JP2011063646A - Method for producing polyester composition for production of polyester fiber having high vividness - Google Patents

Method for producing polyester composition for production of polyester fiber having high vividness Download PDF

Info

Publication number
JP2011063646A
JP2011063646A JP2009213236A JP2009213236A JP2011063646A JP 2011063646 A JP2011063646 A JP 2011063646A JP 2009213236 A JP2009213236 A JP 2009213236A JP 2009213236 A JP2009213236 A JP 2009213236A JP 2011063646 A JP2011063646 A JP 2011063646A
Authority
JP
Japan
Prior art keywords
polyester
compound
alkali metal
polyester composition
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009213236A
Other languages
Japanese (ja)
Other versions
JP5336310B2 (en
Inventor
Tetsuya Chikatsune
哲也 近常
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2009213236A priority Critical patent/JP5336310B2/en
Publication of JP2011063646A publication Critical patent/JP2011063646A/en
Application granted granted Critical
Publication of JP5336310B2 publication Critical patent/JP5336310B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce a method for producing a polyester composition that can produce a fiber showing improved color depth and vividness when the fiber is dyed and to provide the fiber. <P>SOLUTION: In a method for producing a polyester composition produced by the production process having a step of producing an oligomer from a dicarboxylic acid component composed mainly of terephthalic acid and a diol component composed mainly of ethylene glycol by performing esterification reaction and a step of subjecting the oligomer to polycondensation reaction, the method for producing a polyester composition includes adding an alkali metal compound and/or an alkaline earth metal compound and a specific phosphorus compound such that the alkali metal atom and/or the alkaline earth metal atom are contained in the range of 0.1-2.0 mol% based on the dicarboxylic acid component; and that the phosphorus compound satisfies following formula (1): 0.5≤P/M≤2.0. In numerical formula (1), P represents a molar quantity of phosphorus atom by addition of the phosphorus compound and M represents a molar quantity of an alkali metal atom and/or alkaline earth metal atom by addition of the alkali metal compound and/or the alkaline earth metal compound. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はポリエステル組成物の製造方法に関する。さらに詳しくはポリエステル組成物に繊維の形状を付与したとき、その繊維表面に微細孔を容易に形成することができ、これを染色すると改善された色の深みと鮮明性を呈することができるポリエステル繊維に関する。   The present invention relates to a method for producing a polyester composition. More specifically, when a fiber shape is imparted to the polyester composition, a fine fiber can be easily formed on the fiber surface, and when this is dyed, the polyester fiber can exhibit improved color depth and sharpness. About.

ポリエステルは多くの優れた特性を有するため、合成繊維として広く使用されている。しかしながら、ポリエステル繊維は羊毛や絹のごとき天然繊維、レーヨン、アセテート、アクリル系繊維に比較して、染料にて染色した際に色の深みが無く、発色性・鮮明性に劣るという欠点がある。この欠点を解消すべく、染料の改善はポリエステルの化学的改質が試みられてきたが、いずれも十分な効果は得られなかった。   Polyester is widely used as a synthetic fiber because it has many excellent properties. However, polyester fibers have the disadvantage that they have no color depth when dyed with a dye and are inferior in color developability and sharpness compared to natural fibers such as wool and silk, rayon, acetate, and acrylic fibers. In order to eliminate this defect, attempts have been made to chemically modify polyesters to improve dyes, but none of them has been able to obtain sufficient effects.

かかる欠点を解消すべく、例えば特許文献1及び特許文献2では、繊維中に微粒子不活性物質を含有させ、繊維が侵されず微粒子状不活性物質が溶解する酸やアルカリで処理して微粒子状不活性物質を除去し、繊維表面を凹凸化する方法が知られている。また、例えば特許文献3では、シリカゾルなどを用いて繊維表面に不規則に凹凸なランダム表面を形成し、さらにそのランダム表面を形成する凹凸内に、さらに微細な凹凸構造を形成せしめたポリエステルが知られている。   In order to eliminate such disadvantages, for example, in Patent Document 1 and Patent Document 2, fine particles of an inert substance are contained in the fiber and treated with an acid or alkali in which the fine particle of the inert substance is dissolved without being affected by the fiber. A method of removing the inert substance and making the fiber surface uneven is known. Further, for example, Patent Document 3 discloses a polyester in which a random uneven surface is irregularly formed on a fiber surface using silica sol or the like, and a finer uneven structure is formed in the unevenness forming the random surface. It has been.

微細孔形成剤として有機化合物を用いる例としては、例えば特許文献4〜5では、微細孔形成剤としてリン化合物や分子内にカルボン酸金属塩を有しているスルホン酸化合物などを用い、アルカリ減量処理により繊維表面及び内部に微細孔を形成させる方法が知られている。   As an example of using an organic compound as the micropore forming agent, for example, in Patent Documents 4 to 5, a phosphorus compound or a sulfonic acid compound having a carboxylic acid metal salt in the molecule is used as the micropore forming agent, and the alkali weight loss. A method of forming micropores on the fiber surface and inside by treatment is known.

しかし、いずれの公知技術においても、繊維を溶剤処理する事で繊維表面に凹凸形状を付与することは可能でも、色の深みを改善する効果が不十分であり、また、複雑な凹凸構造のためフィブリル化しやすいなどの問題があり、さらに高速製糸性、技術的安定性、工業的生産性などから見て問題は解決されていなかった。   However, in any known technique, it is possible to give the fiber surface an uneven shape by solvent treatment of the fiber, but the effect of improving the color depth is insufficient, and because of the complicated uneven structure There are problems such as easy fibrillation, and the problem has not been solved in view of high-speed spinning, technical stability, and industrial productivity.

このような欠点を解消するため、例えば特許文献6では、ポリエステル合成反応が完了する前の段階で、特定のリン化合物と、リン化合物に対して0.5〜1.2倍モルのアルカリ土類金属とを添加し、しかる後にポリエステルの合成を完了し、得られたポリエステルを溶融紡糸した後にアルカリ減量処理する事により微細孔を有する合成繊維の製造方法が提案されている。この方法によれば優れた色の深みを有するポリエステル繊維を得る事ができる。   In order to eliminate such drawbacks, for example, in Patent Document 6, in the stage before the polyester synthesis reaction is completed, a specific phosphorus compound and an alkaline earth of 0.5 to 1.2 times mol of the phosphorus compound. There has been proposed a method for producing a synthetic fiber having fine pores by adding a metal, then completing the synthesis of the polyester, melt-spinning the obtained polyester, and subjecting it to an alkali reduction treatment. According to this method, a polyester fiber having an excellent color depth can be obtained.

確かに本方法によれば、反応中に不活性粒子をポリエステル中に均一な超微粒子分散状態で生成しせしめることができる。しかしながら、本方法は酸成分として有機カルボン酸エステルを用いた、いわゆるエステル交換反応法において非常に有効である一方、近年主流となっているジカルボン酸を原料として使用する直接エステル化反応法では、リン化合物を該リン化合物の溶解性が非常に低いオリゴマー内に添加するため、添加時にリン化合物が反応系内で析出してしまい、スケール状の粗大粒子を多量に生成する。このため、溶融紡糸等の成形加工を行う事ができず、このような組成物はいわゆる有機カルボン酸エステルを原料として製造するしかないのが実情であった。   Certainly, according to the present method, it is possible to generate inert particles in a uniform ultrafine particle dispersed state in the polyester during the reaction. However, this method is very effective in a so-called transesterification method using an organic carboxylic acid ester as an acid component. On the other hand, in a direct esterification reaction method using a dicarboxylic acid as a raw material which has become the mainstream in recent years, Since the compound is added to the oligomer in which the solubility of the phosphorus compound is very low, the phosphorus compound is precipitated in the reaction system during the addition, and a large amount of coarse coarse particles are generated. For this reason, it is impossible to carry out molding processing such as melt spinning, and it has been a fact that such a composition can only be produced using a so-called organic carboxylic acid ester as a raw material.

これらの問題を解決するため、例えば特許文献7〜8では、添加条件を調整して析出量を低減させる方法が提案されている。しかしながら本方法によっても析出物を完全に抑制することは困難であり、また、溶解性改善のために反応の途中で多量にエチレングリコールを添加する必要があるために反応時間が長くなるなどの問題もあった。   In order to solve these problems, for example, Patent Documents 7 to 8 propose methods for adjusting the addition conditions and reducing the amount of precipitation. However, even with this method, it is difficult to completely suppress precipitates, and it is necessary to add a large amount of ethylene glycol in the middle of the reaction in order to improve solubility. There was also.

特公昭43−014186号公報Japanese Patent Publication No. 43-014186 特公昭43−016665号公報Japanese Patent Publication No. 43-016665 特開昭55−107512号公報JP-A-55-107512 特開平08−158157号公報Japanese Patent Laid-Open No. 08-158157 特開2000−027032号公報JP 2000-027032 A 特開昭58−104215号公報JP 58-104215 A 特開平01−068568号公報JP-A-01-068568 特開平05−132855号公報Japanese Patent Laid-Open No. 05-132855

本発明の目的は、上記の課題を解決し、染色した際に改善された色の深みと鮮明性とを呈する繊維が得られるポリエステル組成物の製造方法及びその繊維を提供することにある。   The objective of this invention is providing the manufacturing method of the polyester composition from which the fiber which exhibits the depth of a color improved and the clearness when dyeing was solved, and the fiber is solved.

上記の課題に鑑み本発明者らは鋭意検討を行った結果、本発明を完成するに至った。
すなわち本発明はテレフタル酸を主とするジカルボン酸成分とエチレングリコールを主とするジオール成分からエステル化反応を行いオリゴマーを生成する工程と、当該オリゴマーに対して重縮合反応を行う工程を有する製造工程にて製造されるポリエステル組成物の製造方法において、
アルカリ金属化合物及び/又はアルカリ土類金属化合物と下記一般式(I)で表されるリン化合物とを、該ジカルボン酸成分に対して、アルカリ金属原子及び/又はアルカリ金属原子が0.1〜2.0モル%の範囲で含有するように添加し、且つリン化合物を下記式(1)を満足するように添加することを特徴とするポリエステル組成物の製造方法であり、この製造方法によって上記課題を解決することができる。
In view of the above problems, the present inventors have intensively studied, and as a result, have completed the present invention.
That is, the present invention is a production process comprising a step of performing an esterification reaction from a dicarboxylic acid component mainly composed of terephthalic acid and a diol component mainly composed of ethylene glycol, and a step of performing a polycondensation reaction on the oligomer. In the manufacturing method of the polyester composition manufactured in,
An alkali metal atom and / or an alkaline earth metal compound and a phosphorus compound represented by the following general formula (I) are used in an amount of 0.1 to 2 with respect to the dicarboxylic acid component. It is a method for producing a polyester composition characterized in that it is added so as to be contained in a range of 0.0 mol%, and a phosphorus compound is added so as to satisfy the following formula (1). Can be solved.

[上記式(I)中、Arは未置換若しくは置換された6〜20個の炭素原子を有するアリール基を表し、Rは水素原子又はOR基を表す。Rは未置換若しくは置換された1〜20個の炭素原子を有するアルキル基、未置換若しくは置換された6〜20個の炭素原子を有するアリール基又は未置換若しくは置換された7〜20個の炭素原子を有するベンジル基を表す。]
0.5≦P/M≦2.0 ・・・(1)
[上記数式(1)において、Pはリン化合物添加によるリン原子のモル量を表し、Mはアルカリ金属化合物及び/又はアルカリ土類金属化合物の添加によるアルカリ金属原子及び/又はアルカリ金属原子のモル量を表す。]
[In the above formula (I), Ar represents an unsubstituted or substituted aryl group having 6 to 20 carbon atoms, and R 1 represents a hydrogen atom or an OR 2 group. R 2 is an unsubstituted or substituted alkyl group having 1 to 20 carbon atoms, an unsubstituted or substituted aryl group having 6 to 20 carbon atoms, or an unsubstituted or substituted 7 to 20 carbon atoms A benzyl group having a carbon atom is represented. ]
0.5 ≦ P / M ≦ 2.0 (1)
[In the above formula (1), P represents the molar amount of phosphorus atom by addition of phosphorus compound, M is the molar amount of alkali metal atom and / or alkali metal atom by addition of alkali metal compound and / or alkaline earth metal compound. Represents. ]

本発明によれば、繊維の表面に特異な微細孔を容易に形成することができるので、染色した際に改善された色の深みと鮮明性を呈することのでき、強度・伸度にも優れたポリエステル繊維に好適なポリエステル組成物を提供することができる。またそのポリエステル組成物はジエチレングリコール等の副生成物の共重合量が少なく耐熱性も良好であり、そのポリエステル組成物からポリエステル繊維を製造する際の生産性も良好である。   According to the present invention, since unique micropores can be easily formed on the surface of the fiber, it is possible to exhibit improved color depth and clarity when dyed, and excellent strength and elongation. It is possible to provide a polyester composition suitable for the polyester fiber. In addition, the polyester composition has a low copolymerization amount of by-products such as diethylene glycol and good heat resistance, and also has good productivity when producing polyester fibers from the polyester composition.

実施例1で得られたポリエステル繊維表面の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the polyester fiber surface obtained in Example 1. FIG. 比較例6で得られたポリエステル繊維表面の走査型電子顕微鏡写真である。6 is a scanning electron micrograph of the surface of a polyester fiber obtained in Comparative Example 6. 比較例8で得られたポリエステル繊維表面の走査型電子顕微鏡写真である。6 is a scanning electron micrograph of the surface of a polyester fiber obtained in Comparative Example 8. 参考例1で得られたポリエステル繊維表面の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the polyester fiber surface obtained in Reference Example 1. FIG.

以下、本発明の製造方法について詳細に説明する。本発明のポリエステル組成物の製造方法はテレフタル酸を主とするジカルボン酸成分とエチレングリコールを主とするジオール成分からエステル化反応を行いオリゴマーを生成する工程と、当該オリゴマーに対して重縮合反応を行う工程を有する製造工程にて製造されるポリエステル組成物の製造方法である。   Hereinafter, the production method of the present invention will be described in detail. The method for producing a polyester composition of the present invention comprises a step of esterifying a dicarboxylic acid component mainly composed of terephthalic acid and a diol component mainly composed of ethylene glycol to form an oligomer, and a polycondensation reaction on the oligomer. It is a manufacturing method of the polyester composition manufactured at the manufacturing process which has the process to perform.

(原料:酸成分)
本発明において使用されるジカルボン酸は、テレフタル酸が主に用いられるが、物性を失わない範囲で目的に応じて他の成分が共重合されていても良い。テレフタル酸以外の成分としては、イソフタル酸、フタル酸、無水フタル酸、5−ナトリウムスルホイソフタル酸、5−テトラブチルホスホニウムスルホイソフタル酸、4,4’−ビフェニルジカルボン酸、p−ヒドロキシ安息香酸、アジピン酸、セバシン酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、1,4−シクロヘキシルジカルボン酸などを挙げることができるが、得られるポリエステル組成物の基本品質を維持するためには、該ジカルボン酸成分の80モル%以上、更に好ましくは90モル%以上はテレフタル酸であることが好ましい。
(Raw material: Acid component)
As the dicarboxylic acid used in the present invention, terephthalic acid is mainly used, but other components may be copolymerized depending on the purpose within a range not losing physical properties. Components other than terephthalic acid include isophthalic acid, phthalic acid, phthalic anhydride, 5-sodium sulfoisophthalic acid, 5-tetrabutylphosphonium sulfoisophthalic acid, 4,4′-biphenyldicarboxylic acid, p-hydroxybenzoic acid, adipine Acid, sebacic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-cyclohexyldicarboxylic acid, etc. can be mentioned, but in order to maintain the basic quality of the resulting polyester composition It is preferable that 80 mol% or more, more preferably 90 mol% or more of the dicarboxylic acid component is terephthalic acid.

(原料:グリコール成分)
本発明において使用されるジオール成分としては、エチレングリコールが主に用いられるが、物性を失わない範囲で目的に応じて他の成分が共重合されていても良い。エチレングリコール以外の成分としては、1,3−プロパンジオール、1,4−ブタンジオール、ジエチレングリコール、1,2−プロピレングリコール、2,2−ジメチル−1,3−プロパンジオール(ネオペンチレングリコール)、ジプロピレングリコール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、ジメチロールプロピオン酸、ポリ(エチレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール等を挙げることができる。得られるポリエステル組成物の基本品質を維持するためには、該ジオール成分の80モル%以上、更に好ましくは90モル%以上はエチレングリコールであることが好ましい。
(Raw material: Glycol component)
As the diol component used in the present invention, ethylene glycol is mainly used, but other components may be copolymerized depending on the purpose within a range not losing physical properties. As components other than ethylene glycol, 1,3-propanediol, 1,4-butanediol, diethylene glycol, 1,2-propylene glycol, 2,2-dimethyl-1,3-propanediol (neopentylene glycol), Examples include dipropylene glycol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, dimethylolpropionic acid, poly (ethylene oxide) glycol, and poly (tetramethylene oxide) glycol. In order to maintain the basic quality of the obtained polyester composition, 80 mol% or more, more preferably 90 mol% or more of the diol component is preferably ethylene glycol.

(原料:その他)
なお、本発明におけるポリエステルにはトリメリット酸、トリメシン酸、無水トリメリット酸、ピロメリット酸、トリメリット酸モノカリウム塩などの多価カルボン酸、グリセリン、ペンタエリトリトール、ジメチロールエチルスルホン酸ナトリウム、ジメチロールプロピオン酸カリウムなどの多価ヒドロキシ化合物を、本発明の目的を達成する範囲内であれば、該酸成分の1モル%以内で共重合してもよい。
(Ingredients: other)
Polyesters in the present invention include trimellitic acid, trimesic acid, trimellitic anhydride, pyromellitic acid, trimellitic acid monopotassium salt and other polycarboxylic acids, glycerin, pentaerythritol, sodium dimethylolethylsulfonate, dimethyl A polyvalent hydroxy compound such as potassium methylolpropionate may be copolymerized within 1 mol% of the acid component as long as the object of the present invention is achieved.

(オリゴマー)
テレフタル酸を主とするジカルボン酸成分とエチレングリコールを主とするジオール成分からエステル化反応を行いオリゴマーを生成する工程を、本発明のポリエステル組成物の製造方法においては含有する。ここで、オリゴマーとはジカルボン酸成分、ジオール成分がそれぞれテレフタル酸、エチレングリコールの場合にはビス(2−ヒドロキシエチル)テレフタレートの他、一分子内にエチレンテレフタレートの繰り返し単位を2以上含み、いまだポリエチレンテレフタレートと呼べるほど固有粘度・分子量・重合度が上がっておらず、末端がカルボキシル基またはヒドロキシエチル基である化合物を表す。そのようなオリゴマーが生成するまでエステル化反応を行う。エステル化反応の反応率は生成する水の量を測定することによって検知することができる。
(Oligomer)
The process for producing an oligomer by carrying out an esterification reaction from a dicarboxylic acid component mainly composed of terephthalic acid and a diol component mainly composed of ethylene glycol contains the method for producing a polyester composition of the present invention. Here, the oligomer means that the dicarboxylic acid component and the diol component are terephthalic acid and ethylene glycol, respectively, and in addition to bis (2-hydroxyethyl) terephthalate, the molecule contains two or more repeating units of ethylene terephthalate. Intrinsic viscosity, molecular weight, and degree of polymerization are not so high that it can be called terephthalate, and it represents a compound whose terminal is a carboxyl group or a hydroxyethyl group. The esterification reaction is performed until such an oligomer is formed. The reaction rate of the esterification reaction can be detected by measuring the amount of water produced.

(固有粘度)
本発明におけるポリエステル組成物は、固有粘度が0.60dL/g以上であることが好ましい。固有粘度が0.60dL/g未満であると、当該ポリエステルを溶融紡糸して得られる繊維成形物の物性が低下するようになり実用性に乏しい。固有粘度の上限は特に限定する必要はないが、ポリエステル組成物の製造のしやすさや、それより得られる繊維成形物の成形のしやすさから、1.2dL/g以下とするのが好ましい。ポリエステルの重縮合条件を適宜調整することによって、固有粘度がこの値の範囲内にあるポリエステル組成物を製造することができる。
(Intrinsic viscosity)
The polyester composition in the present invention preferably has an intrinsic viscosity of 0.60 dL / g or more. When the intrinsic viscosity is less than 0.60 dL / g, the physical properties of the fiber molded product obtained by melt spinning the polyester are lowered and the practicality is poor. The upper limit of the intrinsic viscosity is not particularly limited, but is preferably 1.2 dL / g or less from the viewpoint of ease of production of the polyester composition and ease of molding of a fiber molded article obtained therefrom. By appropriately adjusting the polycondensation conditions of the polyester, a polyester composition having an intrinsic viscosity within this range can be produced.

(内部析出粒子)
本発明のポリエステル組成物は、下記一般式(I)で表されるリン化合物と、アルカリ金属化合物及び/又はアルカリ土類金属化合物を、あらかじめ反応させることなく、個別にポリエステル組成物製造段階に添加し、ポリエステル組成物の合成反応中にアルカリ金属化合物及び/又はアルカリ土類金属化合物とリン化合物が反応することで形成される微粒子を含有することが好ましい。これを反応槽内部で反応することによって形成される微粒子であることから、以下「内部析出粒子」と称することがある。
(Internal precipitation particles)
The polyester composition of the present invention is individually added to the polyester composition production stage without previously reacting the phosphorus compound represented by the following general formula (I) with the alkali metal compound and / or alkaline earth metal compound. And it is preferable to contain the microparticles | fine-particles formed when an alkali metal compound and / or an alkaline-earth metal compound and a phosphorus compound react during the synthesis | combination reaction of a polyester composition. Since these are fine particles formed by reacting inside the reaction vessel, they may be hereinafter referred to as “internal precipitation particles”.

(アルカリ金属・アルカリ土類金属)
本発明にかかるアルカリ金属元素とアルカリ土類金属元素に関しては、Li,Na,Mg,Ca,Sr,Baが好ましく、特にCa,Sr,Baが好ましく用いられる。そのなかでもCaが最も好ましく用いられる。また、本発明にかかるアルカリ金属化合物及び/又はアルカリ土類金属化合物としては、上記リン化合物と反応して含金属リン化合物を形成するものであれば特に限定されない。具体的には、有機カルボン酸との塩が好ましく、なかでも酢酸塩は反応により副生する酢酸を容易に除去できるので、特に好ましく用いられる。前記アルカリ金属及び/又はアルカリ土類金属化合物は1種のみに単独で使用しても、2種以上併用してもよい。
(Alkali metals and alkaline earth metals)
Regarding the alkali metal element and alkaline earth metal element according to the present invention, Li, Na, Mg, Ca, Sr, and Ba are preferable, and Ca, Sr, and Ba are particularly preferably used. Of these, Ca is most preferably used. The alkali metal compound and / or alkaline earth metal compound according to the present invention is not particularly limited as long as it reacts with the phosphorus compound to form a metal-containing phosphorus compound. Specifically, a salt with an organic carboxylic acid is preferable, and acetate is particularly preferable because acetate can be easily removed as a by-product by reaction. The alkali metal and / or alkaline earth metal compounds may be used alone or in combination of two or more.

上記アルカリ金属化合物及び/又はアルカリ土類金属化合物は、溶媒に溶解させた状態で使用されることが望ましい。このときの溶媒としては、公知の溶媒から適切なものを選択することができるが、対象のポリエステルの原料として使用するグリコールを使用することが最も好ましい。すなわち本発明においては上記の説明から明らかなようにエチレングリコールを用いることである。   The alkali metal compound and / or alkaline earth metal compound is desirably used in a state dissolved in a solvent. As the solvent at this time, an appropriate solvent can be selected from known solvents, but it is most preferable to use glycol used as a raw material of the target polyester. That is, in the present invention, as is apparent from the above description, ethylene glycol is used.

(金属化合物添加量)
上記のアルカリ金属化合物及び/又はアルカリ土類金属化合物は、上述のジカルボン酸成分に対して、アルカリ金属原子及び/又はアルカリ金属原子が金属原子換算で0.1〜2.0モル%の範囲で含有するように添加する必要がある。添加量が0.1モル%未満では、後述するリン化合物とアルカリ金属化合物及び/又はアルカリ土類金属化合物から形成される粒子量が減少するため、得られるポリエステル組成物を溶融紡糸し、次いでアルカリ減量することで得られるポリエステル繊維の表面凹凸構造の形成が不十分となり、十分な鮮明性を発現できない。一方、2.0モル%を越えると、これらのリン化合物とアルカリ金属化合物及び/又はアルカリ土類金属化合物から形成される粒子が粗大な粒子を形成するため、得られるポリエステルを溶融紡糸し、次いでアルカリ減量することで得られるポリエステル繊維の表面凹凸構造の形成が不十分となるうえ、溶融紡糸工程での製糸性を著しく悪化させるため好ましくない。これらのアルカリ金属化合物及び/又はアルカリ土類金属化合物の添加量は、金属元素換算として0.2〜1.8モル%の範囲が好ましく、0.5〜1.5モル%の範囲が更に好ましい。
(Metal compound addition amount)
Said alkali metal compound and / or alkaline earth metal compound is in the range of 0.1 to 2.0 mol% of the alkali metal atom and / or alkali metal atom in terms of metal atom with respect to the above-mentioned dicarboxylic acid component. It is necessary to add so that it may contain. When the addition amount is less than 0.1 mol%, the amount of particles formed from the phosphorus compound and the alkali metal compound and / or alkaline earth metal compound described later decreases, so the resulting polyester composition is melt-spun, The formation of the surface uneven structure of the polyester fiber obtained by reducing the weight becomes insufficient, and sufficient sharpness cannot be expressed. On the other hand, if it exceeds 2.0 mol%, the particles formed from these phosphorus compounds and alkali metal compounds and / or alkaline earth metal compounds form coarse particles, so the resulting polyester is melt-spun, The formation of the uneven surface structure of the polyester fiber obtained by reducing the alkali becomes insufficient, and the spinning property in the melt spinning process is remarkably deteriorated. The addition amount of these alkali metal compounds and / or alkaline earth metal compounds is preferably in the range of 0.2 to 1.8 mol%, more preferably in the range of 0.5 to 1.5 mol% in terms of metal element. .

(金属化合物添加時期)
上記のアルカリ金属化合物及び/又はアルカリ土類金属化合物のポリエステル組成物の製造工程中への添加時期は、エステル化反応工程、重縮合反応工程の中の任意の段階を選択することができるが、エステル化反応及び重縮合反応へ及ぼす影響から、エステル化反応中、若しくはエステル化反応終了後、重縮合反応開始の前半(30分以内)で添加することが望ましい。
(Metal compound addition time)
The timing of addition of the alkali metal compound and / or alkaline earth metal compound during the production process of the polyester composition can be selected from any stage of the esterification reaction process and the polycondensation reaction process. From the influence on the esterification reaction and the polycondensation reaction, it is desirable to add during the esterification reaction or after the end of the esterification reaction, in the first half of the polycondensation reaction (within 30 minutes).

(リン化合物)
本発明にかかるリン化合物に関しては、下記一般式(I)で表される化合物である必要がある。
(Phosphorus compound)
The phosphorus compound according to the present invention needs to be a compound represented by the following general formula (I).

[上記式(I)中、Arは未置換若しくは置換された6〜20個の炭素原子を有するアリール基を表し、Rは水素原子又はOR基を表す。Rは未置換若しくは置換された1〜20個の炭素原子を有するアルキル基、未置換若しくは置換された6〜20個の炭素原子を有するアリール基又は未置換若しくは置換された7〜20個の炭素原子を有するベンジル基を表す。] [In the above formula (I), Ar represents an unsubstituted or substituted aryl group having 6 to 20 carbon atoms, and R 1 represents a hydrogen atom or an OR 2 group. R 2 is an unsubstituted or substituted alkyl group having 1 to 20 carbon atoms, an unsubstituted or substituted aryl group having 6 to 20 carbon atoms, or an unsubstituted or substituted 7 to 20 carbon atoms A benzyl group having a carbon atom is represented. ]

で示される官能基としては、具体的にはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、エイコシル基、フェニル基、ナフチル基、ビフェニル基、ベンジル基、メチルフェニル基、エチルフェニル基、プロピルフェニル基、ジメチルフェニル基等を挙げることができる。更にこれらの炭化水素基中の1または2以上の水素原子がカルボキシル基、エステル基、ハロゲン基、アルキルオキシ基等に置換されていても良い。
Arで示される官能基としてはフェニル基、モノ−(ジ−又はトリ−)ハロゲン化フェニル基、メトキシフェニル基、モノ−(ジ−又はトリ−)カルボキシフェニル基、1−(2−)ナフチル基、モノ−(ジ−又はトリ−)ハロゲン化−1−(2−)ナフチル基、1−(2−、又は、9−)アントラニル基、4−(2−、又は、3−)ビフェニル基を挙げることができる。
Specific examples of the functional group represented by R 2 include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, and hexyl. Group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group, eicosyl group, phenyl group, naphthyl group, biphenyl group, benzyl group, methylphenyl group, ethylphenyl group, propyl group A phenyl group, a dimethylphenyl group, etc. can be mentioned. Further, one or more hydrogen atoms in these hydrocarbon groups may be substituted with a carboxyl group, an ester group, a halogen group, an alkyloxy group or the like.
Examples of the functional group represented by Ar include a phenyl group, a mono- (di- or tri-) halogenated phenyl group, a methoxyphenyl group, a mono- (di- or tri-) carboxyphenyl group, and a 1- (2-) naphthyl group. Mono- (di- or tri-) halogenated-1- (2-) naphthyl group, 1- (2- or 9-) anthranyl group, 4- (2- or 3-) biphenyl group Can be mentioned.

このような一般式(I)の化合物としては、例えばフェニルホスホン酸、メチルホスホン酸、エチルホスホン酸、ノルマルプロピルホスホン酸、イソプロピルホスホン酸、ブチルホスホン酸、トリルホスホン酸、キシリルホスホン酸、ビフェニルホスホン酸、ナフチルホスホン酸、アントリルホスホン酸、2−カルボキシフェニルホスホン酸、3−カルボキシフェニルホスホン酸、4−カルボキシフェニルホスホン酸、2,3−ジカルボキシフェニルホスホン酸、2,4−ジカルボキシフェニルホスホン酸、2,5−ジカルボキシフェニルホスホン酸、2,6−ジカルボキシフェニルホスホン酸、3,4−ジカルボキシフェニルホスホン酸、3,5−ジカルボキシフェニルホスホン酸、2,3,4−トリカルボキシフェニルホスホン酸、2,3,5−トリカルボキシフェニルホスホン酸、2,3,6−トリカルボキシフェニルホスホン酸、2,4,5−トリカルボキシフェニルホスホン酸、2,4,6−トリカルボキシフェニルホスホン酸が例示されるが、中でもフェニルホスホン酸がもっとも好ましく用いられる。上記のリン化合物は溶媒に溶解させた状態で使用されることが望ましい。このときの溶媒としては、公知の溶媒から適切なものを選択することができるが、対象のポリエステルの原料として使用するグリコールを使用することが最も好ましい。すなわち本発明においては上記の説明から明らかなようにエチレングリコールを用いることである。   Examples of the compound of the general formula (I) include phenylphosphonic acid, methylphosphonic acid, ethylphosphonic acid, normal propylphosphonic acid, isopropylphosphonic acid, butylphosphonic acid, tolylphosphonic acid, xylylphosphonic acid, biphenylphosphonic acid. , Naphthylphosphonic acid, anthrylphosphonic acid, 2-carboxyphenylphosphonic acid, 3-carboxyphenylphosphonic acid, 4-carboxyphenylphosphonic acid, 2,3-dicarboxyphenylphosphonic acid, 2,4-dicarboxyphenylphosphonic acid 2,5-dicarboxyphenylphosphonic acid, 2,6-dicarboxyphenylphosphonic acid, 3,4-dicarboxyphenylphosphonic acid, 3,5-dicarboxyphenylphosphonic acid, 2,3,4-tricarboxyphenyl Phosphonic acid, 2, , 5-tricarboxyphenylphosphonic acid, 2,3,6-tricarboxyphenylphosphonic acid, 2,4,5-tricarboxyphenylphosphonic acid, 2,4,6-tricarboxyphenylphosphonic acid, Of these, phenylphosphonic acid is most preferably used. The above phosphorus compound is desirably used in a state dissolved in a solvent. As the solvent at this time, an appropriate solvent can be selected from known solvents, but it is most preferable to use glycol used as a raw material of the target polyester. That is, in the present invention, as is apparent from the above description, ethylene glycol is used.

(リン添加時期)
上記リン化合物のポリエステル中への添加時期は、前述のアルカリ金属化合物及び/又はアルカリ土類金属化合物の添加前若しくは添加後のどちらでも良い。リン化合物はアルカリ金属化合物及び/アルカリ土類金属化合物と反応して、ポリエステルに不溶の粒子を形成するが、どちらを先に添加しても同様の粒子が形成される。但し、リン化合物をエステル化反応の初期に添加すると、エステル化反応を阻害する可能性があるため、望ましくはエステル化反応の後半、若しくはエステル化反応終了後、重縮合反応開始の前半(30分以内)で添加することが望ましい。
(When phosphorus is added)
The timing of adding the phosphorus compound to the polyester may be before or after the addition of the alkali metal compound and / or alkaline earth metal compound. The phosphorus compound reacts with the alkali metal compound and / or the alkaline earth metal compound to form particles insoluble in the polyester, but the same particles are formed regardless of which is added first. However, since addition of a phosphorus compound in the early stage of the esterification reaction may inhibit the esterification reaction, it is desirable that the latter half of the esterification reaction or the first half of the polycondensation reaction after the esterification reaction is completed (30 minutes). It is desirable to add within

(リン化合物とアルカリ金属化合物等の事前反応禁止)
しかしながらポリエステルに添加する前に、あらかじめリン化合物とアルカリ金属化合物及び/又はアルカリ土類金属化合物とを反応させたものをポリエステルに添加する方法では、あらかじめ調整されるリン化合物とアルカリ金属化合物及び/又はアルカリ土類金属化合物とから形成される粒子の大きさが大きくなる。そのため、それをポリエステル中に添加して得られるポリエステルを溶融紡糸し、次いでアルカリ減量することで得られるポリエステル繊維の表面凹凸構造が、所望の微細化した凹凸構造を形成することができず、目的の鮮明性を発現するポリエステル繊維を得ることができない。従って本願のポリエステル組成物の製造方法においては、アルカリ金属化合物及び/又はアルカリ土類金属化合物とリン化合物を、オリゴマーを生成する工程及び/又は重縮合反応を行う工程に添加する前に反応させる事なく、個別にポリエステルの製造工程に添加する方法を好ましく採用することができる。但し必要に応じて、双方の化合物の単なる混合物として添加することは本発明の範囲に含まれる。
(Pre-reaction of phosphorus compounds and alkali metal compounds is prohibited)
However, in the method of adding to a polyester a compound obtained by reacting a phosphorus compound with an alkali metal compound and / or an alkaline earth metal compound in advance before adding to the polyester, the phosphorus compound and alkali metal compound and / or adjusted in advance The size of the particles formed from the alkaline earth metal compound is increased. Therefore, the surface uneven structure of the polyester fiber obtained by melt spinning the polyester obtained by adding it to the polyester and then reducing the alkali cannot form the desired finely textured structure. It is not possible to obtain a polyester fiber that exhibits the sharpness of the above. Therefore, in the method for producing a polyester composition of the present application, an alkali metal compound and / or an alkaline earth metal compound and a phosphorus compound are reacted before being added to the step of forming an oligomer and / or the step of performing a polycondensation reaction. However, it is possible to preferably employ a method of individually adding to the polyester production process. However, it is within the scope of the present invention to add it as a simple mixture of both compounds as required.

(リン原子/金属原子比)
リン化合物とアルカリ金属化合物及び/又はアルカリ土類金属化合物の添加量は、下記式(1)で示す比率で添加する必要がある。
0.5≦P/M≦2.0 ・・・(1)
上記数式(1)のP/Mが0.5未満では、リン化合物とアルカリ金属化合物及び/又はアルカリ土類金属化合物から形成される粒子量が減少するため、得られるポリエステルを溶融紡糸し、次いでアルカリ減量することで得られるポリエステル繊維の表面凹凸構造の形成が不十分となり、十分な鮮明性を発現できないうえ、ポリエステル中のアルカリ金属化合物及び/又はアルカリ土類金属化合物量が過剰となり、過剰な金属原子成分がポリエステルの熱分解を促進し、熱安定性を著しく損なうため好ましくない。一方、P/Mが2.0を越えると、逆にリン化合物が過剰となり、過剰なリン化合物がポリエステルの重合反応を阻害するため好ましくない。P/Mは好ましくは0.8〜1.8、更に好ましくは0.9〜1.5の範囲である。
(Phosphorus atom / metal atom ratio)
The addition amount of the phosphorus compound and the alkali metal compound and / or the alkaline earth metal compound needs to be added at a ratio represented by the following formula (1).
0.5 ≦ P / M ≦ 2.0 (1)
When the P / M in the above formula (1) is less than 0.5, the amount of particles formed from the phosphorus compound and the alkali metal compound and / or alkaline earth metal compound is decreased. The formation of the surface uneven structure of the polyester fiber obtained by reducing the alkali becomes insufficient, and sufficient sharpness cannot be expressed, and the amount of the alkali metal compound and / or alkaline earth metal compound in the polyester becomes excessive, and excessive The metal atom component is not preferable because it accelerates the thermal decomposition of the polyester and significantly impairs the thermal stability. On the other hand, when P / M exceeds 2.0, the phosphorus compound becomes excessive and the excessive phosphorus compound inhibits the polymerization reaction of the polyester. P / M is preferably in the range of 0.8 to 1.8, more preferably 0.9 to 1.5.

(重合触媒、その他添加剤)
本発明のポリエステル組成物には、ポリエステルの製造時に通常用いられるアンチモン、ゲルマニウム、チタンなどの化合物の金属化合触媒、着色防止剤としてのリン化合物、その他として酸化防止剤、蛍光増白剤、帯電防止剤、抗菌剤、紫外線吸収剤、光安定剤、熱安定剤、遮光剤又は艶消し剤などを、本発明の目的を奏する範囲内で含有していても良い。
(Polymerization catalyst, other additives)
The polyester composition of the present invention includes a metal compound catalyst for compounds such as antimony, germanium, and titanium, which are usually used in the production of polyester, a phosphorus compound as an anti-coloring agent, an antioxidant, an optical brightener, and an antistatic agent. An agent, an antibacterial agent, an ultraviolet absorber, a light stabilizer, a heat stabilizer, a light-shielding agent, a matting agent, and the like may be contained within the scope of the object of the present invention.

(ポリエステル組成物の製造方法)
次に本発明のポリエステル組成物を得るための好ましい製造方法の一例を詳細に説明する。すなわち、ポリエステルを作成した後に上記リン化合物やアルカリ金属化合物及び/又はアルカリ土類金属化合物をブレンド等の方法で混合してポリエステル組成物を得るのではなく、ポリエステルを製造する途中の段階で、本発明に係るリン化合物並びにアルカリ金属及び/又はアルカリ土類金属化合物を添加してポリエステルの重合反応を行いポリエステル組成物を製造する方法である。この手法により内部析出粒子を生成させることができる。さらに本発明方法におけるポリエステル製造反応条件には格別の制限はないが、重縮合反応は一般に230〜320℃の温度において、常圧下、又は減圧下(0.1Pa〜0.1MPa)において、或はこれらの条件を組み合わせて、15〜300分間重縮合することが好ましい。
(Production method of polyester composition)
Next, an example of the preferable manufacturing method for obtaining the polyester composition of this invention is demonstrated in detail. That is, after the polyester is prepared, the above phosphorus compound, alkali metal compound and / or alkaline earth metal compound are mixed by a method such as blending to obtain a polyester composition. This is a method for producing a polyester composition by adding a phosphorus compound and an alkali metal and / or alkaline earth metal compound according to the invention to carry out a polymerization reaction of the polyester. Internal precipitation particles can be generated by this method. Furthermore, the polyester production reaction conditions in the method of the present invention are not particularly limited, but the polycondensation reaction is generally performed at a temperature of 230 to 320 ° C. under normal pressure or reduced pressure (0.1 Pa to 0.1 MPa), or It is preferable to carry out polycondensation for 15 to 300 minutes by combining these conditions.

(溶融紡糸・アルカリ減量)
上記の方法で得られたポリエステルを溶融紡糸して繊維化する方法は、従来のポリエステル繊維の溶融紡糸方法を任意に採用することができる。ここで紡出する繊維は、中空部を有しない中実繊維であっても、中空部を有する中空繊維であってもよい。海島型複合繊維や、2層ないしそれ以上の多層構造を有するサイド・バイ・サイド型複合繊維にしてもよい。
(Melt spinning, alkali weight loss)
A conventional polyester fiber melt spinning method can be arbitrarily adopted as the method of melt spinning the fiber obtained by the above method to obtain a fiber. The fiber spun here may be a solid fiber having no hollow part or a hollow fiber having a hollow part. A sea-island type composite fiber or a side-by-side type composite fiber having a multilayer structure of two or more layers may be used.

このように得られるポリエステル繊維の表面に微細な凹凸構造を付与する方法としては塩基性化合物と接触させて減量する方法が好ましい。この塩基性化合物との接触には、繊維を必要に応じて延伸加熱処理又は仮撚加工などの処理に供した後、又は更に布帛にした後に、例えば塩基性化合物の水溶液で処理することにより容易に行うことができる。   As a method for imparting a fine concavo-convex structure to the surface of the polyester fiber thus obtained, a method of reducing the weight by contacting with a basic compound is preferable. The contact with the basic compound is facilitated by, for example, treating the fiber with an aqueous solution of the basic compound after subjecting the fiber to a treatment such as stretching heat treatment or false twisting as necessary, or further forming a fabric. Can be done.

ここで使用する塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、テトラメチルアンモニウムハイドロオキサイド、炭酸ナトリウム、炭酸カリウムなどを挙げることができる。中でも水酸化ナトリウム、水酸化カリウムが特に好ましい。この塩基性化合物水溶液の濃度は、塩基性化合物の種類、処理条件などによって異なるが、特に0.1〜30重量%の範囲が好ましい。処理温度は常温〜100℃の範囲である事が好ましい。   Examples of the basic compound used here include sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, sodium carbonate, and potassium carbonate. Of these, sodium hydroxide and potassium hydroxide are particularly preferred. The concentration of the basic compound aqueous solution varies depending on the type of the basic compound, processing conditions, and the like, but is preferably in the range of 0.1 to 30% by weight. The treatment temperature is preferably in the range of room temperature to 100 ° C.

この塩基性化合物水溶液の処理などによってポリエステル繊維を減量する量は、繊維重量に対して2重量%以上、好ましくは5重量%以上、更に好ましくは10重量%以上の範囲とすることが好ましい。このように塩基性化合物水溶液で処理する事により、繊維軸方向に配列した微細孔を繊維表面及びその近傍に多数形成させることができ、染色した際により優れた色の深みと鮮明性を呈するようになる。   The amount by which the polyester fiber is reduced by the treatment with the basic compound aqueous solution or the like is preferably 2% by weight or more, preferably 5% by weight or more, and more preferably 10% by weight or more based on the fiber weight. By treating with an aqueous solution of the basic compound in this way, a large number of micropores arranged in the fiber axis direction can be formed on the fiber surface and its vicinity, so that excellent color depth and sharpness are exhibited when dyed. become.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に制限されるものではない。なお、実施例中の分析項目などは、下記記載の方法により測定した。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not restrict | limited to these Examples. The analysis items in the examples were measured by the methods described below.

(ア)固有粘度:
ポリエステル組成物を100℃、60分間でオルトクロロフェノールに溶解した希薄溶液を、35℃でウベローデ粘度計を用いて測定した値から求めた。
(A) Intrinsic viscosity:
A dilute solution obtained by dissolving the polyester composition in orthochlorophenol at 100 ° C. for 60 minutes was determined from a value measured at 35 ° C. using an Ubbelohde viscometer.

(イ)ジエチレングリコール含有量:
ヒドラジンヒドラート(抱水ヒドラジン)を用いてポリエステル試料チップを分解し、この分解生成物中のジエチレングリコールの含有量をガスクロマトグラフィー(ヒューレットパッカード社製(HP6850型))を用いて測定した。
(A) Diethylene glycol content:
The polyester sample chip was decomposed using hydrazine hydrate (hydrated hydrazine), and the content of diethylene glycol in the decomposition product was measured using gas chromatography (manufactured by Hewlett-Packard (HP 6850)).

(ウ)繊維の引張強度・伸度:
JIS−L−1070記載の方法に準拠して測定を行った。
(C) Tensile strength / elongation of fiber:
Measurement was performed in accordance with the method described in JIS-L-1070.

(エ)繊維表面の凹凸構造:
アルカリ減量後の布帛を、走査型電子顕微鏡にて4000倍にて観察した。参考例1の方法で得られた繊維表面構造を基準とし、凹凸構造の形成状態を評価した。
(D) Uneven structure on fiber surface:
The fabric after alkali weight reduction was observed at 4000 times with a scanning electron microscope. Based on the fiber surface structure obtained by the method of Reference Example 1, the formation state of the concavo-convex structure was evaluated.

(オ)深色度:
色の深みを示す尺度として深色度(K/S)を用いた。サンプル布帛の分光反射率を、島津製作所製RC−330型自記分光光度計にて測定し、下記のクベルカ・ムンクの指揮により求めた。この値が大きいほど深色効果が大きい事を示す。
K/S=(1−R)/2R
なお、Rは反射率、Kは吸収計数、Sは散乱計数を示す。
(E) Deep chromaticity:
Deep chromaticity (K / S) was used as a measure of color depth. The spectral reflectance of the sample fabric was measured with an RC-330 self-recording spectrophotometer manufactured by Shimadzu Corporation, and obtained under the direction of Kubelka Munch below. A larger value indicates a greater deep color effect.
K / S = (1-R) 2 / 2R
Here, R represents reflectance, K represents an absorption coefficient, and S represents a scattering coefficient.

(カ)ポリエステル繊維(ポリエステル組成物)の繰り返し単位、含有化合物の化学構造
ポリエステル組成物サンプルを重水素化トリフルオロ酢酸/重水素化クロロホルム=1/1混合溶媒に溶解後、沈殿を濾過により除き、得られた溶液を日本電子(株)製JEOL A−600 超伝導FT−NMRを用いて核磁気共鳴スペクトル(H−NMR)を測定した。そのスペクトルパターンから常法に従ってポリエステルの繰り返し単位の化学構造を同定した。またポリエステル組成物の溶液にメタノールを添加しポリエステル成分を沈殿させた後、上澄み液を濃縮して核磁気共鳴スペクトル分析を行うことによりアルカリ金属化合物等、ホスホン酸化合物の化学構造を同定した。
(F) Repeating unit of polyester fiber (polyester composition), chemical structure of contained compound A polyester composition sample was dissolved in deuterated trifluoroacetic acid / deuterated chloroform = 1/1 mixed solvent, and then the precipitate was removed by filtration. The nuclear magnetic resonance spectrum ( 1 H-NMR) of the obtained solution was measured using JEOL A-600 superconducting FT-NMR manufactured by JEOL Ltd. The chemical structure of the repeating unit of the polyester was identified from the spectrum pattern according to a conventional method. Further, methanol was added to the polyester composition solution to precipitate the polyester component, and then the supernatant liquid was concentrated and subjected to nuclear magnetic resonance spectrum analysis to identify the chemical structure of the phosphonic acid compound such as an alkali metal compound.

(キ)ポリエステル組成物中のリン原子および金属原子含有量:
ポリエステル組成物中のリン金属原子含有量、金属原子含有量は粒状のポリエステル組成物(繊維)サンプルをスチール板上で加熱溶融した後、圧縮プレス機で平坦面を有する試験成形体を作成した。この試験成形体を使って蛍光X線装置(理学電機工業株式会社製3270E型)を用いて求めた。触媒としてチタン化合物を使用したものについては、サンプルをオルトクロロフェノールに溶解した後、0.5規定塩酸で抽出操作を行った。この抽出液について日立製作所製Z−8100型原子吸光光度計を用いて定量を行った。ここで0.5規定塩酸抽出後の抽出液中に酸化チタンの分散が確認された場合は遠心分離機で酸化チタン粒子を沈降させた。次に傾斜法により上澄み液のみを回収して、同様の操作を行った。これらの操作によりサンプル中に酸化チタンを含有していても触媒として添加しているポリエステルに可溶性のチタン元素の定量が可能となる。また含有量が1ppm未満の測定限界未満であった場合には、「ND」と表記した。
(G) Phosphorus atom and metal atom content in the polyester composition:
The phosphorus metal atom content in the polyester composition and the metal atom content were obtained by heating and melting a granular polyester composition (fiber) sample on a steel plate, and then preparing a test molded body having a flat surface with a compression press. Using this test molded body, it was determined using a fluorescent X-ray apparatus (Model 3270E manufactured by Rigaku Corporation). About what used the titanium compound as a catalyst, after dissolving a sample in orthochlorophenol, extraction operation was performed with 0.5N hydrochloric acid. The extract was quantified using a Hitachi Z-8100 atomic absorption spectrophotometer. Here, when dispersion of titanium oxide was confirmed in the extract after extraction with 0.5 N hydrochloric acid, titanium oxide particles were precipitated using a centrifuge. Next, only the supernatant was recovered by the gradient method, and the same operation was performed. By these operations, the titanium element soluble in the polyester added as a catalyst can be quantified even if the sample contains titanium oxide. Moreover, when content was less than the measurement limit of less than 1 ppm, it described as "ND".

(ク)製糸性、濾過時のパック圧上昇:
ポリエステル組成物中の粗大粒子を評価するため、下記のように濾過昇圧速度を評価した。小型1軸スクリュータイプ押出機の溶融ポリマー出側にポリマー定量供給装置を取り付け、更にその出側に内径64mmφの2400メッシュ金網フィルターを2枚重ねて装着した。次いで、溶融ポリエステルの温度を290℃一定となるようにコントロールし、ポリエステル流量が33.3g/minの速度となるようにポリマーを10時間連続して濾過する。この時のフィルター入側の圧力上昇値の平均値をもって、濾過圧力上昇速度(パック圧上昇)とした。
(H) Yarn-making property, pack pressure increase during filtration:
In order to evaluate coarse particles in the polyester composition, the filtration pressure increase rate was evaluated as follows. A polymer quantitative supply device was attached to the molten polymer outlet side of a small single screw type extruder, and two 2400 mesh wire mesh filters with an inner diameter of 64 mmφ were attached to the outlet side. Next, the temperature of the molten polyester is controlled to be constant at 290 ° C., and the polymer is continuously filtered for 10 hours so that the polyester flow rate is 33.3 g / min. The average value of the pressure increase values on the filter entrance side at this time was defined as the filtration pressure increase rate (pack pressure increase).

[実施例1]
エステル化反応槽にて、テレフタル酸86部とエチレングリコール40部とを、常法に従ってエステル化反応させオリゴマーを得た。このオリゴマーに、テレフタル酸86部とエチレングリコール40部を65分間かけて連続的に供給し、245℃にてエステル化反応を行った。ついで三酸化アンチモン0.045部を添加して20分後、追加供給したテレフタル酸とエチレングリコールとから生成されるオリゴマー量と等モル量のオリゴマーを重縮合反応槽へ送液した。送液終了後直ちに酢酸カルシウムをポリマー中の酸成分に対して0.5モル%を重縮合反応槽に添加した。さらに5分後にフェニルホスホン酸をポリマー中の酸成分に対して0.6モル%を重縮合反応槽に添加した。その後290℃まで昇温し、0.03kPa以下の高真空化にて重縮合反応を行い、固有粘度が0.64dL/gのポリエステルチップを得た。
このチップを140℃にて6時間乾燥し、孔径0.3mm(円形)、36ホールの紡糸口金を使用し、290℃で溶融紡糸した。得られた未延伸糸を3.5倍に延伸して、83dtex/36filの延伸糸を得た。
[Example 1]
In an esterification reaction vessel, 86 parts of terephthalic acid and 40 parts of ethylene glycol were subjected to an esterification reaction according to a conventional method to obtain an oligomer. To this oligomer, 86 parts of terephthalic acid and 40 parts of ethylene glycol were continuously supplied over 65 minutes, and an esterification reaction was carried out at 245 ° C. Then, 0.045 part of antimony trioxide was added and 20 minutes later, an oligomer having an equimolar amount equal to the amount of oligomer produced from the additionally supplied terephthalic acid and ethylene glycol was fed to the polycondensation reaction tank. Immediately after completion of the liquid feeding, 0.5 mol% of calcium acetate with respect to the acid component in the polymer was added to the polycondensation reaction tank. After 5 minutes, 0.6 mol% of phenylphosphonic acid was added to the polycondensation reaction tank based on the acid component in the polymer. Thereafter, the temperature was raised to 290 ° C., and a polycondensation reaction was performed at a high vacuum of 0.03 kPa or less to obtain a polyester chip having an intrinsic viscosity of 0.64 dL / g.
This chip was dried at 140 ° C. for 6 hours, and melt-spun at 290 ° C. using a spinneret having a hole diameter of 0.3 mm (circular) and 36 holes. The obtained undrawn yarn was drawn 3.5 times to obtain a drawn yarn of 83 dtex / 36 fil.

得られた延伸糸にS撚り2500T/m又はZ撚り2500T/mの強撚を施し、ついで80℃で30分蒸熱処理して撚止めを行ってS撚強撚糸とZ撚強撚糸を得た。該撚止め強撚糸を、経密度47本/cm、緯密度32本/cmで、S撚、Z撚を2本交互に配して梨地ジョーゼット織物を製織した。得られた生機をロータリーワッシャーを用いて沸騰温度下20分間リラックス処理してシボ立てを行い、次いで常法に従ってプリセットを施した後、濃度が3.5重量%の水酸化ナトリウム水溶液中沸騰温度下で処理して、減量率が20重量%の布帛を得た。この減量処理した布帛の繊維表面には、繊維軸方向に配列した、短径が0.1〜0.5μm、長径が0.5〜1.5μmの微細孔が多数形成されていることを電子顕微鏡で確認した。
このアルカリ減量後の布帛を、Dianoix Black HG−FS(三菱化学製)15%owfを用いて130℃で60分間染色した後、水酸化ナトリウム1g/L及びハイドロサルファイト1g/Lを含む水溶液にて70℃で20分間還元洗浄して黒染布を得た。結果を表1に示した。
The obtained drawn yarn was subjected to S twist 2500 T / m or Z twist 2500 T / m strong twist, and then subjected to heat treatment at 80 ° C. for 30 minutes to perform twisting to obtain S twist strong twist yarn and Z twist strong twist yarn. . A satin georgette woven fabric was woven by alternately arranging two S twists and two Z twists with a warp density of 47 strands / cm and a weft density of 32 strands / cm. The obtained raw machine was relaxed using a rotary washer at a boiling temperature for 20 minutes and then subjected to embossing, and then subjected to presetting according to a conventional method, and then the boiling temperature in a sodium hydroxide aqueous solution having a concentration of 3.5% by weight. To obtain a fabric having a weight loss rate of 20% by weight. The fiber surface of the weight-reduced fabric has a large number of micropores arranged in the fiber axis direction and having a minor axis of 0.1 to 0.5 μm and a major axis of 0.5 to 1.5 μm. Confirmed with a microscope.
The fabric after the alkali weight reduction is dyed for 60 minutes at 130 ° C. using Dianix Black HG-FS (Mitsubishi Chemical) 15% owf, and then an aqueous solution containing 1 g / L of sodium hydroxide and 1 g / L of hydrosulfite. Then, it was reduced and washed at 70 ° C. for 20 minutes to obtain a black dyed fabric. The results are shown in Table 1.

[実施例2〜5、比較例1〜4]
実施例1において、酢酸カルシウムとフェニルホスホン酸の添加量を表1記載の量に変更したこと以外は、実施例1と同様に実施した。結果を表1に示した。
[Examples 2 to 5, Comparative Examples 1 to 4]
In Example 1, it carried out like Example 1 except having changed the addition amount of calcium acetate and phenylphosphonic acid into the quantity of Table 1. The results are shown in Table 1.

[比較例5,6]
実施例1において、酢酸カルシウムに変えて酢酸マンガン、酢酸亜鉛に変更したこと以外は、実施例1と同様に実施した。結果を表1に示した。
[Comparative Examples 5 and 6]
In Example 1, it carried out similarly to Example 1 except having changed into manganese acetate and zinc acetate instead of calcium acetate. The results are shown in Table 1.

[比較例7,8]
実施例1において、フェニルホスホン酸に変えて正リン酸、リン酸トリメチルに変更したこと以外は、実施例1と同様に実施した。結果を表1に示した。
[Comparative Examples 7 and 8]
In Example 1, it implemented like Example 1 except having changed into the regular phosphoric acid and the trimethyl phosphate instead of phenylphosphonic acid. The results are shown in Table 1.

[比較例9]
エステル化反応槽にて、テレフタル酸86部とエチレングリコール40部とを、常法に従ってエステル化反応させオリゴマーを得た。このオリゴマーに、テレフタル酸86部とエチレングリコール40部を65分間かけて連続的に供給し、245℃にてエステル化反応を行った。ついで三酸化アンチモン0.045部を添加して20分後、追加供給したテレフタル酸とエチレングリコールとから生成されるオリゴマー量と等モル量のオリゴマーを重縮合反応槽へ送液した。送液終了後、酢酸カルシウム0.53部(テレフタル酸に対して0.5モル%)とフェニルホスホン酸0.57部(酢酸カルシウムに対して1.2倍モル)を、6.8部のエチレングリコール中で120℃の温度において60分間反応せしめて調整したフェニルホスホン酸カルシウム塩の透明溶液を添加した。その後290℃まで昇温し、0.03kPa以下の高真空化にて重縮合反応を行い、固有粘度が0.64dL/gのポリエステルチップを得た。
得られたポリエステルは実施例1と同様の方法で紡糸・減量・染色処理を実施した。結果を表1に示した。
[Comparative Example 9]
In an esterification reaction vessel, 86 parts of terephthalic acid and 40 parts of ethylene glycol were subjected to an esterification reaction according to a conventional method to obtain an oligomer. To this oligomer, 86 parts of terephthalic acid and 40 parts of ethylene glycol were continuously supplied over 65 minutes, and an esterification reaction was carried out at 245 ° C. Then, 0.045 part of antimony trioxide was added and 20 minutes later, an oligomer having an equimolar amount equal to the amount of oligomer produced from the additionally supplied terephthalic acid and ethylene glycol was fed to the polycondensation reaction tank. After completion of the liquid feeding, 0.53 parts of calcium acetate (0.5 mol% with respect to terephthalic acid) and 0.57 parts of phenylphosphonic acid (1.2 times mol with respect to calcium acetate) were added to 6.8 parts. A clear solution of calcium phenylphosphonate prepared by reacting in ethylene glycol at a temperature of 120 ° C. for 60 minutes was added. Thereafter, the temperature was raised to 290 ° C., and a polycondensation reaction was performed at a high vacuum of 0.03 kPa or less to obtain a polyester chip having an intrinsic viscosity of 0.64 dL / g.
The obtained polyester was subjected to spinning, weight loss and dyeing treatment in the same manner as in Example 1. The results are shown in Table 1.

[参考例1:エステル交換反応法(上記の特許文献6記載)]
テレフタル酸ジメチル100重量部、エチレングリコール60重量部、酢酸カルシウム1水和物0.06重量部をエステル交換反応槽に仕込み、窒素ガス雰囲気下で140℃から230℃まで昇温し、生成するメタノールを系外に留去しながらエステル交換反応を行った。続いて0.2部のリン酸トリメチル(テレフタル酸ジメチルに対して0.25モル%)と0.35部の酢酸カルシウム1水塩(リン酸トリメチルに対して1/2倍モル)を6.8部のエチレングリコール中で120℃の温度において60分間反応せしめて調整したリン酸ジエステルカルシウム塩の透明溶液を添加し、次いで三酸化アンチモン0.04重量部を添加して重縮合反応槽に移した。その後290℃まで昇温し、0.03kPa以下の高真空化にて重縮合反応を行い、固有粘度が0.64dL/gのポリエステルチップを得た。
得られたポリエステルは実施例1と同様の方法で紡糸・減量・染色処理を実施した。結果を表1に示した。DEG含有量が多くポリエステル組成物の耐熱性が劣化している。が良くなかった。
[Reference Example 1: Transesterification (described in Patent Document 6)]
Methanol produced by charging 100 parts by weight of dimethyl terephthalate, 60 parts by weight of ethylene glycol, and 0.06 parts by weight of calcium acetate monohydrate in a transesterification reaction tank and raising the temperature from 140 ° C. to 230 ° C. in a nitrogen gas atmosphere. Was transesterified while distilling out of the system. Subsequently, 0.2 parts of trimethyl phosphate (0.25 mol% with respect to dimethyl terephthalate) and 0.35 parts of calcium acetate monohydrate (1/2 mol with respect to trimethyl phosphate) were added. Add a clear solution of calcium phosphate diester calcium salt prepared by reaction for 60 minutes at 120 ° C in 8 parts ethylene glycol, then add 0.04 parts by weight antimony trioxide and transfer to polycondensation reactor. did. Thereafter, the temperature was raised to 290 ° C., and a polycondensation reaction was performed at a high vacuum of 0.03 kPa or less to obtain a polyester chip having an intrinsic viscosity of 0.64 dL / g.
The obtained polyester was subjected to spinning, weight loss and dyeing treatment in the same manner as in Example 1. The results are shown in Table 1. The polyester content is high and the heat resistance of the polyester composition is deteriorated. Was not good.

本願実施例で得られたポリエステル組成物から得たポリエステル繊維は塩基性化合物水溶液による減量処理(アルカリ減量)を行うことによって繊維表面に微細孔が多数存在し、染色処理を行うことによって色の深みと鮮明性を呈するようになる。しかし、比較例によって得られた繊維は同様の処理を行っても、微細孔の数が少なかったり、粗大な孔がやや少なめ、少なめ、又はやや多めに存在するに過ぎず、染色を処理を行っても色の深みと鮮明性を呈するポリエステル繊維は得られなかった。   The polyester fiber obtained from the polyester composition obtained in the Examples of the present application has a lot of fine pores on the fiber surface by performing a weight loss treatment (alkali weight loss) with an aqueous basic compound solution, and a color depth by performing a dyeing treatment. And it comes to show clarity. However, even if the fibers obtained by the comparative example were subjected to the same treatment, the number of micropores was small, or coarse pores were slightly fewer, fewer, or slightly larger, and the fibers were dyed. However, polyester fibers exhibiting color depth and clarity were not obtained.

本発明によれば、繊維の表面に特異な微細孔を容易に形成することができるので、染色した際に改善された色の深みと鮮明性を呈することのできるポリエステル繊維が提供される。   According to the present invention, since unique micropores can be easily formed on the surface of the fiber, a polyester fiber which can exhibit improved color depth and sharpness when dyed is provided.

Claims (2)

テレフタル酸を主とするジカルボン酸成分とエチレングリコールを主とするジオール成分からエステル化反応を行いオリゴマーを生成する工程と、当該オリゴマーに対して重縮合反応を行う工程を有する製造工程にて製造されるポリエステル組成物の製造方法において、
アルカリ金属化合物及び/又はアルカリ土類金属化合物と下記一般式(I)で表されるリン化合物とを、該ジカルボン酸成分に対して、アルカリ金属原子及び/又はアルカリ金属原子が0.1〜2.0モル%の範囲で含有するように添加し、且つリン化合物を下記式(1)を満足するように添加することを特徴とするポリエステル組成物の製造方法。
[上記式(I)中、Arは未置換若しくは置換された6〜20個の炭素原子を有するアリール基を表し、Rは水素原子又はOR基を表す。Rは未置換若しくは置換された1〜20個の炭素原子を有するアルキル基、未置換若しくは置換された6〜20個の炭素原子を有するアリール基又は未置換若しくは置換された7〜20個の炭素原子を有するベンジル基を表す。]
0.5≦P/M≦2.0 ・・・(1)
[上記数式(1)において、Pはリン化合物添加によるリン原子のモル量を表し、Mはアルカリ金属化合物及び/又はアルカリ土類金属化合物の添加によるアルカリ金属原子及び/又はアルカリ金属原子のモル量を表す。]
Manufactured in a manufacturing process that has an esterification reaction from a dicarboxylic acid component mainly composed of terephthalic acid and a diol component mainly composed of ethylene glycol, and a step of polycondensation reaction on the oligomer. In the method for producing a polyester composition,
An alkali metal atom and / or an alkaline earth metal compound and a phosphorus compound represented by the following general formula (I) are used in an amount of 0.1 to 2 with respect to the dicarboxylic acid component. A method for producing a polyester composition, comprising adding in a range of 0.0 mol% and adding a phosphorus compound so as to satisfy the following formula (1).
[In the above formula (I), Ar represents an unsubstituted or substituted aryl group having 6 to 20 carbon atoms, and R 1 represents a hydrogen atom or an OR 2 group. R 2 is an unsubstituted or substituted alkyl group having 1 to 20 carbon atoms, an unsubstituted or substituted aryl group having 6 to 20 carbon atoms, or an unsubstituted or substituted 7 to 20 carbon atoms A benzyl group having a carbon atom is represented. ]
0.5 ≦ P / M ≦ 2.0 (1)
[In the above formula (1), P represents the molar amount of phosphorus atom by addition of phosphorus compound, M is the molar amount of alkali metal atom and / or alkali metal atom by addition of alkali metal compound and / or alkaline earth metal compound. Represents. ]
ポリエステル組成物を製造する際に、アルカリ金属化合物及び/又はアルカリ土類金属化合物とリン化合物を、オリゴマーを生成する工程及び/又は重縮合反応を行う工程に添加する前に反応させる事なく、個別にポリエステルの製造工程に添加することを特徴とする、請求項1に記載のポリエステル組成物の製造方法。   When producing a polyester composition, an alkali metal compound and / or an alkaline earth metal compound and a phosphorus compound are individually reacted without being added to the step of forming an oligomer and / or the step of performing a polycondensation reaction. It adds to the manufacturing process of polyester to the manufacturing method of the polyester composition of Claim 1 characterized by the above-mentioned.
JP2009213236A 2009-09-15 2009-09-15 Method for producing polyester composition for producing high-definition polyester fiber with alkali weight loss Active JP5336310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009213236A JP5336310B2 (en) 2009-09-15 2009-09-15 Method for producing polyester composition for producing high-definition polyester fiber with alkali weight loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009213236A JP5336310B2 (en) 2009-09-15 2009-09-15 Method for producing polyester composition for producing high-definition polyester fiber with alkali weight loss

Publications (2)

Publication Number Publication Date
JP2011063646A true JP2011063646A (en) 2011-03-31
JP5336310B2 JP5336310B2 (en) 2013-11-06

Family

ID=43950231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009213236A Active JP5336310B2 (en) 2009-09-15 2009-09-15 Method for producing polyester composition for producing high-definition polyester fiber with alkali weight loss

Country Status (1)

Country Link
JP (1) JP5336310B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105397A (en) * 2012-11-26 2014-06-09 Teijin Ltd High-deep-colored polyester fiber
JP2014105405A (en) * 2012-11-27 2014-06-09 Teijin Ltd Highly deep color polyester combined filament yarn
JP2017160568A (en) * 2016-03-10 2017-09-14 日本エステル株式会社 Latent deep dyeable polyester fiber, deep dyeable polyester fiber, and manufacturing method of deep dyeable polyester fiber
JP2018168511A (en) * 2017-03-30 2018-11-01 帝人フロンティア株式会社 Porous hollow fiber
JP2019183366A (en) * 2018-04-11 2019-10-24 帝人フロンティア株式会社 Fabric, manufacturing method thereof, and textile product
JP2020176355A (en) * 2019-04-23 2020-10-29 帝人フロンティア株式会社 Fabric and production method thereof and textile product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08106141A (en) * 1994-10-04 1996-04-23 Toray Ind Inc Polyester for photographic material and film made of it
JP2002179781A (en) * 2000-12-11 2002-06-26 Toyobo Co Ltd Polyester resin
JP2003147635A (en) * 2001-08-29 2003-05-21 Teijin Ltd Polyester fiber and method for producing the same
JP2004175911A (en) * 2002-11-27 2004-06-24 Teijin Ltd Method for producing polyester film
JP2004250812A (en) * 2003-02-19 2004-09-09 Teijin Ltd Polyester fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08106141A (en) * 1994-10-04 1996-04-23 Toray Ind Inc Polyester for photographic material and film made of it
JP2002179781A (en) * 2000-12-11 2002-06-26 Toyobo Co Ltd Polyester resin
JP2003147635A (en) * 2001-08-29 2003-05-21 Teijin Ltd Polyester fiber and method for producing the same
JP2004175911A (en) * 2002-11-27 2004-06-24 Teijin Ltd Method for producing polyester film
JP2004250812A (en) * 2003-02-19 2004-09-09 Teijin Ltd Polyester fiber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105397A (en) * 2012-11-26 2014-06-09 Teijin Ltd High-deep-colored polyester fiber
JP2014105405A (en) * 2012-11-27 2014-06-09 Teijin Ltd Highly deep color polyester combined filament yarn
JP2017160568A (en) * 2016-03-10 2017-09-14 日本エステル株式会社 Latent deep dyeable polyester fiber, deep dyeable polyester fiber, and manufacturing method of deep dyeable polyester fiber
JP2018168511A (en) * 2017-03-30 2018-11-01 帝人フロンティア株式会社 Porous hollow fiber
JP2019183366A (en) * 2018-04-11 2019-10-24 帝人フロンティア株式会社 Fabric, manufacturing method thereof, and textile product
JP7244319B2 (en) 2018-04-11 2023-03-22 帝人フロンティア株式会社 Fabric, its manufacturing method, and textile products
JP2020176355A (en) * 2019-04-23 2020-10-29 帝人フロンティア株式会社 Fabric and production method thereof and textile product
JP7315366B2 (en) 2019-04-23 2023-07-26 帝人フロンティア株式会社 Fabric, its manufacturing method, and textile products

Also Published As

Publication number Publication date
JP5336310B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5336310B2 (en) Method for producing polyester composition for producing high-definition polyester fiber with alkali weight loss
KR20070039494A (en) Polytrimethylene terephthalate
TWI583835B (en) Core-sheath composite fiber and manufacturing method of the same
JP2010059572A (en) Atmospheric cation dyeable polyester conjugate fiber
JP2007284599A (en) Copolymer polyester composition and fiber
JP5218887B2 (en) Normal pressure cationic dyeable polyester composition and polyester fiber comprising the same
JP5161850B2 (en) Clear polyester fiber
JP2011058136A (en) Method for producing polyethylene naphthalate monofilament
KR100938372B1 (en) Polyester composition and process for producing the same
JP2013249337A (en) Method for producing polyester composition for producing water absorptive polyester fiber
JP2010059232A (en) Production method of polyester composition excellent in color developing property
JP2014105397A (en) High-deep-colored polyester fiber
JP5161851B2 (en) Clear polyester fiber
JP2013170251A (en) Copolyester and polyester fiber
JP7315366B2 (en) Fabric, its manufacturing method, and textile products
JP7009995B2 (en) Copolymerized polyester and composite fibers containing it
JP2010168707A (en) Ordinary pressure cation-dyeable polyester multifilament
JP2014105405A (en) Highly deep color polyester combined filament yarn
TWI805829B (en) Polyester composition
JP5217058B2 (en) Polyethylene naphthalate monofilament for industrial use filter filter
JP2017160568A (en) Latent deep dyeable polyester fiber, deep dyeable polyester fiber, and manufacturing method of deep dyeable polyester fiber
JPH0598512A (en) Polyester fiber
JP2004137458A (en) Polyester composition and method for producing the same
JP2011063895A (en) Polyester fiber and false-twisted yarn obtained from the same
JP2007284598A (en) Copolymer polyester composition and fiber

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110704

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120709

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130801

R150 Certificate of patent or registration of utility model

Ref document number: 5336310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250