JP2011063869A - Aluminum alloy sheet for can body having excellent circulation pinhole resistance, and method for producing the same - Google Patents

Aluminum alloy sheet for can body having excellent circulation pinhole resistance, and method for producing the same Download PDF

Info

Publication number
JP2011063869A
JP2011063869A JP2009217655A JP2009217655A JP2011063869A JP 2011063869 A JP2011063869 A JP 2011063869A JP 2009217655 A JP2009217655 A JP 2009217655A JP 2009217655 A JP2009217655 A JP 2009217655A JP 2011063869 A JP2011063869 A JP 2011063869A
Authority
JP
Japan
Prior art keywords
mpa
less
aluminum alloy
baking
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009217655A
Other languages
Japanese (ja)
Other versions
JP5456424B2 (en
Inventor
Hiroshi Saito
洋 齊藤
Toshihiro Harada
俊宏 原田
Hideaki Fukumasu
秀彰 福増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Altemira Can Co Ltd
Original Assignee
Mitsubishi Aluminum Co Ltd
Universal Can Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd, Universal Can Corp filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2009217655A priority Critical patent/JP5456424B2/en
Publication of JP2011063869A publication Critical patent/JP2011063869A/en
Application granted granted Critical
Publication of JP5456424B2 publication Critical patent/JP5456424B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet for a can body, in which production of cracks upon rolling is suppressed, the occurrence rate of barrel breakage is suppressed, and thrusting strength is made high as well. <P>SOLUTION: The aluminum alloy sheet has a composition comprising, by mass, 0.8 to 1.1% Mn, 1.3 to 1.7% Mg, 0.25 to 0.4% Si, 0.3 to 0.55% Fe, 0.3 to 0.45% Cu, 0.6 to 0.8% Si+Cu, Cu content ≥ Si content, and the balance Al. The aluminum alloy sheet has a sheet thickness of 0.240 to 0.265 mm, material tensile strength of ≤325 MPa, stock proof stress of 285 to 310 MPa, material elongation of 2.5 to 4.5%, material proof stress after baking of ≥280 MPa, (AB TS)-(AB YS) after material baking is ≥37 MPa, tensile strength at the barrel part of a can body is 350 to 410 MPa, elongation of the barrel part is 4.5 to 5%, the change of TS by baking is ≥10 MPa, and the change of YS by baking (H YS-AB YS) is ≤10 MPa. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板及びその製造方法に関する。   The present invention relates to an aluminum alloy plate for a can body that has excellent flow-resistant pinhole resistance and a method for producing the same.

一般に缶ボディとしては、その開口端部に缶蓋が巻締められる缶や、開口端部にキャップが螺着されるボトル缶等があり、飲料等の内容物が充填、密封され、市場において流通している。このような缶ボディは、従来、JIS3004(AA3004)またはJIS3104(AA3104)のAl合金からなる板材に絞り加工およびしごき加工を施すことによって行われるDI加工で形成されている。このようなしごき加工は、通常3回に分けて行われることにより、缶ボディが製缶される。そして、缶ボディの胴部は、例えば最薄部における肉厚が約0.106mm程度に形成され、引張強さと0.2%耐力との差が27MPa以下とされている。   In general, the can body includes a can with a can lid wound around its open end and a bottle can with a cap screwed into its open end, filled with beverages and other contents, and distributed in the market. is doing. Such a can body is conventionally formed by DI processing performed by drawing and ironing a plate material made of an Al alloy of JIS3004 (AA3004) or JIS3104 (AA3104). Such a ironing process is usually performed in three times to produce a can body. And the trunk | drum of a can body is formed in about 0.106 mm in thickness in the thinnest part, for example, and the difference of tensile strength and 0.2% yield strength shall be 27 Mpa or less.

従来、上述のような缶ボディの流通過程において、例えば、缶ボディの胴部に先鋭体が接触又は衝突したり、あるいは隣接した缶ボディの胴部同士が衝突したり、缶と缶の間に異物が挟まった状態で擦れること等により、流通ピンホールと呼ばれる微小な孔等の破断が発生し、その内容物が漏洩する等の問題があった。
上述のようなピンホールが生じる問題を解決するための有効な手段として、胴部の肉厚を大きくすることが考えられるものの、単に胴部の肉厚を大きくしても缶ボディ材の材料使用量が増大するので、製造コストが増大することを回避できなかった。
Conventionally, in the distribution process of the can body as described above, for example, the sharp body contacts or collides with the body portion of the can body, the body portions of adjacent can bodies collide, or between the cans and the cans. Due to rubbing in a state where foreign matter is sandwiched, there is a problem that breakage of a minute hole or the like called a distribution pinhole occurs and the contents leak.
Although it is conceivable to increase the thickness of the barrel as an effective means for solving the above-mentioned problem of pinholes, the material of the can body material can be used even if the barrel thickness is simply increased. Since the amount increases, it cannot be avoided that the manufacturing cost increases.

このような問題を解決するため、例えば、質量%でMn:0.8〜1.5%及びMg:0.8〜1.3%を含有したアルミニウム合金材からなり、破断伸びが6〜10%とされた缶ボディが提案されている(例えば、特許文献1)。
特許文献1に記載の缶ボディでは、缶ボディの素材成分組成を上述としたうえで、製缶後の破断伸びを6〜10%として構成することにより、素材の板厚を薄くした場合であっても、胴部の突き刺し強度が向上するとされている。
In order to solve such a problem, for example, it is made of an aluminum alloy material containing Mn: 0.8 to 1.5% and Mg: 0.8 to 1.3% by mass, and the elongation at break is 6 to 10%. % Can bodies have been proposed (for example, Patent Document 1).
In the can body described in Patent Document 1, the material composition of the can body is set as described above, and the elongation at break after making the can is set to 6 to 10%, thereby reducing the thickness of the material. However, it is said that the piercing strength of the trunk portion is improved.

しかしながら、特許文献1に記載の缶ボディの構成では、素材の板厚を薄くした場合に底部も薄くなり、底部の耐圧強度が低下する虞がある。このため、素材自体の強度を高くする必要があるが、素材の強度を高くすると、しごき加工による成形時に胴部の破断(胴切れ)が生じ易くなるという問題がある。
このような胴切れを防止するためには、1回のしごき加工でのしごき率を低くするために、しごき加工の回数を増やすことが有効であるが、上述したように、従来から用いられているDI加工方法においては、しごきが通常3回で行われており、しごき回数を増やす場合には従来の工程設備を使用することができないという問題があった。
However, in the structure of the can body described in Patent Document 1, when the thickness of the material is reduced, the bottom portion also becomes thin, and the pressure resistance strength of the bottom portion may be reduced. For this reason, it is necessary to increase the strength of the raw material itself. However, if the strength of the raw material is increased, there is a problem in that the body portion is likely to be broken (cut out) during molding by ironing.
In order to prevent such a barrel cut, it is effective to increase the number of ironing processes in order to reduce the ironing rate in one ironing process. However, as described above, it has been conventionally used. In the conventional DI processing method, ironing is usually performed three times, and there is a problem that conventional process equipment cannot be used when the number of times of ironing is increased.

そこで、製造コストを増大させることなくピンホールの発生を防ぐことができることを目的として本願出願人は、高強度かつ薄肉素材を用い、缶ボディに成形する時の総絞り比を大きくした条件で、底部の板厚が薄くても素材強度が高いために底部の耐圧強度が高い軽量缶を得られる技術について研究し、その研究結果を基に特許を出願している(特許文献2、3、4)。   Therefore, for the purpose of preventing the occurrence of pinholes without increasing the manufacturing cost, the applicant of the present application uses a high-strength and thin-walled material, under the condition of increasing the total drawing ratio when molding into a can body, Research has been conducted on a technique for obtaining a lightweight can having a high pressure resistance at the bottom because the material strength is high even if the thickness of the bottom is thin, and patents have been filed based on the research results (Patent Documents 2, 3, 4). ).

特開平8−199273号公報JP-A-8-199273 特開2007−197815号公報JP 2007-197815 A 特開2007−197816号公報JP 2007-197816 A 特開2007−197817号公報JP 2007-197817 A

これらの特許文献2〜4に記載の技術によれば、素材の合金組成比と板厚、金属間化合物の個数、ベーキング後の素材耐力、加工及び焼き付け後の引張強さ、伸び、リオイル量の制御、板厚、絞り比やしごき量の規定などを行うことにより、比較的軽量で耐流通ピンホール性に優れた缶ボディを提供することができた。   According to the techniques described in these Patent Documents 2 to 4, the alloy composition ratio and thickness of the material, the number of intermetallic compounds, the material yield strength after baking, the tensile strength after processing and baking, the elongation, and the reoil amount By defining the control, plate thickness, drawing ratio and ironing amount, etc., we were able to provide a can body that was relatively lightweight and excellent in circulation pinhole resistance.

しかしながら、更に軽量かつ耐ピンホール性の優れた缶ボディを得るために、詳細に素材研究並びに製造条件の研究を進めた結果、以下に説明する知見を得ることができた。
例えば、缶胴の強度と延性を高くすることにより、耐ピンホール特性を高くすることができる。このためには、Mg、Cu、Siなどの強度を高める元素の添加量を高くすれば良い。更に、素材製造時の最終冷間圧延率を高めると、素材の強度を高くすることができるが、缶成形後のベーキングで軟化を生じ易くなり、また、ベーキング後の缶胴の延性が低くなる。従って、素材の圧延率を過剰に高くしても、耐ピンホール性に及ぼす効果は小さい。
しかし、Mg、Cu、Siなどの量を過剰に高くすると、素材製造時の中間冷間圧延時に板幅端部にクラックが発生し、このクラックを起点として、冷間圧延や連続焼鈍時に板の破断が生じ易くなる。板の破断による生産性や歩留まりの低下は著しいので、板端部にクラックが発生する場合、端部をトリムしてクラックを除去したり、クラックの発生を抑制するために中間焼鈍を追加する必要があるが、これらの工程追加による生産性や歩留まりの低下も、コストアップの要因となるので、板端部にクラックが生じ難いことが必要と考えられる。
However, in order to obtain a can body that is lighter and more resistant to pinholes, as a result of conducting detailed research on materials and manufacturing conditions, the following knowledge has been obtained.
For example, the pinhole resistance can be enhanced by increasing the strength and ductility of the can body. For this purpose, the addition amount of an element for increasing the strength, such as Mg, Cu, or Si, may be increased. Furthermore, if the final cold rolling ratio at the time of manufacturing the material is increased, the strength of the material can be increased, but softening is likely to occur during baking after can molding, and the ductility of the can body after baking is reduced. . Therefore, even if the rolling rate of the material is excessively increased, the effect on the pinhole resistance is small.
However, if the amount of Mg, Cu, Si, etc. is excessively high, cracks will occur at the end of the sheet width during intermediate cold rolling at the time of raw material production, and this crack will be the starting point of the sheet during cold rolling or continuous annealing. Breaking easily occurs. The productivity and yield decrease due to the breakage of the plate is remarkable, so if a crack occurs at the end of the plate, it is necessary to trim the end to remove the crack or add an intermediate annealing to suppress the occurrence of the crack However, productivity and yield reduction due to the addition of these processes also increase costs, and it is considered necessary that cracks are unlikely to occur at the end of the plate.

また、成分元素の量を高めたり、最終冷間圧延率を高めるなどの条件を制御して素材の強度を高めると、しごき成形時の胴破断(即ち、胴切れ)が生じ易くなるという問題がある。従って胴切れを抑制するためにしごき率をある程度低い範囲とする必要がある。
次に、総絞り比が高い場合に適用し、強度を高くし、板厚の薄い素材を用いるが、素材板厚が薄くなると、カップ成形時に板と打ち抜きくずを搬送する際、打ち抜きくずを成形機の外部に搬送できなくなる問題を生じることがあった。
In addition, if the strength of the material is increased by controlling the conditions such as increasing the amount of the component elements or increasing the final cold rolling rate, there is a problem that cylinder breakage (ie, cylinder breakage) is likely to occur during ironing. is there. Therefore, it is necessary to set the ironing rate to a certain low range in order to suppress torsion.
Next, it is applied when the total drawing ratio is high, and the strength is increased, and a material with a thin plate thickness is used. However, when the material plate thickness is thin, when the plate and punched scrap are conveyed during cup molding, the punched scrap is formed. There was a problem that it could not be transported outside the machine.

即ち、缶ボディを成形する際、まず、カッピングプレスにて素材の板を円板状のブランクに打ち抜き、これをカップ状に成形する工程がある。この工程は、素材の板をコイル状に巻き付けたものをアンコイラーと称される供給装置に装着し、供給装置から繰り出される素材の板の端部をルブリケーターを経由してカッピングプレス内に送り込む。ブランキング及びカップ成形中は素材の板を送り込むことができないので、カップ成形が終わった後、カッピングプレスの金型が上死点近くまで戻った後、金型が上死点付近にある間に素材としての板を送り込む。この時、既にブランクが打ち抜かれた板の残りの部分は、カッピングプレスの外部に排出され、次のプレスが行われる間にシアー切断機で切断される。しかし、ブランクを打ち抜いた後の板(スケルトン材)は、孔が複数形成された状態であり、折れ曲がり易く、仮に折れ曲がると正常にカッピングプレスの外部に送り出すことができなくなり、仮にプレス後のスケルトン材がカッピングプレスの成形エリアに残留するようであると、次のプレス工程を阻害する問題がある。この状態を本発明者らはスケルトンジャムと称しているが、スケルトンジャムが発生すると、カッピングプレスを一時停止してスケルトン材の排出を行わなくてはならず、生産効率が低下する問題がある。   That is, when forming a can body, there is a step of first punching a raw material plate into a disk-shaped blank by a cupping press, and forming this into a cup shape. In this process, a material plate wound in a coil shape is attached to a supply device called an uncoiler, and the end of the material plate fed out from the supply device is fed into a cupping press via a lubricator. During blanking and cup molding, the material plate cannot be fed, so after cup molding is finished, the cupping press mold returns to near the top dead center and then the mold is near top dead center. Send a board as a material. At this time, the remaining portion of the plate from which the blank has already been punched is discharged to the outside of the cupping press and cut with a shear cutter during the next press. However, the plate after punching the blank (skeleton material) is in a state where a plurality of holes are formed, and it is easy to bend. If it remains in the molding area of the cupping press, there is a problem of hindering the next pressing step. The present inventors refer to this state as a skeleton jam, but when a skeleton jam occurs, the cupping press must be temporarily stopped to discharge the skeleton material, resulting in a problem that the production efficiency is lowered.

この成形エリアに対するスケルトン材の残留は、ブランクを打ち抜いた後のスケルトン材の詳細な形状、平坦度、塗布された潤滑剤の粘度、カッピングプレス内で板またはスケルトン材を支持している部分の形態など、種々の影響を受けるが、板が薄いほどカッピングプレス内にスケルトン材が残留し易い傾向がある。また、本発明者が実際に種々研究を重ねた結果、板の耐力が高い場合、板厚が薄くてもカッピングプレスの成形エリアに対するスケルトン材の残留が生じ難いことを知見しており、板厚が0.27mm未満の場合に素材耐力がどの程度であれば、スケルトン材の残留を抑制できるものか知見を得た。   The remaining skeleton material for this forming area is the detailed shape of the skeleton material after blanking, the flatness, the viscosity of the applied lubricant, and the form of the part supporting the plate or skeleton material in the cupping press However, as the plate is thinner, the skeleton material tends to remain in the cupping press. In addition, as a result of the inventor's actual research, when the strength of the plate is high, it has been found that the skeleton material hardly remains in the forming area of the cupping press even if the plate thickness is thin. When the material strength is less than 0.27 mm, it has been found out how much the material yield strength can suppress the residual of the skeleton material.

本発明は上述の事情に鑑みなされたもので、Mn、Mg、Si、Fe、Cuの含有量に加えて(Si+Cu)量の制御を行い、素材板厚、素材引張強さ、素材耐力、ベーキング後の素材特性、製缶後の胴部の引張強さと伸びを制御することで、圧延時のクラックの発生を抑え、胴切れ発生率を低く抑え、突き刺し強度も高くした缶ボディを得ることができる缶ボディ用アルミニウム合金板の提供を目的とする。   The present invention has been made in view of the above circumstances, and controls the amount of (Si + Cu) in addition to the contents of Mn, Mg, Si, Fe, and Cu, and the material plate thickness, material tensile strength, material yield strength, baking. By controlling the material properties and the tensile strength and elongation of the barrel after canning, it is possible to obtain a can body that suppresses the occurrence of cracks during rolling, reduces the rate of occurrence of cylinder breakage, and increases the piercing strength. An object of the present invention is to provide an aluminum alloy plate for a can body.

上記の課題を解決するため、本発明は以下の構成を採用した。
本発明は、胴部の厚さが0.096mm〜0.113mmであり、製造時の総絞り比が2.2〜2.7であり、且つ総しごき率が60%以下の缶ボディの製造に用いる缶ボディ用アルミニウム合金板であって、質量%で、Mn:0.8〜1.1%、Mg:1.3〜1.7%、Si:0.25〜0.4%、Fe:0.3〜0.55%、Cu:0.3〜0.45%、Si+Cu:0.6〜0.8%を含有し、Cu量≧Si量の関係を満足し、残部が不可避不純物を含むAlからなり、板厚が0.240mm以上0.265mm以下であり、素材引張強さ325MPa以下であり、素材耐力285MPa以上310MPa以下であり、素材伸び2.5%以上4.5%以下であり、ベーキング後の素材耐力が280MPa以上であり、素材ベーキング後の(AB TS)−(AB YS)の値が37MPa以上、ベーキングによるTSの変化(AB TS)−(H TS)の値が10MPa以上、ベーキングによるYSの変化(H YS−AB YS)の値が10MPa以下であって、DI加工及び塗装焼付けによる製缶後の缶ボディの胴部の引張強さが350MPa以上410MPa以下であり、前記胴部の伸びが4.5%以上であることを特徴とする。

本発明は、前記胴部の伸びが5%以上であることを特徴とする。
本発明は、円相当径が1以上10μm以下の金属間化合物が3000個/mm以上4800個/mm以下で面積率が1.5〜2.5%であることを特徴とする。
In order to solve the above problems, the present invention employs the following configuration.
The present invention manufactures a can body having a body thickness of 0.096 mm to 0.113 mm, a total drawing ratio of 2.2 to 2.7, and a total ironing ratio of 60% or less. Aluminum alloy plate for can body used in the following, in mass%, Mn: 0.8 to 1.1%, Mg: 1.3 to 1.7%, Si: 0.25 to 0.4%, Fe : 0.3 to 0.55%, Cu: 0.3 to 0.45%, Si + Cu: 0.6 to 0.8%, satisfying the relationship of Cu amount ≥ Si amount, the balance being inevitable impurities The sheet thickness is 0.240 mm or more and 0.265 mm or less, the material tensile strength is 325 MPa or less, the material yield strength is 285 MPa or more and 310 MPa or less, and the material elongation is 2.5% or more and 4.5% or less. And the material yield strength after baking is 280 MPa or more. The value of (AB TS)-(AB YS) is 37 MPa or more, the change in TS due to baking (AB TS)-(H TS) is the value of 10 MPa or more, and the change in YS due to baking (H YS-AB YS) Is 10 MPa or less, the tensile strength of the body part of the can body after can manufacturing by DI processing and paint baking is 350 MPa or more and 410 MPa or less, and the elongation of the body part is 4.5% or more. And

The present invention is characterized in that the body portion has an elongation of 5% or more.
The present invention is characterized in that an intermetallic compound having an equivalent circle diameter of 1 to 10 μm is 3000 / mm 2 to 4800 / mm 2 and an area ratio is 1.5 to 2.5%.

本発明方法は、胴部の厚さが0.096mm以上0.113mm以下であり、製造時の総絞り比が2.2〜2.7であり、且つ総しごき率が60%以下の缶ボディの製造に用いる缶ボディ用アルミニウム合金板を製造するために、質量%で、Mn:0.8〜1.1%、Mg:1.3〜1.7%、Si:0.25〜0.4%、Fe:0.3〜0.55%、Cu:0.3〜0.45%、Si+Cu:0.6〜0.8%を含有し、Cu量≧Si量の関係を満足し、残部が不可避不純物を含むアルミニウム合金鋳造材を均質化処理した後、熱間圧延加工と冷間圧延加工を施す缶ボディ用アルミニウム合金板の製造方法であって、冷間圧延のパス間に450℃以上600℃以下の温度に所定時間加熱する中間焼鈍を行い、その後、50%以上70%以下の最終冷間圧延を行うことにより、板厚が0.240mm以上0.265mm以下であり、素材引張強さ325MPa以下であり、素材耐力285MPa以上310MPa以下であり、素材伸び2.5%以上4.5%以下であり、ベーキング後の素材耐力が280MPa以上であり、素材ベーキング後の(AB−TS)−(AB−YS)の値が37MPa以上、ベーキングによるTSの変化(AB TS)−(H TS)の値を10MPa以上、ベーキングによるYSの変化(H YS−AB YS)の値を10MPa以下、DI加工及び塗装焼付けによる製缶後の缶ボディの胴部の引張強さが350MPa以上410MPa以下であるとともに、前記胴部の伸びを4.5%以上とすることを特徴とする。
本発明方法において、前記胴部の伸びを5%以上とすることができる。
The method of the present invention is a can body in which the thickness of the body portion is 0.096 mm or more and 0.113 mm or less, the total drawing ratio at the time of manufacture is 2.2 to 2.7, and the total ironing rate is 60% or less. In order to produce an aluminum alloy plate for a can body used for the production of Mn: 0.8% to 1.1%, Mg: 1.3 to 1.7%, Si: 0.25 to 0. 4%, Fe: 0.3 to 0.55%, Cu: 0.3 to 0.45%, Si + Cu: 0.6 to 0.8%, satisfying the relationship of Cu amount ≧ Si amount, A method for producing an aluminum alloy sheet for a can body that is subjected to a homogenization treatment of an aluminum alloy cast material containing the inevitable impurities in the balance, followed by a hot rolling process and a cold rolling process. Intermediate annealing is performed by heating to a temperature of 600 ° C. or lower for a predetermined time, and then 50% to 70%. By performing the final cold rolling, the plate thickness is 0.240 mm or more and 0.265 mm or less, the material tensile strength is 325 MPa or less, the material yield strength is 285 MPa or more and 310 MPa or less, and the material elongation is 2.5% or more. 5% or less, the material yield strength after baking is 280 MPa or more, the value of (AB-TS)-(AB-YS) after baking is 37 MPa or more, and the change in TS by baking (ABTS)-(H TS) value is 10 MPa or more, YS change by baking (H YS-AB YS) value is 10 MPa or less, and the tensile strength of the body of the can body after can processing by DI processing and paint baking is 350 MPa or more and 410 MPa or less. And the elongation of the body is 4.5% or more.
In the method of the present invention, the elongation of the body portion can be 5% or more.

缶ボディの耐流通ピンホール性を向上させるためには、缶ボディの胴部の板厚を厚くすることが最も効果的である。一方、胴部の板厚を厚くすると、製缶に必要な缶ボディ材の必要量も増大するため、経済的でなくなる。
そこで、缶ボディの底部を薄く形成することにより、必要な缶ボディ材の量を少なくする必要がある。缶ボディの底部は、しごき成形されないため、底部を薄くするためには素材板厚を薄くする必要がある。また、底部が薄くなると該底部の耐圧強度が低下するため、素材自体の強度を高める必要がある。しかしながら、素材の強度を高くすると、しごき成形時に胴部の破断(胴切れ)が生じ易くなる。
In order to improve the distribution pinhole resistance of the can body, it is most effective to increase the thickness of the body portion of the can body. On the other hand, when the plate thickness of the body portion is increased, the necessary amount of can body material necessary for can making increases, which is not economical.
Therefore, it is necessary to reduce the amount of can body material required by forming the bottom of the can body thin. Since the bottom of the can body is not ironed, it is necessary to reduce the material plate thickness in order to make the bottom thinner. Moreover, since the pressure resistance strength of the bottom portion decreases when the bottom portion becomes thin, it is necessary to increase the strength of the material itself. However, when the strength of the material is increased, the body portion is likely to be broken (runout) during ironing.

本発明者らが鋭意検討した結果、素材の板厚を適度な範囲に薄く形成し、且つ製缶された缶ボディ胴部の板厚を厚く形成することにより、総しごき率を低くすることができ、胴切れが生じ難くなることから、素材強度を高くしても、胴切れが発生するのを従来と同レベルに抑制できることを知見した。また、素材強度を高くすることにより、DI加工及び塗装焼付けによる製缶後の缶ボディ胴部の強度も高くできるので、よりピンホールを生じにくくなることを見出した。   As a result of intensive studies by the present inventors, it is possible to reduce the total ironing rate by forming the plate thickness of the material to an appropriate range and by forming the plate thickness of the can body barrel portion made thick. It was found that it was possible to suppress the occurrence of torsion to the same level as before even if the strength of the material was increased. It was also found that by increasing the strength of the material, the strength of the can body body after canning by DI processing and paint baking can be increased, so that pinholes are less likely to occur.

以上、詳細に説明したように、本発明によれば、Mn、Mg、Si、Fe、Cuの含有量を好ましい範囲に制御することに加えて(Si+Cu)量の制御を行い、Cu量≧Si量の調整を行ない、素材板厚、素材引張強さ、素材耐力、ベーキング後の素材特性、製缶後の胴部の引張強さと伸びを制御することで、圧延時のクラックの発生を抑え、胴切れ発生率を低く抑え、突き刺し強度も高くした缶ボディ用アルミニウム板を得ることができる効果がある。   As described above in detail, according to the present invention, in addition to controlling the contents of Mn, Mg, Si, Fe, and Cu to a preferable range, the amount of (Si + Cu) is controlled, and the amount of Cu ≧ Si By adjusting the amount, by controlling the material plate thickness, material tensile strength, material yield strength, material characteristics after baking, the tensile strength and elongation of the barrel after canning, suppressing the occurrence of cracks during rolling, There is an effect that it is possible to obtain an aluminum plate for a can body with a low rate of occurrence of torso cut and high piercing strength.

図1は本発明に係る缶ボディ用アルミニウム合金板をDI加工して製缶し缶ボディを製造する際の工程を説明する概略図である。FIG. 1 is a schematic view for explaining a process when a can body is manufactured by performing DI processing on an aluminum alloy plate for a can body according to the present invention. 図2は図1に示す缶ボディの一部拡大縦断面図である。FIG. 2 is a partially enlarged longitudinal sectional view of the can body shown in FIG.

以下、本発明に係る耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板(以下、缶ボディ用アルミニウム合金板と略称することがある)の第1実施形態について説明する。
本実施形態の缶ボディ用アルミニウム合金板は、胴部の厚さが0.096mm〜0.113mmであり、製造時の総絞り比が2.2〜2.7であり、且つ総しごき率が60%以下の缶ボディの製造に用いる缶ボディ用アルミニウム合金板であって、質量%で、Mn:0.8〜1.1%、Mg:1.3〜1.7%、Si:0.25〜0.4%、Fe:0.3〜0.55%、Cu:0.3〜0.45%、Si+Cu:0.6〜0.8%を含有し、残部が不可避不純物を含むAlからなり、板厚が0.240mm以上0.265mm以下であり、素材引張強さ325MPa以下であり、素材耐力285MPa以上310MPa以下であり、素材伸び2.5%以上4.5%以下であり、ベーキング後の素材耐力が280MPa以上であり、素材ベーキング後の(AB TS)−(AB YS)の値が37MPa以上、ベーキングによるTSの変化(AB TS)−(H TS)の値が10MPa以上、ベーキングによるYSの変化(H YS−AB YS)の値が10MPa以下であるとともに、DI加工及び塗装焼付けによる製缶後の缶ボディの胴部の引張強さが350MPa以上410MPa以下、前記胴部の伸びが4.5%以上とされて概略構成されている。
Hereinafter, a first embodiment of an aluminum alloy plate for a can body (hereinafter, may be abbreviated as an aluminum alloy plate for a can body) having excellent flow-resistant pinhole properties according to the present invention will be described.
The aluminum alloy plate for a can body of the present embodiment has a body thickness of 0.096 mm to 0.113 mm, a total drawing ratio of 2.2 to 2.7, and a total ironing rate. An aluminum alloy plate for a can body used for producing a can body of 60% or less, and by mass%, Mn: 0.8 to 1.1%, Mg: 1.3 to 1.7%, Si: 0.00. Al containing 25 to 0.4%, Fe: 0.3 to 0.55%, Cu: 0.3 to 0.45%, Si + Cu: 0.6 to 0.8%, and the balance containing inevitable impurities The sheet thickness is 0.240 mm or more and 0.265 mm or less, the material tensile strength is 325 MPa or less, the material yield strength is 285 MPa or more and 310 MPa or less, and the material elongation is 2.5% or more and 4.5% or less, The material strength after baking is 280 MPa or more, and the material baking (AB TS)-(AB YS) value after baking is 37 MPa or more, TS change due to baking (AB TS)-(H TS) value is 10 MPa or more, YS change due to baking (H YS-AB YS) Of 10 MPa or less, the tensile strength of the barrel portion of the can body after can manufacturing by DI processing and paint baking is 350 MPa or more and 410 MPa or less, and the elongation of the barrel portion is 4.5% or more. Has been.

本実施形態の缶ボディ用アルミニウム合金板は上述の規定に加え、製缶後の缶胴伸び5%以上であることがより好ましい。
本実施形態の缶ボディ用アルミニウム合金板は上述の規定に加え、更に、円相当径が1以上10μm以下の金属間化合物が3000個/mm以上4800個/mm以下で面積率が1.5%以上2.5%以下であることが好ましい。
In addition to the above-mentioned rules, the aluminum alloy plate for can bodies of the present embodiment more preferably has a can body elongation of 5% or more after can making.
In addition to the above-mentioned rules, the aluminum alloy plate for a can body of the present embodiment further has an inter-metallic compound having an equivalent circle diameter of 1 to 10 μm of 3000 / mm 2 to 4800 / mm 2 and an area ratio of 1. It is preferably 5% or more and 2.5% or less.

[アルミニウム合金板の製造方法]
本発明に係る缶ボディ用アルミニウム合金板は、この種のアルミニウム合金を製造する場合に適用される通常の溶解、鋳造、均質化処理、熱間圧延、冷間圧延、を経て製造される。そして特に、熱間圧延後冷間圧延を行い、その後、450℃以上600℃以下の温度に1秒以上2分以下加熱する中間焼鈍を行い、その後、50%〜70%の最終冷間圧延を行うことにより、素材としての最終板厚(0.240mm以上0.265mm以下)であって、(AB TS:ベーキング後の素材引張強さ)−(AB YS:ベーキング後の素材耐力)が37MPa以上、(AB TS)−(H TS:素材引張強さ)が10MPa以上、(H YS:素材耐力)−(AB YS)が10MPa以下(負も含む)のアルミニウム合金板を製造することができる。
なお、アルミニウム合金鋳塊に対して560℃〜融点未満の温度範囲で均質化処理を施すことができる。
[Method for producing aluminum alloy sheet]
The aluminum alloy plate for can bodies according to the present invention is manufactured through ordinary melting, casting, homogenization treatment, hot rolling, and cold rolling applied when manufacturing this type of aluminum alloy. And in particular, cold rolling after hot rolling is performed, and then intermediate annealing is performed at a temperature of 450 ° C. or higher and 600 ° C. or lower for 1 second or longer and 2 minutes or shorter, followed by 50% to 70% final cold rolling. By performing the final plate thickness (0.240 mm or more and 0.265 mm or less) as a material, (AB TS: material tensile strength after baking) − (AB YS: material yield strength after baking) is 37 MPa or more. , (AB TS)-(H TS: material tensile strength) is 10 MPa or more, and (H YS: material yield strength)-(AB YS) is 10 MPa or less (including negative) aluminum alloy plates can be manufactured.
In addition, a homogenization process can be performed with respect to an aluminum alloy ingot in a temperature range of 560 ° C. to less than the melting point.

[成分組成]
以下、本発明の缶ボディ用アルミニウム合金板において限定する成分組成について説明する。なお、以下に記載する各元素の含有量は、特に規定しない限り質量%であり、また、特に規定しない限り上限と下限を含むものとする。従って、例えば0.8〜1.1%との表記は0.8%以上、1.1%以下を意味する。
[Ingredient composition]
Hereinafter, the component composition limited in the aluminum alloy plate for can bodies of this invention is demonstrated. In addition, content of each element described below is mass% unless otherwise specified, and includes an upper limit and a lower limit unless otherwise specified. Therefore, for example, the notation of 0.8 to 1.1% means 0.8% or more and 1.1% or less.

「Si」0.25〜0.4%
Siは、本発明の缶ボディ用アルミニウム合金板において、同時に含有されるMg等とともに化合物を形成し、固溶硬化、析出硬化及び分散硬化作用で強度を向上させる他、Al−Mn−Fe系金属間化合物に含有されて、しごき成形時にダイスに対する焼き付きを防止する効果を有する。
Siの含有量が0.25%未満であると、十分な強度が得られず、また、金属間化合物寸法が大きくなる。Siの含有量が0.4%を越えると、強度が高くなりすぎ、缶ボディとして製缶した際に胴切れが生じ易くなり、サイドクラックが生じ易くなり、加工性が劣化する。また、Siの含有量が0.4%を越えると、Al−Mn−Fe系金属間化合物の量が多くなり、さらに、Mg、Cu、Alとの金属間化合物が溶体化できなくなり、靭性が低下し、ピンホールが生じやすくなる。従って、Siの含有量は、0.25〜0.4%の範囲内とすることが好ましい。
「Fe」0.3〜0.55%
Feは、本発明の缶ボディ用アルミニウム合金板において、Al−Mn−Fe系金属間化合物の量を増加させ、結晶の微細化と、しごき成形加工時にダイスに対して焼き付きが生じるのを防止する効果を有する。
Feの含有量が0.3%未満であると、Al−Mn−Fe系金属間化合物の量が少なくなりすぎ、しごき金型への焼き付が生じやすくなる。Feの含有量が0.55%を超えると、Al−Mn−Fe系金属間化合物の量が多くなりすぎ、靭性低下によって加工性が劣化し、ピンホールが生じやすくなる。従って、Feの含有量は、0.3〜0.55%の範囲内とすることが好ましい。
"Si" 0.25-0.4%
In the aluminum alloy plate for can bodies of the present invention, Si forms a compound together with Mg or the like contained at the same time, and improves the strength by solid solution hardening, precipitation hardening and dispersion hardening, and Al-Mn-Fe based metal It is contained in the intermetallic compound and has the effect of preventing seizure on the die during ironing.
If the Si content is less than 0.25%, sufficient strength cannot be obtained, and the intermetallic compound size increases. When the Si content exceeds 0.4%, the strength becomes too high, and when a can body is produced, it becomes easy to cause a barrel break, to easily cause a side crack, and the workability deteriorates. Further, if the Si content exceeds 0.4%, the amount of Al-Mn-Fe intermetallic compound increases, and further, intermetallic compounds with Mg, Cu, Al cannot be solutionized, and toughness is increased. The pinhole is likely to occur. Therefore, the Si content is preferably in the range of 0.25 to 0.4%.
"Fe" 0.3-0.55%
In the aluminum alloy plate for can bodies of the present invention, Fe increases the amount of Al-Mn-Fe intermetallic compound, and prevents finer crystals and seizure of the die during ironing. Has an effect.
When the Fe content is less than 0.3%, the amount of the Al—Mn—Fe intermetallic compound becomes too small, and seizure to the ironing die tends to occur. When the content of Fe exceeds 0.55%, the amount of Al—Mn—Fe intermetallic compound becomes too large, workability deteriorates due to a decrease in toughness, and pinholes are likely to occur. Therefore, the Fe content is preferably in the range of 0.3 to 0.55%.

「Cu」0.3〜0.45%
Cuは、本発明の缶ボディ用アルミニウム合金板において、Mg等と金属間化合物を形成し、固溶硬化、析出硬化及び分散硬化作用で強度を高める効果を有する。
Cuの含有量が0.3%未満であると、充分な強度向上効果が得られない。Cuの含有量が0.45%を越えると、サイドクラックが発生し易くなり、圧延性が低下するとともに、強度が高くなりすぎ、缶ボディとして製缶した際に胴切れが生じ易くなる。また、Mg、Si、Alとの金属間化合物が溶体化できなくなり、靭性低下によって加工性が劣化し、ピンホールが生じやすくなる。従って、Cuの含有量は、0.3〜0.45%の範囲内とすることが好ましい。
「Si+Cu」0.6〜0.8%
本実施形態では、Si量とCu量の合計値であるSi+Cuについても規定する。Si+Cuの量が0.6%未満では十分な強度を得難くなり、Si+Cuの量が0.8%を超えるとサイドクラックが発生し易くなり、圧延性が低下するとともに、強度が高くなりすぎ、缶ボディとして製缶した際に胴切れが生じ易くなる。
[Cu量≧Si量]
本発明の缶ボディ用アルミニウム合金板において、Si量とCu量は、Cu量≧Si量の関係であることを必要とする。
本発明の缶ボディ用アルミニウム合金板の製造過程において、溶体化されたSi、Cuは、共にMgなどの元素と反応し、析出硬化性を付与する。この結果、塗装焼き付け(ベーキング)時に析出するとともに、圧延や成形加工で導入された転位の回復を抑制し、固着する。このため、ベーキングによる強度増加あるいは低下の抑制効果を有する。ベーキング後の缶胴の引張強さを同じにした場合、Si量が多い場合より、Cu量が多い場合の方が突き刺し強度が高くなる。この理由は不明であるが、Siが多いと、Mn、Feとの金属間化合物の量が多くなり、また、Mg、Cu、Alとの粗大な析出物がCALによる中間焼鈍時に溶体化され難く、靭性が低下するため、突き刺し強度が低くなると推定できる。
"Cu" 0.3-0.45%
Cu forms an intermetallic compound with Mg or the like in the aluminum alloy plate for a can body of the present invention, and has an effect of increasing strength by solid solution hardening, precipitation hardening, and dispersion hardening.
If the Cu content is less than 0.3%, a sufficient strength improvement effect cannot be obtained. If the Cu content exceeds 0.45%, side cracks are likely to occur, the rollability is lowered, the strength becomes too high, and the body is easily cut when it is made as a can body. In addition, the intermetallic compound with Mg, Si, and Al cannot be in solution, and the workability deteriorates due to a decrease in toughness, and pinholes are likely to occur. Therefore, the Cu content is preferably in the range of 0.3 to 0.45%.
"Si + Cu" 0.6-0.8%
In the present embodiment, Si + Cu, which is the total value of the Si amount and the Cu amount, is also defined. If the amount of Si + Cu is less than 0.6%, it is difficult to obtain sufficient strength, and if the amount of Si + Cu exceeds 0.8%, side cracks are likely to occur, and the rollability is lowered and the strength is too high. When it is made as a can body, it becomes easy for the body to be cut.
[Cu amount ≧ Si amount]
In the aluminum alloy plate for a can body of the present invention, the amount of Si and the amount of Cu need to satisfy the relationship of Cu amount ≧ Si amount.
In the production process of the aluminum alloy plate for can bodies of the present invention, solutionized Si and Cu both react with elements such as Mg and impart precipitation hardening. As a result, it precipitates during paint baking (baking), suppresses recovery of dislocations introduced by rolling or forming, and adheres. For this reason, it has the effect of suppressing an increase or decrease in strength due to baking. When the tensile strength of the can body after baking is made the same, the piercing strength is higher when the amount of Cu is larger than when the amount of Si is large. The reason for this is unknown, but if Si is large, the amount of intermetallic compounds with Mn and Fe increases, and coarse precipitates with Mg, Cu, and Al are hardly formed into a solution during CAL intermediate annealing. Since the toughness is lowered, it can be estimated that the piercing strength is lowered.

「Mn」0.8〜1.1%
Mnは、本発明の缶ボディ用アルミニウム合金板において、Al−Mn−Fe系金属間化合物を形成し、晶出相及び分散相となって分散硬化作用を発揮するとともに、しごき成形加工時にダイスに対して焼き付きが生じるのを防止する効果を有する。
Mnの含有量が0.8%未満であると、Al−Mn−Fe系金属間化合物の量が少なくなりすぎて充分な硬化特性が得られず、しごき金型への焼き付が生じやすくなる。Mnの含有量が1.1%を越えると、Al−Mn−Fe系金属間化合物の量が多くなりすぎ、靭性低下によって加工性が劣化し、ピンホールが生じやすくなる。従って、Mnの含有量は、0.8〜1.1%の範囲内とすることが好ましい。
"Mn" 0.8-1.1%
In the aluminum alloy plate for can bodies of the present invention, Mn forms an Al-Mn-Fe intermetallic compound, becomes a crystallization phase and a dispersed phase, exhibits a dispersion hardening action, and is used as a die during the ironing process. On the other hand, it has the effect of preventing seizure.
When the content of Mn is less than 0.8%, the amount of Al—Mn—Fe intermetallic compound becomes too small to obtain sufficient curing characteristics, and seizure to the ironing mold is likely to occur. . When the content of Mn exceeds 1.1%, the amount of Al—Mn—Fe intermetallic compound becomes too large, workability deteriorates due to a decrease in toughness, and pinholes are likely to occur. Therefore, the Mn content is preferably in the range of 0.8 to 1.1%.

「Mg」1.3〜1.7%
Mgは、本発明の缶ボディ用アルミニウム合金板において、固溶体強化作用を有し、圧延加工時に加工硬化性を高めるとともに、SiやCuと共存することで分散硬化と析出硬化作用を発揮し、強度を向上させる。
Mgの含有量が1.3%未満だと、十分な強度が得られない。Mgの含有量が1.7%を超えると、サイドクラックが発生し易くなり、圧延性が低下するとともに、強度が高くなり過ぎて加工性が低下し、缶ボディとして製缶した際に胴切れが生じ易くなる。従って、Mgの含有量は、1.3〜1.7%の範囲内とすることが好ましい。なお、この範囲内でもMg量が1.4〜1.7%の範囲がより好ましい。
"Mg" 1.3-1.7%
In the aluminum alloy plate for can bodies of the present invention, Mg has a solid solution strengthening action, enhances work hardening at the time of rolling, and exhibits dispersion hardening and precipitation hardening action by coexisting with Si and Cu. To improve.
If the Mg content is less than 1.3%, sufficient strength cannot be obtained. If the Mg content exceeds 1.7%, side cracks are likely to occur, the rollability is lowered, the strength is too high, the workability is lowered, and the can is cut as a can body. Is likely to occur. Therefore, the Mg content is preferably in the range of 1.3 to 1.7%. Even within this range, the Mg content is more preferably in the range of 1.4 to 1.7%.

「Zn及びTi」Zn:0.30%以下、Ti:0.15%以下
本発明の缶ボディ用アルミニウム合金板は、さらに必要に応じて、質量%でZn:0.30%以下、Ti:0.15%以下の内の1種又は2種を含有する成分組成とすることができる。
Znは、析出するMg、Si、Cuの金属間化合物を微細化する作用を有するが、Znを含む場合は、原料として使用済みアルミ缶やリサイクル材料を有効利用できる。Znの含有量が0.30%を越えると、加工性と耐食性が劣化する。従って、Znの含有量は、0.30%以下とすることが好ましい。
Tiは、本発明の缶ボディ用アルミニウム合金板において、結晶粒を微細化し、加工性を改善する効果を有する。Tiの含有量が0.15%を越えると、金属間化合物が多くなり過ぎて靭性が低下し、ピンホールが生じやすくなる。従って、Tiの含有量は、0.15%以下とすることが好ましい。
また、その他の元素を不純物として0.05%以下含有していても差し支えない。
“Zn and Ti” Zn: 0.30% or less, Ti: 0.15% or less The aluminum alloy plate for a can body of the present invention may further contain, if necessary, Zn: 0.30% or less, and Ti: It can be set as the component composition containing 1 type or 2 types in 0.15% or less.
Zn has the effect of refining the precipitated intermetallic compounds of Mg, Si, and Cu. However, when Zn is contained, used aluminum cans and recycled materials can be effectively used as raw materials. If the Zn content exceeds 0.30%, workability and corrosion resistance deteriorate. Therefore, the Zn content is preferably 0.30% or less.
Ti has the effect of refining crystal grains and improving workability in the aluminum alloy plate for can bodies of the present invention. When the Ti content exceeds 0.15%, the amount of intermetallic compounds increases so much that the toughness decreases and pinholes are likely to occur. Therefore, the Ti content is preferably 0.15% or less.
Also, other elements may be contained as 0.05% or less as impurities.

[金属間化合物の数]
本発明の缶ボディ用アルミニウム合金板は、円相当径が1〜10μmの金属間化合物の数が、3000個/mm以上4800個/mm以下であることが好ましい。成分組成を上述のように規定し、且つアルミニウム合金鋳塊に対し560℃〜融点未満の温度で均質化処理を行なうことにより、この範囲の金属間化合物の分布が得られる。
金属間化合物の数が3000個/mm未満であると、金属間化合物の量が少なくなりすぎ、しごき金型への焼き付が生じやすくなる。
金属間化合物の数が4800個/mmを超えると、金属間化合物の量が多くなりすぎ、靱性が低下し、ピンホールが生じ易くなる。また、金属間化合物の数は、4400個/mm以下がより好ましい。
[Number of intermetallic compounds]
In the aluminum alloy plate for a can body of the present invention, the number of intermetallic compounds having an equivalent circle diameter of 1 to 10 μm is preferably 3000 / mm 2 or more and 4800 / mm 2 or less. The distribution of intermetallic compounds within this range can be obtained by defining the component composition as described above and performing homogenization treatment on the aluminum alloy ingot at a temperature of 560 ° C. to less than the melting point.
When the number of intermetallic compounds is less than 3000 / mm 2 , the amount of intermetallic compounds becomes too small, and seizure to the ironing mold tends to occur.
When the number of intermetallic compounds exceeds 4800 / mm 2 , the amount of intermetallic compounds becomes too large, the toughness is lowered, and pinholes are likely to occur. The number of intermetallic compounds is more preferably 4400 / mm 2 or less.

[金属間化合物の面積率]
本発明の缶ボディ用アルミニウム合金板は、円相当径が1〜10μmの金属間化合物の面積率が1.5〜2.5%であることが好ましい。
金属間化合物の面積率が1.5%未満であると、金属間化合物の量が少なくなりすぎ、しごき金型への焼き付が生じやすくなる。金属間化合物の面積率が2.5%を超えると、金属間化合物の量が多くなりすぎ、靭性が低下し、ピンホールが生じやすくなる。また、金属間化合物の面積率は、2.2%以下であることがより好ましい。
[Area ratio of intermetallic compounds]
In the can body aluminum alloy plate of the present invention, the area ratio of the intermetallic compound having an equivalent circle diameter of 1 to 10 μm is preferably 1.5 to 2.5%.
When the area ratio of the intermetallic compound is less than 1.5%, the amount of the intermetallic compound becomes too small, and seizure to the ironing mold is likely to occur. When the area ratio of the intermetallic compound exceeds 2.5%, the amount of the intermetallic compound is excessively increased, the toughness is lowered, and pinholes are easily generated. The area ratio of the intermetallic compound is more preferably 2.2% or less.

[素材の引張特性]
素材の耐力は285MPa以上であることが好ましい。素材耐力が285MPa未満であると、素材としての板からカッピングプレスによりブランクを打ち抜く際、ブランクを打ち抜いた後のスケルトン材がカッピングプレス内に残留し、後工程のプレス工程に悪影響を及ぼすことが生じ易くなる。また、素材の引張強さが325MPaを超える、あるいは、素材耐力が310MPaを超えると、胴切れが生じ易くなる。
[素材伸び]
素材伸びは、2.5〜4.5%の範囲とする。素材伸びが2.5%未満であると、後述する図1(b)〜(c)の形状のカップ状缶体に成形する過程、または、図2に示す缶ボディ10の底部12を成形する時に、破断を生じ易くなる傾向となる。一方、素材伸びが4.5%を超えると、胴切れを生じ易くなる傾向となる。
[Tensile properties of materials]
The proof stress of the material is preferably 285 MPa or more. If the material proof stress is less than 285 MPa, when a blank is punched from a plate as a material by a cupping press, the skeleton material after punching the blank remains in the cupping press, which may adversely affect the subsequent press process. It becomes easy. Further, when the tensile strength of the material exceeds 325 MPa or the material yield strength exceeds 310 MPa, the cylinder is likely to be cut.
[Material elongation]
The material elongation is in the range of 2.5 to 4.5%. When the material elongation is less than 2.5%, a process of forming a cup-shaped can body having the shape shown in FIGS. 1B to 1C described later, or the bottom portion 12 of the can body 10 shown in FIG. 2 is formed. Sometimes it tends to break easily. On the other hand, when the material elongation exceeds 4.5%, it tends to be easily cut off.

[ベーキング後の素材耐力(210℃×10分)]
DI加工後の缶ボディは、洗浄、化成処理後の乾燥時、外面印刷または内面塗装後の焼付け処理によって180〜230℃の温度に加熱される。この加熱により、一般に、缶底部や胴部の強度が変化する。この、加熱後の強度は、DI成形時の歪量によって異なる。底部はDI成形時の歪みが小さいため、その加熱後の強度はDI加工前の素材であるアルミニウム合金板を加熱した後の強度とほぼ等しくなる。このため、底部の強度の目安として、素材であるアルミニウム合金板をベーキング(加熱)した後の強度を用いることができる。本発明では、このための加熱条件を、210℃×10分としている。
本発明の缶ボディ用アルミニウム合金板の、ベーキング後の素材耐力は、上記条件でベーキングを行った後の耐力で、280MPa以上であることが好ましい。
上述の条件でベーキングした後の素材耐力が280MPa未満であると、DI加工及び塗装焼付けによる製缶後の缶ボディの十分な耐圧強度が得られなくなる。
[Material strength after baking (210 ° C x 10 minutes)]
The can body after DI processing is heated to a temperature of 180 to 230 ° C. by drying after cleaning and chemical conversion treatment, or by baking treatment after external printing or internal coating. This heating generally changes the strength of the can bottom and the trunk. The strength after heating differs depending on the amount of strain during DI molding. Since the distortion at the bottom is small during DI molding, the strength after heating is almost equal to the strength after heating the aluminum alloy plate, which is a material before DI processing. For this reason, the intensity | strength after baking (heating) the aluminum alloy plate which is a raw material can be used as a standard of the intensity | strength of a bottom part. In the present invention, the heating condition for this is 210 ° C. × 10 minutes.
The material yield strength after baking of the aluminum alloy plate for a can body of the present invention is preferably 280 MPa or more after being baked under the above conditions.
If the material yield strength after baking under the above-mentioned conditions is less than 280 MPa, sufficient pressure strength of the can body after canning by DI processing and paint baking cannot be obtained.

[ベーキングによる素材引張特性の変化]
上記の素材の引張強さ、耐力をそれぞれH TS、H YSと表記し、ベーキング後の素材の引張強さ、耐力をそれぞれAB TS、AB YSと表記する。
ベーキングによるTSの変化(AB TS)−(H TS)の値、ベーキングによるYSの変化(H YS−AB YS)の値について説明すると、ベーキングによる素材引張強さの増加量が小さい、あるいは、素材耐力の低下量が大きい素材は、素材強度を高くしても、缶胴の引張強さや伸びが高くなり難い。更に、缶胴の引張強さを高くしても、突き刺し強度があまり増加しない。一方、突き刺し強度を高くするためには、素材の引張強さや伸びを過剰に高くする必要があり、しごき成形時に胴切れが著しく生じ易くなる。即ち、胴切れ性と突き刺し強度が両立できない。
これらを勘案し、ベーキングによるTSの変化(AB TS)−(H TS)の値が10MPa以上、ベーキングによるYSの変化(H YS−AB YS)の値が10MPa以下であることが好ましい。
[Changes in material tensile properties due to baking]
The tensile strength and proof stress of the above materials are expressed as HTS and HYS, respectively, and the tensile strength and proof strength of the materials after baking are expressed as ABTS and ABYS, respectively.
The change in TS due to baking (AB TS)-(H TS) and the change in YS due to baking (H YS-AB YS) will be described. A material having a large decrease in yield strength is unlikely to have high tensile strength and elongation even if the material strength is increased. Furthermore, even if the tensile strength of the can body is increased, the piercing strength does not increase so much. On the other hand, in order to increase the piercing strength, it is necessary to excessively increase the tensile strength and elongation of the material, and the barrel breakage is remarkably likely to occur during ironing. That is, it is impossible to achieve both torsional puncture strength and piercing strength.
Taking these into consideration, it is preferable that the value of TS change due to baking (AB TS) − (H TS) is 10 MPa or more and the value of YS change due to baking (H YS−AB YS) is 10 MPa or less.

[素材ベーキング後の(AB TS)−(AB YS)]
素材ベーキング後の(AB TS)−(AB YS)の値について説明すると、この値が低い場合、加工硬化能が低くなり、製缶後の引張強さ、延性が低くなり、ピンホールを生じ易くなる。本発明でこの値は37MPa以上とする。(AB TS)−(AB YS)の値を高くするためには、最終冷間圧延率を低くすれば良いが、最終冷間圧延率を低くすると、AB YSも低くなるので、所定のAB YSを得るためには、Mg、Cu、Siなどの成分を増加する、及び/または、中間焼鈍を高温で行い、Mg、Cu、Siを溶体化する方法が有効である。
これらのような方法により、冷間圧延のパス間に450℃以上600℃以下の温度に1秒以上2分以下加熱する中間焼鈍を行い、その後、50%〜70%の最終冷間圧延を行うことにより、素材ベーキング後の(AB TS)−(AB YS)の値を37MPa以上とすることができる。中間焼鈍には、連続焼鈍ライン(Continuous Annealing Line,略称CAL)を用いるのが好適である。CALを用いる場合、保持時間は、長く出来ないので、2分以下、好ましくは、60秒以下とするのが好ましい。
[缶ボディ用アルミニウム合金板の板厚]
本発明の缶ボディ用アルミニウム合金板の板厚は、0.240mm以上0.265mm以下の範囲であることが好ましい。
板厚が0.240mm未満だと、製缶して缶ボディとした際の十分な耐圧強度が得られなくなる。また、板厚が0.265mmを超えるようであると、缶ボディの底部の重量が重くなり、製造コストが上昇して経済的でない。特に板厚が0.260mm以下であることがより好ましい。
[After material baking (AB TS)-(AB YS)]
Explaining the value of (AB TS)-(AB YS) after baking the material, if this value is low, the work hardening ability will be low, the tensile strength and ductility after canning will be low, and pinholes are likely to occur. Become. In the present invention, this value is 37 MPa or more. In order to increase the value of (AB TS) − (AB YS), the final cold rolling rate may be decreased. However, if the final cold rolling rate is decreased, AB YS is also decreased. In order to obtain the above, it is effective to increase the components such as Mg, Cu, and Si and / or perform intermediate annealing at a high temperature to form a solution of Mg, Cu, and Si.
By these methods, intermediate annealing is performed by heating at a temperature of 450 ° C. or more and 600 ° C. or less for 1 second or more and 2 minutes or less between cold rolling passes, and then 50% to 70% final cold rolling is performed. Thereby, the value of (AB TS) − (AB YS) after the material baking can be set to 37 MPa or more. For the intermediate annealing, it is preferable to use a continuous annealing line (abbreviated as CAL). When CAL is used, the holding time cannot be long, so it is preferably 2 minutes or less, preferably 60 seconds or less.
[Thickness of aluminum alloy sheet for can body]
The plate thickness of the aluminum alloy plate for can bodies of the present invention is preferably in the range of 0.240 mm or more and 0.265 mm or less.
When the plate thickness is less than 0.240 mm, sufficient pressure resistance strength cannot be obtained when a can is made into a can body. On the other hand, if the plate thickness exceeds 0.265 mm, the weight of the bottom of the can body becomes heavy and the manufacturing cost increases, which is not economical. In particular, the plate thickness is more preferably 0.260 mm or less.

[総しごき率及び総絞り比について]
本発明の缶ボディ用アルミニウム合金板は、胴部の厚さ(最薄部厚さ)が0.096mm以上0.113mm以下の缶ボディの製造に用いられる。また、本発明の缶ボディ用アルミニウム合金板は、DI加工時の総しごき率が60%未満の缶ボディの製造に用いられる。ここで、総しごき率は、次式(1)で表される。
総しごき率(%)={(元の板厚T1−最終缶ボディ胴部最薄部厚さT2)/元の板厚T1}×100…(1)
上記(1)式において、最終缶ボディ胴部最薄部厚さT2は、塗膜無しの厚さである。 本発明の缶ボディ用アルミニウム合金板は、素材板厚が0.240mm以上0.265mm以下であり、例えばしごき率は、元板厚が0.240mmで胴部厚さが0.096mmである場合に60%となる。
[About the total ironing ratio and the total drawing ratio]
The aluminum alloy plate for a can body of the present invention is used for manufacturing a can body having a body thickness (thinnest portion thickness) of 0.096 mm or more and 0.113 mm or less. Moreover, the aluminum alloy plate for can bodies of the present invention is used for manufacturing a can body having a total ironing rate during DI processing of less than 60%. Here, the total ironing rate is expressed by the following equation (1).
Total ironing rate (%) = {(original plate thickness T1−final can body body thinnest portion thickness T2) / original plate thickness T1} × 100 (1)
In the above formula (1), the final can body body thinnest portion thickness T2 is a thickness without a coating film. The aluminum alloy plate for a can body of the present invention has a material plate thickness of 0.240 mm or more and 0.265 mm or less. For example, the ironing rate is 0.240 mm for the original plate thickness and 0.096 mm for the body thickness. 60%.

ここで、総しごき率60%を超える値とした場合、本発明の缶ボディ用アルミニウム合金板は素材強度が高いため、しごき成形時に胴切れが発生しやすく生産性が低下する。
素材板厚が0.240mmより小さい場合、充分な耐圧強度が得られない。また、胴部板厚が0.113mmより大きい場合、耐ピンホール性は向上するものの、実用的な見地からは過剰強度となり、必要な素材の量が増えるため、経済的でない。
また、本発明の缶ボディ用アルミニウム合金板は、DI加工時の総絞り比が2.2〜2.7である缶ボディの製造に用いられる。
総絞り比が2.7より大きいと、2回の絞り工程で絞った場合に、絞り成形時に材料の破断が生じ易くなる。一方、上記素材板厚T1、最終缶ボディ胴部最薄部厚さT2、及び総しごき率の制約下で実用的な容量の缶ボディを得るためには、総絞り比を2.2以上とする必要がある。例えば、一般的に用いられている缶胴径66mmで容量が350ccの缶ボディを成形する場合には、総絞り比を2.2〜2.4とすることが好ましい。また、缶胴径約66mmで容量が約500ccの缶ボディを成形する場合には、総絞り比を2.45〜2.65とすることが好ましい。
Here, when the total ironing ratio exceeds 60%, the aluminum alloy sheet for can bodies of the present invention has high material strength, and thus the body is likely to be cut during ironing forming, and the productivity is lowered.
When the material plate thickness is smaller than 0.240 mm, sufficient pressure strength cannot be obtained. Further, when the body plate thickness is larger than 0.113 mm, the pinhole resistance is improved, but from the practical viewpoint, it becomes excessive strength and the amount of necessary material increases, which is not economical.
Moreover, the aluminum alloy plate for can bodies of the present invention is used for manufacturing a can body having a total drawing ratio of 2.2 to 2.7 during DI processing.
If the total drawing ratio is greater than 2.7, the material is likely to break during drawing when drawn in two drawing steps. On the other hand, in order to obtain a can body having a practical capacity under the constraints of the material plate thickness T1, the final can body body thinnest part thickness T2, and the total ironing rate, the total drawing ratio should be 2.2 or more. There is a need to. For example, when a can body having a can body diameter of 66 mm and a capacity of 350 cc, which is generally used, is formed, the total drawing ratio is preferably set to 2.2 to 2.4. Further, when a can body having a can body diameter of about 66 mm and a capacity of about 500 cc is molded, the total drawing ratio is preferably set to 2.45 to 2.65.

ここで、総絞り比Aとは、カップ絞り比B(図1(a)〜(b)の工程)と、再絞り比C(図1(b)〜(c)の工程)を掛け合わせた値であり、次式(2)〜(4)で表される。
カップ絞り比B=ブランク径D1/カップ径D2…(2)
再絞り比C=カップ径D2/胴部径D3…(3)
総絞り比A=カップ絞り比B×再絞り比C=ブランク径D1/胴部径D3…(4)
Here, the total drawing ratio A is obtained by multiplying the cup drawing ratio B (steps of FIGS. 1A to 1B) and the redrawing ratio C (steps of FIGS. 1B to 1C). It is a value and is represented by the following formulas (2) to (4).
Cup drawing ratio B = blank diameter D1 / cup diameter D2 (2)
Redrawing ratio C = cup diameter D2 / body diameter D3 (3)
Total drawing ratio A = Cup drawing ratio B × Redrawing ratio C = Blank diameter D1 / Body diameter D3 (4)

[DI加工及び塗装焼付けによる製缶後の缶ボディ胴部の引張強さ]
本発明の缶ボディ用アルミニウム合金板をDI加工及び塗装焼付けして得られる缶ボディの胴部の引張強さは、350MPa以上410MPa以下であることが好ましい。
DI加工及び塗装焼付けによる製缶後の缶ボディ胴部の引張強さが350MPa未満であると、充分な耐流通ピンホール性が得られず、また、410MPaを超えると、胴切れが生じ易くなるとともに生産性が低下する。
[Tensile strength of can body body after canning by DI processing and paint baking]
It is preferable that the tensile strength of the body part of the can body obtained by performing DI processing and paint baking of the aluminum alloy plate for can bodies of the present invention is 350 MPa or more and 410 MPa or less.
If the tensile strength of the body of the can body after canning by DI processing and paint baking is less than 350 MPa, sufficient flow-resistant pinhole properties cannot be obtained. At the same time, productivity decreases.

[DI加工及び塗装焼付けによる製缶後の缶胴部の伸び]
本発明の缶ボディ用アルミニウム合金板をDI加工及び塗装焼付けして得られる缶ボディの胴部の伸びは4.5%以上であることが好ましく、5%以上であることが最も好ましい。
DI成形直後の胴部は、伸びが低く、また脆いためにピンホールを生じやすい。成形された缶ボディは、洗浄及び化成処理して乾燥し、外面塗装印刷及び内面塗装を行った後の焼付けで加熱されることにより、強度は低下するが、延性を回復する。
上述のような加熱の条件を制御することによって、胴部の伸びを上記下限値以上とすることが必要となるが、例えば10分間、一定温度で加熱する場合、180℃の温度では充分でなく、190℃以上の温度で加熱する必要がある。
[Elongation of can body after can making by DI processing and paint baking]
The elongation of the body portion of the can body obtained by DI processing and paint baking of the aluminum alloy plate for can bodies of the present invention is preferably 4.5% or more, and most preferably 5% or more.
The body portion immediately after DI molding has low elongation and is fragile, so pinholes are likely to occur. The molded can body is dried by washing and chemical conversion treatment, and is heated by baking after the outer surface coating printing and inner surface coating, whereby the ductility is restored although the strength is lowered.
By controlling the heating conditions as described above, it is necessary to make the elongation of the body portion equal to or more than the lower limit. However, for example, when heating at a constant temperature for 10 minutes, a temperature of 180 ° C. is not sufficient. It is necessary to heat at a temperature of 190 ° C. or higher.

[リオイル量]
本発明の缶ボディ用アルミニウム合金板では、冷間仕上圧延後、板の表面に50〜300mg/mの潤滑剤をリオイル(塗油)する。リオイルには、深絞り成形の直前に塗油する潤滑剤と同じもの、またはそれと親和性が高い潤滑剤を用いることができる。
予め、合金板素材に潤滑剤を少量リオイルしておくことにより、深絞り成形直前に潤滑剤を塗油する際に均一に塗油されるようになり、深絞り、及び、しごき成形の際の潤滑効果が高まり、特にしごき成形時の胴切れを抑制することができる。
リオイル量は、50〜300mg/mの範囲であることが好ましい。この範囲であれば、上述の効果が十分に得られる。また、リオイル量は、より好ましくは200mg/m以下である。
[Reoil amount]
In the aluminum alloy plate for a can body of the present invention, after cold finish rolling, 50 to 300 mg / m 2 of lubricant is reoiled (oiled) on the surface of the plate. As the reoil, the same lubricant as that applied immediately before deep drawing or a lubricant having high affinity can be used.
By pre-lubricating a small amount of lubricant on the alloy plate material in advance, it will be applied evenly when applying the lubricant immediately before deep drawing, and during deep drawing and ironing The lubrication effect is enhanced, and it is possible to suppress the cylinder breakage particularly during ironing.
The reoil amount is preferably in the range of 50 to 300 mg / m 2 . If it is this range, the above-mentioned effect is fully acquired. The reoil amount is more preferably 200 mg / m 2 or less.

[DI加工による製缶工程]
以下、図1を用いて、缶ボディ用アルミニウム合金材にDI加工を施して製缶し、缶ボディ10を得る工程の一例を説明する。
まず、図1(a)に示すように、缶ボディ用アルミニウム合金材に打ち抜き加工を施し、直径が149mmの円板状の板材(ブランク)を得る。
ついで、この円板状の板材に絞り加工を施し、図1(b)に示すような、軸線方向における高さが42mm、外径が88.2mmとされたカップ状缶体を形成する。ここで、円板状の板材は、厚さが0.240mm以上0.265mm未満とされている。
[Can manufacturing process by DI processing]
Hereinafter, an example of a process of obtaining a can body 10 by performing DI processing on an aluminum alloy material for a can body to produce a can body 10 will be described with reference to FIG.
First, as shown in FIG. 1 (a), a can body aluminum alloy material is punched to obtain a disk-shaped plate material (blank) having a diameter of 149 mm.
Next, the disk-shaped plate member is drawn to form a cup-shaped can body having a height in the axial direction of 42 mm and an outer diameter of 88.2 mm as shown in FIG. Here, the disc-shaped plate material has a thickness of 0.240 mm or more and less than 0.265 mm.

次いで、カップ状缶体に再絞り加工を施し、図1(c)に示すような外形66mmのカップ状缶体とする。ここで、D1とD3の比は、2.2〜2.7とされている。
次いで、総しごき率が60%未満となるように、しごき加工を施し、図1(d)に示すような有底筒状缶体を形成する。この有底筒状体の開口端部は、その缶軸方向に波打つような凹凸形状とされる。
Next, the cup-shaped can body is redrawn to obtain a cup-shaped can body having an outer diameter of 66 mm as shown in FIG. Here, the ratio of D1 and D3 is set to 2.2 to 2.7.
Next, ironing is performed so that the total ironing rate is less than 60%, thereby forming a bottomed cylindrical can body as shown in FIG. The opening end portion of the bottomed cylindrical body has an uneven shape that undulates in the direction of the can axis.

次いで、図1(d)に示す有底筒状体の開口端部を切断して、缶軸方向における大きさ、つまり高さをその全周に亙って約123.5mmと同等にし、外径が65mm以上67mm以下とされた胴部11と底部12とを有する図1(e)に示す横断面円形の缶ボディ10を形成する。
本例では、図2に示すように、底部12が、胴部11の缶軸方向における内側に向けて凹むドーム部12aを備えるとともに、このドーム部12aの外周縁部が胴部11の缶軸方向における外側に向けて突出する環状凸部12cとされている。この環状凸部12cの缶軸方向における頂部が、缶ボディ10が正立姿勢となるように、この缶ボディ10を接地面L上に配置したときに、接地面Lに接する接地部12bとされる。
Next, the open end of the bottomed cylindrical body shown in FIG. 1 (d) is cut so that the size in the can axis direction, that is, the height is equal to about 123.5 mm over the entire circumference. A can body 10 having a circular cross section shown in FIG. 1 (e) having a body portion 11 and a bottom portion 12 having a diameter of 65 mm or more and 67 mm or less is formed.
In this example, as shown in FIG. 2, the bottom portion 12 includes a dome portion 12 a that is recessed toward the inside in the can axis direction of the trunk portion 11, and the outer peripheral edge portion of the dome portion 12 a is a can shaft of the trunk portion 11. It is set as the cyclic | annular convex part 12c which protrudes toward the outer side in a direction. When the can body 10 is placed on the ground surface L so that the can body 10 is in an upright posture, the top portion of the annular convex portion 12c is a grounding portion 12b in contact with the ground surface L. The

以上説明したように、本実施形態の耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板によれば、成分組成を上述の範囲内とし、また、素材の板厚を0.240mm以上0.265mm以下と薄く構成し、且つ製缶された缶ボディの胴部の板厚を0.096mm以上0.113mm以下と厚く構成することにより、総しごき率を60%以下と低くすることが可能となるため、胴切れが生じにくくなる。これにより、素材強度を、ベーキング後の素材耐力で285MPa以上と高くした場合でも、胴切れが発生するのを抑制することができる。
また、素材強度を高くすることにより、DI加工及び塗装焼付けによる製缶後の缶ボディ胴部の強度を、引張強さで350MPa以上410MPa以下と高くできるので、前記胴部の突き刺し強度が向上し、胴部にピンホールが生じるのを抑制することができる。
また、素材板厚を薄くすることにより、缶ボディの重量を従来と同等に抑制することができる。
従って、本発明の缶ボディ用アルミニウム合金板を用いることにより、製造コストを増大させることなく、耐流通ピンホール性に優れた缶ボディを得ることができる。
As described above, according to the aluminum alloy plate for a can body excellent in flow-resistant pinhole property of the present embodiment, the component composition is within the above range, and the thickness of the material is 0.240 mm or more and 0.265 mm. It is possible to reduce the total ironing rate to 60% or less by configuring the body thickness of the can body that is made as thin as below and having a thickness of 0.096 mm or more and 0.113 mm or less. For this reason, it becomes difficult for the torso to be cut. Thereby, even when the strength of the material is increased to 285 MPa or more in terms of the material strength after baking, it is possible to suppress the occurrence of torsion.
In addition, by increasing the material strength, the strength of the can body barrel after canning by DI processing and paint baking can be increased to 350 MPa or more and 410 MPa or less in tensile strength, so the piercing strength of the barrel improves. The pinhole can be suppressed from being generated in the body portion.
Further, by reducing the thickness of the material plate, the weight of the can body can be suppressed to the same level as in the past.
Therefore, by using the aluminum alloy plate for a can body of the present invention, a can body excellent in circulation pinhole resistance can be obtained without increasing the production cost.

以下、実施例を示して、本発明の耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板を更に詳しく説明するが、本発明はこの実施例に限定されるものでは無い。
本実施例1では、下記表1に示す各成分組成及び製造条件にて、以下の工程でNo.1〜No.20の缶ボディ用アルミニウム合金板を作製し、後述の各項目について評価を行った。
Hereinafter, although an Example is shown and the aluminum alloy plate for can bodies excellent in the distribution | circulation resistance pinhole property of this invention is demonstrated in more detail, this invention is not limited to this Example.
In Example 1, No. 1 to No. 20 aluminum alloy sheets for can bodies were produced in the following steps under the respective component compositions and production conditions shown in Table 1 below, and evaluation was performed for each item described below. It was.

[缶ボディ用アルミニウム合金板作製工程]
下記表1に示す成分を含有するアルミニウム合金を溶解し、この溶湯を常法により脱ガス、介在物除去を行い、半連続鋳造により厚さ550mm、幅1.5m、長さ4.5mのスラブに鋳造した。次いで、スラブに565℃で均熱化処理を施した後、熱間圧延を施した。熱間圧延により板厚7.5mmまで圧延し、圧延された板は圧延後にコイル状に巻き取る直前に、端部をトリマーによりトリムした。巻き取られたコイルの端面温度は、420〜440℃とし、冷却するまでの間に再結晶を生じさせ、軟質状態にした。次に、2.2mmまで冷間圧延し、冷間圧延後、板の両サイドをそれぞれ30mmトリムし、トリム後の端面にクラックが残っていないことを確認した。その後、0.65mm〜0.75mmまでの所定の板厚まで冷間圧延した。その後、480℃〜590℃の温度範囲に1s〜60s加熱する連続焼鈍を施した後、0.260mmの最終板厚まで仕上圧延してNo.1〜20の試料を得た。
[圧延性の評価]
2.2mmから0.65mm〜0.75mmまで圧延する際に、板の破断が生じた場合、および、0.65〜0.75mmの間の所定の板厚まで冷間圧延後、端面のクラック発生状況を確認し、圧延後のクラックが大きく、量産的に安定して生産ができないと判断された場合を不合格とした。
[Production process of aluminum alloy plate for can body]
An aluminum alloy containing the components shown in Table 1 below was melted, the molten metal was degassed and inclusions removed by conventional methods, and a slab having a thickness of 550 mm, a width of 1.5 m, and a length of 4.5 m was obtained by semi-continuous casting. Cast into. Next, the slab was subjected to a soaking treatment at 565 ° C. and then hot-rolled. The sheet was rolled to a thickness of 7.5 mm by hot rolling, and the rolled sheet was trimmed with a trimmer at the end just before winding into a coil shape. The end face temperature of the coiled coil was set to 420 to 440 ° C., and recrystallization was caused until the coil was cooled to make it soft. Next, the steel sheet was cold-rolled to 2.2 mm, and after cold rolling, both sides of the plate were trimmed by 30 mm, and it was confirmed that no cracks remained on the end face after trimming. Then, it cold-rolled to the predetermined | prescribed plate | board thickness from 0.65 mm to 0.75 mm. Then, after giving the continuous annealing which heats for 1s-60s in the temperature range of 480 degreeC-590 degreeC, it finish-rolled to the final board thickness of 0.260 mm, and obtained the sample of No.1-20.
[Rollability evaluation]
When rolling from 2.2 mm to 0.65 mm to 0.75 mm, if the plate breaks, and after cold rolling to a predetermined plate thickness between 0.65 and 0.75 mm, cracks on the end face The occurrence situation was confirmed, and the case where it was judged that the crack after rolling was large and the mass production could not be performed stably was regarded as rejected.

上述のようにして得られた缶ボディ用アルミニウム合金板の各サンプルについて、EPMA(Electron Probe Micro Analyser)を用いてSEM画像及び組成像を画像解析し、Mnを含有する金属間化合物を測定することにより、円相当径が1〜10μmの金属間化合物の数及び面積率を調べた。この際、各サンプルの表面を、圧延痕が消えるまで研磨した後、合金板表面に対して垂直方向の画像を観察し、解析を行なった。
また、缶ボディ用アルミニウム合金板の各サンプルについて、引張方向が圧延方向と平行になるようにJIS5号試験片を採取し、素材についてはそのまま引張試験に供し、ベーキング後の素材については、210℃で10分加熱後に引張試験した。
For each sample of an aluminum alloy plate for a can body obtained as described above, an SEM image and a composition image are image-analyzed using EPMA (Electron Probe Micro Analyzer), and an intermetallic compound containing Mn is measured. Thus, the number and area ratio of intermetallic compounds having an equivalent circle diameter of 1 to 10 μm were examined. At this time, the surface of each sample was polished until the rolling marks disappeared, and then an image perpendicular to the surface of the alloy plate was observed and analyzed.
Moreover, about each sample of the aluminum alloy plate for can bodies, the JIS5 test piece was extract | collected so that a tension direction might become parallel with a rolling direction, about a raw material, it used for a tensile test as it is, and about 210 degreeC about the raw material after baking. At 10 minutes after heating.

[缶ボディの製缶]
上述の工程で得られた各実施例及び比較例の缶ボディ用アルミニウム合金板を打ち抜き、直径が149mmとされた円板状の板材(図1(a)参照)を得た。この円板状の板材にDI加工を施し、胴部の最薄部肉厚T2が0.110mmの各実施例及び比較例の缶ボディ(350cc缶)を得た。なお、この際の総絞り比及び総しごき率は、それぞれ2.258、57.7%である。
[Can body manufacturing]
The aluminum alloy plates for can bodies of the examples and comparative examples obtained in the above-described steps were punched out to obtain a disk-shaped plate material having a diameter of 149 mm (see FIG. 1 (a)). This disk-shaped plate material was subjected to DI processing to obtain can bodies (350 cc cans) of Examples and Comparative Examples in which the thinnest portion thickness T2 of the body portion was 0.110 mm. In this case, the total drawing ratio and the total ironing ratio are 2.258 and 57.7%, respectively.

上述のようにしてDI加工した各実施例及び比較例の缶ボディに対し、以下に説明する方法で外面塗装及び外面印刷、並びに内面塗装を行なった。
まず、塗料としてエポキシ系塗料及びアクリル系塗料を使用し、文字情報等の印刷部分も含め、缶ボディの外面に50mg/dmの膜厚で塗布した。そして、この缶ボディをオーブンに入れ、180℃の温度で30秒間、加熱乾燥した。
また、上述のようにして外面塗装を施した缶ボディの内面に、スプレーを使用してエポキシ塗料を40mg/dmの膜厚で塗布した。そして、この缶ボディをオーブンに入れ、200℃の温度で60秒間、加熱乾燥した。
The can body of each of the examples and comparative examples subjected to DI processing as described above was subjected to outer surface coating, outer surface printing, and inner surface coating by the method described below.
First, an epoxy paint and an acrylic paint were used as paints, and applied to the outer surface of the can body at a film thickness of 50 mg / dm 2 including printed portions such as character information. And this can body was put into oven and heat-dried at the temperature of 180 degreeC for 30 second.
Moreover, the epoxy paint was apply | coated by the film thickness of 40 mg / dm < 2 > using the spray to the inner surface of the can body which gave the outer surface coating as mentioned above. And this can body was put into oven and heat-dried at the temperature of 200 degreeC for 60 second.

[胴切れ性の評価]
まず、5万缶DI成形を行い、しごき加工時に胴部の破断が生じないか調べた。胴切れ性発生数が5缶以上であった場合は、その発生数と製缶数から発生率を求めた。5缶未満であった場合は、更に5万缶成形し、胴切れ発生数を求めた。そして、胴切れ発生率(ppm)=全胴切れ発生数/全成形数×1000,000とした。
[缶ボディの評価項目]
上述の工程で得られた各実施例及び比較例の缶ボディについて、缶ボディの胴部における引張強さTS、伸び率、及び突き刺し強度を測定した。
引張強さTS及び伸び率は、各試料の缶ボディの缶底の圧延方向から45゜傾いた位置から引張試験片を採取し、全長75mm、平行部長36mm、平行部幅10mm、つかみ部幅15mm、肩半径15mmの寸法形状に加工した試験片を用いて評価した。この際、缶の接地部から缶軸方向上方に60mm離れた部分が引張試験片の中心となり、引張方向が缶軸方向となるようにした。そして、外面及び内面の塗装を、硝酸を用いて脱膜処理した後、引張試験を行うことにより、引張強さ(TS)及び伸び率を測定した。
また、突き刺し強度は、室温(20℃)雰囲気中において、缶ボディに0.196MPaの内圧をかけた状態とし、缶ボディ胴部のうち、接地部から缶軸方向上方に60mm離れた部分、かつ、缶底の圧延方向から45゜傾いた位置を、曲率半径(先端半径)0.5mmとされた押圧子によって径方向内方に向けて押圧し、穴があいた時の押圧力で評価した。この際、押圧子の胴部の径方向内方へ向けた移動速度を25mm/minとした。
[Evaluation of tornness]
First, 50,000 cans DI was formed, and it was examined whether or not the body portion was broken during ironing. When the number of torn pieces was 5 or more, the occurrence rate was determined from the number of occurrences and the number of cans. When the number was less than 5 cans, 50,000 cans were further molded to determine the number of barrel breaks. Then, the rate of occurrence of torso cut (ppm) = total number of torso cuts / total number of moldings × 1,000,000.
[Can body evaluation items]
About the can body of each Example obtained by the above-mentioned process and the comparative example, tensile strength TS in the trunk | drum of a can body, elongation rate, and piercing strength were measured.
Tensile strength TS and elongation rate were obtained by taking a tensile test piece from a position inclined 45 ° from the rolling direction of the bottom of the can body of each sample, total length 75 mm, parallel part length 36 mm, parallel part width 10 mm, grip part width 15 mm. Evaluation was performed using a test piece processed into a shape with a shoulder radius of 15 mm. At this time, the portion 60 mm away from the can's ground contact portion in the upper direction of the can axis was the center of the tensile test piece, and the tensile direction was the can axis direction. Then, after the coating of the outer surface and the inner surface was removed using nitric acid, the tensile strength (TS) and the elongation were measured by performing a tensile test.
Further, the piercing strength is a state in which an internal pressure of 0.196 MPa is applied to the can body in a room temperature (20 ° C.) atmosphere, and the portion of the can body trunk that is 60 mm away from the grounding portion in the upper direction of the can axis, and A position inclined 45 ° from the rolling direction of the bottom of the can was pressed inward in the radial direction with a presser having a radius of curvature (tip radius) of 0.5 mm, and evaluation was performed by the pressing force when a hole was formed. At this time, the moving speed of the body of the presser toward the inside in the radial direction was set to 25 mm / min.

実施例1を実施した結果、素材耐力が低いNo.6の試料では、スケルトンジャムが生じ易かったので、実施例2として、板厚と素材耐力が異なる試料を用いて、スケルトンジャムの生じやすさを調べた。
実施例2として、板厚0.260mmの試料として、表4に示すように、実施例1で用いた試料のうち素材耐力が異なるNo.1、4、5、6を用いた。
実施例2として、さらに、板厚が0.265mmまたは0.250mmで、素材耐力を275MPaから295MPaまで変化させたNo.21〜27の試料も用いた。
なお、表4の試料No.21において(4)と併記したのは、No.4の試料と同一成分の合金を用い、ほぼ同様な製造方法で製作したことを示す。製造方法については、No.4の試料と同等な特性を得るために、最終板厚を変更したことに伴い、最終冷間圧延率を同じにするために、中間焼鈍板厚を変更した。以下、No.22〜27の各試料の( )内の数字の意味も同様である。
表4の各試料について、成形速度を変化させ、スケルトンジャムを生じないで安定に生産できる速度を調べた。
すなわち、成形速度を100cpmから、10cpmずつ段階的に高くして行き、各成形速度で10分間連続成形を実施した。そして、スケルトンジャムを生じないで、10分間連続成形できる上限速度を確認した。
As a result of performing Example 1, the skeleton jam was likely to occur in the sample No. 6 having a low material yield strength. Therefore, as Example 2, the skeleton jam was likely to occur using a sample having a different thickness and material yield strength. I investigated.
As Example 2, as a sample having a plate thickness of 0.260 mm, as shown in Table 4, among the samples used in Example 1, the material strength was different. 1, 4, 5 and 6 were used.
In Example 2, the plate thickness was 0.265 mm or 0.250 mm and the material proof stress was changed from 275 MPa to 295 MPa. 21-27 samples were also used.
In Sample No. 21 of Table 4, (4) is shown together with an alloy having the same component as that of the No. 4 sample and manufactured by a substantially similar manufacturing method. About the manufacturing method, in order to obtain the characteristic equivalent to the sample of No. 4, the final annealing thickness was changed, and in order to make the final cold rolling rate the same, the intermediate annealing thickness was changed. Hereinafter, the meanings of the numbers in parentheses of the samples Nos. 22 to 27 are the same.
For each sample in Table 4, the molding speed was changed, and the speed at which stable production was possible without causing skeleton jam was investigated.
That is, the molding speed was gradually increased from 100 cpm by 10 cpm, and continuous molding was carried out for 10 minutes at each molding speed. And the upper limit speed which can form continuously for 10 minutes, without producing skeleton jam was confirmed.

各実施例、比較例の組成成分、製造条件並びに評価試験結果を表1〜表3に示す。   Tables 1 to 3 show the composition components, production conditions, and evaluation test results of Examples and Comparative Examples.

Figure 2011063869
Figure 2011063869

Figure 2011063869
Figure 2011063869

Figure 2011063869
Figure 2011063869

Figure 2011063869
Figure 2011063869

表1〜表3に示す結果から、本発明において望ましい条件、即ち、胴部の厚さが0.096mm以上0.113mm以下であり、製造時の総絞り比が2.2以上2.7以下であり、且つ総しごき率が60%以下の缶ボディの製造に用いる缶ボディ用アルミニウム合金板であって、質量%で、Mn:0.8〜1.1%、Mg:1.3〜1.7%、Si:0.25〜0.4%、Fe:0.3〜0.55%、Cu:0.3〜0.45%、Si+Cu:0.6〜0.8%を含有し、Cu量≧Si量の関係を満足し、残部が不可避不純物を含むAlからなり、板厚が0.240mm以上0.265mm以下であり、素材引張強さ(TS)が325MPa以下であり、素材耐力(YS)が285MPa以上310MPa以下であり、素材伸びが2.5%以上4.5%以下であり、ベーキング後の素材耐力(AB YS)が280MPa以上であり、素材ベーキング後の(AB TS)−(AB YS)の値が37MPa以上、ベーキングによるTSの変化(AB TS)−(H TS)の値が10MPa以上、ベーキングによるYSの変化(H YS−AB YS)の値が10MPa以下、DI加工及び塗装焼付けによる製缶後の缶ボディの胴部の引張強さ(製缶後のTS)が350MPa以上410MPa以下であるとともに、前記胴部の伸び(製缶後の伸び)が4.5%以上であるならば、突き刺し強度がいずれも47N以上と高く、圧延時のクラックが生じ難く、胴切れ発生率が低く、スケルトンジャムも発生しないことが判明した。
なお、表3にはこれらの条件を満たして特性を満足している試料について、条件1の欄に○印を付している。
From the results shown in Tables 1 to 3, desirable conditions in the present invention, that is, the thickness of the body portion is 0.096 mm or more and 0.113 mm or less, and the total drawing ratio during manufacture is 2.2 or more and 2.7 or less. And an aluminum alloy plate for a can body used for manufacturing a can body having a total ironing ratio of 60% or less, and in terms of mass%, Mn: 0.8 to 1.1%, Mg: 1.3 to 1 0.7%, Si: 0.25 to 0.4%, Fe: 0.3 to 0.55%, Cu: 0.3 to 0.45%, Si + Cu: 0.6 to 0.8% , Satisfying the relationship of Cu amount ≧ Si amount, the balance is made of Al containing inevitable impurities, the plate thickness is 0.240 mm or more and 0.265 mm or less, and the material tensile strength (TS) is 325 MPa or less, Yield strength (YS) is 285 MPa or more and 310 MPa or less, and material elongation is 2.5% or less. 4.5% or less, the material yield strength after baking (AB YS) is 280 MPa or more, the value of (AB TS) − (AB YS) after baking is 37 MPa or more, and the change in TS due to baking (AB TS )-(H TS) value of 10 MPa or more, YS change by baking (H YS-AB YS) value of 10 MPa or less, tensile strength of the barrel of the can body after can processing by DI processing and paint baking ( If the TS after canning is 350 MPa or more and 410 MPa or less, and the elongation of the body (elongation after canning) is 4.5% or more, the piercing strength is high at 47 N or more, at the time of rolling. It has been found that cracks are difficult to occur, the rate of occurrence of torsion is low, and skeleton jam does not occur.
In Table 3, a circle in the condition 1 column is marked for a sample that satisfies these conditions and satisfies the characteristics.

表1〜表3に示すNo.1、3、7、8、11、12の試料が上述の条件を満足する試料である。また、含有成分元素量あるいはその他の条件のいずれかが本発明の望ましい条件から外れた試料については、表1、表2の各欄に*印を付した。なお、表1のCu≧Si欄には、(Cu−Si)値を示し、(Cu−Si)値が負の場合、すなわちCu<Siの場合に*を付した。また、表2の製缶後の伸び欄には、製缶後の伸びが最も好ましい5%以上の条件を満足しない場合に□印を付した。
No.2の試料は素材伸びが望ましい範囲より大きくなり、胴切れ発生率が高くなった。No.4の試料は素材耐力が低くスケルトンジャムが発生しやすい。なお、素材耐力とスケルトン・ジャムとの関係については、実施例2の説明で詳しく後述する。No.5の試料はMg含有量が低く突き刺し強度の面で不足となり、No.6の試料はMg含有量が低く素材耐力も低いために突き刺し強度が低くなり、スケルトンジャムも発生した。No.9、10の試料はMg含有量が多い試料であるが、素材引張強さが高くなり過ぎ、圧延クラックが発生した。No.13の試料はSi含有量が多く、Cu<Siの関係となり、突き刺し強度が低下した。No.14の試料はSi含有量が多くベーキング後の素材耐力が280MPaを下回り、ベーキング後の耐力変化(H YS)−(AB YS)が10MPaを超える試料であるが、突き刺し強度が低くなった。
Samples Nos. 1, 3, 7, 8, 11, and 12 shown in Tables 1 to 3 are samples that satisfy the above-described conditions. In addition, for samples in which either the amount of component elements or other conditions deviated from the desirable conditions of the present invention, each column in Tables 1 and 2 was marked with *. In the Cu ≧ Si column of Table 1, (Cu—Si) values are shown, and “*” is given when the (Cu—Si) value is negative, that is, Cu <Si. Further, in the elongation column after canning in Table 2, □ is marked when the elongation after canning does not satisfy the most preferable condition of 5% or more.
In the sample No. 2, the elongation of the material was larger than the desired range, and the rate of occurrence of torsion was high. The sample No. 4 has a low material yield strength and is likely to cause skeleton jam. The relationship between the material strength and the skeleton jam will be described later in detail in the description of the second embodiment. The No. 5 sample had a low Mg content and was insufficient in terms of puncture strength, and the No. 6 sample had a low Mg content and a low material yield strength, resulting in a low puncture strength and skeleton jam. Samples Nos. 9 and 10 were samples having a high Mg content, but the material tensile strength was too high and rolling cracks were generated. The sample No. 13 had a large Si content, a relationship of Cu <Si, and the piercing strength decreased. The sample No. 14 has a high Si content, the material yield strength after baking is less than 280 MPa, and the yield strength change after baking (H YS)-(AB YS) exceeds 10 MPa, but the piercing strength is low. .

No.15の試料は(Si+Cu)量が多い試料、No.16の試料はCuの量が多い試料、No.17はSi量の多い試料であるが、いずれも圧延クラックを生じた。No.15、No.17の試料は突き刺し強度の低下も見られる。
No.18の試料は、Cu<Siの関係となり、突き刺し強度が低下した。
No.19、No.20の試料はCu量、Mg量、(Si+Cu)量が少なく、Cu≧Siの条件を満足しない試料であるが、素材耐力、ベーキング後の素材耐力も低く、いずれもスケルトンジャムを生じやすく、突刺し強度が低い。No.20は、ベーキングによるTSの変化(AB TS)−(H TS)の値、ベーキングによるYSの変化(H YS−AB YS)、製缶後の引張強さの値も好ましい条件を満足できず、突き刺し強度が特に低い。
No.3の試料は条件1は満足するが、製缶後の伸びの値が最も好ましい条件5%以上を満足できず、条件1を満足する試料の中では、突刺し強度が最も低い。条件1に加え、製缶後の伸びが最も好ましい5%以上を満足する試料には、条件2欄に○印を付した。条件2欄に○印を付した試料はいずれも突刺し強度が47.5N以上と高い。
次に、表4に示す実施例2の結果について説明する。表4によると、板厚が同じ場合、素材耐力が高いほど、スケルトンジャムを生じないで、連続成形可能な上限速度が高くなることが分かる。また、素材耐力がほぼ同等な場合、板厚が薄いほど、連続成形可能な上限速度が低くなることが分かる。そこで、生産効率の観点から、素材耐力の好ましい範囲の下限値は、0.265から0.250mmのすべての板厚で、150cpm以上で成形可能である285MPaとした。
The sample No. 15 was a sample having a large amount of (Si + Cu), the sample No. 16 was a sample having a large amount of Cu, and the sample No. 17 was a sample having a large amount of Si. The samples No. 15 and No. 17 also show a drop in the piercing strength.
The sample of No. 18 became a relationship of Cu <Si, and the piercing strength was lowered.
The samples No. 19 and No. 20 are samples that have a small amount of Cu, Mg, and (Si + Cu) and do not satisfy the condition of Cu ≧ Si. However, the material strength and the material strength after baking are also low, both of which are skeletons. Jam is likely to occur and the puncture strength is low. No. 20 is the value of change in TS due to baking (AB TS)-(H TS), the change in YS due to baking (H YS-AB YS), and the value of tensile strength after canning cannot satisfy preferred conditions, The piercing strength is particularly low.
No. The sample No. 3 satisfies the condition 1, but the elongation value after canning cannot satisfy the most preferable condition of 5% or more, and among the samples satisfying the condition 1, the piercing strength is the lowest. A sample satisfying 5% or more of the most preferable elongation after canning in addition to Condition 1 is marked with a circle in the Condition 2 column. All the samples marked with ○ in the Condition 2 column have a high puncture strength of 47.5 N or more.
Next, the results of Example 2 shown in Table 4 will be described. According to Table 4, it can be seen that when the plate thickness is the same, the higher the material yield strength, the higher the upper limit speed at which continuous forming can be performed without causing skeleton jam. In addition, it can be seen that when the material yield strength is substantially equal, the lower the plate thickness, the lower the upper limit speed at which continuous molding is possible. Therefore, from the viewpoint of production efficiency, the lower limit value of the preferable range of the material proof stress is set to 285 MPa which can be molded at 150 cpm or more with all plate thicknesses of 0.265 to 0.250 mm.

10…缶ボディ、11…胴部、12…底部   10 ... can body, 11 ... body, 12 ... bottom

Claims (5)

胴部の厚さが0.096mm〜0.113mmであり、製造時の総絞り比が2.2〜2.7であり、且つ総しごき率が60%以下の缶ボディの製造に用いる缶ボディ用アルミニウム合金板であって、
質量%で、Mn:0.8〜1.1%、Mg:1.3〜1.7%、Si:0.25〜0.4%、Fe:0.3〜0.55%、Cu:0.3〜0.45%、Si+Cu:0.6〜0.8%を含有し、Cu量≧Si量の関係を満足し、残部が不可避不純物を含むAlからなり、
板厚が0.240mm以上0.265mm以下であり、素材引張強さ325MPa以下であり、素材耐力285MPa以上310MPa以下であり、素材伸び2.5%以上4.5%以下であり、ベーキング後の素材耐力が280MPa以上であり、素材ベーキング後の(AB TS)−(AB YS)の値が37MPa以上、ベーキングによるTSの変化(AB TS)−(H TS)の値が10MPa以上、ベーキングによるYSの変化(H YS−AB YS)の値が10MPa以下、DI加工及び塗装焼付けによる製缶後の缶ボディの胴部の引張強さが350MPa以上410MPa以下であるとともに、前記胴部の伸びが4.5%以上であることを特徴とする、耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板。
Can body used for manufacturing a can body having a body thickness of 0.096 mm to 0.113 mm, a total drawing ratio of 2.2 to 2.7, and a total ironing ratio of 60% or less Aluminum alloy plate for
In mass%, Mn: 0.8 to 1.1%, Mg: 1.3 to 1.7%, Si: 0.25 to 0.4%, Fe: 0.3 to 0.55%, Cu: 0.3 to 0.45%, Si + Cu: 0.6 to 0.8%, satisfying the relationship Cu amount ≧ Si amount, the balance is made of Al containing inevitable impurities,
The plate thickness is 0.240 mm or more and 0.265 mm or less, the material tensile strength is 325 MPa or less, the material proof stress is 285 MPa or more and 310 MPa or less, the material elongation is 2.5% or more and 4.5% or less, The material yield strength is 280 MPa or more, the value of (AB TS)-(AB YS) after material baking is 37 MPa or more, the change in TS due to baking (AB TS)-(H TS) is 10 MPa or more, YS by baking Change (H YS-AB YS) is 10 MPa or less, the tensile strength of the barrel portion of the can body after canning by DI processing and paint baking is 350 MPa or more and 410 MPa or less, and the elongation of the barrel portion is 4 An aluminum alloy plate for a can body that is excellent in circulation pinhole resistance, characterized by being 5% or more.
前記胴部の伸びが5%以上であることを特徴とする請求項1に記載の耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板。   The aluminum alloy plate for a can body having excellent circulation pinhole resistance according to claim 1, wherein the body portion has an elongation of 5% or more. 円相当径が1以上10μm以下の金属間化合物が3000個/mm以上4800個/mm以下で面積率が1.5〜2.5%であることを特徴とする請求項1または2に記載の耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板。 3. The intermetallic compound having an equivalent circle diameter of 1 to 10 μm is 3000 / mm 2 to 4800 / mm 2 and the area ratio is 1.5 to 2.5%. Aluminum alloy plate for can body having excellent circulation pinhole resistance as described. 胴部の厚さが0.096mm以上0.113mm以下であり、製造時の総絞り比が2.2〜2.7であり、且つ総しごき率が60%以下の缶ボディの製造に用いる缶ボディ用アルミニウム合金板を製造するために、
質量%で、Mn:0.8〜1.1%、Mg:1.3〜1.7%、Si:0.25〜0.4%、Fe:0.3〜0.55%、Cu:0.3〜0.45%、Si+Cu:0.6〜0.8%を含有し、Cu量≧Si量の関係を満足し、残部が不可避不純物を含むアルミニウム合金鋳造材を均質化処理した後、熱間圧延加工と冷間圧延加工を施す缶ボディ用アルミニウム合金板の製造方法であって、
冷間圧延のパス間に450℃以上600℃以下の温度に所定時間加熱する中間焼鈍を行い、その後、50%以上70%以下の最終冷間圧延を行うことにより、
板厚が0.240mm以上0.265mm以下であり、素材引張強さ325MPa以下であり、素材耐力285MPa以上310MPa以下であり、素材伸び2.5%以上4.5%以下であり、ベーキング後の素材耐力が280MPa以上であり、素材ベーキング後の(AB TS)−(AB YS)の値が37MPa以上、ベーキングによるTSの変化(AB TS)−(H TS)の値を10MPa以上、ベーキングによるYSの変化(H YS−AB YS)の値を10MPa以下、DI加工及び塗装焼付けによる製缶後の缶ボディの胴部の引張強さが350MPa以上410MPa以下であるとともに、前記胴部の伸びを4.5%以上とすることを特徴とする缶ボディ用アルミニウム合金板の製造方法。
A can used for manufacturing a can body having a body thickness of 0.096 mm to 0.113 mm, a total drawing ratio of 2.2 to 2.7, and a total ironing ratio of 60% or less To manufacture aluminum alloy sheet for body,
In mass%, Mn: 0.8 to 1.1%, Mg: 1.3 to 1.7%, Si: 0.25 to 0.4%, Fe: 0.3 to 0.55%, Cu: After homogenizing aluminum alloy cast material containing 0.3 to 0.45%, Si + Cu: 0.6 to 0.8%, satisfying the relationship of Cu amount ≧ Si amount, and the balance containing inevitable impurities , A method for producing an aluminum alloy sheet for a can body that performs hot rolling and cold rolling,
By performing an intermediate annealing that is heated for a predetermined time to a temperature of 450 ° C. or more and 600 ° C. or less between passes of cold rolling, and then performing a final cold rolling of 50% or more and 70% or less,
The plate thickness is 0.240 mm or more and 0.265 mm or less, the material tensile strength is 325 MPa or less, the material yield strength is 285 MPa or more and 310 MPa or less, the material elongation is 2.5% or more and 4.5% or less, and after baking The material yield strength is 280 MPa or more, the value of (AB TS)-(AB YS) after material baking is 37 MPa or more, the change in TS due to baking (AB TS)-(H TS) is 10 MPa or more, and YS by baking (H YS-AB YS) is 10 MPa or less, the tensile strength of the barrel of the can body after can manufacturing by DI processing and paint baking is 350 MPa or more and 410 MPa or less, and the elongation of the barrel is 4 A method for producing an aluminum alloy plate for a can body, characterized by being made 5% or more.
前記胴部の伸びを5%以上とすることを特徴とする請求項4に記載の缶ボディ用アルミニウム合金板の製造方法。   5. The method for producing an aluminum alloy plate for a can body according to claim 4, wherein the body portion has an elongation of 5% or more.
JP2009217655A 2009-09-18 2009-09-18 Aluminum alloy plate for can body having excellent resistance to distribution pinhole and manufacturing method thereof Expired - Fee Related JP5456424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009217655A JP5456424B2 (en) 2009-09-18 2009-09-18 Aluminum alloy plate for can body having excellent resistance to distribution pinhole and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009217655A JP5456424B2 (en) 2009-09-18 2009-09-18 Aluminum alloy plate for can body having excellent resistance to distribution pinhole and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011063869A true JP2011063869A (en) 2011-03-31
JP5456424B2 JP5456424B2 (en) 2014-03-26

Family

ID=43950402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009217655A Expired - Fee Related JP5456424B2 (en) 2009-09-18 2009-09-18 Aluminum alloy plate for can body having excellent resistance to distribution pinhole and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5456424B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197816A (en) * 2005-12-28 2007-08-09 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body having excellent resistance to circulation pinhole
JP2007197815A (en) * 2005-12-28 2007-08-09 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body having excellent resistance to circulation pinhole
JP2007197817A (en) * 2005-12-28 2007-08-09 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body having excellent resistance to circulation pinhole
JP2008057030A (en) * 2005-09-09 2008-03-13 Universal Seikan Kk Di can

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057030A (en) * 2005-09-09 2008-03-13 Universal Seikan Kk Di can
JP2007197816A (en) * 2005-12-28 2007-08-09 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body having excellent resistance to circulation pinhole
JP2007197815A (en) * 2005-12-28 2007-08-09 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body having excellent resistance to circulation pinhole
JP2007197817A (en) * 2005-12-28 2007-08-09 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body having excellent resistance to circulation pinhole

Also Published As

Publication number Publication date
JP5456424B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
US9574258B2 (en) Aluminum-alloy sheet and method for producing the same
JP4019082B2 (en) Aluminum alloy plate for bottle cans with excellent high temperature characteristics
JP5453884B2 (en) Steel plate for high-strength container and manufacturing method thereof
JP5434212B2 (en) Steel plate for high-strength container and manufacturing method thereof
US9546411B2 (en) Aluminum-alloy sheet and method for producing the same
JP4019083B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
WO2013118611A1 (en) Aluminum alloy sheet for di can body
JP5416433B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JP2018145466A (en) Manufacturing method of aluminum alloy sheet for beverage can excellent in bottom moldability and bottom part strength
JP2008057030A (en) Di can
JP5247994B2 (en) Aluminum alloy plate for can body excellent in circulation pinhole resistance and method for producing can body excellent in distribution pinhole resistance
JP5247995B2 (en) Aluminum alloy plate for can body excellent in circulation pinhole resistance and method for producing can body excellent in distribution pinhole resistance
JP5247996B2 (en) Aluminum alloy plate for can body excellent in circulation pinhole resistance and method for producing can body excellent in distribution pinhole resistance
WO2007015560A1 (en) Aluminum alloy sheet for can body, di can, and method for manufacture of the di can
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP5456418B2 (en) Aluminum alloy plate for can body having excellent resistance to distribution pinhole and manufacturing method thereof
JP5456398B2 (en) Aluminum alloy plate for can body having excellent circulation pinhole resistance and method for producing the same
JP5456424B2 (en) Aluminum alloy plate for can body having excellent resistance to distribution pinhole and manufacturing method thereof
JP4019084B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
JP6684568B2 (en) Method for producing aluminum alloy plate for beverage can body or beverage bottle can body excellent in anisotropy and neck formability
JP6227691B2 (en) Manufacturing method of aluminum alloy plate for DI can body
JP2002322530A (en) Aluminum foil for container and production method therefor
JP6532149B2 (en) Aluminum alloy sheet for can body and method of manufacturing the same
JP2015055009A (en) Method for producing aluminum alloy sheet for can body excellent in resistance to pinhole fracture and aluminum alloy sheet for can body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140108

R150 Certificate of patent or registration of utility model

Ref document number: 5456424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees