に伴う吐出温度の異常上昇の発生等を好適に防止することができ,吐出温度の異常上昇に伴うエンジン駆動型圧縮機の非常停止の発生等を防止することができた。 Before the end of the warm-up operation, the compressor main body 40 is controlled by performing a discharge pressure increase process in which the pressure in the receiver tank 60 is increased to the refueling start pressure by opening the intake regulating valve 11 to a degree less than full open. By securing the supply amount of lubricating oil necessary for lubrication and cooling, after that, the control of the intake control valve 11 by the pressure control valve 13 is performed due to the satisfaction of the warm-up operation cancellation condition. Also, it is possible to suitably prevent the occurrence of an abnormal rise in the discharge temperature due to insufficient supply of lubricating oil, and it is possible to prevent the occurrence of an emergency stop of the engine-driven compressor due to an abnormal rise in the discharge temperature. rice field.

この吐出圧力上昇処理は,吸気調整弁11を全開未満の開度,従って,定格圧力に対し所定の低い圧力の範囲でレシーバタンク60内の圧力を上昇させるものであるため,レシーバタンク60内の圧力を定格圧力まで上昇させる場合に比較してエンジンにかかる負荷が小さく,暖機運転中に吐出圧力上昇処理を行ってもエンジンが停止(ストール)することを好適に防止することができた。 This discharge pressure increase process raises the pressure in the receiver tank 60 within a predetermined low pressure range with respect to the rated pressure. The load on the engine was smaller than when the pressure was raised to the rated pressure, and even if the discharge pressure increase process was performed during warm-up, the engine could be prevented from stalling.

また,制御流路12と圧力調整弁13の他に,始動制御流路51と,圧力調整弁13よりも低い圧力で開弁する始動圧力調整弁52を設け,吐出圧力上昇処理後,暖機運転終了条件が満たされるまでの間に,始動圧力調整弁52によって吸気調整弁11の制御を行うようにした構成では,圧力調整弁13による吸気調整弁の制御が行われる通常運転に移行する前に,レシーバタンク60内の圧力を,前述の給油開始圧力から,該給油開始圧力よりも高いが定格圧力よりも低い,所定の始動アンロード圧力まで上昇させることができ,暖機運転中の圧縮機本体40に対する給油量が増大することで,その後の通常運転に移行した際の吐出温度の異常上昇の発生をより確実に防止することができた。 In addition to the control flow path 12 and the pressure regulating valve 13, a starting control flow path 51 and a starting pressure regulating valve 52 that opens at a pressure lower than that of the pressure regulating valve 13 are provided. In the configuration in which the intake regulating valve 11 is controlled by the starting pressure regulating valve 52 until the operation termination condition is satisfied, the intake regulating valve 11 is controlled by the pressure regulating valve 13 before shifting to normal operation. In addition, the pressure in the receiver tank 60 can be raised from the above-mentioned refueling start pressure to a predetermined starting unload pressure that is higher than the refueling start pressure but lower than the rated pressure. By increasing the amount of oil supplied to the machine main body 40, it was possible to more reliably prevent the occurrence of an abnormal rise in the discharge temperature when the normal operation was started thereafter.

前記吐出圧力上昇処理を段階的に行う構成や,作動圧力の異なる複数の始動圧力調整弁52を作動圧力の低いものから順次適用する構成では,エンジンの暖機が進行するに従いレシーバタンク60内の圧力,従って,圧縮機本体40の背圧を上昇させてエンジンにかかる負荷を段階的に上げていくことで,通常運転に移行する前に圧縮機本体40に対する給油量を,通常運転時の給油量に近い量まで増大させることができる構成でありながら,暖機運転中のエンジンが停止(ストール)することを好適に防止することができた。 In a configuration in which the discharge pressure increase process is performed in stages, or in a configuration in which a plurality of starting pressure regulating valves 52 with different operating pressures are applied sequentially from the lowest operating pressure, the pressure inside the receiver tank 60 increases as the engine warms up. By increasing the pressure, and thus the back pressure of the compressor body 40, and gradually increasing the load on the engine, the amount of oil supplied to the compressor body 40 before the transition to normal operation can be adjusted to the oil supply during normal operation. Although it is a configuration that can increase to an amount close to the amount, it was possible to suitably prevent the engine from stopping (stall) during warm-up.

本発明のエンジン駆動型圧縮機の全体構成の説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram of the overall configuration of an engine-driven compressor of the present invention; 吸気調整弁の一構成例を示した断面図。FIG. 2 is a cross-sectional view showing a configuration example of an intake control valve; 吸気調整弁の変更例を示した断面図。FIG. 5 is a cross-sectional view showing a modification of the intake control valve; 本発明のエンジン駆動型圧縮機の機能ブロック図。1 is a functional block diagram of an engine-driven compressor of the present invention; FIG. 本発明のエンジン駆動型圧縮機の動作説明図(通常時)であり,(A)は始動時,(B)は吐出圧力上昇処理時,(C)は通常運転時の説明図。FIG. 2 is an explanatory diagram (at normal operation) of the operation of the engine-driven compressor of the present invention; 図5の動作時におけるエンジン駆動型圧縮機の,(A)は各部の動作を示すタイムチャート,(B)はレシーバタンク内圧力の変化を示すグラフ。(A) is a time chart showing the operation of each part of the engine-driven compressor during the operation of FIG. 5, and (B) is a graph showing changes in pressure inside the receiver tank. 本発明のエンジン駆動型圧縮機の動作説明図(極寒時)であり,(A)は始動時,(B)は吐出圧力上昇処理時,(C)は始動圧力調整弁による制御時,(D)は通常運転時の説明図。It is an explanatory diagram of the operation of the engine-driven compressor of the present invention (at the time of extreme cold), (A) at the time of starting, (B) at the time of discharge pressure increase processing, (C) at the time of control by the starting pressure adjustment valve, (D ) is an explanatory diagram during normal operation. 図7の動作時におけるエンジン駆動型圧縮機の,(A)は各部の動作を示すタイムチャート,(B)はレシーバタンク内圧力の変化を示すグラフ。(A) is a time chart showing the operation of each part of the engine-driven compressor during the operation of FIG. 7, and (B) is a graph showing changes in pressure inside the receiver tank. 始動負荷軽減装置を備えた従来のエンジン駆動型圧縮機の説明図(特許文献1の図1に対応)。FIG. 1 is an explanatory diagram of a conventional engine-driven compressor provided with a starting load reduction device (corresponding to FIG. 1 of Patent Document 1); 始動負荷軽減装置を備えたエンジン駆動型圧縮機の説明図であり,(A)は始動時,(B)は通常運転時における各部の動作を示す説明図。FIG. 2 is an explanatory diagram of an engine-driven compressor provided with a starting load reduction device, where (A) is an explanatory diagram showing the operation of each part during startup, and (B) is an explanatory diagram showing the operation of each part during normal operation; 図10の動作時におけるエンジン駆動型圧縮機の,(A)は各部の動作を示すタイムチャート,(B)はレシーバタンク内圧力の変化を示すグラフ。11. (A) is a time chart showing the operation of each part of the engine-driven compressor during the operation of FIG. 10, and (B) is a graph showing changes in the internal pressure of the receiver tank.

以下に,添付図面を参照しながら本発明の構成につき説明する。 The configuration of the present invention will be described below with reference to the accompanying drawings.

〔エンジン駆動型圧縮機の全体構成〕
図1中の符号1は本発明のエンジン駆動型圧縮機であり,このエンジン駆動型圧縮機1は,圧縮機本体40,前記圧縮機本体40を駆動するエンジン(図示せず),前記圧縮機本体40より吐出された圧縮気体を貯留するレシーバタンク60を備え,圧縮機本体40より吐出された圧縮気体を,レシーバタンク60内に貯留した後,圧力調整弁61を介してサービスバルブ66に接続された図示せざる空気作業機等に供給することができるように構成されている。
[Overall Configuration of Engine Driven Compressor]
Reference numeral 1 in FIG. 1 denotes an engine-driven compressor of the present invention. This engine-driven compressor 1 includes a compressor body 40, an engine (not shown) for driving the compressor body 40, and the compressor. Equipped with a receiver tank 60 for storing compressed gas discharged from the main body 40. After storing the compressed gas discharged from the compressor main body 40 in the receiver tank 60, it is connected to a service valve 66 via a pressure regulating valve 61. It is configured so that it can be supplied to an air working machine (not shown) or the like.

前述の圧縮機本体40は潤滑,冷却及び密封のための潤滑油と共に被圧縮気体を圧縮する油冷式のスクリュ圧縮機であり,レシーバタンク60内には,吐出流路62を介して潤滑油との気液混合流体として吐出された圧縮気体が導入され,このレシーバタンク60内で潤滑油と圧縮気体とを分離することができるように構成されていると共に,レシーバタンク60内に回収された潤滑油を,オイルクーラ63を介して圧縮機本体40に再度供給する,給油流路64を備えている。 The compressor main body 40 is an oil-cooled screw compressor that compresses the gas to be compressed together with lubricating oil for lubrication, cooling and sealing. Compressed gas discharged as a gas-liquid mixed fluid is introduced, and it is configured to be able to separate the lubricating oil and the compressed gas in this receiver tank 60, and is collected in the receiver tank 60 An oil supply passage 64 is provided to re-supply lubricating oil to the compressor body 40 via an oil cooler 63 .

〔吸気調整装置〕
以上のように構成されたエンジン駆動型圧縮機1には,レシーバタンク60内の圧力が所定の定格圧力に近付くよう,レシーバタンク60内の圧力が所定の定格圧力以上になると圧縮機本体40の吸気口41を絞り又は閉じ,定格圧力未満になると全開にする吸気調整を行う吸気調整装置10を備えている点では,図9及び図10を参照して説明した従来のエンジン駆動型圧縮機の構成と同様である。
[Intake adjustment device]
In the engine-driven compressor 1 configured as described above, the pressure inside the receiver tank 60 approaches a predetermined rated pressure. 9 and 10, it is different from the conventional engine-driven compressor described with reference to FIGS. Same as configuration.

また,この吸気調整装置10が,圧縮機本体40の吸気口41を開閉制御する吸気調整弁11と,この吸気調整弁11の閉弁受圧室113とレシーバタンク60間を連通する制御流路12,レシーバタンク60内の圧力に応じて,レシーバタンク60内の圧力が所定の定格圧力以上であるとき前記制御流路12を開くと共に,定格圧力未満であるとき前記制御流路12を閉じる圧力調整弁13によって構成されている点,及び,前記閉弁受圧室113内の圧縮気体を絞り15を介して放出する逃がし流路14を備えている点でも,図9及び図10を参照して説明したエンジン駆動型圧縮機の構成と同様である。 The intake adjusting device 10 also includes an intake adjusting valve 11 that controls the opening and closing of the intake port 41 of the compressor main body 40, and a control flow path 12 that communicates between the closed valve pressure receiving chamber 113 of the intake adjusting valve 11 and the receiver tank 60. , according to the pressure in the receiver tank 60, the control passage 12 is opened when the pressure in the receiver tank 60 is equal to or higher than a predetermined rated pressure, and the control passage 12 is closed when the pressure is less than the rated pressure. 9 and 10, the point that it is constituted by the valve 13 and the point that it is provided with the release passage 14 for releasing the compressed gas in the valve-closing pressure receiving chamber 113 through the throttle 15 will be explained with reference to FIGS. The configuration is similar to that of the engine-driven compressor described above.

