JP2011063553A - Method of reutilizing unreacted monomer content in polymerization of acrylonitrile - Google Patents

Method of reutilizing unreacted monomer content in polymerization of acrylonitrile Download PDF

Info

Publication number
JP2011063553A
JP2011063553A JP2009216488A JP2009216488A JP2011063553A JP 2011063553 A JP2011063553 A JP 2011063553A JP 2009216488 A JP2009216488 A JP 2009216488A JP 2009216488 A JP2009216488 A JP 2009216488A JP 2011063553 A JP2011063553 A JP 2011063553A
Authority
JP
Japan
Prior art keywords
polymerization
acrylonitrile
distillation
unreacted monomer
purified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009216488A
Other languages
Japanese (ja)
Other versions
JP5682107B2 (en
Inventor
Yasuo Niino
泰生 新野
Hirozane Nishiwaki
寛実 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2009216488A priority Critical patent/JP5682107B2/en
Publication of JP2011063553A publication Critical patent/JP2011063553A/en
Application granted granted Critical
Publication of JP5682107B2 publication Critical patent/JP5682107B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Artificial Filaments (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique of inhibiting adherent staining caused in facilities to a minimum to enable economical distillation and purification in reutilizing the unreacted monomer content formed in the process for producing PAN-based fibers by solution polymerization using an aprotic polar solvent and a radical initiator. <P>SOLUTION: A method of reutilizing the unreacted monomer content in the polymerization of acrylonitrile (AN) includes a step of performing azeotropy of water and AN, a step of separating a distillate of the azeotropy into an aqueous phase and an organic phase by decantation to recover crude AN including not less than 90 wt.% AN, a step of subjecting the crude AN to reduced-pressure distillation at least once in the presence of a polymerization solvent and a polymerization inhibitor in a distillation column, and a step of recovering highly purified AN having a purity of 97 wt.% or higher, and a step of adding at least part of the purified AN to the polymerization step as a polymerization raw material in separating the unreacted monomer content from an aqueous coagulation bath solution after spinning polyacrylonitrile (PAN). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、非プロトン性極性溶媒およびラジカル開始剤を用いた溶液重合によるポリアクリロニトリル(以下PANと記載)系繊維の製造プロセスに於いて、発生するアクリロニトリルを主成分とする原料モノマーの未反応分を蒸留精製し、再度重合原料として利用する技術に関するものである。   The present invention relates to an unreacted component of a raw material monomer mainly composed of acrylonitrile in a production process of polyacrylonitrile (hereinafter referred to as PAN) fiber by solution polymerization using an aprotic polar solvent and a radical initiator. The present invention relates to a technique for distilling and purifying and again using it as a polymerization raw material.

PAN系繊維の用途は衣料向けを始めとして多岐に渡り、炭素繊維を製造するための前駆体繊維としても使用されている。特に、炭素繊維は、優れた比強度と弾性率を有することから、自動車、航空機分野での使用が増加しつつある。   PAN-based fibers are used in a wide variety of applications including clothing, and are also used as precursor fibers for producing carbon fibers. In particular, the use of carbon fibers in the automobile and aircraft fields is increasing because they have excellent specific strength and elastic modulus.

PAN系繊維は、アクリロニトリルを主成分とするモノマー原料を重合、紡糸することによって得られ、重合方法は溶液重合と懸濁重合に大別される。   The PAN-based fiber is obtained by polymerizing and spinning a monomer raw material mainly composed of acrylonitrile, and the polymerization method is roughly classified into solution polymerization and suspension polymerization.

溶液重合では反応が進行すると、ラジカル重合の反応速度が低下するため、モノマーの転化率を90%前後で打ち切った方が、経済的な運転が可能となる。ここで得られたポリマー溶液を、水系凝固浴液に紡出することでPAN系繊維が得られる。   As the reaction proceeds in solution polymerization, the reaction rate of radical polymerization decreases. Therefore, it is possible to operate economically by cutting off the monomer conversion rate around 90%. The polymer solution obtained here is spun into an aqueous coagulation bath to obtain a PAN fiber.

重合工程で重合に寄与しなかったモノマーは、原料の損失として製造コストを上げる要因となる。また、製造プロセスから分離回収したモノマーの未反応分を廃棄する場合は、さらに費用が発生する。このため、PAN系繊維のコストを低減するためには、モノマーの未反応分を回収し、再利用する技術を確立することが有効な手段である。   Monomers that have not contributed to the polymerization in the polymerization step cause the production cost to increase as raw material loss. Further, when the unreacted monomer separated and recovered from the production process is discarded, further costs are incurred. For this reason, in order to reduce the cost of the PAN-based fiber, it is an effective means to establish a technique for recovering and reusing the unreacted monomer.

溶液重合によるPAN系繊維製造において発生するモノマー未反応分の回収、再利用方法としては、特許文献1及び2に記載の方法がある。   As methods for recovering and reusing monomer unreacted components generated in PAN-based fiber production by solution polymerization, there are methods described in Patent Documents 1 and 2.

特許文献1には紡糸前のポリマー溶液からモノマーの未反応分を気化回収する方法が記載されており、特許文献2には回収したモノマーの未反応分を精製することなく重合原料として再利用する方法が記載されている。しかしながら、回収したモノマー未反応分を未精製のまま原料として再利用した場合、原料中の不純物が循環濃縮するためPAN系繊維の品質低下の原因となる。また、特許文献1及び特許文献3に記載されているように、紡糸前のポリマー溶液からモノマーの未反応分を気化回収する方法では、未反応分を完全に回収することはできず、回収されずに残った未反応分は紡糸工程に送られ水系凝固浴液に混入する。このため、モノマー未反応分を確実に回収して精製する技術、及び水系凝固浴に混入したモノマーの未反応分を再利用する技術が確立できれば、既存技術以上の品質安定化、及びコスト低減が期待できる。   Patent Document 1 describes a method of vaporizing and recovering an unreacted monomer from a polymer solution before spinning, and Patent Document 2 reuses the recovered unreacted monomer as a polymerization raw material without purification. A method is described. However, when the recovered unreacted monomer is reused as a raw material without purification, impurities in the raw material are circulated and concentrated, which causes a deterioration in the quality of the PAN fiber. Further, as described in Patent Document 1 and Patent Document 3, in the method of vaporizing and recovering the unreacted monomer from the polymer solution before spinning, the unreacted content cannot be recovered completely and is recovered. The remaining unreacted portion is sent to the spinning process and mixed into the aqueous coagulation bath liquid. For this reason, if technology that reliably recovers and purifies unreacted monomer and technology that reuses unreacted monomer mixed in the aqueous coagulation bath can be established, quality stabilization and cost reduction over existing technologies can be achieved. I can expect.

水系凝固浴液からモノマーの未反応分を気化分離し、回収する技術に関しては特許文献3及び4に記載されている。しかしながら、これら技術は凝固浴液中のモノマー除去を目的としており、再利用に関して全く考慮されていない。   Patent Documents 3 and 4 describe techniques for vaporizing and separating the unreacted monomer components from the aqueous coagulation bath liquid. However, these techniques are aimed at removing the monomer in the coagulation bath liquid, and are not considered at all for reuse.

重合溶液および凝固浴液から回収したモノマーの未反応分を再利用する技術に関しては、特許文献5に記載されている。しかし、この発明は回収したモノマー未反応分の安定性向上を目的として重合禁止剤を加える技術であり、モノマー未反応分の精製に関する詳細技術および、PAN系繊維への品質影響に関しては考慮されていない。   A technique for reusing the unreacted monomer recovered from the polymerization solution and the coagulation bath is described in Patent Document 5. However, this invention is a technology for adding a polymerization inhibitor for the purpose of improving the stability of the recovered monomer unreacted component, and has been considered for the detailed technology related to the purification of the monomer unreacted component and the quality effect on the PAN fiber. Absent.

モノマーの未反応分を精製する場合の問題点は、特許文献4に記載されており、モノマーの未反応分にはラジカル開始剤の残存分・開始剤の分解物・その他原料由来の不純物等が含まれているため、容易に重合反応が起きやすくなっている。そのため、モノマーの未反応分を蒸留精製すると、設備内部が重合反応物の汚れにより設備洗浄サイクルが短くなるなど経済的な運転ができないばかりか、重合反応の制御に課題が残るため、工業化という観点で十分とはいえなかった。   Problems in purifying unreacted monomer components are described in Patent Document 4, and the unreacted monomer components include residual radical initiator, decomposed products of initiators, and other impurities derived from raw materials. Since it is contained, the polymerization reaction easily occurs. Therefore, if the unreacted monomer content is purified by distillation, the inside of the equipment cannot be economically operated because the equipment washing cycle becomes shorter due to contamination of the polymerization reaction product, and problems remain in the control of the polymerization reaction. It was not enough.