〔吸気調整弁〕
吸気調整装置10を構成する前述の吸気調整弁11は,前述したように圧縮機本体40の吸気口41を開閉するもので,本実施形態では一例として図2に示す吸気調整弁11を使用している。
[Intake control valve]
The intake control valve 11 that constitutes the intake control device 10 opens and closes the intake port 41 of the compressor body 40 as described above. In this embodiment, the intake control valve 11 shown in FIG. ing.

この図2に示した吸気調整弁11は,ボディ(弁箱)111内に形成された空間によって被圧縮気体が通過する吸入流路115が形成されていると共に,この吸入流路115内に設けた弁座115aに,弁体116を着座させることで,吸入流路115を閉塞することができるように構成されている。 The intake control valve 11 shown in FIG. 2 has a body (valve box) 111 with a space formed therein that forms an intake passage 115 through which the gas to be compressed passes. By seating the valve element 116 on the valve seat 115a, the suction passage 115 can be closed.

この弁体116は,円盤状の弁体116に弁軸116aが取り付けられた,所謂「傘型弁」であり,ボディ111内に形成された円筒状のスリーブ117内に弁軸116aを挿入した状態で,このスリーブ117の軸線方向に弁体116を進退移動させることで,弁体116を弁座115aに着座させた閉弁位置と,弁座115aから弁体116が離間した開弁位置間を移動できるように構成されている。 This valve body 116 is a so-called "umbrella valve" in which a valve shaft 116a is attached to a disk-shaped valve body 116, and the valve shaft 116a is inserted into a cylindrical sleeve 117 formed in the body 111. By moving the valve body 116 back and forth in the axial direction of the sleeve 117 in this state, the valve body 116 is moved between the closed position where the valve body 116 is seated on the valve seat 115a and the open position where the valve body 116 is separated from the valve seat 115a. is configured to allow movement of

このような弁体116の移動を可能とするために,吸気調整弁11の弁箱111には,前述のスリーブ117を介して吸入流路115と連通するシリンダ112が前記スリーブ117と同軸に形成されている。 In order to enable such movement of the valve body 116, a cylinder 112 is formed coaxially with the sleeve 117 in the valve box 111 of the intake control valve 11 and communicates with the intake passage 115 via the sleeve 117. It is

このシリンダ112は,スリーブ117に弁軸116aが挿入された状態で,且つ,前記スリーブ117の形成側とは反対側の端部を端板118で塞ぐことにより気密室を成し,この気密室(シリンダ)112内を,弁軸116aの他端に連結された受圧体119,本実施形態ではピストンを介して二室に分割することにより,前記端板118側に吸気調整弁11の閉弁受圧室113が形成されていると共に,ピストン119を介して前記閉弁受圧室113とは反対側に,補助受圧室114が形成されている。 The cylinder 112 forms an airtight chamber with the valve stem 116a inserted into the sleeve 117 and by closing the end portion of the cylinder 112 on the side opposite to the formation side of the sleeve 117 with an end plate 118. The inside of the (cylinder) 112 is divided into two chambers via a pressure receiving body 119, which in this embodiment is a piston, connected to the other end of the valve shaft 116a. A pressure receiving chamber 113 is formed, and an auxiliary pressure receiving chamber 114 is formed on the opposite side of the piston 119 from the valve closing pressure receiving chamber 113 .

図示の構成では,吸気調整弁11を常時開(NO)型とするために,前述した補助受圧室114内にピストン119を閉弁受圧室113側に押圧するスプリング114aを収容して,補助受圧室114にスプリング室としての機能を持たせているが,吸気調整弁11を常時開型とすることができるものであれば,スプリング114aは必ずしも補助受圧室114に設ける必要はない。 In the illustrated configuration, the intake control valve 11 is of the normally open (NO) type. Although the chamber 114 functions as a spring chamber, the spring 114a does not necessarily need to be provided in the auxiliary pressure receiving chamber 114 if the intake control valve 11 can be of a normally open type.

なお,吸気調整弁11としては,図2に示す構成のものに代えて,図3に示すように,逆流防止機能を備えた構造の吸気調整弁11を採用しても良い。 As the intake regulating valve 11, instead of the intake regulating valve 11 having the structure shown in FIG. 2, an intake regulating valve 11 having a structure having a backflow prevention function as shown in FIG. 3 may be employed.

この構成では,弁軸を,弁体116側に設けた弁軸116a’と,受圧体(ピストン)119側に設けた弁軸119aに分割すると共に,弁体116側の弁軸116a’と受圧体(ピストン)119側の弁軸119aの間に弁体116を弁座115aに向けて付勢するスプリング116bが設けられている。 In this configuration, the valve shaft is divided into a valve shaft 116a' provided on the valve body 116 side and a valve shaft 119a provided on the pressure receiving body (piston) 119 side. A spring 116b is provided between the valve shaft 119a on the body (piston) 119 side and biases the valve body 116 toward the valve seat 115a.

このスプリング116bの付勢力によって,受圧体(ピストン)119が紙面左側の開弁位置にある場合であっても,弁体116が弁座115aに接触するように構成されている。 The biasing force of the spring 116b keeps the valve body 116 in contact with the valve seat 115a even when the pressure receiving body (piston) 119 is at the valve open position on the left side of the drawing.

このスプリング116bの付勢力は弱く,受圧体(ピストン)119が紙面左側の開弁位置にあるときに,弁座115aに対し二次側にある吸入流路115内の圧力が負圧になると,弁体116が弁座115aより離間して,圧縮機本体40は被圧縮気体を吸入することができるように構成されている。 The biasing force of this spring 116b is weak, and when the pressure receiving body (piston) 119 is at the valve open position on the left side of the drawing, if the pressure in the suction passage 115 on the secondary side with respect to the valve seat 115a becomes negative pressure, The valve body 116 is separated from the valve seat 115a, and the compressor main body 40 is configured to be able to suck the gas to be compressed.

一方,受圧体(ピストン)119が紙面左側の開弁位置にあるときであっても,弁座115aに対し二次側の吸入流路115内の圧力が上昇すると,弁体116が弁座115aに押し付けられることで逆流が防止される。 On the other hand, even when the pressure-receiving body (piston) 119 is at the valve open position on the left side of the paper, if the pressure in the intake passage 115 on the secondary side with respect to the valve seat 115a rises, the valve body 116 will move to the valve seat 115a. Backflow is prevented by being pressed against the

このように,本発明のエンジン駆動型圧縮機1に逆流防止機能付きの吸気調整弁11を採用する場合,弁座115aに対し弁体116が接触している状態であっても,弁座115aの一次側にある吸入流路内の圧力に対し,弁座115aの二次側にある吸入流路内の圧力が低くなった際に弁体116が弁座115aより離間して圧縮機本体40が吸気を行い得る状態は,吸気調整弁11の「開」又は「開弁」に含まれる。 As described above, when the intake regulating valve 11 with a backflow prevention function is employed in the engine-driven compressor 1 of the present invention, even if the valve body 116 is in contact with the valve seat 115a, the valve seat 115a When the pressure in the suction passage on the secondary side of the valve seat 115a becomes lower than the pressure in the suction passage on the primary side, the valve body 116 is separated from the valve seat 115a and the compressor body 40 is closed. is included in the "open" or "open" state of the intake regulating valve 11.

また,図2及び図3を参照して説明した吸気調整弁11の構成では,弁体116や弁座115aのみならず,弁体116を進退移動させるためのシリンダ112やピストン119等をいずれも共通のボディ(弁箱)111内に設けた構成を示したが,図9を参照して説明した従来のエンジン駆動型圧縮機のように,弁体の駆動機構を備えない吸気調整弁本体と,この吸気調整弁本体の弁体を駆動するアンローダレギュレータ等の駆動機構をそれぞれ別体とした構成を採用するものとしても良く,この場合,前述した閉弁受圧室113や補助受圧室114,受圧体119は,アンローダレギュレータ内に形成される。 In addition, in the structure of the intake control valve 11 explained with reference to FIGS. 2 and 3, not only the valve body 116 and the valve seat 115a, but also the cylinder 112 and the piston 119 for moving the valve body 116 back and forth are all included. Although the configuration provided in the common body (valve box) 111 is shown, it is not equipped with an intake regulating valve main body without a valve body drive mechanism like the conventional engine-driven compressor described with reference to FIG. , and the drive mechanism such as the unloader regulator for driving the valve body of the intake regulating valve body may be separately provided. A body 119 is formed within the unloader regulator.

更に,図2及び図3を参照して説明した吸気調整弁11では,弁体116の駆動機構として気密室であるシリンダ112内を,閉弁受圧室113に導入された圧縮気体の圧力を受けて移動するピストン119を受圧体として設けることによって仕切る構成を採用したが,受圧体119は前述のピストンに限定されず,閉弁受圧室113内に導入された圧縮気体によって弁体116の動作を制御し得るものであれば,例えばダイヤフラム等を受圧体119としても良い。 Furthermore, in the intake control valve 11 explained with reference to FIGS. Although the partitioning structure is adopted by providing the piston 119 that moves as a pressure receiving body, the pressure receiving body 119 is not limited to the above-mentioned piston, and the operation of the valve body 116 is performed by the compressed gas introduced into the valve closing pressure receiving chamber 113. For example, a diaphragm or the like may be used as the pressure receiving body 119 as long as it can be controlled.

〔バイパス流路〕
以上のように構成された吸気調整弁11の閉弁受圧室113には,前述の制御流路12の他に,更に,バイパス流路20が連通されており,制御流路12に設けた圧力調整弁13をバイパスしてレシーバタンク60内の圧縮気体を吸気調整弁11の閉弁受圧室113に導入することができるように構成されている。
[Bypass flow path]
In addition to the control flow path 12 described above, a bypass flow path 20 is also in communication with the closed valve pressure receiving chamber 113 of the intake regulating valve 11 configured as described above. It is configured such that the compressed gas in the receiver tank 60 can be introduced into the closed valve pressure receiving chamber 113 of the intake regulating valve 11 by bypassing the regulating valve 13 .

このバイパス流路20には,バイパス流路20の流路面積を可変と成す,流路面積変更装置が設けられており,このバイパス流路20の流路面積を変化させて吸気調整弁11の閉弁受圧室113に導入する圧縮気体の流量を変化させることで吸気調整弁11の開度を変化させることができるように構成されている。 The bypass flow path 20 is provided with a flow path area changing device that makes the flow path area of the bypass flow path 20 variable. The opening of the intake control valve 11 can be changed by changing the flow rate of the compressed gas introduced into the closed valve pressure receiving chamber 113 .

バイパス流路20の流路面積を可変と成すために,本実施形態では前述のバイパス流路20を,2本の並列流路(第1バイパス流路21と第2バイパス流路22)の集合体として構成すると共に,第1バイパス流路21と第2バイパス流路22のそれぞれに電磁弁(第1電磁弁23,第2電磁弁24)を設け,第1,第2電磁弁23,24をいずれも開いた状態でバイパス流路20の流路面積が最大で,第1,第2電磁弁23,24のいずれか一方を閉じることで流路面積を絞り,第1,第2電磁弁23,24の双方を閉じることでバイパス流路20を閉塞することができるように構成した。 In order to make the flow area of the bypass flow channel 20 variable, in the present embodiment, the above-described bypass flow channel 20 is a set of two parallel flow channels (a first bypass flow channel 21 and a second bypass flow channel 22). The first bypass flow path 21 and the second bypass flow path 22 are provided with electromagnetic valves (a first electromagnetic valve 23 and a second electromagnetic valve 24), respectively. The flow area of the bypass flow path 20 is maximum when both are open, and the flow area is narrowed by closing one of the first and second solenoid valves 23 and 24, and the first and second solenoid valves By closing both 23 and 24, the bypass channel 20 can be blocked.

従って,図示の実施形態ではこの第1,第2電磁弁23,24が,バイパス流路の流路面積を可変とする,前述の流路面積変更装置となる。 Therefore, in the illustrated embodiment, the first and second solenoid valves 23 and 24 serve as the above-described flow passage area changing device for varying the flow passage area of the bypass flow passage.

図1に示す実施形態では,一端をレシーバタンク60に連通したコモン流路25の他端をアルミ合金製のブロックマニホールド26に連結して分岐し,このブロックマニホールド26に制御流路12,第1バイパス流路21及び第2バイパス流路22の一端をそれぞれ連通すると共に,他端を吸気調整弁11の閉弁受圧室113にそれぞれ連通する構成を示したが,制御流路12,第1バイパス流路21,及び第2バイパス流路22の一端は,前述したブロックマニホールド26やコモン流路25を介することなく,図5及び図7に示すように直接,レシーバタンク60に連通するものとしても良い。 In the embodiment shown in FIG. 1, the other end of the common flow path 25, one end of which communicates with the receiver tank 60, is connected to an aluminum alloy block manifold 26 and branched. Although the bypass flow path 21 and the second bypass flow path 22 are communicated at one end and the other end is communicated with the valve closing pressure receiving chamber 113 of the intake control valve 11, the control flow path 12 and the first bypass are shown. One end of the flow path 21 and the second bypass flow path 22 may directly communicate with the receiver tank 60 as shown in FIGS. good.

本実施形態において,前述の第1バイパス流路21に設けられた第1電磁弁23は,常時開(NO)型の電磁弁であり,前述した第2バイパス流路22に設ける第2電磁弁24として常時閉(NC)型の電磁弁を採用しているが,この構成に限定されず,各種の組み合わせが採用可能である。 In this embodiment, the first electromagnetic valve 23 provided in the first bypass flow path 21 described above is a normally open (NO) type electromagnetic valve, and the second electromagnetic valve provided in the second bypass flow path 22 described above Although a normally closed (NC) type solenoid valve is used as 24, it is not limited to this configuration, and various combinations can be used.

なお,図1~3中,符号27は三方電磁弁であり,この三方電磁弁27のCポートを,流路28cを介して吸気調整弁11の補助受圧室114(スプリング室:図2及び図3参照)に連通し,Aポートに取り付けた流路28aを,弁座115aの二次側において吸気調整弁11の吸入流路115に連通させると共に,Bポートに取り付けた流路28bを,吸気調整弁11の一次側に連通させている。 1 to 3, reference numeral 27 denotes a three-way solenoid valve, and the C port of this three-way solenoid valve 27 is connected to the auxiliary pressure receiving chamber 114 (spring chamber: FIG. 2 and FIG. 3), the flow path 28a attached to the A port is connected to the intake flow path 115 of the intake control valve 11 on the secondary side of the valve seat 115a, and the flow path 28b attached to the B port is connected to the intake air. It communicates with the primary side of the regulating valve 11 .

これにより,三方電磁弁27の切り替えによって,吸気調整弁11の補助受圧室114を,弁座115aの二次側における吸入流路115と,吸気調整弁11の一次側に,選択的に連通させることができるように構成されている。 As a result, by switching the three-way electromagnetic valve 27, the auxiliary pressure receiving chamber 114 of the intake control valve 11 is selectively communicated with the intake passage 115 on the secondary side of the valve seat 115a and the primary side of the intake control valve 11. configured to be able to

〔始動制御流路〕
本発明のエンジン駆動型圧縮機1には,更に,制御流路12に設けた圧力調整弁13をバイパスして,レシーバタンク60と吸気調整弁11の閉弁受圧室113間を連通する,始動制御流路51を設けるものとしても良い。
[Starting control flow path]
In the engine-driven compressor 1 of the present invention, the pressure regulating valve 13 provided in the control flow path 12 is bypassed, and the receiver tank 60 and the valve closing pressure receiving chamber 113 of the intake regulating valve 11 are communicated with each other. A control channel 51 may be provided.

この始動制御流路51には,レシーバタンク60内の圧力が所定の始動アンロード圧力以上になると開弁し,前記始動アンロード圧力未満になると閉弁する,始動圧力調整弁52を設けると共に,該始動圧力調整弁52と直列に,電磁開閉弁〔本実施形態では常時閉(NC)型の電磁開閉弁〕である始動制御流路用電磁弁53が設けられている。 The starting control flow path 51 is provided with a starting pressure regulating valve 52 which opens when the pressure in the receiver tank 60 becomes equal to or higher than a predetermined starting unload pressure and closes when the pressure becomes less than the starting unload pressure. In series with the starting pressure regulating valve 52, an electromagnetic valve 53 for a starting control flow path, which is an electromagnetic opening/closing valve [in this embodiment, a normally closed (NC) type electromagnetic opening/closing valve] is provided.

前述の始動アンロード圧力は,給油開始圧力よりも所定の高い圧力で,かつ,定格圧力よりも所定の低い圧力として設定されており,従って,始動制御流路用電磁弁53によって始動制御流路51が開かれているときにバイパス流路20が閉じると,圧力調整弁13よりも作動圧力が低く設定されている始動圧力調整弁52によって吸気調整弁11の開閉制御が開始されるように構成されている。 The aforementioned starting unloading pressure is set to a pressure that is higher than the refueling start pressure and lower than the rated pressure. When the bypass flow path 20 is closed while the intake regulating valve 11 is open, the opening/closing control of the intake regulating valve 11 is started by the starting pressure regulating valve 52 whose operating pressure is set lower than that of the pressure regulating valve 13. It is

なお,この始動制御流路51,始動圧力調整弁52,及び始動制御流路用電磁弁53は,例えば標準仕様のエンジン駆動型圧縮機1には設けず,寒冷地仕様のエンジン駆動型圧縮機1にのみ設けるようにしても良い。 The start control flow path 51, the start pressure regulating valve 52, and the start control flow path electromagnetic valve 53 are not provided in the engine-driven compressor 1 of standard specifications, for example, and are not provided in the engine-driven compressor 1 of cold region specifications. 1 may be provided.

また,前述の始動制御流路51,始動圧力調整弁52,及び始動制御流路用電磁弁53は,各1つずつ設けるものとしても良いが,図1中に「変更例」として示したように,2つ又はそれ以上の始動制御流路51a,51b・・・51zを並列に設けると共に,各始動制御流路51a,51b・・・51zのそれぞれに,始動圧力調整弁52a,52b・・・52zと始動制御流路用電磁弁53a,53b・・・53zを設けるものとしても良い。 The starting control flow path 51, the starting pressure regulating valve 52, and the starting control flow path electromagnetic valve 53 may be provided one by one. , 51z are provided in parallel, and starting pressure control valves 52a, 52b, . . . 52z and electromagnetic valves 53a, 53b, .

この場合,始動圧力調整弁52a,52b・・・52zのそれぞれの作動圧力を異なる値に設定し,始動制御流路用電磁弁53a,53b・・・53zの全てを開いた状態から,作動圧力の低い始動圧力調整弁が設けられている始動制御流路に設けた始動制御流路用電磁弁から順次閉じていくことで,始動アンロード圧力が段階的に上昇するように構成するものとしても良い。 In this case, the working pressure of each of the starting pressure regulating valves 52a, 52b, . The starting unload pressure can be increased step by step by sequentially closing the solenoid valve for the starting control flow path provided in the starting control flow path where the low starting pressure adjustment valve is installed. good.

〔スイッチ類,センサ類等〕
以上のように構成された本発明のエンジン駆動型圧縮機1には,該エンジン駆動型圧縮機1の各部の動作を制御する制御装置である,コントローラ30が設けられていると共に,該コントローラ30に対して電気信号を出力するスイッチ類やセンサ類が設けられている(図4参照)。
[Switches, sensors, etc.]
The engine-driven compressor 1 of the present invention configured as described above is provided with a controller 30, which is a control device for controlling the operation of each part of the engine-driven compressor 1. Switches and sensors for outputting electrical signals are provided (see FIG. 4).

このうちのスイッチ類としては,エンジン駆動型圧縮機1の主電源のON,OFF,エンジンの始動,停止などの操作を行うための(後述するコントローラ30に行わせるための)スイッチ類を設けることができる。 Among these switches, switches for turning on and off the main power supply of the engine-driven compressor 1, starting and stopping the engine, etc. (to be performed by the controller 30 described later) are provided. can be done.

一例として,図4に示す実施形態では,このようなスイッチ類として,メインスイッチ70と,始動スイッチ72をエンジン駆動型圧縮機1の操作パネルに設けている。 As an example, in the embodiment shown in FIG. 4, a main switch 70 and a starter switch 72 are provided on the operation panel of the engine-driven compressor 1 as such switches.

このうちのメインスイッチ70は,エンジン駆動型圧縮機1の主電源の「ON」,「OFF」の切り替えを行うもので,図示の実施形態では,このメインスイッチ70として,ON,OFFの二位置間を切り替え可能なロータリスイッチを採用している。 Among them, the main switch 70 switches between "ON" and "OFF" of the main power supply of the engine-driven compressor 1. In the illustrated embodiment, the main switch 70 has two positions of ON and OFF. A rotary switch is used to switch between

このうちの「OFF」は,エンジン駆動型圧縮機1の各部に対する通電が停止した停止状態であり,「ON」は,所謂「アクセサリーポジション」であり,エンジンや,コントローラ30などの電子制御装置,各種のセンサや計器類等に対する通電が行われた状態である。 Among these, "OFF" is a stopped state in which the power supply to each part of the engine-driven compressor 1 is stopped, and "ON" is a so-called "accessory position", where the engine, the electronic control device such as the controller 30, This is a state in which power is supplied to various sensors, instruments, and the like.

また,始動スイッチ72は,エンジンを始動させるためのスイッチであり,本実施形態においてはこれを押しボタン式のスイッチによって構成し,これを所定時間(例えば1秒)以上,長押しすると,エンジンのスタータモータに対する通電が行われてエンジンが始動するように構成されている。 In addition, the start switch 72 is a switch for starting the engine, and in this embodiment, it is composed of a push-button type switch. The starter motor is energized to start the engine.

このようなメインスイッチ70と始動スイッチ72を備えたエンジン駆動型圧縮機1の構成において,メインスイッチ70を「OFF」ポジションから「ON」ポジションに回転させた後,始動スイッチ72を長押ししてエンジンを始動させることで,エンジン駆動型圧縮機1の始動と運転の継続を行うことができると共に,メインスイッチ70を「ON」ポジションから,「OFF」ポジションに回転させると,エンジン駆動型圧縮機1を停止させることができるように構成されている。 In the configuration of the engine-driven compressor 1 having such a main switch 70 and a start switch 72, after rotating the main switch 70 from the "OFF" position to the "ON" position, the start switch 72 is pressed for a long time. By starting the engine, the engine-driven compressor 1 can be started and continued to operate. 1 can be stopped.

なお,エンジン駆動型圧縮機1の始動及び停止操作のためのスイッチは,前述したように,メインスイッチ70と始動スイッチ72を別個に設ける構成に限定されず,アクセサリー(メインスイッチ)のON,OFFを行うことができると共に,スタータモータのON,OFFを行うことができるものであれば,各種の構成を採用することができ,アクセサリーのON,OFFと,スタータモータのON,OFFを行うスイッチは,キーを差し込んで回転させることにより,OFF位置から,ON位置(アクセサリーポジション),更に,エンジンのスタータモータを回転されるスタート位置に切り替えることができる,既知のキースイッチなどによって構成するものとしても良い。 The switch for starting and stopping the engine-driven compressor 1 is not limited to the configuration in which the main switch 70 and the start switch 72 are separately provided as described above, and the accessory (main switch) can be turned on and off. can be performed and the starter motor can be turned on and off, various configurations can be adopted. , By inserting and turning the key, it is possible to switch from the OFF position to the ON position (accessory position) and further to the start position where the engine starter motor is rotated. good.

また,本発明のエンジン駆動型圧縮機1には,圧縮機本体40の油温を検出する温度センサ65が設けられており(図1,図4),コントローラ30は,この温度センサ65からの検知信号に基づいて,圧縮機本体40の油温の変化を監視する。 In addition, the engine-driven compressor 1 of the present invention is provided with a temperature sensor 65 for detecting the oil temperature of the compressor body 40 (FIGS. 1 and 4), and the controller 30 receives the temperature from this temperature sensor 65. A change in the oil temperature of the compressor body 40 is monitored based on the detection signal.

〔コントローラ〕
以上のように構成された本発明のエンジン駆動型圧縮機1には,前述したスイッチ類の操作,及び温度センサ65が検出した圧縮機本体40の油温の変化,及び内蔵されたタイマ36のカウントに基づいて,前述した第1電磁弁23,第2電磁弁24,及び,三方電磁弁27の動作を制御する,電子制御装置であるコントローラ30が設けられている。
〔controller〕
In the engine-driven compressor 1 of the present invention configured as described above, the operation of the switches described above, the change in the oil temperature of the compressor main body 40 detected by the temperature sensor 65, and the built-in timer 36 A controller 30, which is an electronic control device, is provided for controlling the operations of the first solenoid valve 23, the second solenoid valve 24, and the three-way solenoid valve 27 based on the count.

このコントローラ30は,前述したスイッチ類70,72の操作状態,及び,温度センサ65が検出した圧縮機本体40の吐出温度,及びタイマ36のカウントに基づいて,下記の制御を実行する。 The controller 30 executes the following control based on the operating states of the switches 70 and 72, the discharge temperature of the compressor main body 40 detected by the temperature sensor 65, and the count of the timer 36.

(1)始動運転
オペレータがメインスイッチ70を「ON」位置に捻ると,エンジン駆動型圧縮機1の各部に対する通電が行われ,コントローラ30が起動する。
(1) Starting operation When the operator turns the main switch 70 to the "ON" position, each part of the engine-driven compressor 1 is energized and the controller 30 is activated.

これにより,コントローラ30は,圧縮機本体40の油温を検知する温度センサ65の検知温度を受信し,油温が0℃以下であるか否かを判断する。 Accordingly, the controller 30 receives the temperature detected by the temperature sensor 65 that detects the oil temperature of the compressor body 40 and determines whether the oil temperature is 0° C. or less.

また,コントローラ30は,油温が0℃よりも高い場合,更に,油温が60℃以下であるか否かを判断し,予め記憶した対応関係に従い,60℃以下である場合には冷時運転時間(一例としてエンジンの始動から180秒)の経過を暖機運転解除条件とし,また,圧縮機本体の油温が60℃を越えている場合には,暖時運転時間(一例としてエンジンの始動から60秒)の経過を暖機運転解除条件として設定する。 If the oil temperature is higher than 0°C, the controller 30 further determines whether the oil temperature is 60°C or lower. Elapsed operation time (180 seconds from the start of the engine as an example) is the condition for canceling the warm-up operation, and if the oil temperature of the compressor body exceeds 60 ° 60 seconds after starting is set as a warm-up cancellation condition.

その後,始動スイッチ72を長押ししてエンジンを始動させると,コントローラ30は,油温が0℃を越えている場合には始動制御流路用電磁弁53(本実施形態ではNC型)に対する通電を行わず,始動制御流路51を閉塞したままの状態に維持すると共に,第1電磁弁23を非通電(OFF),すなわち開状態に維持したまま,第2電磁弁24を通電(ON)して開き,この状態でスタータモータを回転させてエンジンを始動させる〔図5(A)及び図6の「ENG始動」参照〕。 After that, when the engine is started by pressing the start switch 72 for a long time, the controller 30 energizes the solenoid valve 53 (NC type in this embodiment) for the start control flow path when the oil temperature exceeds 0°C. is not performed, the start control flow path 51 is kept closed, and the first solenoid valve 23 is de-energized (OFF), that is, while the second solenoid valve 24 is kept open, the second solenoid valve 24 is energized (ON). and open, and in this state, the starter motor is rotated to start the engine [see "ENG start" in Figs. 5A and 6].

このように,バイパス流路20(第1,第2バイパス流路21,22)を介して吸気調整弁11の閉弁受圧室113がレシーバタンク60と連通されることにより,圧力調整弁13による吸気調整弁11の制御は無効化されて,レシーバタンク60内の圧力が,圧力調整弁13の作動圧力に満たない圧力であっても,吸気調整弁11に閉弁動作を行わせることが可能となる。 In this way, the closing valve pressure receiving chamber 113 of the intake control valve 11 is communicated with the receiver tank 60 via the bypass channel 20 (the first and second bypass channels 21 and 22). Even if the control of the intake regulating valve 11 is disabled and the pressure in the receiver tank 60 is less than the operating pressure of the pressure regulating valve 13, the intake regulating valve 11 can be made to close. becomes.

その結果,圧縮機本体40の回転によってレシーバタンク60内の圧力が上昇して吸気調整弁11の作動圧力以上になると,吸気調整弁11が閉弁する。 As a result, when the pressure in the receiver tank 60 rises due to the rotation of the compressor body 40 and exceeds the operating pressure of the intake control valve 11, the intake control valve 11 is closed.

これにより,吸気調整弁11が圧縮機本体40の吸気口41を閉じた無負荷の状態でエンジンの暖機運転が開始される。 As a result, the engine starts to warm up in a no-load state in which the intake regulating valve 11 closes the intake port 41 of the compressor body 40 .

なお,図1及び図5に示す三方電磁弁27を設けた構成では,コントローラ30はこのエンジンの始動時,吸気調整弁11の補助受圧室114を弁座115aの二次側における吸入流路115に連通する位置(ポートC-A間を連通する位置)に三方電磁弁27を切り替える。 1 and 5, in which the three-way solenoid valve 27 is provided, the controller 30 causes the auxiliary pressure receiving chamber 114 of the intake regulating valve 11 to move to the intake passage 115 on the secondary side of the valve seat 115a when the engine is started. The three-way solenoid valve 27 is switched to a position communicating with the port CA (a position communicating between the ports CA).

その結果,エンジンの始動動作と共に圧縮機本体40が回転を開始して弁座115aの二次側における吸入流路115内が負圧となることで,吸気調整弁11の補助受圧室114も負圧となり,これによりエンジンの始動時における吸気調整弁11の閉弁動作をより早期に完了させることができるようになっている。 As a result, the compressor main body 40 starts rotating along with the engine starting operation, and the inside of the intake passage 115 on the secondary side of the valve seat 115a becomes negative pressure. As a result, the closing operation of the intake control valve 11 can be completed earlier when the engine is started.

(2)吐出圧力上昇処理
コントローラ30は,タイマ36のカウントに基づいてエンジンの始動後,所定時間X(一例として本実施形態では10秒)が経過したと判断すると,第1電磁弁23に対する通電(ON)を開始して第1電磁弁23を閉じると共に,三方電磁弁27に対する通電(ON)を開始して,吸気調整弁11の補助受圧室114を弁座115aの一次側における吸入流路115に連通する位置(ポートC-B間を連通する位置)に三方電磁弁27を切り替える〔図5(B)及び図6の「吐出圧力上昇処理」参照〕。
(2) Discharge pressure increase process When the controller 30 determines that a predetermined time X (10 seconds in this embodiment as an example) has elapsed after the engine is started based on the count of the timer 36, the first electromagnetic valve 23 is energized. (ON) is started to close the first solenoid valve 23, and energization (ON) to the three-way solenoid valve 27 is started to move the auxiliary pressure receiving chamber 114 of the intake control valve 11 to the intake passage on the primary side of the valve seat 115a. The three-way solenoid valve 27 is switched to the position communicating with 115 (the position communicating between the ports CB) [see "discharge pressure increasing process" in FIGS. 5B and 6].

これにより,補助受圧室114の負圧が解消すると共に,第1バイパス流路21を介してレシーバタンク60から吸気調整弁11の閉弁受圧室113に導入されていた圧縮気体の導入が停止することにより,閉弁受圧室113に導入される圧縮気体の流量が減少することにより閉弁受圧室内の圧力が低下する。 As a result, the negative pressure in the auxiliary pressure receiving chamber 114 is eliminated, and the introduction of the compressed gas that has been introduced from the receiver tank 60 into the valve closing pressure receiving chamber 113 of the intake control valve 11 via the first bypass passage 21 is stopped. As a result, the flow rate of the compressed gas introduced into the valve closing pressure receiving chamber 113 is reduced, thereby reducing the pressure in the valve closing pressure receiving chamber 113 .

そのため,吸気調整弁11が全閉の状態から,全開未満の所定の開度で僅かに開いた状態となり,圧縮機本体40が吸気を開始することで,一例としてゲージ圧で0.1MPa程度であったレシーバタンク60内の圧力が,この吐出圧力上昇処理によって給油開始圧力(一例としてゲージ圧で0.35MPa程度)にまで上昇する〔図6(B)の「STEP2」参照〕。 Therefore, the intake control valve 11 changes from a fully closed state to a slightly opened state with a predetermined degree of opening less than fully open, and the compressor body 40 starts intake air, for example, at a gauge pressure of about 0.1 MPa. The pressure in the receiver tank 60, which was already there, rises to the refueling start pressure (for example, about 0.35 MPa in gauge pressure) by this discharge pressure increasing process [see "STEP 2" in FIG. 6B].

なお,図示の実施形態では,バイパス流路20を第1,第2バイパス流路21,22から成る2本の流路によって形成し,このうちの一方の流路(第1バイパス流路21)を閉塞することにより吸気調整弁11の閉弁受圧室113に対し導入される圧縮気体の流量を絞ることでレシーバタンク60内の圧力を給油開始圧力に上昇させる構成を採用した。 In the illustrated embodiment, the bypass channel 20 is formed by two channels consisting of first and second bypass channels 21 and 22, one of which (the first bypass channel 21) is closed to reduce the flow rate of the compressed gas introduced into the closed valve pressure receiving chamber 113 of the intake control valve 11, thereby increasing the pressure in the receiver tank 60 to the refueling start pressure.

これに対し,例えばバイパス流路20を3本以上の並列流路によって構成し,少なくとも1本の並列流路を残し,他の並列流路を所定時間毎に1本ずつ閉塞することにより,段階的に所定の給油開始圧力にまで上昇させるものとしても良い。 On the other hand, for example, the bypass flow path 20 is configured by three or more parallel flow paths, leaving at least one parallel flow path and closing the other parallel flow paths one by one at predetermined time intervals. It is also possible to increase the pressure to a predetermined refueling start pressure.

この場合,給油開始圧力をより高い圧力に設定した場合であっても,エンジンが停止(ストール)することを防止することができる。 In this case, even if the refueling start pressure is set to a higher pressure, it is possible to prevent the engine from stalling.

(3)通常運転
コントローラ30は,前述した始動時の油温に基づいて設定した暖機運転時間(冷時運転時間,又は暖時運転時間)の経過を暖機運転解除条件とし,この暖機温度解除条件が満たされると,第2電磁弁24に対する通電を停止(OFF)することで第2電磁弁24を閉じ,これにより第2バイパス流路22を閉塞する〔図5(C)及び図6の「暖機運転解除」参照〕。
(3) Normal operation The controller 30 uses the lapse of the warm-up operation time (cold operation time or warm operation time) set based on the oil temperature at the start as described above as a condition for canceling the warm-up operation. When the temperature release condition is satisfied, the second solenoid valve 24 is de-energized (turned OFF) to close the second solenoid valve 24, thereby blocking the second bypass flow path 22 [FIGS. 6 "Cancellation of warm-up operation"].

これにより,第2バイパス流路22を介して行われていた,吸気調整弁11の閉弁受圧室113に対するレシーバタンク60からの圧縮気体の導入が停止する。 As a result, the introduction of the compressed gas from the receiver tank 60 into the valve closing pressure receiving chamber 113 of the intake control valve 11 through the second bypass passage 22 is stopped.

このようにしてバイパス流路20(21,22)が完全に閉塞することにより,吸気調整弁11の開閉動作の制御が,制御流路12に設けた圧力調整弁13によって行われる,通常運転に移行する。 By completely closing the bypass flow path 20 (21, 22) in this manner, the control of the opening and closing operation of the intake control valve 11 is performed by the pressure control valve 13 provided in the control flow path 12, and normal operation is performed. Transition.

通常運転への移行時,レシーバタンク60内の圧力は定格圧力よりも所定の低い圧力である給油開始圧力となっていることから,圧力調整弁13は制御流路12を閉じており,吸気調整弁11の閉弁受圧室113に対し,レシーバタンク60内の圧縮気体は導入されないことから,吸気調整弁11は全開となり,圧縮機本体40は全負荷運転を開始する。 At the time of transition to normal operation, the pressure in the receiver tank 60 is the refueling start pressure, which is a predetermined pressure lower than the rated pressure. Since the compressed gas in the receiver tank 60 is not introduced into the closed valve pressure receiving chamber 113 of the valve 11, the intake control valve 11 is fully opened and the compressor body 40 starts full load operation.

このように,本発明の構成では,通常運転に移行する前に前述した吐出圧力上昇処理によってレシーバタンク60内の圧力を所定の給油開始圧力にまで上昇させておき,圧縮機本体40に対する給油量を増加させておくことで,通常運転に移行して,圧縮機本体40が全負荷運転を開始した際に,潤滑油の給油量不足に伴う吐出温度の異常上昇の発生等を好適に防止することができる。 As described above, in the configuration of the present invention, the pressure in the receiver tank 60 is increased to a predetermined oil supply start pressure by the above-described discharge pressure increase process before shifting to normal operation, and the amount of oil supplied to the compressor body 40 is increased. is increased, it is possible to appropriately prevent the occurrence of an abnormal rise in the discharge temperature due to insufficient supply of lubricating oil when the compressor body 40 starts full-load operation after shifting to normal operation. be able to.

〔油温が0℃以下の場合の制御〕
以上では,メインスイッチをONとしたときの油温が0℃を越えている場合の暖機運転について説明したが,油温が0℃以下である場合,コントローラ30は以下のように各部を制御するように構成することができる。
[Control when the oil temperature is 0°C or less]
The warm-up operation when the oil temperature exceeds 0°C when the main switch is turned ON has been described above. can be configured to

(1)始動運転
油温が0℃以下となっている状態にあるとき,始動スイッチ72を長押ししてエンジンを始動させると,コントローラ30は,始動制御流路用電磁弁53に対する通電を行って,始動制御流路51を開くと共に,第1電磁弁23を非通電(OFF),すなわち開状態に維持したまま,第2電磁弁24を通電(ON)して開き,この状態でスタータモータを回転させてエンジンを始動させる〔図7(A)及び図8の「ENG始動」参照〕。
(1) Starting operation When the engine is started by long-pressing the start switch 72 when the oil temperature is below 0°C, the controller 30 energizes the solenoid valve 53 for the start control flow path. Then, the start control path 51 is opened, and the first solenoid valve 23 is de-energized (OFF), that is, while maintaining the open state, the second solenoid valve 24 is energized (ON) and opened, and in this state, the starter motor to start the engine [see "ENG start" in FIGS. 7A and 8].

このように,バイパス流路20(第1,第2バイパス流路21,22)を介して吸気調整弁11の閉弁受圧室113がレシーバタンク60と連通されることにより,始動制御流路用電磁弁53の開弁によって始動制御流路51を介してレシーバタンク60と吸気調整弁11の閉弁受圧室113が連通された状態となっていたとしても,始動圧力調整弁52による吸気調整弁11の制御は無効化されており,レシーバタンク60内の圧力が,始動圧力調整弁52の作動圧力に満たない場合であっても,吸気調整弁11に閉弁動作を行わせることが可能となる。 In this way, the valve closing pressure receiving chamber 113 of the intake regulating valve 11 is communicated with the receiver tank 60 via the bypass flow path 20 (the first and second bypass flow paths 21 and 22). Even if the receiver tank 60 and the closed valve pressure receiving chamber 113 of the intake regulating valve 11 are in communication with each other through the starting control flow path 51 due to the opening of the electromagnetic valve 53, the intake regulating valve by the starting pressure regulating valve 52 is in a state of communication. 11 is disabled, and even if the pressure in the receiver tank 60 is less than the working pressure of the starting pressure regulating valve 52, the intake regulating valve 11 can be closed. Become.

その結果,圧縮機本体40の回転によってレシーバタンク60内の圧力が僅かに上昇して吸気調整弁11の作動圧力以上になると,吸気調整弁11が閉弁する。 As a result, when the pressure in the receiver tank 60 rises slightly due to the rotation of the compressor body 40 and exceeds the operating pressure of the intake control valve 11, the intake control valve 11 is closed.

これにより,吸気調整弁11が圧縮機本体40の吸気口41を閉じた無負荷の状態でエンジンの暖機運転が開始される。 As a result, the engine starts to warm up in a no-load state in which the intake regulating valve 11 closes the intake port 41 of the compressor body 40 .

なお,三方電磁弁27を設けた構成では,コントローラ30はこの始動運転時,吸気調整弁11の補助受圧室114を弁座115aの二次側における吸入流路115に連通する位置(ポートC-A間を連通する位置)に三方電磁弁27を切り替える点は,前述した,油温が0℃以上の場合の動作と同様である。 In addition, in the configuration in which the three-way solenoid valve 27 is provided, the controller 30 is placed at a position (port C- The point that the three-way solenoid valve 27 is switched to the position that communicates between A is the same as the operation when the oil temperature is 0° C. or higher as described above.

(2)吐出圧力上昇処理
コントローラは,エンジンの始動後,所定時間(一例として本実施形態では10秒)が経過すると,第1電磁弁に対する通電(ON)を開始して第1電磁弁を閉じると共に,三方電磁弁27に対する通電(ON)を開始して,吸気調整弁11の補助受圧室114を弁座115aの一次側における吸入流路115に連通する位置(ポートC-B間を連通する位置)に三方電磁弁27を切り替える〔図7(B)及び図8の「吐出圧力上昇処理」を参照〕。
(2) Discharge pressure increase process After the engine is started, the controller starts energizing (ON) the first solenoid valve and closes the first solenoid valve after a predetermined time (eg, 10 seconds in this embodiment) has elapsed. At the same time, the energization (ON) of the three-way solenoid valve 27 is started, and the position where the auxiliary pressure receiving chamber 114 of the intake control valve 11 communicates with the suction flow path 115 on the primary side of the valve seat 115a (port CB is communicated position) (see "discharge pressure increasing process" in FIGS. 7B and 8).

これにより,吸気調整弁11の閉弁受圧室113に導入される圧縮気体の流量が減少することにより閉弁受圧室113内の圧力が低下して,全閉の状態にあった吸気調整弁11が,全開未満の所定の開度で僅かに開き,圧縮機本体40が吸気を開始することでレシーバタンク60内の圧力が,給油開始圧力にまで上昇する〔図8(B)の「STEP2」参照〕。 As a result, the flow rate of the compressed gas introduced into the closing valve pressure receiving chamber 113 of the intake regulating valve 11 decreases, and the pressure in the closing valve pressure receiving chamber 113 decreases. However, the pressure inside the receiver tank 60 rises to the refueling start pressure as the compressor main body 40 starts to take air ("STEP 2" in FIG. 8(B)). reference〕.

(3)始動圧力調整弁による制御
前述した吐出圧力上昇処理の実行から所定時間Y(本実施形態では一例として30秒)の経過後,コントローラ30は第2バイパス流路22に設けられている第2電磁弁24に対する通電を停止(OFF)し,第2電磁弁24を閉じる〔図7(C)参照〕。
(3) Control by starting pressure regulating valve After a predetermined time Y (30 seconds as an example in this embodiment) has passed since the execution of the discharge pressure increasing process described above, the controller 30 starts the second bypass flow path 22 provided in the second bypass flow path 22. The energization to the second solenoid valve 24 is stopped (OFF), and the second solenoid valve 24 is closed [see FIG. 7(C)].

これにより,バイパス流路20(21,22)を介した閉弁受圧室113に対するレシーバタンク60からの圧縮気体の導入が完全に停止することで,吸気調整弁11の開閉動作が,始動制御流路51に設けられた始動圧力調整弁52による制御に移行する。 As a result, the introduction of the compressed gas from the receiver tank 60 into the closed valve pressure receiving chamber 113 via the bypass flow path 20 (21, 22) is completely stopped, so that the opening/closing operation of the intake control valve 11 is controlled by the starting control flow. Control is shifted to the starting pressure regulating valve 52 provided in the path 51 .

始動圧力調整弁52は,レシーバタンク60内の圧力が,給油開始圧力に対し所定の高い圧力であると共に,定格圧力に対し所定の低い圧力である始動アンロード圧力以上で開弁するようにその作動圧力が調整されている。 The starting pressure regulating valve 52 is designed so that the pressure in the receiver tank 60 is a predetermined high pressure with respect to the refueling start pressure and is opened at a starting unload pressure or higher which is a predetermined low pressure with respect to the rated pressure. The operating pressure is regulated.

そして,バイパス流路20(21,22)の閉塞によって吸気調整弁11の開閉動作が始動圧力調整弁52による制御に移行しても,この時点ではレシーバタンク60内の圧力は始動アンロード圧力よりも低いため,バイパス流路20が閉塞されると,吸気調整弁11の閉弁受圧室113に対する圧縮気体の導入が停止して吸気調整弁11は全開となる。 Even if the opening/closing operation of the intake regulating valve 11 shifts to control by the starting pressure regulating valve 52 due to the blockage of the bypass passage 20 (21, 22), at this point the pressure in the receiver tank 60 is higher than the starting unload pressure. Therefore, when the bypass passage 20 is blocked, the introduction of the compressed gas into the closed valve pressure receiving chamber 113 of the intake regulating valve 11 is stopped and the intake regulating valve 11 is fully opened.

その結果,圧縮機本体40の全負荷運転が開始され,レシーバタンク60内の圧力が上昇する〔図8(B)の「STEP3」参照〕。 As a result, the full-load operation of the compressor body 40 is started, and the pressure in the receiver tank 60 rises [see "STEP 3" in FIG. 8(B)].

レシーバタンク60内の圧力が,始動アンロード圧力以上に上昇すると,始動圧力調整弁52が開き,吸気調整弁11の閉弁受圧室113内にレシーバタンク60からの圧縮気体が導入されて吸気調整弁11が閉じ,レシーバタンク60内の圧力が,始動アンロード圧力付近に保持される。 When the pressure in the receiver tank 60 rises above the starting unload pressure, the starting pressure regulating valve 52 opens, and the compressed gas from the receiver tank 60 is introduced into the closed valve pressure receiving chamber 113 of the intake regulating valve 11 to adjust the intake air. Valve 11 closes and the pressure in receiver tank 60 is held near the starting unload pressure.

コントローラ30は,第2電磁弁24の閉弁後,所定の時間(一例として本実施形態では140秒)の経過後,始動制御流路用電磁弁53に対する通電を停止(OFF)し,始動制御流路51を閉じる。 After the second solenoid valve 24 is closed, the controller 30 stops (turns off) the energization of the start control flow path solenoid valve 53 after a predetermined time (140 seconds in this embodiment as an example) has passed, and the start control is performed. The channel 51 is closed.

これにより,始動圧力調整弁52による吸気調整弁11の開閉制御が終了し,制御流路12に設けた圧力調整弁13による吸気調整弁の開閉制御が行われる,通常制御に移行する。 As a result, the opening/closing control of the intake regulating valve 11 by the starting pressure regulating valve 52 is completed, and the control shifts to normal control in which the opening/closing control of the intake regulating valve 13 is performed by the pressure regulating valve 13 provided in the control flow path 12 .

このように,油温が所定の低い温度(一例として0℃以下)でエンジン駆動型圧縮機1を始動させる場合,バイパス流路20の閉塞後,始動制御流路51に設けた始動圧力調整弁52による制御に移行することで,レシーバタンク60内の圧力を多段階に,かつ,給油開始圧力よりも高い圧力である始動アンロード圧力まで上昇させることができた。 In this way, when the engine-driven compressor 1 is started at a predetermined low oil temperature (0° C. or lower as an example), after the bypass flow path 20 is closed, the starting pressure regulating valve provided in the start control flow path 51 By shifting to the control by 52, the pressure in the receiver tank 60 could be increased in multiple steps to the starting unload pressure, which is higher than the refueling start pressure.

その結果,外気温度が低く,粘度が増大しているため,レシーバタンク60内の圧力を給油開始圧力に上昇させただけでは圧縮機本体40に対する十分な潤滑油の供給量を確保できない場合であっても,通常運転に移行する前に,圧縮機本体40に対し十分な量の潤滑油を供給することが可能となる。 As a result, since the outside air temperature is low and the viscosity is high, a sufficient amount of lubricating oil to be supplied to the compressor main body 40 cannot be ensured simply by increasing the pressure in the receiver tank 60 to the lubricating start pressure. Even so, it is possible to supply a sufficient amount of lubricating oil to the compressor main body 40 before shifting to normal operation.

なお,上記の説明では,単一の始動制御流路51を設けた構成例について説明したが,図1中に変更例として示したように,2つ,又はそれ以上の始動制御流路51a,51b・・・51zを設けるものとしても良い。 In the above description, a configuration example in which a single starting control flow path 51 is provided has been described. However, as shown as a modification in FIG. 51b . . . 51z may be provided.

この場合,各始動制御流路51a,51b・・・51zのそれぞれに始動圧力調整弁52a,52b・・・52zを設けると共に,各始動圧力調整弁52a,52b・・・52zを,それぞれ作動圧力の異なるものとする。 In this case, starting pressure regulating valves 52a, 52b, . shall be different.

また,各始動制御流路51a,51b・・・51zには,それぞれ始動圧力調整弁52a,52b・・・52zと直列に,電磁開閉弁である始動制御流路用電磁弁53a,53b・・・53zを設ける。 . . 52z are connected in series with the respective starting pressure regulating valves 52a, 52b . . . 52z. - Provide 53z.

そして,コントローラ30が,バイパス流路20の閉塞後,最も作動圧力の低い始動圧力調整弁52aが設けられた始動制御流路51aに設けられた始動制御流路用電磁弁53aから所定時間置きに順次閉じてゆき,暖機運転終了条件が満たされたとき,最も作動圧力の高い前記始動圧力調整弁52zが設けられた始動制御流路51zに設けられた始動制御流路用電磁弁53zを閉じるように構成することで,レシーバタンク60内の圧力をより多段階に上昇させることができるように構成するものとしても良い。 After the bypass flow path 20 is closed, the controller 30 controls the starting control flow path electromagnetic valve 53a provided in the starting control flow path 51a provided with the starting pressure regulating valve 52a having the lowest operating pressure at predetermined time intervals. It closes sequentially, and when the warm-up end condition is satisfied, the electromagnetic valve 53z for the starting control flow path provided in the starting control flow path 51z provided with the starting pressure regulating valve 52z with the highest operating pressure is closed. By configuring as above, the pressure in the receiver tank 60 may be configured to be increased in multiple steps.

1 エンジン駆動型圧縮機
10 吸気調整装置
11 吸気調整弁
111 ボディ(弁箱)
112 気密室(シリンダ)
113 閉弁受圧室
114 補助受圧室(スプリング室)
114a スプリング
115 吸入流路
115a 弁座
116 弁体
116a,116a’ 弁軸
116b スプリング
117 スリーブ
118 端板
119 受圧体(ピストン)
119a 弁軸
12 制御流路
13 圧力調整弁
14 逃がし流路
15 絞り
20 バイパス流路
21 第1バイパス流路(並列流路)
22 第2バイパス流路(並列流路)
23 第1電磁弁(並列流路用電磁弁)
24 第2電磁弁(並列流路用電磁弁)
25 コモン流路
26 ブロックマニホールド
27 三方電磁弁
28a~28c 流路
30 コントローラ(制御装置)
36 タイマ
40 圧縮機本体
41 吸気口
51(51a,51b・・・51z) 始動制御流路
52(52a,52b・・・52z) 始動圧力調整弁
53(53a,53b・・・53z) 始動制御流路用電磁弁
60 レシーバタンク
61 圧力調整弁
62 吐出流路
63 オイルクーラ
64 給油流路
65 温度センサ
66 サービスバルブ
70 メインスイッチ
72 始動スイッチ
300 エンジン駆動型圧縮機
310 吸気調整装置
311 吸気調整弁
312 制御流路
313 圧力調整弁
314 逃がし流路
315 絞り
316 アンローダレギュレータ
320 始動負荷軽減装置
321 バイパス流路
325 バイパスバルブ
340 圧縮機本体
341 吸気口
350 エンジン
360 レシーバタンク
363 オイルクーラ
364 給油流路
366 オイルセパレータ
367 オイルフィルタ

Reference Signs List 1 engine-driven compressor 10 intake regulator 11 intake regulator valve 111 body (valve box)
112 airtight chamber (cylinder)
113 Valve closing pressure receiving chamber 114 Auxiliary pressure receiving chamber (spring chamber)
114a spring 115 intake channel 115a valve seat 116 valve body 116a, 116a' valve shaft 116b spring 117 sleeve 118 end plate 119 pressure receiving body (piston)
119a valve shaft 12 control channel 13 pressure regulating valve 14 relief channel 15 throttle 20 bypass channel 21 first bypass channel (parallel channel)
22 second bypass flow path (parallel flow path)
23 first solenoid valve (parallel flow path solenoid valve)
24 Second solenoid valve (parallel flow path solenoid valve)
25 common flow path 26 block manifold 27 three-way solenoid valve 28a to 28c flow path 30 controller (control device)
36 timer 40 compressor body 41 intake port 51 (51a, 51b...51z) starting control flow path 52 (52a, 52b...52z) starting pressure regulating valve 53 (53a, 53b...53z) starting control flow Road solenoid valve 60 Receiver tank 61 Pressure regulating valve 62 Discharge channel 63 Oil cooler 64 Oil supply channel 65 Temperature sensor 66 Service valve 70 Main switch 72 Start switch 300 Engine-driven compressor 310 Intake adjusting device 311 Intake adjusting valve 312 Control Flow path 313 Pressure regulating valve 314 Relief flow path 315 Throttle 316 Unloader regulator 320 Starting load reduction device 321 Bypass flow path 325 Bypass valve 340 Compressor main body 341 Intake port 350 Engine 360 Receiver tank 363 Oil cooler 364 Oil supply flow path 366 Oil separator 367 oil filter

Claims (10)

エンジン,前記エンジンによって駆動される油冷式の圧縮機本体,前記圧縮機本体が吐出した圧縮気体と潤滑油の気液混合流体を導入して圧縮気体と潤滑油とに分離すると共に,分離した潤滑油を内部の圧力を利用して前記圧縮機本体に給油するレシーバタンク,前記圧縮機本体に対する吸気を制御する吸気調整弁,前記吸気調整弁の閉弁受圧室と前記レシーバタンク間を連通する制御流路,及び,前記レシーバタンク内の圧力が所定の定格圧力以上のときに前記制御流路を開き,前記定格圧力未満のとき前記制御流路を閉じることで前記吸気調整弁の開閉動作を制御する圧力調整弁を備えたエンジン駆動型圧縮機の運転制御方法において,
前記圧力調整弁による前記吸気調整弁の制御を無効化して,前記エンジンの始動と共に前記吸気調整弁を閉じて暖機運転を開始すると共に,
該エンジンの始動後,所定の暖機運転終了条件が満たされる前に,前記吸気調整弁を全開未満の所定の開度で開くことにより,前記レシーバタンク内の圧力を前記定格圧力に対し所定の低い圧力である給油開始圧力に上昇させる吐出圧力上昇処理を行い,
前記暖機運転終了条件が満たされたとき,前記暖機運転を終了して前記圧力調整弁による前記吸気調整弁の制御を行う通常運転に移行することを特徴とするエンジン駆動型圧縮機の運転制御方法。
An engine, an oil-cooled compressor body driven by the engine, a gas-liquid mixed fluid of compressed gas and lubricating oil discharged by the compressor body is introduced to separate the compressed gas and lubricating oil, and the separated A receiver tank that supplies lubricating oil to the compressor body using internal pressure, an intake adjustment valve that controls intake air to the compressor body, and a closing pressure receiving chamber of the intake adjustment valve that communicates with the receiver tank. When the pressure in the control channel and the receiver tank is equal to or higher than a predetermined rated pressure, the control channel is opened, and when the pressure in the receiver tank is lower than the rated pressure, the control channel is closed, thereby opening and closing the intake control valve. A method for controlling the operation of an engine-driven compressor having a pressure regulating valve to control,
Invalidating the control of the intake air regulating valve by the pressure regulating valve, closing the air intake regulating valve when the engine starts, and starting warm-up,
After the engine is started and before a predetermined warm-up end condition is satisfied, the pressure in the receiver tank is reduced to a predetermined level with respect to the rated pressure by opening the intake control valve to a predetermined degree of opening less than full opening. Perform discharge pressure increase processing to increase the lubrication start pressure, which is a low pressure,
The operation of an engine-driven compressor, characterized in that, when the warm-up operation end condition is satisfied, the warm-up operation is ended and the pressure control valve controls the intake air control valve to shift to normal operation. control method.
前記圧力調整弁をバイパスして前記レシーバタンクと前記吸気調整弁の前記閉弁受圧室間を連通するバイパス流路を設け,該バイパス流路を介して前記レシーバタンクと前記吸気調整弁の前記閉弁受圧室間を連通した状態で前記エンジンを始動することにより,前記圧力調整弁による前記吸気調整弁の制御を無効化して,前記エンジンの始動と共に前記吸気調整弁を閉じ,
前記バイパス流路を介して前記吸気調整弁の前記閉弁受圧室に導入される圧縮気体の流量を絞ることにより,前記吐出圧力上昇処理を行い,
前記バイパス流路を閉塞することにより前記暖機運転を終了して前記圧力調整弁による前記吸気調整弁の制御を行う通常運転に移行することを特徴とする請求項1記載のエンジン駆動型圧縮機の運転制御方法。
A bypass passage bypassing the pressure regulating valve and communicating between the receiver tank and the closed valve pressure receiving chamber of the intake regulating valve is provided, and the closing of the receiver tank and the intake regulating valve is provided via the bypass passage. By starting the engine in a state in which the valve pressure receiving chambers are communicated, the control of the intake control valve by the pressure control valve is invalidated, and the intake control valve is closed when the engine is started,
performing the discharge pressure increasing process by throttling the flow rate of the compressed gas introduced into the valve closing pressure receiving chamber of the intake control valve through the bypass passage;
2. The engine-driven compressor according to claim 1, wherein the warm-up operation is ended by closing the bypass flow path, and the normal operation is performed in which the intake control valve is controlled by the pressure control valve. operation control method.
前記圧力調整弁をバイパスして前記吸気調整弁の閉弁受圧室と前記レシーバタンク間を連通する始動制御流路と,
前記レシーバタンク内の圧力が,前記給油開始圧力に対し所定の高い圧力であり,かつ,前記定格圧力に対し所定の低い圧力である始動アンロード圧力以上のときに前記始動制御流路を開き,前記始動アンロード圧力未満のとき前記始動制御流路を閉じることで前記吸気調整弁の開閉動作を制御する始動圧力調整弁を設け,
前記吐出圧力上昇処理後,前記暖機運転終了条件が満たされる前に,前記始動圧力調整弁による前記吸気調整弁の制御を行い,
前記暖機運転終了条件が満たされたとき,前記始動圧力調整弁による前記吸気調整弁の制御を終了すると共に前記暖機運転を終了して,前記圧力調整弁による前記吸気調整弁の制御を行う前記通常運転に移行することを特徴とする請求項1記載のエンジン駆動型圧縮機の運転制御方法。
a starting control flow path that bypasses the pressure control valve and communicates between the closed valve pressure receiving chamber of the intake control valve and the receiver tank;
opening the start control flow path when the pressure in the receiver tank is a predetermined high pressure with respect to the refueling start pressure and is equal to or higher than a start unload pressure, which is a predetermined low pressure with respect to the rated pressure; a starting pressure regulating valve that controls opening and closing of the intake control valve by closing the starting control flow path when the starting unload pressure is less than the starting unload pressure;
After the discharge pressure increasing process, before the warm-up end condition is satisfied, the starting pressure regulating valve controls the intake regulating valve,
When the condition for ending the warm-up operation is satisfied, the control of the intake regulating valve by the starting pressure regulating valve is terminated, the warm-up operation is terminated, and the intake regulating valve is controlled by the pressure regulating valve. 2. The operation control method for an engine-driven compressor according to claim 1, wherein said operation is shifted to said normal operation.
前記圧力調整弁をバイパスして前記レシーバタンクと前記吸気調整弁の前記閉弁受圧室間を連通するバイパス流路を設け,該バイパス流路を介して前記レシーバタンクと前記吸気調整弁の前記閉弁受圧室間を連通した状態で前記エンジンを始動することにより,前記圧力調整弁及び前記始動圧力調整弁による前記吸気調整弁の制御を無効化して,前記エンジンの始動と共に前記吸気調整弁を閉じ,
前記バイパス流路を介して前記吸気調整弁の前記閉弁受圧室に導入される圧縮気体の流量を絞ることにより,前記吐出圧力上昇処理を行い,
前記吐出圧力上昇処理から所定時間の経過後,前記バイパス流路を閉塞して前記始動圧力調整弁による前記吸気調整弁の制御を開始することを特徴とする請求項3記載のエンジン駆動型圧縮機の運転制御方法。
A bypass passage bypassing the pressure regulating valve and communicating between the receiver tank and the closed valve pressure receiving chamber of the intake regulating valve is provided, and the closing of the receiver tank and the intake regulating valve is provided via the bypass passage. By starting the engine with the valve pressure receiving chambers communicated, the control of the intake control valve by the pressure control valve and the starting pressure control valve is invalidated, and the intake control valve is closed when the engine is started. ,
performing the discharge pressure increasing process by throttling the flow rate of the compressed gas introduced into the valve closing pressure receiving chamber of the intake control valve through the bypass passage;
4. The engine-driven compressor according to claim 3, wherein after a predetermined time has passed since said discharge pressure increasing process, said bypass passage is closed and control of said intake regulating valve by said starting pressure regulating valve is started. operation control method.
前記吐出圧力上昇処理を,前記吸気調整弁の開度を段階的に増加させながら行うことを特徴とする請求項1~4いずれか1項記載のエンジン駆動型圧縮機の運転制御方法。 The operation control method for an engine-driven compressor according to any one of claims 1 to 4, wherein the discharge pressure increasing process is performed while increasing the degree of opening of the intake control valve stepwise. 前記始動制御流路を複数設け,前記始動制御流路のそれぞれに前記始動圧力調整弁を設けると共に,前記各始動圧力調整弁の動作圧力を異なる圧力に設定し,
前記吐出圧力上昇処理後,前記暖機運転終了条件が満たされるまでの間に行う前記始動圧力調整弁による前記吸気調整弁の制御を,複数の前記始動圧力調整弁のうち最も作動圧力の低いものから,作動圧力の高いものに所定時間置きに順次切り替えて行うことを特徴とする請求項3記載のエンジン駆動型圧縮機の運転制御方法。
A plurality of the starting control flow paths are provided, the starting pressure regulating valve is provided in each of the starting control flow paths, and operating pressures of the respective starting pressure regulating valves are set to different pressures,
After the discharge pressure increasing process, the control of the intake control valve by the starting pressure control valve until the condition for ending the warm-up operation is satisfied is controlled by the starting pressure control valve having the lowest operating pressure among the plurality of starting pressure control valves. 4. The method of controlling the operation of an engine-driven compressor according to claim 3, wherein the operating pressure is sequentially switched from the operating pressure to the higher operating pressure at predetermined time intervals.
エンジン,前記エンジンによって駆動される油冷式の圧縮機本体,前記圧縮機本体が吐出した圧縮気体と潤滑油の気液混合流体を導入して圧縮気体と潤滑油とに分離すると共に,分離した潤滑油を内部の圧力を利用して前記圧縮機本体に給油するレシーバタンク,前記圧縮機本体に対する吸気を制御する吸気調整弁,前記吸気調整弁の閉弁受圧室と前記レシーバタンク間を連通する制御流路,及び,前記レシーバタンク内の圧力が所定の定格圧力以上のときに前記制御流路を開き,前記定格圧力未満のとき前記制御流路を閉じることで前記吸気調整弁の開閉動作を制御する圧力調整弁を備えたエンジン駆動型圧縮機において,
前記圧力調整弁をバイパスして前記レシーバタンクと前記吸気調整弁の前記閉弁受圧室間を連通するバイパス流路と,
前記バイパス流路の流路面積を可変と成す,流路面積変更装置と,
前記流路面積変更装置を制御する制御装置を設け,
前記制御装置が,前記流路面積変更装置を制御することにより,
前記エンジンの始動時,前記バイパス流路の流路面積を最大とすることで前記エンジンの始動と共に前記吸気調整弁を閉じて暖機運転を開始し,
該エンジンの始動後,所定の暖機運転終了条件が満たされる前に,前記バイパス流路の流路面積を減少させて前記吸気調整弁を全開未満の所定の開度に開くことにより,前記レシーバタンク内の圧力を前記定格圧力に対し所定の低い圧力である給油開始圧力に上昇させる吐出圧力上昇処理を行うと共に,
前記暖機運転終了条件が満たされたとき,前記バイパス流路を閉塞して前記暖機運転を終了し,前記圧力調整弁による前記吸気調整弁の制御を行う通常運転に移行することを特徴とするエンジン駆動型圧縮機。
An engine, an oil-cooled compressor body driven by the engine, a gas-liquid mixed fluid of compressed gas and lubricating oil discharged by the compressor body is introduced to separate the compressed gas and lubricating oil, and the separated A receiver tank that supplies lubricating oil to the compressor body using internal pressure, an intake adjustment valve that controls intake air to the compressor body, and a closing pressure receiving chamber of the intake adjustment valve that communicates with the receiver tank. When the pressure in the control channel and the receiver tank is equal to or higher than a predetermined rated pressure, the control channel is opened, and when the pressure in the receiver tank is lower than the rated pressure, the control channel is closed, thereby opening and closing the intake control valve. In engine-driven compressors with pressure regulating valves controlling
a bypass passage that bypasses the pressure regulating valve and communicates between the receiver tank and the closed valve pressure receiving chamber of the intake regulating valve;
a channel area changing device that makes the channel area of the bypass channel variable;
A control device for controlling the flow path area changing device is provided,
By the control device controlling the flow path area changing device,
When the engine is started, by maximizing the flow area of the bypass flow path, the intake control valve is closed at the same time as the engine is started, and warm-up operation is started;
After the engine is started and before a predetermined warm-up end condition is satisfied, the receiver is opened by reducing the flow area of the bypass flow path and opening the intake control valve to a predetermined opening degree that is less than fully open. In addition to performing a discharge pressure increase process for increasing the pressure in the tank to the refueling start pressure, which is a predetermined lower pressure than the rated pressure,
When the warm-up end condition is satisfied, the bypass flow path is closed to end the warm-up operation, and the pressure control valve controls the intake control valve to shift to normal operation. engine driven compressor.
エンジン,前記エンジンによって駆動される油冷式の圧縮機本体,前記圧縮機本体が吐出した圧縮気体と潤滑油の気液混合流体を導入して圧縮気体と潤滑油とに分離すると共に,分離した潤滑油を内部の圧力を利用して前記圧縮機本体に給油するレシーバタンク,前記圧縮機本体に対する吸気を制御する吸気調整弁,前記吸気調整弁の閉弁受圧室と前記レシーバタンク間を連通する制御流路,及び,前記レシーバタンク内の圧力が所定の定格圧力以上のときに前記制御流路を開き,前記定格圧力未満のとき前記制御流路を閉じることで前記吸気調整弁の開閉動作を制御する圧力調整弁を備えたエンジン駆動型圧縮機において,
前記圧力調整弁をバイパスして前記レシーバタンクと前記吸気調整弁の閉弁受圧室間を連通するバイパス流路及び始動制御流路と,
前記バイパス流路の流路面積を可変と成す,流路面積変更装置と,
前記圧縮機本体の吐出側圧力が前記定格圧力に対し所定の低い圧力である始動アンロード圧力以上のときに開弁し,前記始動アンロード圧力未満のときに閉弁する,前記始動制御流路に設けた始動圧力調整弁と,
前記始動制御流路に設けられ,前記始動圧力調整弁と直列に連通された始動制御流路用電磁弁と,
前記流路面積変更装置と前記始動制御流路用電磁弁を制御する制御装置を設け,
前記制御装置は,
前記エンジンの始動時,前記始動制御流路用電磁弁を開くと共に,前記流路面積変更装置を操作して前記バイパス流路の流路面積を最大とすることで前記エンジンの始動と共に前記吸気調整弁を閉じて暖機運転を開始し,
該エンジンの始動後,所定の暖機運転終了条件が満たされる前に,前記流路面積変更装置を制御して前記バイパス流路の流路面積を減少させて前記吸気調整弁を全開未満の所定の開度に開くことにより,前記レシーバタンク内の圧力を前記始動アンロード圧力に対し所定の低い圧力である給油開始圧力に上昇させる吐出圧力上昇処理を行い,
前記吐出圧力上昇処理後,前記暖機運転終了条件が満たされる前に前記バイパス流路を閉塞して,前記始動圧力調整弁による前記吸気調整弁の制御に移行し,
前記暖機運転終了条件が満たされたとき,前記始動制御流路用電磁弁を閉じて前記始動圧力調整弁による吸気調整弁の制御を終了すると共に前記暖機運転を終了し,前記圧力調整弁による前記吸気調整弁の制御を行う通常運転に移行することを特徴とするエンジン駆動型圧縮機。
An engine, an oil-cooled compressor body driven by the engine, a gas-liquid mixed fluid of compressed gas and lubricating oil discharged by the compressor body is introduced to separate the compressed gas and lubricating oil, and the separated A receiver tank that supplies lubricating oil to the compressor body using internal pressure, an intake adjustment valve that controls intake air to the compressor body, and a closing pressure receiving chamber of the intake adjustment valve that communicates with the receiver tank. When the pressure in the control channel and the receiver tank is equal to or higher than a predetermined rated pressure, the control channel is opened, and when the pressure in the receiver tank is lower than the rated pressure, the control channel is closed, thereby opening and closing the intake control valve. In engine-driven compressors with pressure regulating valves controlling
a bypass flow path and a start control flow path that bypass the pressure regulating valve and communicate between the receiver tank and the closed valve pressure receiving chamber of the intake regulating valve;
a channel area changing device that makes the channel area of the bypass channel variable;
The start control flow path that opens when the pressure on the discharge side of the compressor body is equal to or higher than the starting unload pressure, which is a predetermined lower pressure than the rated pressure, and closes when the pressure is less than the starting unload pressure. A starting pressure regulating valve provided in
a starting control flow path electromagnetic valve provided in the starting control flow path and communicating in series with the starting pressure regulating valve;
A control device for controlling the flow path area changing device and the solenoid valve for the start control flow path,
The control device is
When the engine is started, the solenoid valve for the start control flow path is opened and the flow path area changing device is operated to maximize the flow path area of the bypass flow path, thereby adjusting the intake air when the engine is started. Close the valve and start warm-up,
After the engine is started and before a predetermined warm-up termination condition is satisfied, the flow passage area changing device is controlled to reduce the flow passage area of the bypass flow passage so that the intake control valve is opened to a predetermined value less than fully open. By opening the receiver tank to an opening of , a discharge pressure increase process is performed in which the pressure in the receiver tank is increased to a refueling start pressure that is a predetermined lower pressure than the start unload pressure,
After the discharge pressure increasing process, the bypass flow path is closed before the warm-up end condition is satisfied, and the control of the intake control valve by the starting pressure control valve is started,
When the condition for terminating the warm-up operation is satisfied, the electromagnetic valve for the starting control flow path is closed to end the control of the intake regulating valve by the starting pressure regulating valve, the warm-up operation is ended, and the pressure regulating valve An engine-driven compressor characterized by shifting to normal operation in which the intake control valve is controlled by
前記バイパス流路を,並列に設けられた複数本の並列流路の集合体として形成すると共に,前記各並列流路のそれぞれに並列流路用電磁弁を設けることにより,該並列流路用電磁弁を前記流路面積変更装置とし,
前記制御装置が,
前記エンジンの始動時,前記並列流路用電磁弁を全て開いた状態とし,
前記吐出圧力上昇処理を,前記並列流路用電磁弁の少なくとも1つを残し,所定の時間置きに順次閉じることにより実行することを特徴とする請求項7又は8記載のエンジン駆動型圧縮機。
By forming the bypass flow path as an aggregate of a plurality of parallel flow paths and providing a parallel flow path solenoid valve in each of the parallel flow paths, the parallel flow path electromagnetic valve The valve is the flow path area changing device,
the controller,
When the engine is started, all of the solenoid valves for parallel flow paths are opened;
9. The engine-driven compressor according to claim 7, wherein the discharge pressure increasing process is executed by sequentially closing at predetermined time intervals with at least one of the parallel flow path solenoid valves left.
前記始動制御流路を複数設け,前記始動制御流路のそれぞれに,該始動制御流路を開閉する始動制御流路用電磁弁と,それぞれ作動圧力が異なる前記始動圧力調整弁を設け,
前記制御装置が,
前記エンジンの始動時,前記始動制御流路用電磁弁の全てを開くと共に,
前記バイパス流路の閉塞後,最も作動圧力の低い前記始動圧力調整弁が設けられた始動制御流路に設けられた始動制御流路用電磁弁から所定時間置きに順次閉じてゆき,前記暖機運転終了条件が満たされたとき,最も作動圧力の高い前記始動圧力調整弁が設けられた始動制御流路に設けられた始動制御流路用電磁弁を閉じることを特徴とする請求項8記載のエンジン駆動型圧縮機。
A plurality of the start control flow paths are provided, each of the start control flow paths is provided with a start control flow solenoid valve for opening and closing the start control flow path, and a start pressure adjustment valve with a different operating pressure,
the controller,
When the engine is started, all of the solenoid valves for the start control flow path are opened, and
After closing the bypass flow path, the electromagnetic valve for the starting control flow path provided in the starting control flow path provided with the starting pressure regulating valve with the lowest operating pressure is sequentially closed at predetermined time intervals, and the warm-up 9. The solenoid valve for the starting control flow path provided in the starting control flow path provided with the starting pressure regulating valve having the highest operating pressure is closed when the operation termination condition is satisfied. Engine driven compressor.
JP2021093532A 2021-06-03 2021-06-03 Operation control method for engine driven compressor and engine driven compressor Pending JP2022185735A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021093532A JP2022185735A (en) 2021-06-03 2021-06-03 Operation control method for engine driven compressor and engine driven compressor
CN202210427978.0A CN115434888A (en) 2021-06-03 2022-04-22 Method for controlling operation of engine-driven compressor and engine-driven compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021093532A JP2022185735A (en) 2021-06-03 2021-06-03 Operation control method for engine driven compressor and engine driven compressor

Publications (1)

Publication Number Publication Date
JP2022185735A true JP2022185735A (en) 2022-12-15

Family

ID=84240792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021093532A Pending JP2022185735A (en) 2021-06-03 2021-06-03 Operation control method for engine driven compressor and engine driven compressor

Country Status (2)

Country Link
JP (1) JP2022185735A (en)
CN (1) CN115434888A (en)

Also Published As

Publication number Publication date
CN115434888A (en) 2022-12-06

Similar Documents

Publication Publication Date Title
CN108397368B (en) Method for controlling engine-driven compressor and engine-driven compressor
US6739305B2 (en) Oil pump for internal combustion engine and method of operating the same
US5388967A (en) Compressor start control and air inlet valve therefor
JP5212546B2 (en) Fuel supply device
JPS58155287A (en) Refrigerating unit
JP2003184681A (en) Fuel injection device used for internal combustion engine
US20070240776A1 (en) Hydraulic pressure control system for automatic transmission device
JP6082300B2 (en) Compressor air intake structure
JP5312272B2 (en) Control method for engine-driven air compressor and engine-driven air compressor
JP2022185735A (en) Operation control method for engine driven compressor and engine driven compressor
CN110778497B (en) Compressor and operation control method of compressor
JP6618347B2 (en) Engine-driven compressor start control method and engine-driven compressor
JP7427523B2 (en) Operation control method for engine-driven compressor and engine-driven compressor
JPH0146708B2 (en)
JP3039941U (en) Compressor starting load reduction device
JP7284627B2 (en) Capacity control device for engine-driven compressor
JP4674561B2 (en) Valve device
JP2529118B2 (en) Operation control method for engine-driven compressor
US20040101420A1 (en) Solenoid regulated pump assembly
JPH03253710A (en) Hydraulic drive valve device for internal combustion engine
JPH0241356Y2 (en)
JP4467409B2 (en) Engine-driven compressor operation control method and engine-driven compressor
JPH11257227A (en) Drainage discharge method and system for post-stage cooler of compressor
JPH08105332A (en) Engine speed control device
JPH0988863A (en) Starting load reducing device of compressor