実際に、特許文献5に記載の方法で蒸留精製を行った場合、蒸留設備内部にモノマーの未反応分の重合反応に由来すると思われる付着物が発生するため、経済的に不利な蒸留運転を強いられることになる。   Actually, when distillation purification is performed by the method described in Patent Document 5, deposits that are thought to be derived from the polymerization reaction of the unreacted monomer are generated inside the distillation equipment, so that an economically disadvantageous distillation operation is performed. Will be forced.

精製蒸留の経済的な運転、及びPAN系繊維の品質影響を無視すれば、特許文献4及び5の技術範囲内で、モノマーの未反応分を再利用することは可能だが、高機能繊維及び炭素繊維向けなど、品質の安定性が高い基準で求められる用途では、純度が保証できないモノマーの未反応分を未精製のまま再利用することは、実質的に問題が大きい。   If we ignore the economical operation of refining distillation and the quality effect of PAN-based fibers, it is possible to reuse the unreacted monomer within the technical scope of Patent Documents 4 and 5, but highly functional fibers and carbon. In applications that require high quality stability, such as for fibers, it is substantially problematic to reuse unreacted monomer components that cannot be guaranteed in purity.

PAN系繊維の製造プロセス以外ではあるが、反応系から回収されたアクリロニトリルを精製する技術としては、特許文献6及び7に記載の方法がある。   As a technique for purifying acrylonitrile recovered from the reaction system, other than the PAN-based fiber manufacturing process, there are methods described in Patent Documents 6 and 7.

これらは、蒸留時の酸素濃度、又は温度条件の制御により、アクリロニトリルの重合を抑制する技術であり、主にアクリルアミド誘導体の製造工程から回収されるアクリロニトリルの未反応分の精製を技術の適応範囲としている。   These are technologies that suppress the polymerization of acrylonitrile by controlling the oxygen concentration or temperature conditions during distillation, and mainly purify unreacted acrylonitrile recovered from the production process of acrylamide derivatives. Yes.

しかしながら、本発明者らの検討において、ラジカル開始剤を用いた溶液重合によるPAN系繊維で発生するモノマーの未反応分の精製に関して、特許文献6及び7に記載の技術を適用したところ、蒸留設備内壁に発生する付着物を完全に抑制することはできなかった。この問題の原因は、特許文献7に記載のとおり、アクリロニトリルに含まれる不純物は反応系ごとに異なっているため、その有効性を全てのアクリロニトリル含有成分を精製する際に適応できない点にあると思われる。   However, in the study by the present inventors, when the techniques described in Patent Documents 6 and 7 were applied to purify unreacted monomers generated in the PAN-based fiber by solution polymerization using a radical initiator, distillation equipment was used. The deposits generated on the inner wall could not be completely suppressed. The cause of this problem seems to be that, as described in Patent Document 7, the impurities contained in acrylonitrile differ from reaction system to reaction system, so that the effectiveness cannot be applied when purifying all acrylonitrile-containing components. It is.

以上の理由から、非プロトン性極性溶媒およびラジカル開始剤を用いた溶液重合によるPAN系繊維の製造において、発生する原料モノマーの未反応分を蒸留精製し、再度重合原料として使用する技術の需要は極めて高いものである。   For the above reasons, in the production of PAN-based fibers by solution polymerization using an aprotic polar solvent and a radical initiator, there is a demand for technology for distilling and purifying unreacted raw material monomers generated and using them again as polymerization raw materials. It is extremely expensive.

特開2000−44606JP 2000-44606 A 特開2000−336115JP 2000-336115 A 特開2004−91943JP 2004-91943 A 特開2006−241648JP 2006-241648 A 特開平10−87740JP-A-10-87740 特開平7−70036JP 7-70036 A 特開平7−48335JP 7-48335 A

本発明は、非プロトン性極性溶媒およびラジカル開始剤を用いた溶液重合によるPAN系繊維の製造プロセスに於いて、発生するモノマーの未反応分を再利用するに際し、設備に発生する付着性の汚れを最小限に抑えつつ、かつ経済的に蒸留精製できる技術を提供するものである。   The present invention relates to adhesive dirt generated in equipment when reusing unreacted monomer in a PAN-based fiber production process by solution polymerization using an aprotic polar solvent and a radical initiator. Therefore, it is possible to provide a technique capable of economically purifying by distillation while minimizing the above.

本発明者らは、非プロトン性極性溶媒およびラジカル開始剤を用いた溶液重合によるPAN系繊維の製造プロセスに於いて、発生するモノマーの未反応分を蒸留する技術を詳細に検討した結果、特定の蒸留条件において、設備に発生する付着性の汚れを最小限に抑えつつ、かつ経済的に運転できることを見出し、本発明を完成するに至った。   As a result of detailed examination of a technique for distilling unreacted monomers generated in a PAN-based fiber production process by solution polymerization using an aprotic polar solvent and a radical initiator, the present inventors have identified Under these distillation conditions, it was found that the system can be operated economically while minimizing adhesive dirt generated in the equipment, and the present invention has been completed.

すなわち、請求項1に係る発明は、PAN系繊維の製造に関して、以下の工程を備えることを特徴とするアクリロニトリルの重合に於けるモノマー未反応分を再利用する方法である。
(1)モノマー原料の95重量%以上がアクリロニトリルであり、非プロトン性極性溶媒を重合溶媒として、ラジカル開始剤を用いた溶液重合を行う工程。
(2)溶液重合により得られたポリアクリロニトリル(以下PANと記載)を水系凝固浴液に紡出する。その水系凝固浴液からモノマーの未反応分を分離するに際し、水とアクリロニトリルの共沸を行う行程。
(3)前記共沸の留分をデカンテーションにより水相と有機相に分液し、アクリロニトリルを90重量%以上含む粗アクリロニトリルを回収する工程。
(4)蒸留塔内に重合溶媒と重合禁止剤が存在する条件で、粗アクリロニトリルを少なくとも1回以上減圧蒸留し、純度97重量%以上に高純度化した精製アクリロニトリルを回収する工程。
(5)精製アクリロニトリルの少なくとも一部を重合原料として重合工程に返還する工程。
That is, the invention according to claim 1 is a method for reusing the unreacted monomer component in the polymerization of acrylonitrile, characterized by comprising the following steps for the production of PAN-based fibers.
(1) A step of performing solution polymerization using a radical initiator with 95% by weight or more of the monomer raw material being acrylonitrile and using an aprotic polar solvent as a polymerization solvent.
(2) Polyacrylonitrile (hereinafter referred to as PAN) obtained by solution polymerization is spun into an aqueous coagulation bath. A process in which water and acrylonitrile are azeotroped when the unreacted monomer is separated from the aqueous coagulation bath.
(3) A step of separating the azeotropic fraction into an aqueous phase and an organic phase by decantation and recovering crude acrylonitrile containing 90% by weight or more of acrylonitrile.
(4) A step of recovering purified acrylonitrile purified to a purity of 97% by weight or more by distilling crude acrylonitrile under reduced pressure at least once under the condition that a polymerization solvent and a polymerization inhibitor are present in the distillation column.
(5) A step of returning at least a part of the purified acrylonitrile to the polymerization step as a polymerization raw material.

請求項2に係る発明は、非プロトン性極性溶媒のジメチルスルホキシド(以下DMSOと記載)であることを特徴としている。   The invention according to claim 2 is characterized in that it is dimethyl sulfoxide (hereinafter referred to as DMSO) which is an aprotic polar solvent.

請求項3に係る発明は、前記工程(4)において、減圧蒸留する際の重合禁止剤がクペロンを含んでおり、かつクペロンの供給量が、粗アクリロニトリルの重量に対して10ppm(重量基準、以下同様)以上、500ppm以下であることを特徴としている。   In the invention according to claim 3, in the step (4), the polymerization inhibitor used for distillation under reduced pressure contains cuperone, and the supply amount of cuperone is 10 ppm (weight basis, below) with respect to the weight of the crude acrylonitrile. The same) and 500 ppm or less.

請求項4に係る発明は、前記工程(4)において、減圧蒸留の運転条件が22kPa(絶対圧、以下同様)以上、70kPa以下であり、蒸留塔内の液およびガスの温度が35℃以上90℃以下であり、かつ蒸留設備に付随するリボイラの加熱源として60℃以上105℃以下の流体を使用することを特徴としている。   In the invention according to claim 4, in the step (4), the operation condition of the vacuum distillation is 22 kPa (absolute pressure, the same shall apply hereinafter) or more and 70 kPa or less, and the temperature of the liquid and gas in the distillation column is 35 ° C. or more and 90 ° C. A fluid having a temperature of 60 ° C. or higher and 105 ° C. or lower is used as a reboiler heating source associated with distillation equipment.

請求項5に係る発明は、前記工程(4)において、精製アクリロニトリルを回収する蒸留塔が、精製アクリロニトリルを留出回収する蒸留塔であり、蒸留塔のボトムにおける重合溶媒の濃度が5重量%以上、72重量%以下であることを特徴としている。   In the invention according to claim 5, in the step (4), the distillation column for recovering purified acrylonitrile is a distillation column for distilling and recovering purified acrylonitrile, and the concentration of the polymerization solvent at the bottom of the distillation column is 5% by weight or more. 72 wt% or less.

請求項6に係る発明は、前記工程(4)において、精製アクリロニトリルを回収する蒸留塔が、精製アクリロニトリルを留出回収する蒸留塔であり、蒸留塔のボトムにおける重合溶媒の濃度が30重量%以上、72重量%以下であることを特徴としている。   In the invention according to claim 6, in the step (4), the distillation column for recovering purified acrylonitrile is a distillation column for distilling and recovering purified acrylonitrile, and the concentration of the polymerization solvent at the bottom of the distillation column is 30% by weight or more. 72 wt% or less.

請求項7に係る発明は、前記工程(4)において、精製アクリロニトリルを回収する蒸留塔の缶出液に水分を加え、抽出操作により缶出液から重合溶媒を回収することを特徴としている。   The invention according to claim 7 is characterized in that, in the step (4), water is added to the bottoms of a distillation column for recovering purified acrylonitrile, and the polymerization solvent is recovered from the bottoms by an extraction operation.

本発明の蒸留技術により、非プロトン性極性溶媒およびラジカル開始剤を用いた溶液重合によるPAN系繊維の製造プロセスに於いて発生するモノマーの未反応分を、設備に発生する付着性の汚れを最小限に抑えつつ、効果的に蒸留精製し、再利用可能となるため、品質の安定性を保持したまま、PAN系繊維の製造コストを低減することができる。   The distillation technology of the present invention minimizes unreacted monomer generated in the production process of PAN fibers by solution polymerization using an aprotic polar solvent and a radical initiator, and minimizes adherent contamination generated in equipment. Since it can be effectively distilled and purified and reused while limiting to the limit, the production cost of the PAN-based fiber can be reduced while maintaining the stability of quality.

本発明はPAN系繊維で用いるPANの重合に於いて、反応に寄与しなかった原料モノマーを回収し精製する技術であり、原料モノマーはアクリロニトリルを主成分するものである。本発明対象の原料モノマーには共重合可能なコモノマーを含んでも良いが、含有量は原料モノマー重量の5重量%以下であること条件とする。5重量%を越えるコモノマーを含む系にも適応できる可能性は十分あるが、その効果を保証するものではない。   The present invention is a technique for recovering and purifying a raw material monomer that has not contributed to the reaction in the polymerization of PAN used in a PAN-based fiber, and the raw material monomer is mainly composed of acrylonitrile. The raw material monomer of the present invention may contain a copolymerizable comonomer, provided that the content is 5% by weight or less of the raw material monomer weight. Although there is a possibility that it can be applied to a system containing a comonomer exceeding 5% by weight, the effect is not guaranteed.

コモノマーとしては、エチレン性二重結合を有する化合物であれば特に問題なく用いることができ、具体的にはアクリル酸、メタクリル酸、イタコン酸等の不飽和有機酸、及びそのメチル、エチル等のエステルまたは塩、さらにはアクリルアミド等の不飽和アミド化合物などが例示できる。   As the comonomer, any compound having an ethylenic double bond can be used without any problem. Specifically, unsaturated organic acids such as acrylic acid, methacrylic acid, and itaconic acid, and esters thereof such as methyl and ethyl Or a salt and also unsaturated amide compounds, such as acrylamide, etc. can be illustrated.

本発明におけるPANの重合は、非プロトン性極性溶媒を重合溶媒として、ラジカル開始剤を用いた溶液重合により行われる((1)工程)。溶液重合の条件としては、特に制限はなく、通常行われる方法であってよい。   The polymerization of PAN in the present invention is performed by solution polymerization using a radical initiator with an aprotic polar solvent as a polymerization solvent (step (1)). The conditions for solution polymerization are not particularly limited, and may be a commonly performed method.

ラジカル重合開始剤は過酸化ベンゾイル等の過酸化物、アゾビスジメチルバレロニトリルやアゾビスイソブチロニトリル等のアゾ化合物、またはレドックス系の開始剤など、一般的なラジカル開始剤を用いることができ、特に制限は無い。   As the radical polymerization initiator, a general radical initiator such as a peroxide such as benzoyl peroxide, an azo compound such as azobisdimethylvaleronitrile or azobisisobutyronitrile, or a redox initiator can be used. There is no particular limitation.

非プロトン性極性溶媒としては、DMSO、ジメチルホルムアミド、ジメチルアセトアミドなどを用いることができるが、低毒性の観点からはDMSOの使用が好ましい。   As the aprotic polar solvent, DMSO, dimethylformamide, dimethylacetamide and the like can be used, but DMSO is preferable from the viewpoint of low toxicity.

重合工程に於ける原料モノマーの転化率に制限は無いが、投入した原料モノマーの85%〜95%が消費された時点で反応を打ち切り、紡出用のポリマー溶液とした方が経済的に有利となる。   There is no restriction on the conversion rate of the raw material monomer in the polymerization process, but it is economically advantageous to terminate the reaction when 85% to 95% of the charged raw material monomer is consumed to obtain a polymer solution for spinning. It becomes.

次に(2)工程について説明する。   Next, step (2) will be described.

上記(1)工程において重合を行ったポリマー溶液は、水系凝固浴液に紡出することにより、紡糸する。   The polymer solution polymerized in the step (1) is spun by spinning into an aqueous coagulation bath solution.

重合後のポリマー溶液は、紡糸前にモノマーの未反応分をポリマー溶液から気化分離し、溶液中の濃度を低減することができるが、この行程を省略しても本発明の実施に支障は無い。また、紡糸前に気化回収したモノマーの未反応分を精製し再利用する場合、この未反応分を紡糸後の凝固浴液に再度混合し、本発明に記載のプロセスにて蒸留精製すれば、高純度化し、再利用することができる。   The polymer solution after polymerization can evaporate and separate unreacted monomers from the polymer solution before spinning, and the concentration in the solution can be reduced. However, even if this step is omitted, the present invention is not hindered. . In addition, when purifying and reusing the unreacted monomer vaporized and recovered before spinning, the unreacted component is mixed again with the coagulation bath liquid after spinning and purified by distillation in the process described in the present invention. It can be purified and reused.

溶液重合により得られたPANを凝固する際に使用した水系凝固浴には重合溶媒の他、アクリロニトリル成分を主体とする原料モノマーの未反応分、ラジカル開始剤の残存分・開始剤の分解物・その他原料由来の不純物等が含まれる。   The aqueous coagulation bath used for coagulating the PAN obtained by solution polymerization includes a polymerization solvent, an unreacted component of a raw material monomer mainly composed of an acrylonitrile component, a residual radical initiator, a decomposition product of the initiator, Other impurities derived from raw materials are included.

凝固浴液中のアクリロニトリル成分は重合溶媒に比べ蒸気圧が高く、かつ水と最低共沸混合物を形成するため、蒸留塔または蒸発缶によって、凝固浴液中の重合溶媒と分離することができる。   Since the acrylonitrile component in the coagulation bath liquid has a higher vapor pressure than the polymerization solvent and forms a minimum azeotrope with water, it can be separated from the polymerization solvent in the coagulation bath liquid by a distillation column or an evaporator.

水と共沸したアクリロニトリル成分は熱交換器で凝縮・冷却し、デカンテーションすると水相と有機相に分離し、有機相の主成分はアクリロニトリルとなる(以下、粗モノマーと表記する)((3)工程)。通常、粗モノマーには水分が飽和しているため、約3重量%の水分が混入する。その他、凝固浴液中の不純物のうち沸点が低い成分、及び回収時に副成した不純物が混入する。   The acrylonitrile component azeotroped with water is condensed and cooled in a heat exchanger, and when decanted, it is separated into an aqueous phase and an organic phase, and the main component of the organic phase is acrylonitrile (hereinafter referred to as a crude monomer) ((3 ) Process). Usually, since the water | moisture content is saturated with a crude monomer, about 3 weight% of water | moisture content mixes. In addition, components having a low boiling point among impurities in the coagulation bath liquid and impurities formed as a by-product during collection are mixed.

かくして回収された本発明の精製原料となる粗モノマー中のアクリロニトリル濃度は通常90重量%以上である(以下、粗アクリロニトリルと表記する。)。   The acrylonitrile concentration in the crude monomer, which is thus recovered as a purification raw material of the present invention, is usually 90% by weight or more (hereinafter referred to as crude acrylonitrile).

本発明では、かくして得られる粗アクリロニトリルを少なくとも1回以上減圧蒸留し、アクリロニトリル濃度を97重量%以上に精製したモノマー成分(以下、精製アクリロニトリルと表記する)を回収する((4)工程)。純度97重量%未満では精製モノマーに残存する不純物が、貯蔵時、重合時、又は品質に悪影響を及ぼす可能性がある。   In the present invention, the crude acrylonitrile thus obtained is distilled at least once under reduced pressure to recover a monomer component (hereinafter referred to as purified acrylonitrile) purified to an acrylonitrile concentration of 97% by weight or more (step (4)). If the purity is less than 97% by weight, impurities remaining in the purified monomer may adversely affect storage, polymerization, or quality.

本発明で回収した精製アクリロニトリルはPAN系の重合原料として重合工程に添加する(5)工程を行うことにより、再利用できる。原料モノマーに於ける精製アクリロニトリルの割合に制限は無いが、PAN系繊維の品質への影響を最小限に抑えるため、原料モノマーに於ける精製アクリロニトリルの割合は、20重量%以下とすることが好ましい。   The purified acrylonitrile recovered in the present invention can be reused by performing the step (5) which is added to the polymerization step as a PAN-based polymerization raw material. The ratio of purified acrylonitrile in the raw material monomer is not limited, but in order to minimize the influence on the quality of the PAN fiber, the ratio of purified acrylonitrile in the raw material monomer is preferably 20% by weight or less. .

前記(4)工程において、粗アクリロニトリルを1回以上減圧蒸留するが、減圧蒸留に用いる蒸留塔等の蒸留設備としては、同じ蒸留塔、設備を繰り返し用いてもよいし、複数の蒸留塔、設備を用いてもよい。蒸留する1基以上の蒸留塔は、各蒸留塔で蒸留形態および設備仕様を同一とすることもできるし、異なった仕様としても良い。   In the step (4), the crude acrylonitrile is distilled at least once under reduced pressure. As distillation equipment such as distillation tower used for vacuum distillation, the same distillation tower and equipment may be used repeatedly, or a plurality of distillation towers and equipment. May be used. One or more distillation columns to be distilled may have the same distillation form and equipment specifications in each distillation column, or may have different specifications.

蒸留塔のインターナルに制限は無いが、塔内に滞留する液量を少なくすることが好ましく、この観点からホールドアップの少ない規則充填物や不規則充填物、もしくは、液の滞留が少ないシーブトレイなどを使用することが好ましい。   Although there is no restriction on the internal of the distillation column, it is preferable to reduce the amount of liquid retained in the column. From this viewpoint, regular packing or irregular packing with little hold-up, or sieve tray with low liquid retention, etc. Is preferably used.

また、蒸留段数に制限は無いものの、理論段として40段以下とすることが好ましい。それ以上では、設備費が上がる他、塔の圧力損失が上がり、ボトムの温度が高くなるため、本発明で推奨する温度条件を満たすことが困難となる。   Moreover, although there is no restriction | limiting in the number of distillation stages, it is preferable to set it as 40 or less as a theoretical stage. Above that, the equipment cost increases, the pressure loss of the tower increases, and the temperature of the bottom increases, so that it becomes difficult to satisfy the temperature condition recommended in the present invention.

本発明で用いる蒸留塔等の蒸留設備には、通常リボイラが付随する。このリボイラの型式に制限は無いが、リボイラ内で液が長時間滞留すると、副反応による付着性の汚れ原因になるため、液の滞留が起きない構造にすることが好ましい。また、リボイラ壁面に成長する付着物を抑制するためには、伝熱面で液に剪断力が加わる構造が好ましい。以上の観点から、サーモサイホン又は強制循環によって液の流動を起こす事が好ましく、多管式又はプレート式などの熱交換器によって伝熱面で液に剪断力を与える構造が好ましい。   A reboiler is usually attached to distillation equipment such as a distillation tower used in the present invention. There is no restriction on the type of the reboiler. However, if the liquid stays in the reboiler for a long time, it causes an adhesive stain due to a side reaction. In order to suppress deposits growing on the reboiler wall surface, a structure in which a shearing force is applied to the liquid on the heat transfer surface is preferable. From the above viewpoint, it is preferable to cause the liquid to flow by thermosiphon or forced circulation, and a structure in which a shear force is applied to the liquid on the heat transfer surface by a heat exchanger such as a multi-tube type or a plate type is preferable.

本発明では、精製アクリロニトリルを回収するために、粗アクリロニトリルから低沸点成分と高沸点成分、及び水分を減圧蒸留で分離するが、蒸留形態はバッチ蒸留でも連続蒸留でも実施することができる。   In the present invention, in order to recover purified acrylonitrile, a low boiling point component, a high boiling point component, and water are separated from the crude acrylonitrile by distillation under reduced pressure. The distillation form can be carried out by either batch distillation or continuous distillation.

連続蒸留で精製を行う場合は蒸留塔を1基のみ設置し、サイドカットにより精製モノマーを中段より回収し、塔頂部より低沸点不純物を抜出す設計とすれば、設備投資額を抑えることができる。しかし、この場合限られた段数で低沸点成分と高沸点成分の分離を行うため、不純物の分離が悪くなる場合がある。本発明で用いる粗アクリロニトリルには同定されていない不純物も含め、多種の不純物が混入しており、アクリロニトリルと水は最低共沸混合物を形成するため、アクリロニトリルと水と不純物の分離を厳密に制御することは難しい。   When purifying by continuous distillation, if only one distillation column is installed, the purified monomer is recovered from the middle stage by side cut, and low boiling point impurities are extracted from the top of the column, the capital investment can be reduced. . However, in this case, since the low-boiling component and the high-boiling component are separated with a limited number of stages, the separation of impurities may be deteriorated. The crude acrylonitrile used in the present invention contains various impurities including unidentified impurities, and acrylonitrile and water form the lowest azeotrope, so the separation of acrylonitrile, water and impurities is strictly controlled. It ’s difficult.

PAN系繊維の品質の観点から特に純度が高い精製モノマーが要求される場合、2基以上の蒸留設備で連続蒸留を行う、若しくは精製プロセスの一部でバッチ蒸留を実施すると、不純物の濃度制御が容易になる。   When purified monomers with particularly high purity are required from the viewpoint of the quality of PAN-based fibers, the concentration of impurities can be controlled by performing continuous distillation with two or more distillation facilities or batch distillation as part of the purification process. It becomes easy.

以上に記載した理由から、蒸留設備基数、及びバッチ蒸留と連続蒸留の選択は、要求される精製モノマーの純度と回収コストから、自由に設計できる。   For the reasons described above, the number of distillation facilities and the selection of batch distillation and continuous distillation can be freely designed from the required purity and recovery cost of the purified monomer.

各蒸留塔に於いて、内部の液及びガス温度が上がると、モノマー未反応分の副反応に起因する設備内壁の汚れが発生する他、モノマー成分が副反応により消費されるため、精製アクリロニトリルの回収量が低下する可能性がある。このため、蒸留塔内の液及びガス温度を90℃以下で蒸留運転を行うことが副反応を抑制する点から好ましい。また、蒸留塔内の液及びガスの温度が35℃未満で運転を行う場合、付帯設備(凝縮器、真空発生源等)の仕様に対する要求が厳しくなるため、経済的な運転が困難になる場合があるので35℃以上で行うことが望ましい。   In each distillation column, if the internal liquid and gas temperature rises, dirt on the inner wall of the equipment due to side reaction of unreacted monomer will occur, and monomer components will be consumed by side reaction, so purified acrylonitrile The amount recovered may be reduced. For this reason, it is preferable from the point which suppresses a side reaction to perform distillation operation at the liquid and gas temperature in a distillation tower at 90 degrees C or less. In addition, when operation is performed at a liquid and gas temperature of less than 35 ° C in the distillation column, the requirements for the specifications of the incidental equipment (condenser, vacuum generation source, etc.) become strict, making it difficult to operate economically. Therefore, it is desirable to carry out at 35 ° C. or higher.

本発明では、蒸留塔内の圧力としては22kPa以上70kPa以下(絶対圧、以下同じ)の範囲で減圧蒸留することで設備内の液及びガスの温度を推奨範囲内に納め、経済的な運転を可能にする。   In the present invention, the pressure in the distillation tower is distilled under reduced pressure in the range of 22 kPa or more and 70 kPa or less (absolute pressure, the same shall apply hereinafter), so that the temperature of the liquid and gas in the facility falls within the recommended range, and economical operation is achieved. enable.

また、本発明で用いる粗アクリロニトリルには、先の溶液重合で用いられたラジカル開始剤等、液の安定性を特に低下させる成分が混入している。この成分は、アクリロニトリルよりも沸点の高い成分のため、設備内の付着物汚れは、主に蒸留塔のボトム付近で発生する。   In addition, the crude acrylonitrile used in the present invention is mixed with components that particularly lower the stability of the liquid, such as the radical initiator used in the previous solution polymerization. Since this component has a boiling point higher than that of acrylonitrile, the deposit fouling in the equipment mainly occurs near the bottom of the distillation column.

このため、蒸留塔ボトムの液温を本発明で推奨する温度(60℃以上、90℃以下)に保持しても、リボイラ伝熱面の温度が高い場合は、壁面に付着汚れが発生し易くなる。このため、リボイラの加熱源として用いられる流体(熱媒)の温度を105℃以下に制御することで、ボトム液の安定性を改善することができる。   For this reason, even if the liquid temperature at the bottom of the distillation column is maintained at the temperature recommended in the present invention (60 ° C. or higher and 90 ° C. or lower), if the temperature of the reboiler heat transfer surface is high, adhesion fouling is likely to occur on the wall surface. Become. For this reason, the stability of the bottom liquid can be improved by controlling the temperature of the fluid (heat medium) used as the heating source of the reboiler to 105 ° C. or lower.

熱媒としては、蒸気、温水、オイル等、いずれも使用することができる。本発明で実施する蒸留設備専用の熱媒を準備することもできるが、他のプロセスの廃熱を利用すれば、さらに効率的な運転が可能となる。   As the heat medium, any of steam, hot water, oil and the like can be used. Although a heating medium dedicated to the distillation facility implemented in the present invention can be prepared, more efficient operation is possible by using waste heat of other processes.

各蒸留設備には重合反応の暴走と設備の汚れを防止するため、重合禁止剤を供給する。重合禁止剤は、一般的に知られている重合禁止剤の中から任意に選択でき、1種類のみで使用しても、2種類以上を混合しても良いが、強い重合禁止効果が得られ、蒸気圧が低いクペロンが含まれることが好ましい。クペロンは、蒸気圧が低いため、蒸留塔のボトムに濃縮し、液の安定性向上に効果がある。またクペロンが精製モノマーに混入し難いため、重合原料の禁止剤濃度を制御し易くなる点でも好ましい。   A polymerization inhibitor is supplied to each distillation facility to prevent runaway polymerization reaction and contamination of the facility. The polymerization inhibitor can be arbitrarily selected from generally known polymerization inhibitors and can be used alone or in combination of two or more, but a strong polymerization inhibition effect can be obtained. It is preferable that cuperone having a low vapor pressure is included. Cuperon has a low vapor pressure, so it concentrates at the bottom of the distillation column and is effective in improving the stability of the liquid. In addition, since cupron is hardly mixed into the purified monomer, it is preferable in that the inhibitor concentration of the polymerization raw material can be easily controlled.

重合禁止剤の供給形態に特に制限は無く、重合禁止剤の一部、又は全部を蒸留設備に供給する前の粗アクリロニトリルに混合することもできるし、蒸留設備に直接供給しても良いが、蒸留設備の原料供給ラインで起きる汚れを抑制するために、少なくとも一部は蒸留前の粗アクリロニトリルに混合することが好ましい。   There is no particular limitation on the supply form of the polymerization inhibitor, and part or all of the polymerization inhibitor can be mixed with the crude acrylonitrile before being supplied to the distillation facility, or may be directly supplied to the distillation facility, In order to suppress contamination occurring in the raw material supply line of the distillation facility, it is preferable to mix at least a portion with the crude acrylonitrile before distillation.

クペロンの添加量は粗アクリロニトリルの重量に対して、10ppm以上、500ppm以下(重量基準)の重量とすることが好ましい。10ppm以上とすることにより、十分な重合禁止効果が得られる。500ppm以下とすることにより経済的な運転ができる他、アクリロニトリルへのクペロン溶解度の観点から見ても均一分散しやすく好ましい。   The amount of cuperone added is preferably 10 ppm or more and 500 ppm or less (weight basis) with respect to the weight of the crude acrylonitrile. By setting it to 10 ppm or more, a sufficient polymerization inhibition effect can be obtained. By making it 500 ppm or less, economical operation is possible, and from the viewpoint of cuperone solubility in acrylonitrile, uniform dispersion is preferable.

本発明で用いる粗アクリロニトリルには、重合原料に由来する不純物以外にも重合時の副成分などを含んでいるため、液の安定性は、重合工程、紡糸工程、および粗アクリロニトリル回収工程の各運転条件により変化する。このため、最適な重合禁止剤量を厳密に決定するためには、あらかじめ同様の工程から回収した工程実液、または、工程実液と同様の性質となるように調製したモデル液を使用し、重合禁止剤の添加量と重合誘導時間の関係を調査し、十分な誘導時間が得られることを確認することが好ましい。   The crude acrylonitrile used in the present invention contains subcomponents at the time of polymerization in addition to impurities derived from the polymerization raw material, so the stability of the liquid is determined by each operation of the polymerization process, spinning process, and crude acrylonitrile recovery process. Varies depending on conditions. For this reason, in order to strictly determine the optimum amount of polymerization inhibitor, use a process liquid collected from the same process in advance, or a model liquid prepared to have the same properties as the process liquid, It is preferable to investigate the relationship between the addition amount of the polymerization inhibitor and the polymerization induction time and confirm that a sufficient induction time is obtained.

クペロンのように固体の重合禁止剤を用いる場合で供給が困難な場合は、適当な溶媒に溶解することで供給が容易となる。溶媒としては、水、エタノール、メタノール、ジメチルホルムアミド、ジメチルアセトアミド、DMSOなどが使用できるが、なかでもDMSOは重合溶媒にも使用される成分であり、かつアクリロニトリルよりも蒸気圧が低く、蒸留ボトムでクペロン等重合禁止剤の溶解度を上げる効果があるため、特に好ましい。   When supply is difficult in the case of using a solid polymerization inhibitor such as cuperon, supply is facilitated by dissolving in a suitable solvent. As the solvent, water, ethanol, methanol, dimethylformamide, dimethylacetamide, DMSO, and the like can be used. Among them, DMSO is a component that is also used as a polymerization solvent, and has a lower vapor pressure than acrylonitrile. This is particularly preferable because it has the effect of increasing the solubility of a polymerization inhibitor such as cuperone.

本発明では、蒸留設備内に重合溶媒を存在させることが必要である。重合溶媒はアクリロニトリルよりも蒸気圧が低いため、蒸留塔のボトムに濃縮し、ボトムのアクリロニトリル濃度を下げ、液の安定性を上げる効果がある。   In the present invention, it is necessary for the polymerization solvent to be present in the distillation equipment. Since the polymerization solvent has a lower vapor pressure than acrylonitrile, it has the effect of concentrating at the bottom of the distillation column, lowering the acrylonitrile concentration at the bottom, and increasing the stability of the liquid.

また、重合禁止剤の添加と温度の管理で完全に副反応を抑制しきれず、アクリロニトリルに溶解しない付着性の汚れが発生した場合でも、蒸留塔内に存在する重合溶媒により、付着性の汚れの溶解度が上がるため、設備洗浄の間隔が延びる等、経済的な運転が可能となる。また、重合溶媒を使用すれば、溶媒が精製アクリロニトリルに混入した場合でも、重合に影響を与えないなど工業的メリットが大きい。   In addition, even when adhering dirt that does not completely dissolve in acrylonitrile occurs due to the addition of a polymerization inhibitor and temperature control, and even if adhering dirt that does not dissolve in acrylonitrile occurs, the adhering dirt is removed by the polymerization solvent present in the distillation column. Since the solubility is increased, an economical operation such as extending the interval of equipment cleaning is possible. In addition, when a polymerization solvent is used, even when the solvent is mixed with purified acrylonitrile, there are significant industrial advantages such as that the polymerization is not affected.

重合溶媒の供給形態に制限は無く、粗アクリロニトリルに一部又は全部を混入することもできるし、蒸留設備のいずれの箇所にも直接供給することができるが、供給した重合溶媒の少なくとも一部が蒸留塔のボトムに達することが好ましい。   There is no limitation on the supply form of the polymerization solvent, and a part or all of the crude acrylonitrile can be mixed, or it can be directly supplied to any part of the distillation equipment, but at least a part of the supplied polymerization solvent is It is preferable to reach the bottom of the distillation column.

重合溶媒の供給量に制限は無いが、本発明の実施形態で推奨する温度、圧力の条件を満たす量とすることが好ましい。具体的には、精製アクリロニトリルを回収する蒸留塔の缶出液に於ける重合溶媒濃度が5重量%以上、72重量%以下となるように供給することが好ましく、さらに好適には蒸留塔缶出液の重合溶媒濃度が30重量%以上、72重量%以下である。   Although there is no restriction | limiting in the supply amount of a polymerization solvent, It is preferable to set it as the quantity which satisfy | fills the conditions of temperature and pressure recommended in embodiment of this invention. Specifically, it is preferable to supply the polymerization solvent concentration in the bottoms of the distillation column for recovering purified acrylonitrile so that the concentration is 5% by weight or more and 72% by weight or less. The polymerization solvent concentration of the liquid is 30% by weight or more and 72% by weight or less.

缶出液中の重合溶媒濃度が5重量%以上のとき、重合禁止剤の十分な分散効果が得られる。更に、30重量%以上のとき、重合禁止剤の十分な分散効果が得られるのに加え、蒸留塔内の付着物の十分な溶解効果が得られる。   When the concentration of the polymerization solvent in the bottoms is 5% by weight or more, a sufficient dispersion effect of the polymerization inhibitor can be obtained. Furthermore, when it is 30% by weight or more, in addition to obtaining a sufficient dispersion effect of the polymerization inhibitor, a sufficient dissolution effect of deposits in the distillation column can be obtained.

また、72重量%を越える場合、蒸留ボトムの温度が本発明で推奨する温度を越える可能性がある。   On the other hand, when it exceeds 72% by weight, the temperature of the distillation bottom may exceed the temperature recommended in the present invention.

回収した精製アクリロニトリルは、重合原料として使用できるが、重合原料に使用するまでの貯蔵安定性を高めるため、精製アクリロニトリルに重合禁止剤を加えることもできる。添加する重合禁止剤及び添加量は重合に影響を及ぼさない組み合わせで任意に選択できる。   The recovered purified acrylonitrile can be used as a polymerization raw material, but a polymerization inhibitor can be added to the purified acrylonitrile in order to increase the storage stability until it is used as a polymerization raw material. The polymerization inhibitor to be added and the amount added can be arbitrarily selected in combination that does not affect the polymerization.

精製アクリロニトリルを回収する蒸留塔の缶出液にはアクリロニトリル成分、重合物を主体とする高沸点の不純物、重合溶媒等が含まれる。この缶出液は残渣として産廃処理することもできるが、この場合は、重合溶媒の損失となる。ここで、重合溶媒を回収できれば、更に経済的な精製が可能となる。   The bottoms of a distillation column for recovering purified acrylonitrile contain an acrylonitrile component, high-boiling impurities mainly composed of a polymer, a polymerization solvent, and the like. The bottoms can be processed as industrial residues, but in this case, the polymerization solvent is lost. Here, if the polymerization solvent can be recovered, further economical purification becomes possible.

この重合溶媒の回収は、重合溶媒を蒸留操作等の気化回収のみにより行うことも出来る。しかしモノマーの蒸留設備と同様に付着性汚れの発生や、高沸点の不純物が重合溶媒に混入するなどの問題が起きるため、重合溶媒の回収工程の一部で抽出操作を行うことが好ましい。   The polymerization solvent can be recovered only by vaporization recovery such as distillation operation of the polymerization solvent. However, as in the case of the monomer distillation equipment, problems such as the occurrence of adhesive soiling and the entry of high-boiling impurities into the polymerization solvent occur. Therefore, the extraction operation is preferably performed as part of the polymerization solvent recovery step.

ここで、本発明で使用する重合溶媒は水への溶解度が高く、アクリロニトリル成分及び重合物等は水に溶解し難いため、水を抽剤とした抽出分離が有効な手段となる。   Here, since the polymerization solvent used in the present invention has high solubility in water, and the acrylonitrile component and the polymer are difficult to dissolve in water, extraction separation using water as an extractant is an effective means.

抽出によりアクリロニトリル成分及び重合物等から分離した重合溶媒は、水との混合物として回収されるため、これを脱水することで重合溶媒をリサイクルできる。   Since the polymerization solvent separated from the acrylonitrile component and the polymer by extraction is recovered as a mixture with water, the polymerization solvent can be recycled by dehydrating it.

抽出条件に特に制限は無いが、重合溶媒の回収率、不純物成分の分配、及び重合溶媒の脱水に必要な熱量から、経済的な条件を設定することができる。   There are no particular limitations on the extraction conditions, but economical conditions can be set based on the recovery rate of the polymerization solvent, the distribution of impurity components, and the amount of heat necessary for dehydration of the polymerization solvent.

以下、実施例、比較例及び参考例を例示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example, a comparative example, and a reference example are illustrated and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

〔実施例1〕
ガラス製の200ml丸底フラスコ、ジムロート式冷却凝集器、5段相当の充填塔を備えた蒸留実験装置を準備した。DMSOを重合溶媒に用い、ラジカル開示剤としてアゾビスイソブチロニトリルを用いてアクリロニトリルを溶液重合して得られたPAN系繊維を水系凝固浴液に紡出して製造した際の水系凝固浴液から、水とアクリロニトリルの共沸蒸留を用いて回収したモノマー未反応分(粗アクリロニトリル)のサンプル100gを準備した。このモノマー未反応分は水系凝固浴液の気化成分をデカンテーションした有機相であり、アクリロニトリル純度は95.6重量%である。粗アクリロニトリルにクペロン0.02g(粗アクリロニトリルに対し、200ppm)、DMSO10gを添加し、減圧式バッチ蒸留実験を行った。圧力は24kPaから29kPaの間で制御し、加熱は60℃のオイルバスを使用し、還流比は1とした。最初の留出分10gは初留として、その後80gを主留とした。主留サンプルをFID−GC(島津製作所GC−2010)で分析したところ、アクリロニトリル純度は99.2重量%となった。これは通常重合原料として使用するアクリロニトリルと同様の純度であり、重合原料に添加しても支障の無い純度まで高純度化できた。
[Example 1]
A distillation experiment apparatus equipped with a glass 200 ml round bottom flask, a Dimroth type cooling agglomerator, and a packed tower corresponding to 5 stages was prepared. From an aqueous coagulation bath solution produced by spinning PAN fiber obtained by solution polymerization of acrylonitrile using azobisisobutyronitrile as a radical disclosure agent using DMSO as a polymerization solvent into an aqueous coagulation bath solution A 100 g sample of unreacted monomer (crude acrylonitrile) recovered using azeotropic distillation of water and acrylonitrile was prepared. This monomer unreacted component is an organic phase obtained by decanting the vaporized component of the aqueous coagulation bath liquid, and the acrylonitrile purity is 95.6% by weight. To the crude acrylonitrile, 0.02 g of cuperone (200 ppm based on the crude acrylonitrile) and 10 g of DMSO were added, and a vacuum batch distillation experiment was conducted. The pressure was controlled between 24 kPa and 29 kPa, heating was performed using an oil bath at 60 ° C., and the reflux ratio was 1. The first distillate 10g was the first distillate, and then 80g was the main distillate. When the main sample was analyzed by FID-GC (Shimadzu Corporation GC-2010), the acrylonitrile purity was 99.2% by weight. This has the same purity as that of acrylonitrile usually used as a polymerization raw material, and can be purified to a purity that does not hinder the addition of the polymerization raw material.

加熱開始から蒸留終了までの時間は3時間だった。蒸留中、フラスコ内の液の温度は42〜55℃、ガスの温度は42〜49℃で維持されていた。蒸留終了後、釜として使用していた丸底フラスコの内壁に付着性の汚れは発生していなかった。   The time from the start of heating to the end of distillation was 3 hours. During the distillation, the temperature of the liquid in the flask was maintained at 42 to 55 ° C, and the temperature of the gas was maintained at 42 to 49 ° C. After completion of the distillation, no adhesive dirt was generated on the inner wall of the round bottom flask used as a kettle.

また、蒸留装置のボトムから抜き出した缶出液中、DMSO濃度は、55.3重量%であった。なお、DMSO濃度は主留サンプルと同様にFID−GCで測定した。
また、この缶出液のうち10g(DMSO約5.5gを含む)に5gの水分を加え、液温25℃でDMSOの抽出操作を行った。その結果、水相側にDMSOを4.4g分配でき、アクリロニトリルとDMSOの分離ができた。
The DMSO concentration in the bottoms extracted from the bottom of the distillation apparatus was 55.3% by weight. The DMSO concentration was measured by FID-GC in the same manner as the main distillate sample.
In addition, 5 g of water was added to 10 g (including about 5.5 g of DMSO) of the bottoms, and DMSO was extracted at a liquid temperature of 25 ° C. As a result, 4.4 g of DMSO could be distributed to the aqueous phase side, and acrylonitrile and DMSO could be separated.

〔比較例1〕
粗アクリロニトリルにDMSOを添加しない他は実施例1と同様の実験を行った。
主留サンプルをFID−GCで分析したところ、アクリロニトリル純度は99.0重量%であり、純度は実施例1と同様に高純度化できた。
[Comparative Example 1]
The same experiment as in Example 1 was performed except that DMSO was not added to the crude acrylonitrile.
When the main fraction sample was analyzed by FID-GC, the acrylonitrile purity was 99.0% by weight, and the purity could be increased as in Example 1.

加熱開始から蒸留終了までの時間は3時間だった。蒸留終了後、釜として使用していた丸底フラスコのガラス内面が白く曇ったようになっており、付着性の汚れが発生した。この汚れはアセトンで洗浄しても取り除けなかった。   The time from the start of heating to the end of distillation was 3 hours. After completion of the distillation, the glass inner surface of the round bottom flask used as a kettle had become white and cloudy, and adhesive dirt was generated. This soil could not be removed by washing with acetone.

〔比較例2〕
粗アクリロニトリルにDMSOを添加せず、オイルバス温を160℃に変更した他は実施例1と同様の実験を行った。
[Comparative Example 2]
The same experiment as in Example 1 was performed except that DMSO was not added to the crude acrylonitrile and the oil bath temperature was changed to 160 ° C.

加熱開始後、約20分経過した時点で、丸底フラスコのガラス内面が白く曇ったようになり、付着性の汚れが発生した。その後、約50分経過した時点で、釜の内液に白色の固体が発生し、重合物が発生したため、蒸留の継続は危険と判断し、実験を中止した。   When about 20 minutes had passed after the start of heating, the glass inner surface of the round bottom flask became cloudy white and adhesive dirt was generated. Thereafter, when about 50 minutes passed, a white solid was generated in the liquid in the kettle, and a polymer was generated. Therefore, it was judged that continuation of distillation was dangerous, and the experiment was stopped.

〔参考例1〕
50mlナス型フラスコ、アリーン式冷却器、オイルバスを備えた加熱実験装置を準備した。関東化学株式会社製鹿特級アクリロニトリル(純度99重量%以上)を80〜160℃の範囲で加熱し、120分の熱安定性試験を行った。白色の重合物が発生した時間(重合抑制時間)を表1に示す。このとき、160℃で加熱した際に10分の重合抑制効果があったのに対し、100℃では重合抑制効果が120分以上に延長した。
[Reference Example 1]
A heating experimental apparatus equipped with a 50 ml eggplant-shaped flask, an Allen cooler, and an oil bath was prepared. Kanto Chemical Co., Ltd. deer special grade acrylonitrile (purity 99% by weight or more) was heated in the range of 80 to 160 ° C., and a thermal stability test was conducted for 120 minutes. Table 1 shows the time when the white polymer was generated (polymerization inhibition time). At this time, when heated at 160 ° C., the polymerization inhibiting effect was 10 minutes, whereas at 100 ° C., the polymerization inhibiting effect was extended to 120 minutes or more.

Figure 2011063553
Figure 2011063553

〔参考例2〕
参考例1と同様の装置を用いて、実施例1で用いたのと同じ粗アクリロニトリルに重合禁止剤であるクペロンが2〜20ppm(重量基準)になるように添加し、160℃の加熱条件下で120分の熱安定性試験を行った。白色の重合物が発生した時間(重合抑制時間)を表2に示す。2ppm添加した際に40分の重合抑制効果があったのに対し、10ppm以上添加したとき重合抑制効果が120分以上に延長した。
[Reference Example 2]
Using the same apparatus as in Reference Example 1, the polymerization inhibitor cuperon was added to the same crude acrylonitrile used in Example 1 so that it would be 2 to 20 ppm (weight basis), and heated at 160 ° C. A 120 minute thermal stability test was conducted. Table 2 shows the time when the white polymer was generated (polymerization suppression time). When 2 ppm was added, the polymerization inhibitory effect was 40 minutes, whereas when 10 ppm or more was added, the polymerization inhibitory effect was extended to 120 minutes or longer.

Figure 2011063553
Figure 2011063553

〔参考例3〕
参考例1と同様の装置を用いて、アクリロニトリルに対して重量基準で重合禁止剤であるクペロン10ppm、ラジカル開始剤アゾビスイソブチロニトリル10ppmを含む関東化学株式会社製鹿特級アクリロニトリル(純度99重量%以上)に重合溶媒DMSOが10〜70重量%になるように添加し、100℃の加熱条件下で120分の熱安定性試験を行った。白色の重合物が発生した時間(重合抑制時間)を表3に示す。10重量%のとき20分の重合抑制効果があったのに対し、30重量%以上添加したとき、重合抑制効果が40分以上に延長した。更に50重量%、70重量%添加したとき120分以上に延長した。
[Reference Example 3]
Using an apparatus similar to that of Reference Example 1, Kanto Chemical Co., Ltd. deer special grade acrylonitrile (purity 99 wt. % Or more) was added so that the polymerization solvent DMSO would be 10 to 70% by weight, and a thermal stability test was conducted for 120 minutes under a heating condition of 100 ° C. Table 3 shows the time when the white polymer was generated (polymerization suppression time). When the amount was 10% by weight, the polymerization inhibitory effect was 20 minutes, whereas when added at 30% by weight or more, the polymerization inhibitory effect was extended to 40 minutes or longer. Further, when 50% by weight or 70% by weight was added, it was extended to 120 minutes or more.

Figure 2011063553
Figure 2011063553

本発明により、非プロトン性極性溶媒およびラジカル開始剤を用いた溶液重合によるPAN系繊維の製造プロセスに於いて発生するアクリロニトリルを主成分とする原料モノマーの未反応分を、設備に発生する付着性の汚れを最小限に抑えつつ、蒸留精製し、再度重合原料として利用できるため、品質の安定性を保持したまま、PAN系繊維の製造コストを大きく低減できる。
According to the present invention, the unreacted content of the raw material monomer mainly composed of acrylonitrile generated in the production process of PAN fiber by solution polymerization using an aprotic polar solvent and a radical initiator is generated in the equipment. Therefore, the production cost of the PAN-based fiber can be greatly reduced while maintaining the quality stability.

Claims (7)

ポリアクリロニトリル系繊維の製造に関して、以下の工程を備えることを特徴とするアクリロニトリルの重合に於けるモノマー未反応分を再利用する方法。
(1)モノマー原料の95重量%以上がアクリロニトリルであり、非プロトン性極性溶媒を重合溶媒として、ラジカル開始剤を用いた溶液重合を行う工程。
(2)溶液重合により得られたポリアクリロニトリルを水系凝固浴液に紡出する。その水系凝固浴液からモノマーの未反応分を分離するに際し、水とアクリロニトリルの共沸を行う行程。
(3)前記共沸の留分をデカンテーションにより水相と有機相に分液し、アクリロニトリルを90重量%以上含む粗アクリロニトリルを回収する工程。
(4)蒸留塔内に重合溶媒と重合禁止剤が存在する条件で、粗アクリロニトリルを少なくとも1回以上減圧蒸留し、純度97重量%以上に高純度化した精製アクリロニトリルを回収する工程。
(5)精製アクリロニトリルの少なくとも一部を重合原料として重合工程に添加する工程。
A method for reusing an unreacted monomer component in polymerization of acrylonitrile, comprising the following steps for producing a polyacrylonitrile fiber.
(1) A step of performing solution polymerization using a radical initiator with 95% by weight or more of the monomer raw material being acrylonitrile and using an aprotic polar solvent as a polymerization solvent.
(2) The polyacrylonitrile obtained by solution polymerization is spun into an aqueous coagulation bath. A process in which water and acrylonitrile are azeotroped when the unreacted monomer is separated from the aqueous coagulation bath.
(3) A step of separating the azeotropic fraction into an aqueous phase and an organic phase by decantation and recovering crude acrylonitrile containing 90% by weight or more of acrylonitrile.
(4) A step of recovering purified acrylonitrile purified to a purity of 97% by weight or more by distilling crude acrylonitrile under reduced pressure at least once under the condition that a polymerization solvent and a polymerization inhibitor are present in the distillation column.
(5) A step of adding at least a part of purified acrylonitrile to the polymerization step as a polymerization raw material.
非プロトン性極性溶媒のジメチルスルホキシドであることを特徴とする請求項1に記載のアクリロニトリルの重合に於けるモノマー未反応分を再利用する方法。 2. The method for reusing monomer unreacted components in the polymerization of acrylonitrile according to claim 1, which is dimethyl sulfoxide as an aprotic polar solvent. 前記工程(4)において、減圧蒸留する際の重合禁止剤がクペロンを含んでおり、かつクペロンの供給量が、粗アクリロニトリルの重量に対して10ppm(重量基準、以下同様)以上、500ppm以下であることを特徴とする請求項1又は2に記載のアクリロニトリルの重合に於けるモノマー未反応分を再利用する方法。 In the step (4), the polymerization inhibitor used for distillation under reduced pressure contains cuperone, and the supply amount of cuperone is 10 ppm (weight basis, the same applies hereinafter) or more and 500 ppm or less with respect to the weight of the crude acrylonitrile. 3. A method for reusing an unreacted monomer component in the polymerization of acrylonitrile according to claim 1 or 2. 前記工程(4)において、減圧蒸留の運転条件が22kPa(絶対圧、以下同様)以上、70kPa以下であり、蒸留塔内の液及びガスの温度が35℃以上90℃以下であり、かつ蒸留設備に付随するリボイラの加熱源として105℃以下の流体を使用することを特徴とする請求項1及至3のいずれか1項記載のアクリロニトリルの重合に於けるモノマー未反応分を再利用する方法。 In the step (4), the operation condition of the vacuum distillation is 22 kPa (absolute pressure, the same shall apply hereinafter) to 70 kPa, the temperature of the liquid and gas in the distillation tower is 35 ° C. or more and 90 ° C. or less, and distillation equipment 4. A method for reusing unreacted monomer in the polymerization of acrylonitrile according to claim 1, wherein a fluid having a temperature of 105 [deg.] C. or less is used as a heating source for the reboiler associated therewith. 前記工程(4)において、精製アクリロニトリルを回収する減圧蒸留塔のボトムより缶出する重合溶媒の濃度が5重量%以上、72重量%以下であることを特徴とする請求項1及至4のいずれか1項記載のアクリロニトリルの重合に於けるモノマー未反応分を再利用する方法。 5. The method according to claim 1, wherein in the step (4), the concentration of the polymerization solvent discharged from the bottom of the vacuum distillation column for recovering the purified acrylonitrile is 5 wt% or more and 72 wt% or less. A method for reusing the unreacted monomer component in the polymerization of acrylonitrile according to 1. 前記工程(4)において、精製アクリロニトリルを回収する減圧蒸留塔のボトムより缶出する重合溶媒の濃度が30重量%以上、72重量%以下であることを特徴とする請求項1及至5のいずれか1項記載のアクリロニトリルの重合に於けるモノマー未反応分を再利用する方法。 The concentration of the polymerization solvent taken out from the bottom of the vacuum distillation column for collecting the purified acrylonitrile in the step (4) is 30 wt% or more and 72 wt% or less. A method for reusing the unreacted monomer component in the polymerization of acrylonitrile according to 1. 前記工程(4)において、精製アクリロニトリルを回収する蒸留塔の缶出液に水分を加え、抽出操作により缶出液から重合溶媒を回収することを特徴とする請求項1及至6のいずれか1項記載のアクリロニトリルの重合に於けるモノマー未反応分を再利用する方法。 7. The process according to claim 1, wherein in the step (4), water is added to the bottoms of a distillation column for recovering purified acrylonitrile, and the polymerization solvent is recovered from the bottoms by an extraction operation. A method for reusing an unreacted monomer component in the polymerization of acrylonitrile.
JP2009216488A 2009-09-18 2009-09-18 Reusing unreacted monomer in acrylonitrile polymerization Expired - Fee Related JP5682107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009216488A JP5682107B2 (en) 2009-09-18 2009-09-18 Reusing unreacted monomer in acrylonitrile polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009216488A JP5682107B2 (en) 2009-09-18 2009-09-18 Reusing unreacted monomer in acrylonitrile polymerization

Publications (2)

Publication Number Publication Date
JP2011063553A true JP2011063553A (en) 2011-03-31
JP5682107B2 JP5682107B2 (en) 2015-03-11

Family

ID=43950183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009216488A Expired - Fee Related JP5682107B2 (en) 2009-09-18 2009-09-18 Reusing unreacted monomer in acrylonitrile polymerization

Country Status (1)

Country Link
JP (1) JP5682107B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180070294A (en) * 2016-12-16 2018-06-26 주식회사 엘지화학 Method for separating non-reacted monomer from mixture comprising non-reacted monomer
WO2019132470A1 (en) * 2017-12-28 2019-07-04 주식회사 엘지화학 Method for separating unreacted monomer from mixed solution comprising unreacted monomer
KR20190079833A (en) * 2017-12-28 2019-07-08 주식회사 엘지화학 Method for separating non-reacted monomer from mixture comprising non-reacted monomer with reduced energy usage
CN112830985A (en) * 2020-12-31 2021-05-25 荣成碳纤维科技有限公司 One-step demonomerization and defoaming carbon fiber production method and equipment
CN113956396A (en) * 2021-10-19 2022-01-21 山西钢科碳材料有限公司 Acrylonitrile polymerization method regulated and controlled by p-methoxyphenol
KR20220028948A (en) * 2020-08-31 2022-03-08 울산과학기술원 Nitrogen Reduction Catalyst using Graphitic Frustrated Lewis Pair
WO2023090581A1 (en) * 2021-11-17 2023-05-25 주식회사 엘지화학 Method for purifying waste water
EP4335879A1 (en) 2022-08-24 2024-03-13 Montefibre Mae Technologies S.R.L. Process for the recovery and recycling of unreacted monomer in a single-step process for the production of a carbon-fiber precursor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2758131A (en) * 1954-03-26 1956-08-07 Monsanto Chemicals Stabilization of unsaturated nitriles
JPH1087740A (en) * 1996-09-11 1998-04-07 Toray Ind Inc Production of vinylic polymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2758131A (en) * 1954-03-26 1956-08-07 Monsanto Chemicals Stabilization of unsaturated nitriles
JPH1087740A (en) * 1996-09-11 1998-04-07 Toray Ind Inc Production of vinylic polymer

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102142550B1 (en) 2016-12-16 2020-08-07 주식회사 엘지화학 Method for separating non-reacted monomer from mixture comprising non-reacted monomer
KR20180070294A (en) * 2016-12-16 2018-06-26 주식회사 엘지화학 Method for separating non-reacted monomer from mixture comprising non-reacted monomer
KR102386834B1 (en) 2017-12-28 2022-04-15 주식회사 엘지화학 Method for separating non-reacted monomer from mixture comprising non-reacted monomer with reduced energy usage
JP7039704B2 (en) 2017-12-28 2022-03-22 エルジー・ケム・リミテッド A method for separating an unreacted monomer from a mixed solution containing an unreacted monomer
KR20190079832A (en) * 2017-12-28 2019-07-08 주식회사 엘지화학 Method for separating non-reacted monomer from mixture comprising non-reacted monomer
JP2021505366A (en) * 2017-12-28 2021-02-18 エルジー・ケム・リミテッド Method of separating unreacted monomer from a mixed solution containing unreacted monomer
WO2019132470A1 (en) * 2017-12-28 2019-07-04 주식회사 엘지화학 Method for separating unreacted monomer from mixed solution comprising unreacted monomer
US11198953B2 (en) 2017-12-28 2021-12-14 Lg Chem, Ltd. Method for separating unreacted monomer from mixture solution including unreacted monomer
KR102383958B1 (en) 2017-12-28 2022-04-08 주식회사 엘지화학 Method for separating non-reacted monomer from mixture comprising non-reacted monomer
KR20190079833A (en) * 2017-12-28 2019-07-08 주식회사 엘지화학 Method for separating non-reacted monomer from mixture comprising non-reacted monomer with reduced energy usage
KR20220028948A (en) * 2020-08-31 2022-03-08 울산과학기술원 Nitrogen Reduction Catalyst using Graphitic Frustrated Lewis Pair
KR102427845B1 (en) 2020-08-31 2022-08-01 울산과학기술원 Nitrogen Reduction Catalyst using Graphitic Frustrated Lewis Pair
CN112830985A (en) * 2020-12-31 2021-05-25 荣成碳纤维科技有限公司 One-step demonomerization and defoaming carbon fiber production method and equipment
CN113956396A (en) * 2021-10-19 2022-01-21 山西钢科碳材料有限公司 Acrylonitrile polymerization method regulated and controlled by p-methoxyphenol
WO2023090581A1 (en) * 2021-11-17 2023-05-25 주식회사 엘지화학 Method for purifying waste water
JP7488961B2 (en) 2021-11-17 2024-05-22 エルジー・ケム・リミテッド Wastewater purification method
EP4335879A1 (en) 2022-08-24 2024-03-13 Montefibre Mae Technologies S.R.L. Process for the recovery and recycling of unreacted monomer in a single-step process for the production of a carbon-fiber precursor

Also Published As

Publication number Publication date
JP5682107B2 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
JP5682107B2 (en) Reusing unreacted monomer in acrylonitrile polymerization
KR102469913B1 (en) Method for distilling dimethyl sulfoxide, and multi-stage distillation column
TWI531558B (en) Isolation of acrylic acid by means of a distillation column having a side offtake
JP2007291137A (en) Method for purifying 2-hydroxyisobutyric acid-containing methacrylic acid stream
TWI716189B (en) Process for recovering acetonitrile from acrylonitrile waste streams
JP2010241742A (en) Method for recovering (meth)acrylonitrile
TW200406247A (en) Process for manufacturing high purity methacrylic acid
TWI427059B (en) Process for recovering valued compounds from a stream derived from purification of methyl methacrylate
KR20170133359A (en) Preparation of tert-butyl ester of aliphatic carboxylic acid
JP6036402B2 (en) Method for producing (meth) acrylic acid ester
JP2004149421A (en) Method for separating dimethylamide compound and carboxylic acid by distillation and apparatus therefor
KR101659541B1 (en) Process for continuous recovering (meth)acrylic acid
JP2019508477A (en) Recovery method of (meth) acrylic acid
JP2014162763A (en) Method for producing (meth)acrylic acid ester
JP2013537548A (en) Increasing the terephthalic acid purge filtration rate by controlling the percentage of water in the filter feed slurry
US6494996B2 (en) Process for removing water from aqueous methanol
JP3981550B2 (en) Method for producing acrylic ester
CN108368024B (en) Process for purifying methyl methacrylate
JP7470134B2 (en) Production of polymer grade acrylic acid
JP6036401B2 (en) Method for producing (meth) acrylic acid ester
RU2412151C1 (en) Method of extracting acrylic acid
JP2016172775A (en) Method for producing (meth)acrylic acid ester
JP2024031892A (en) Process for recovery and recycling of unreacted monomer in single-step process for production of carbon-fiber precursor
WO2003043970A1 (en) Method of recovering polymerization inhibitor and process for producing acrylic acid
CN115023415A (en) Reduction of impurity formation during product purification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141229

R151 Written notification of patent or utility model registration

Ref document number: 5682107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees