JP2011063058A - Vehicular air-conditioner - Google Patents

Vehicular air-conditioner Download PDF

Info

Publication number
JP2011063058A
JP2011063058A JP2009213165A JP2009213165A JP2011063058A JP 2011063058 A JP2011063058 A JP 2011063058A JP 2009213165 A JP2009213165 A JP 2009213165A JP 2009213165 A JP2009213165 A JP 2009213165A JP 2011063058 A JP2011063058 A JP 2011063058A
Authority
JP
Japan
Prior art keywords
temperature
air
vehicle
engine
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009213165A
Other languages
Japanese (ja)
Inventor
Yoshinori Isshi
好則 一志
Kazutoshi Koyanagi
一敏 小柳
Yoshinobu Yanagimachi
柳町  佳宣
Taiji Kondo
泰司 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009213165A priority Critical patent/JP2011063058A/en
Publication of JP2011063058A publication Critical patent/JP2011063058A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the power consumption of a battery caused by the air-conditioning in a cabin in a vehicular air-conditioner capable of executing the air-conditioning in the cabin by the power to be supplied from the battery. <P>SOLUTION: A vehicular air-conditioner to be applied to a hybrid vehicle having an electric motor for running, a battery 81 and an engine EG includes a refrigerating cycle 30 having a compressor 31 which compresses and discharges the refrigerant by the power supply from the battery 81 and an evaporator 13 which evaporates the refrigerant to cool air to be blown into the cabin, a compressor control means 50a for controlling the operation of the compressor 31 so that the refrigerant evaporation temperature TE in the evaporator 13 approaches the target refrigerant evaporation temperature TEO, and a target refrigerant evaporation temperature determining means S9 for determining the target refrigerant evaporation temperature TEO in the evaporator 13. The target refrigerant evaporation temperature determining means S9 raises the target refrigerant evaporation temperature TEO as the elapse of time after the engine EG is stopped when the engine EG is stopped. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、車両用空調装置に関する。   The present invention relates to a vehicle air conditioner.

近年、環境保護や車両燃費の向上等を目的として、信号待ち等の停車時にエンジン(内燃機関)を自動的に停止する車両が実用化されている。ところが、エンジンにより冷凍サイクルの圧縮機を駆動している車両の場合、エンジンの停止に伴い圧縮機が停止するので、車室内への吹出空気温度が上昇して乗員の空調フィーリングが悪化してしまう虞がある。   2. Description of the Related Art In recent years, vehicles that automatically stop an engine (internal combustion engine) when the vehicle stops, such as waiting for a signal, have been put into practical use for the purpose of environmental protection and vehicle fuel efficiency improvement. However, in the case of a vehicle in which the compressor of the refrigeration cycle is driven by the engine, the compressor stops as the engine stops, so that the temperature of the air blown into the passenger compartment rises and the air conditioning feeling of the passenger deteriorates. There is a risk of it.

そこで、エンジンの駆動時に冷熱を蓄冷する蓄冷手段を備え、エンジンが停止したときには、蓄冷手段にて車室内への吹出空気を冷却することで乗員の空調フィーリングの悪化を抑制する技術が提案されている(例えば、特許文献1参照)。   Therefore, a technology has been proposed that includes cold storage means for storing cold energy when the engine is driven, and suppresses deterioration of the air conditioning feeling of the occupant by cooling the air blown into the passenger compartment by the cold storage means when the engine stops. (For example, refer to Patent Document 1).

特開2005−271906号公報JP 2005-271906 A

ところで、エンジンおよび走行用電動モータのうち少なくとも一方の駆動力により走行するとともに、走行用電動モータに供給する電力を蓄積するバッテリを備える車両に適用される車両用空調装置では、バッテリ等の電源から供給される電力にて車室内を空調可能なものがある。この種の車両用空調装置を備える車両では、エンジンを停止させた状態においても、車室内の空調を継続することが可能である。   By the way, in a vehicle air conditioner that is applied to a vehicle that travels by at least one of the driving force of an engine and a traveling electric motor and that stores a power to be supplied to the traveling electric motor, Some vehicles can be air-conditioned with supplied power. In a vehicle equipped with this type of vehicle air conditioner, it is possible to continue air conditioning in the passenger compartment even when the engine is stopped.

しかし、車室内の空調を継続することでバッテリの蓄電残量が所定値まで低下すると、バッテリに蓄積された電力を利用した走行用電動モータの駆動ができなくなる。この場合、エンジンを駆動させて走行用の駆動力等を得る必要が生じ、車両全体としての燃費(車両燃費)の向上を充分に図ることができない虞がある。それ故、バッテリ等から供給される電力にて車室内を空調可能な車両用空調装置では、車室内の空調によるバッテリの電力消費量を低減することが重要な課題となっている。   However, if the remaining charge of the battery is reduced to a predetermined value by continuing the air conditioning in the vehicle interior, it becomes impossible to drive the electric motor for traveling using the electric power stored in the battery. In this case, it is necessary to drive the engine to obtain a driving force for traveling and the like, and there is a possibility that the fuel efficiency (vehicle fuel efficiency) of the entire vehicle cannot be sufficiently improved. Therefore, in a vehicle air conditioner that can air-condition the vehicle interior with electric power supplied from a battery or the like, it is an important issue to reduce the power consumption of the battery by air-conditioning in the vehicle interior.

本発明は上記点に鑑みて、バッテリから供給される電力にて車室内を空調可能な車両用空調装置において、車室内の空調によるバッテリの消費電力を抑制することを目的とする。   In view of the above, an object of the present invention is to suppress power consumption of a battery due to air conditioning in a vehicle interior in a vehicle air conditioner capable of air conditioning the vehicle interior with electric power supplied from a battery.

上記目的を達成するため、請求項1に記載の発明では、車両走行用の駆動力を出力する走行用電動モータと、走行用電動モータへ供給される電力を蓄えるバッテリ(81)と、バッテリ(81)に蓄えられる電力を発電するための駆動力および車両走行用の駆動力のうち、少なくとも一方を出力する内燃機関(EG)とを有する車両に適用される車両用空調装置であって、バッテリ(81)に蓄えられた電力を供給されることによって冷媒を圧縮して吐出する圧縮機(31)および冷媒を蒸発させて車室内に送風される送風空気を冷却する蒸発器(13)を有する蒸気圧縮式の冷凍サイクル(30)と、圧縮機(31)の作動を制御する圧縮機制御手段(50a)と、蒸発器(13)における目標冷媒蒸発温度(TEO)を決定する目標冷媒蒸発温度決定手段(S9)と、を備え、圧縮機制御手段(50a)は、蒸発器(13)における冷媒蒸発温度(TE)が目標冷媒蒸発温度(TEO)に近づくように、圧縮機(31)の作動を制御し、目標冷媒蒸発温度決定手段(S9)は、内燃機関(EG)が停止している際に、内燃機関(EG)が停止してからの時間の経過に伴って、目標冷媒蒸発温度(TEO)を上昇させることを特徴とする。   To achieve the above object, according to the first aspect of the present invention, a traveling electric motor that outputs a driving force for traveling a vehicle, a battery (81) that stores electric power supplied to the traveling electric motor, 81) A vehicle air conditioner that is applied to a vehicle having an internal combustion engine (EG) that outputs at least one of a driving force for generating electric power stored in 81) and a driving force for driving the vehicle. The compressor (31) that compresses and discharges the refrigerant by being supplied with the electric power stored in (81) and the evaporator (13) that evaporates the refrigerant and cools the blown air blown into the vehicle interior. Vapor compression refrigeration cycle (30), compressor control means (50a) for controlling operation of compressor (31), and target refrigerant for determining target refrigerant evaporation temperature (TEO) in evaporator (13) And a compressor control means (50a), the compressor control means (50a), so that the refrigerant evaporating temperature (TE) in the evaporator (13) approaches the target refrigerant evaporating temperature (TEO). The target refrigerant evaporating temperature determining means (S9) controls the target refrigerant evaporating temperature determining means (S9) as the time elapses after the internal combustion engine (EG) is stopped when the internal combustion engine (EG) is stopped. The refrigerant evaporating temperature (TEO) is increased.

これによれば、内燃機関(EG)が停止している際に、内燃機関(EG)が停止してからの時間の経過に伴って、目標冷媒蒸発温度(TEO)を上昇させるので、冷凍サイクル(30)の高低圧差を縮小して、圧縮機(31)の消費動力を低減させることができる。従って、車室内の空調によるバッテリ(81)の消費電力を抑制することができる。   According to this, when the internal combustion engine (EG) is stopped, the target refrigerant evaporation temperature (TEO) is raised with the passage of time after the internal combustion engine (EG) is stopped. The power consumption of the compressor (31) can be reduced by reducing the high / low pressure difference of (30). Therefore, the power consumption of the battery (81) due to air conditioning in the passenger compartment can be suppressed.

この際、内燃機関(EG)が停止してからの時間の経過に伴って、目標冷媒蒸発温度(TEO)を上昇させるので、車室内への送風空気の温度の急変を抑制することができ、乗員の空調フィーリングの悪化を抑制することができる。   At this time, since the target refrigerant evaporation temperature (TEO) is increased with the passage of time after the internal combustion engine (EG) is stopped, it is possible to suppress a sudden change in the temperature of the blown air into the vehicle interior, The deterioration of the passenger's air conditioning feeling can be suppressed.

さらに、圧縮機(31)の消費動力を低減させて、バッテリ(81)に蓄えられた電力のうち空調用に消費される電力を低減することで、走行用電動モータへ供給される電力を増加させることができる。   Further, by reducing the power consumed by the compressor (31) and reducing the power consumed for air conditioning among the power stored in the battery (81), the power supplied to the electric motor for traveling is increased. Can be made.

その結果、走行用電動モータによる車両の走行距離を延ばすことができる。ひいては、バッテリ(81)に蓄えられる電力を発電するための駆動力を出力する内燃機関(EG)を有する車両では、バッテリ(81)に蓄えられる電力を発電するために内燃機関(EG)を駆動させる頻度を低減することができるので、単位燃料あたりの車両の走行距離を延ばすこと、すなわち燃費の向上を図ることができる。また、車両走行用の駆動力を出力する内燃機関(EG)を有する車両では、走行用電動モータおよび内燃機関(EG)による車両の走行距離の合計距離を延ばすことができ、燃費の向上を図ることができる。   As a result, the travel distance of the vehicle by the travel electric motor can be extended. As a result, in a vehicle having an internal combustion engine (EG) that outputs a driving force for generating electric power stored in the battery (81), the internal combustion engine (EG) is driven to generate electric power stored in the battery (81). Therefore, it is possible to increase the travel distance of the vehicle per unit fuel, that is, to improve the fuel consumption. In addition, in a vehicle having an internal combustion engine (EG) that outputs driving force for vehicle travel, the total travel distance of the vehicle by the travel electric motor and the internal combustion engine (EG) can be extended, thereby improving fuel consumption. be able to.

ここで、内燃機関(EG)が停止している際の目標冷媒蒸発温度(TEO)の上昇によって、蒸発器(13)にて冷却される車室内へ送風する送風空気の温度が上昇して車室内温度が過度に高くなると、乗員の空調フィーリングが悪化する虞がある。   Here, as the target refrigerant evaporation temperature (TEO) rises when the internal combustion engine (EG) is stopped, the temperature of the blown air to be blown into the vehicle compartment cooled by the evaporator (13) rises and the vehicle If the room temperature becomes excessively high, the air conditioning feeling of the passenger may be deteriorated.

そこで、請求項2に記載の発明では、請求項1に記載の車両用空調装置において、目標冷媒蒸発温度決定手段(S9)は、車室内温度(Tr)に応じて内燃機関(EG)が停止している際の目標冷媒蒸発温度(TEO)の上限温度を設定し、内燃機関(EG)が停止している際に、内燃機関(EG)が停止してからの時間の経過に伴って、上限温度となるまで目標冷媒蒸発温度(TEO)を上昇させることを特徴とする。   Accordingly, in the invention according to claim 2, in the vehicle air conditioner according to claim 1, the target refrigerant evaporation temperature determining means (S9) stops the internal combustion engine (EG) according to the vehicle interior temperature (Tr). When the upper limit temperature of the target refrigerant evaporation temperature (TEO) is set and the internal combustion engine (EG) is stopped, with the passage of time after the internal combustion engine (EG) is stopped, The target refrigerant evaporation temperature (TEO) is raised until the upper limit temperature is reached.

これによれば、内燃機関(EG)を停止している際の目標冷媒蒸発温度(TEO)の上限温度を車室内温度(Tr)に応じて設定しているので、内燃機関(EG)が停止している際の車室内温度(Tr)の過度の上昇を抑制することができる。従って、内燃機関(EG)が停止している際の乗員の空調フィーリングの悪化を抑制することができる。   According to this, since the upper limit temperature of the target refrigerant evaporation temperature (TEO) when the internal combustion engine (EG) is stopped is set according to the vehicle interior temperature (Tr), the internal combustion engine (EG) is stopped. An excessive increase in the passenger compartment temperature (Tr) during operation can be suppressed. Therefore, it is possible to suppress the deterioration of the air conditioning feeling of the occupant when the internal combustion engine (EG) is stopped.

また、請求項3に記載の発明では、請求項1または2に記載の車両用空調装置において、乗員の操作により車室内の空調に必要とされる動力の省動力化を要求する指令を出力する省動力化要求手段(60d)を備え、目標冷媒蒸発温度決定手段(S9)は、省動力化要求手段(60d)によって省動力化を要求する指令が出力された場合は、省動力化を要求する指令が出力されていない場合に比べて、内燃機関(EG)が停止している際の目標冷媒蒸発温度(TEO)の上昇度合いを大きくすることを特徴とする。   According to a third aspect of the present invention, in the vehicle air conditioner according to the first or second aspect of the invention, a command for requesting power saving of power required for air conditioning in the passenger compartment is output by a passenger operation. The power saving requesting means (60d) is provided, and the target refrigerant evaporation temperature determining means (S9) requests power saving when the power saving requesting means (60d) outputs a command to request power saving. As compared with the case where the command to perform is not output, the degree of increase in the target refrigerant evaporation temperature (TEO) when the internal combustion engine (EG) is stopped is increased.

これによれば、省動力化を要求する指令が出力された場合には、冷凍サイクル(30)の高低圧差を縮小して、圧縮機(31)の省動力化を図ることができるので、バッテリ(81)の消費電力をより効果的に抑制することができる。加えて、乗員による省動力化要求手段(60d)の操作によって、圧縮機(31)の省動力化を選択できるので、車室内の空調に必要とされる動力の省動力化を望む乗員の意思を適切に反映させることができる。   According to this, when a command for requesting power saving is output, the high / low pressure difference of the refrigeration cycle (30) can be reduced to save power of the compressor (31). The power consumption of (81) can be more effectively suppressed. In addition, since it is possible to select the power saving of the compressor (31) by the operation of the power saving request means (60d) by the occupant, the intention of the occupant who desires the power saving of the power required for air conditioning in the passenger compartment. Can be appropriately reflected.

また、請求項4では、請求項1ないし3のいずれか1つに記載の車両用空調装置において、バッテリ(81)に蓄えられた電力を供給されることによって車室内へ空気を送風する送風機(12)と、送風機(12)の作動を制御する送風機制御手段(50b)と、送風機(12)における目標送風量を決定する目標送風量決定手段(S6)と、を備え、目標送風量決定手段(S6)は、内燃機関(EG)が停止している際に、内燃機関(EG)が停止してからの時間の経過に伴って、目標送風量を低下させることを特徴とする。   According to a fourth aspect of the present invention, in the vehicle air conditioner according to any one of the first to third aspects, the blower that blows air into the vehicle interior by being supplied with electric power stored in the battery (81). 12), a blower control means (50b) for controlling the operation of the blower (12), and a target blown amount determination means (S6) for determining a target blown amount in the blower (12), and a target blown amount decision means (S6) is characterized in that when the internal combustion engine (EG) is stopped, the target air flow rate is reduced with the passage of time after the internal combustion engine (EG) is stopped.

これによれば、内燃機関(EG)が停止している際に、内燃機関(EG)が停止してからの時間の経過に伴って、送風機(12)の目標送風量を低下させるので、送風機(12)の消費動力を低減させることができる。従って、車室内の空調によるバッテリ(81)の消費電力を抑制することができる。   According to this, when the internal combustion engine (EG) is stopped, the target air flow rate of the blower (12) is reduced as time passes after the internal combustion engine (EG) is stopped. The consumption power of (12) can be reduced. Therefore, the power consumption of the battery (81) due to air conditioning in the passenger compartment can be suppressed.

この際、内燃機関(EG)が停止してからの時間の経過に伴って、目標送風量を低下させるので、車室内への送風空気の送風量の急変を抑制することができ、乗員の空調フィーリングの悪化を抑制することができる。   At this time, since the target air flow rate is reduced with the passage of time after the internal combustion engine (EG) is stopped, a sudden change in the air flow rate of the blown air into the passenger compartment can be suppressed, and the air conditioning of the occupant The deterioration of feeling can be suppressed.

さらに、送風機(12)の消費動力を低減させて、バッテリ(81)に蓄えられた電力のうち空調用に消費される電力を低減することで、走行用電動モータへ供給される電力を増加させることができる。ひいては、請求項1に記載の車両用空調装置と同様に、車両の燃費の向上を図ることができる。   Furthermore, by reducing the power consumption of the blower (12) and reducing the power consumed for air conditioning among the power stored in the battery (81), the power supplied to the electric motor for travel is increased. be able to. As a result, the fuel efficiency of the vehicle can be improved in the same manner as the vehicle air conditioner described in claim 1.

また、請求項5に記載の発明では、請求項4に記載の車両用空調装置において、乗員の操作により車室内の空調に必要とされる動力の省動力化を要求する指令を出力する省動力化要求手段(60d)を備え、目標送風量決定手段(S6)は、省動力化要求手段(60d)によって省動力化を要求する指令が出力された場合は、省動力化を要求する指令が出力されていない場合に比べて、内燃機関(EG)が停止している際の目標送風量の低下度合いを大きくすることを特徴とする。   According to a fifth aspect of the present invention, in the vehicle air conditioner according to the fourth aspect of the present invention, a power saving that outputs a command for requesting a power saving of the power required for air conditioning in the passenger compartment by the operation of the passenger. If the command for requesting power saving is output from the power saving requesting means (60d), the target air flow determining means (S6) is provided with a command requesting power saving. Compared to the case where no output is made, the degree of reduction in the target air flow rate when the internal combustion engine (EG) is stopped is increased.

これによれば、省動力化を要求する指令が出力された場合には、送風機(12)の送風量を低下させて、送風機(12)の省動力化を図ることができるので、バッテリ(81)の消費電力をより効果的に抑制することができる。加えて、乗員による省動力化要求手段(60d)の操作によって、送風機(12)の省動力化を選択できるので、車室内の空調に必要とされる動力の省動力化を望む乗員の意思を適切に反映させることができる。   According to this, when a command for requesting power saving is output, the amount of air blown from the blower (12) can be reduced and power saving of the blower (12) can be achieved. ) Can be more effectively suppressed. In addition, since it is possible to select the power saving of the blower (12) by the operation of the power saving request means (60d) by the occupant, the intention of the occupant who desires the power saving of the power required for the air conditioning in the passenger compartment. It can be reflected appropriately.

また、請求項6に記載の発明では、車両走行用の駆動力を出力する走行用電動モータと、走行用電動モータへ供給される電力を蓄えるバッテリ(81)と、バッテリ(81)に蓄えられる電力を発電するための駆動力および車両走行用の駆動力のうち、少なくとも一方を出力する内燃機関(EG)とを有する車両に適用される車両用空調装置であって、バッテリ(81)に蓄えられた電力を供給されることによって車室内へ空気を送風する送風機(12)と、送風機(12)の作動を制御する送風機制御手段(50b)と、送風機(12)における目標送風量を決定する目標送風量決定手段(S6)と、を備え、目標送風量決定手段(S6)は、内燃機関(EG)が停止している際に、内燃機関(EG)が停止してからの時間の経過に伴って、目標送風量を低下させることを特徴とする。   In the invention according to claim 6, the electric motor for traveling that outputs driving force for traveling the vehicle, the battery (81) that stores electric power supplied to the electric motor for traveling, and the battery (81) are stored. An air conditioner for a vehicle that is applied to a vehicle having an internal combustion engine (EG) that outputs at least one of a driving force for generating electric power and a driving force for driving the vehicle, and is stored in a battery (81). The blower (12) that blows air into the vehicle interior by being supplied with the generated power, the blower control means (50b) that controls the operation of the blower (12), and the target blower amount in the blower (12) are determined. A target air flow determining means (S6), and the target air flow determining means (S6) is a time elapse after the internal combustion engine (EG) is stopped when the internal combustion engine (EG) is stopped. With Wherein the lowering the target air volume.

これによれば、内燃機関(EG)が停止している際に、内燃機関(EG)が停止してからの時間の経過に伴って、送風機(12)の目標送風量を低下させるので、送風機(12)の消費動力を低減させることができ、車室内の空調によるバッテリ(81)の消費電力を抑制することができる。   According to this, when the internal combustion engine (EG) is stopped, the target air flow rate of the blower (12) is reduced as time passes after the internal combustion engine (EG) is stopped. The power consumption of (12) can be reduced, and the power consumption of the battery (81) due to air conditioning in the passenger compartment can be suppressed.

この際、内燃機関(EG)が停止してからの時間の経過に伴って、目標送風量を低下させるので、車室内への送風空気の送風量の急変を抑制することができ、乗員の空調フィーリングの悪化を抑制することができる。   At this time, since the target air flow rate is reduced with the passage of time after the internal combustion engine (EG) is stopped, a sudden change in the air flow rate of the blown air into the passenger compartment can be suppressed, and the air conditioning of the occupant The deterioration of feeling can be suppressed.

さらに、送風機(12)の消費動力を低減させて、バッテリ(81)に蓄えられた電力のうち空調用に消費される電力を低減することで、走行用電動モータへ供給される電力を増加させることができ、ひいては、請求項1に記載の車両用空調装置と同様に、車両の燃費の向上を図ることができる。   Furthermore, by reducing the power consumption of the blower (12) and reducing the power consumed for air conditioning among the power stored in the battery (81), the power supplied to the electric motor for travel is increased. As a result, the fuel efficiency of the vehicle can be improved in the same manner as the vehicle air conditioner described in claim 1.

ここで、内燃機関(EG)が停止している際の目標送風量の低下によって、蒸発器(13)にて冷却された空気の送風量が低下して車室内温度が過度に高くなると、乗員の空調フィーリングが悪化する虞がある。   Here, when the air flow rate of air cooled by the evaporator (13) decreases due to a decrease in the target air flow rate when the internal combustion engine (EG) is stopped, the passenger compartment temperature becomes excessively high. There is a risk that the air-conditioning feeling will deteriorate.

そこで、請求項7に記載の発明では、請求項4ないし6のいずれか1つに記載の車両用空調装置において、目標送風量決定手段(S6)は、車室内温度(Tr)に応じて内燃機関(EG)が停止している際の目標送風量の下限送風量を設定し、内燃機関(EG)が停止している際に、内燃機関(EG)が停止してからの時間の経過に伴って、下限送風量となるまで目標送風量を低下させることを特徴とする。   Therefore, in the invention according to claim 7, in the vehicle air conditioner according to any one of claims 4 to 6, the target air flow rate determining means (S6) is an internal combustion engine according to the vehicle interior temperature (Tr). When the engine (EG) is stopped, the lower limit air flow rate of the target air flow rate is set, and when the internal combustion engine (EG) is stopped, the passage of time after the internal combustion engine (EG) is stopped Along with this, the target air flow rate is reduced until the lower limit air flow rate is reached.

これによれば、内燃機関(EG)を停止している際の目標送風量の下限送風量を車室内温度(Tr)に応じて設定しているので、内燃機関(EG)が停止している際の車室内温度(Tr)の過度の上昇を抑制することができる。従って、内燃機関(EG)が停止している際の乗員の空調フィーリングの悪化を抑制することができる。   According to this, since the lower limit blowing amount of the target blowing amount when the internal combustion engine (EG) is stopped is set according to the vehicle interior temperature (Tr), the internal combustion engine (EG) is stopped. An excessive increase in the vehicle interior temperature (Tr) can be suppressed. Accordingly, it is possible to suppress deterioration of the air conditioning feeling of the occupant when the internal combustion engine (EG) is stopped.

また、請求項8に記載の発明では、請求項1ないし7のいずれか1つに記載の車両用空調装置において、バッテリ(81)に蓄えられる電力を発電するための駆動力を出力する内燃機関(EG)を有する車両に適用されることを特徴とする。   According to an eighth aspect of the present invention, in the vehicle air conditioner according to any one of the first to seventh aspects, an internal combustion engine that outputs a driving force for generating electric power stored in the battery (81). It is applied to a vehicle having (EG).

これによれば、上述のように、バッテリ(81)に蓄えられる電力を発電するために内燃機関(EG)を駆動させる頻度を低減することができるので、燃費の向上を図ることができる。   According to this, as described above, the frequency of driving the internal combustion engine (EG) in order to generate the electric power stored in the battery (81) can be reduced, so that the fuel consumption can be improved.

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.

本発明の第1実施形態における車両用空調装置の構成図である。It is a block diagram of the vehicle air conditioner in 1st Embodiment of this invention. 図1中の電気ヒータの構成図である。It is a block diagram of the electric heater in FIG. 図1の車両用空調装置の電気制御部の構成図である。It is a block diagram of the electric control part of the vehicle air conditioner of FIG. 図1の車両用空調装置の制御処理を示すフローチャートである。It is a flowchart which shows the control processing of the vehicle air conditioner of FIG. 図4のS10の詳細を示すフローチャートである。It is a flowchart which shows the detail of S10 of FIG. 図4のS13の詳細を示すフローチャートである。It is a flowchart which shows the detail of S13 of FIG. 図4のS6の詳細を示すフローチャートである。It is a flowchart which shows the detail of S6 of FIG. 図4のS9の詳細を示すフローチャートである。It is a flowchart which shows the detail of S9 of FIG. 第2実施形態における図4のS6の詳細を示すフローチャートである。It is a flowchart which shows the detail of S6 of FIG. 4 in 2nd Embodiment. 第2実施形態における図4のS9の詳細を示すフローチャートである。It is a flowchart which shows the detail of S9 of FIG. 4 in 2nd Embodiment.

(第1実施形態)
以下、図面を用いて本発明の第1実施形態を説明する。図1は、本実施形態の車両用空調装置1の全体構成図であり、図2は、車両用空調装置1の電気制御部の構成を示すブロック図である。本実施形態の車両用空調装置1は、エンジン(内燃機関)EGおよび走行用電動モータから車両走行用の駆動力を得るハイブリッド車に搭載されている。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an overall configuration diagram of a vehicle air conditioner 1 according to the present embodiment, and FIG. 2 is a block diagram illustrating a configuration of an electric control unit of the vehicle air conditioner 1. The vehicle air conditioner 1 according to this embodiment is mounted on a hybrid vehicle that obtains driving force for vehicle travel from an engine (internal combustion engine) EG and a travel electric motor.

本実施形態のハイブリッド車両は、車両の走行負荷等に応じてエンジンEGを作動あるいは停止させて、エンジンEGおよび走行用電動モータの双方から駆動力を得て走行する走行状態や、エンジンEGを停止させて走行用電動モータのみから駆動力を得て走行する走行状態等を切り替えることができる。これにより、車両走行用の駆動力をエンジンEGのみから得る通常の車両に対して車両燃費を向上させている。   The hybrid vehicle according to the present embodiment operates or stops the engine EG according to the traveling load of the vehicle, etc., and stops the engine EG by obtaining driving force from both the engine EG and the traveling electric motor. Thus, it is possible to switch the running state in which the driving force is obtained only from the traveling electric motor. Thereby, the vehicle fuel consumption is improved with respect to the normal vehicle which obtains the driving force for vehicle travel only from the engine EG.

また、このようなエンジンEGの作動あるいは停止といったエンジンEGの作動は、後述するエンジン制御装置70によって制御される。さらに、本実施形態のエンジンEGから出力される駆動力は、車両走行用として用いられるのみならず、発電機(発電手段)80を作動させるためにも用いられる。すなわち、本実施形態では、バッテリ81に蓄えられる電力を発電するための駆動力および車両走行用の駆動力の両方を出力するエンジンEGを有する車両に車両用空調装置1を適用している。   Further, the operation of the engine EG such as the operation or stop of the engine EG is controlled by an engine control device 70 described later. Furthermore, the driving force output from the engine EG of the present embodiment is used not only for driving the vehicle but also for operating the generator (power generation means) 80. That is, in this embodiment, the vehicle air conditioner 1 is applied to a vehicle having an engine EG that outputs both driving force for generating electric power stored in the battery 81 and driving force for traveling the vehicle.

そして、発電機80にて発電された電力は、バッテリ81に蓄えることができ、バッテリ81に蓄えられた電力は、走行用電動モータのみならず、車両用空調装置1を構成する各構成機器(空調機器)をはじめとする各種車載機器に供給できる。なお、発電機80は、バッテリ81を充電するバッテリ充電手段を構成している。   And the electric power generated with the generator 80 can be stored in the battery 81, and the electric power stored in the battery 81 is not only the electric motor for traveling, but also each component device that constitutes the vehicle air conditioner 1 ( It can be supplied to various in-vehicle devices such as air conditioning equipment. The generator 80 constitutes battery charging means for charging the battery 81.

次に、本実施形態の車両用空調装置1の詳細構成を説明する。本実施形態の車両用空調装置1は、図1に示す室内空調ユニット10、冷凍サイクル30、図2に示す空調制御装置50等を備えている。   Next, the detailed structure of the vehicle air conditioner 1 of this embodiment is demonstrated. The vehicle air conditioner 1 of the present embodiment includes the indoor air conditioning unit 10 shown in FIG. 1, the refrigeration cycle 30, the air conditioning control device 50 shown in FIG.

まず、室内空調ユニット10は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されて、その外殻を形成するケーシング11内に送風機12、蒸発器13、ヒータコア14、PTCヒータ15等を収容したものである。   First, the indoor air-conditioning unit 10 is arranged inside the instrument panel (instrument panel) at the foremost part of the vehicle interior, and a blower 12, an evaporator 13, a heater core 14, and a PTC heater 15 are disposed in a casing 11 that forms an outer shell thereof. Etc. are accommodated.

ケーシング11は、車室内に送風される送風空気の空気通路を形成しており、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。ケーシング11内の送風空気流れ最上流側には、内気(車室内空気)と外気(車室外空気)とを切替導入する内外気切替手段としての内外気切替箱20が配置されている。   The casing 11 forms an air passage for blown air that is blown into the passenger compartment, and is formed of a resin (for example, polypropylene) that has a certain degree of elasticity and is excellent in strength. An inside / outside air switching box 20 as an inside / outside air switching means for switching and introducing between the inside air (vehicle compartment air) and the outside air (vehicle compartment outside air) is arranged on the most upstream side of the blown air flow in the casing 11.

より具体的には、内外気切替箱20には、ケーシング11内に内気を導入させる内気導入口21および外気を導入させる外気導入口22が形成されている。さらに、内外気切替箱20の内部には、内気導入口21および外気導入口22の開口面積を連続的に調整して、ケーシング11内へ導入させる内気の風量と外気の風量との風量割合を変化させる内外気切替ドア23が配置されている。   More specifically, the inside / outside air switching box 20 is formed with an inside air introduction port 21 for introducing inside air into the casing 11 and an outside air introduction port 22 for introducing outside air. Further, inside the inside / outside air switching box 20, the opening areas of the inside air introduction port 21 and the outside air introduction port 22 are continuously adjusted, and the air volume ratio between the air volume of the inside air introduced into the casing 11 and the air volume of the outside air is set. An inside / outside air switching door 23 to be changed is arranged.

従って、内外気切替ドア23は、ケーシング11内に導入される内気の風量と外気の風量との風量割合を変化させる吸込口モードを切り替える風量割合変更手段を構成する。より具体的には、内外気切替ドア23は、内外気切替ドア23用の電動アクチュエータ62によって駆動され、この電動アクチュエータ62は、後述する空調制御装置50から出力される制御信号によって、その作動が制御される。   Therefore, the inside / outside air switching door 23 constitutes an air volume ratio changing means for switching the suction port mode for changing the air volume ratio between the air volume of the inside air introduced into the casing 11 and the air volume of the outside air. More specifically, the inside / outside air switching door 23 is driven by an electric actuator 62 for the inside / outside air switching door 23, and the operation of the electric actuator 62 is controlled by a control signal output from an air conditioning control device 50 described later. Be controlled.

また、吸込口モードとしては、内気導入口21を全開とするとともに外気導入口22を全閉としてケーシング11内へ内気を導入する内気モード、内気導入口21を全閉とするとともに外気導入口22を全開としてケーシング11内へ外気を導入する外気モード、さらに、内気モードと外気モードとの間で、内気導入口21および外気導入口22の開口面積を連続的に調整することにより、内気と外気の導入比率を連続的に変化させる内外気混入モードがある。   As the suction port mode, the inside air introduction port 21 is fully opened and the outside air introduction port 22 is fully closed to introduce the inside air into the casing 11. The inside air introduction port 21 is fully closed and the outside air introduction port 22 is fully closed. The outside air mode in which the outside air is introduced into the casing 11 with the valve fully open, and the opening areas of the inside air introduction port 21 and the outside air introduction port 22 are continuously adjusted between the inside air mode and the outside air mode. There is an internal / external air mixing mode that continuously changes the introduction ratio.

内外気切替箱20の空気流れ下流側には、内外気切替箱20を介して吸入した空気を車室内へ向けて送風する送風手段としての送風機(ブロワ)12が配置されている。この送風機12は、遠心多翼ファン(シロッコファン)を電動モータにて駆動する電動送風機であって、空調制御装置50から出力される制御電圧(ブロワ電圧)によって回転数(送風量)が制御される。なお、送風機12は、バッテリ(81)に蓄えられた電力を供給されることによって作動可能に構成されており、送風機12の作動によりバッテリ81の電力が消費される。   On the downstream side of the air flow in the inside / outside air switching box 20, a blower 12 as a blowing means for blowing the air sucked through the inside / outside air switching box 20 toward the vehicle interior is arranged. The blower 12 is an electric blower that drives a centrifugal multiblade fan (sirocco fan) with an electric motor, and the number of rotations (the amount of blown air) is controlled by a control voltage (blower voltage) output from the air conditioning controller 50. The The blower 12 is configured to be operable by being supplied with electric power stored in the battery (81), and the electric power of the battery 81 is consumed by the operation of the blower 12.

送風機12の空気流れ下流側には、蒸発器(エバポレータ)13が配置されている。蒸発器13は、その内部を流通する冷媒と送風空気とを熱交換させて送風空気を冷却する冷却用熱交換器である。換言すれば、蒸発器13は、冷媒を蒸発させて車室内へ送風する送風空気を冷却する冷却用熱交換器である。蒸発器13は、圧縮機(コンプレッサ)31、凝縮器32、気液分離器33、膨張弁34等とともに、蒸気圧縮式の冷凍サイクル30を構成している。   An evaporator (evaporator) 13 is disposed on the downstream side of the air flow of the blower 12. The evaporator 13 is a cooling heat exchanger that cools the blown air by exchanging heat between the refrigerant flowing through the evaporator 13 and the blown air. In other words, the evaporator 13 is a cooling heat exchanger that cools the blown air that evaporates the refrigerant and blows air into the passenger compartment. The evaporator 13 constitutes a vapor compression refrigeration cycle 30 together with a compressor (compressor) 31, a condenser 32, a gas-liquid separator 33, an expansion valve 34, and the like.

圧縮機31は、エンジンルーム内に配置され、冷凍サイクル30において冷媒を吸入し、圧縮して吐出するものであり、吐出容量が固定された固定容量型圧縮機構31aを電動モータ31bにて駆動する電動圧縮機として構成されている。電動モータ31bは、インバータ61から出力される交流電圧によって、その作動(回転数)が制御される交流モータである。なお、圧縮機31は、バッテリ(81)に蓄えられた電力を供給されることによって作動可能に構成されており、圧縮機31の作動によりバッテリ81の電力が消費される。   The compressor 31 is disposed in the engine room, sucks the refrigerant in the refrigeration cycle 30, compresses and discharges it, and drives the fixed capacity type compression mechanism 31a having a fixed discharge capacity by the electric motor 31b. It is configured as an electric compressor. The electric motor 31b is an AC motor whose operation (number of rotations) is controlled by the AC voltage output from the inverter 61. The compressor 31 is configured to be operable by being supplied with electric power stored in the battery (81), and the electric power of the battery 81 is consumed by the operation of the compressor 31.

また、インバータ61は、後述する空調制御装置50から出力される制御信号に応じた周波数の交流電圧を出力する。そして、この回転数制御によって、圧縮機31の冷媒吐出能力(回転数)が変更される。従って、電動モータ31bは、圧縮機31の吐出能力変更手段を構成している。なお、本実施形態の圧縮機31を作動させるために必要な消費電力は、前述の送風機12に送風を作動させるために必要な消費電力よりも大きい。   Further, the inverter 61 outputs an AC voltage having a frequency corresponding to a control signal output from the air conditioning control device 50 described later. And the refrigerant | coolant discharge capability (rotation speed) of the compressor 31 is changed by this rotation speed control. Therefore, the electric motor 31b constitutes a discharge capacity changing means of the compressor 31. In addition, the power consumption required in order to operate the compressor 31 of this embodiment is larger than the power consumption required in order to operate ventilation to the above-mentioned air blower 12. FIG.

凝縮器32は、エンジンルーム内に配置されて、内部を流通する冷媒と、室外送風機としての送風ファン35から送風された車室外空気(外気)とを熱交換させることにより、圧縮された冷媒を凝縮液化させるものである。送風ファン35は、空調制御装置50から出力される制御電圧によって稼働率、すなわち、回転数(送風空気量)が制御される電動式送風機である。   The condenser 32 is disposed in the engine room, and exchanges heat between the refrigerant circulating in the interior and the outside air (outside air) blown from the blower fan 35 as an outdoor blower, so that the compressed refrigerant is Condensed liquid. The blower fan 35 is an electric blower in which the operating rate, that is, the rotation speed (the amount of blown air) is controlled by the control voltage output from the air conditioning control device 50.

気液分離器33は、凝縮液化された冷媒を気液分離して余剰液冷媒を蓄えるとともに、液冷媒のみを下流に流すものである。膨張弁34は、液冷媒を減圧膨張させる減圧手段である。蒸発器13は、冷媒と送風空気との熱交換により、減圧膨張された冷媒を蒸発気化させるものである。   The gas-liquid separator 33 gas-liquid separates the condensed and liquefied refrigerant to store surplus liquid refrigerant, and flows only the liquid refrigerant downstream. The expansion valve 34 is a decompression unit that decompresses and expands the liquid refrigerant. The evaporator 13 evaporates the refrigerant expanded under reduced pressure by heat exchange between the refrigerant and the blown air.

また、ケーシング11内において、蒸発器13の空気流れ下流側には、蒸発器13通過後の空気を流す加熱用冷風通路16、冷風バイパス通路17といった空気通路、並びに、加熱用冷風通路16および冷風バイパス通路17から流出した空気を混合させる混合空間18が形成されている。   Further, in the casing 11, on the downstream side of the air flow of the evaporator 13, an air passage such as a cooling cold air passage 16 and a cold air bypass passage 17 for flowing air after passing through the evaporator 13, and the heating cold air passage 16 and the cold air are provided. A mixing space 18 for mixing the air that has flowed out of the bypass passage 17 is formed.

加熱用冷風通路16には、蒸発器13通過後の空気を加熱するためのヒータコア14およびPTCヒータ15が、送風空気流れ方向に向かってこの順で配置されている。ヒータコア14は、エンジンEGを冷却するエンジン冷却水(以下、単に冷却水という。)と蒸発器13通過後の送風空気とを熱交換させて、蒸発器13通過後の送風空気を加熱する加熱用熱交換器である。   A heater core 14 and a PTC heater 15 for heating the air that has passed through the evaporator 13 are arranged in this order in the cooling air passage 16 for heating in the air flow direction. The heater core 14 heats the engine cooling water (hereinafter simply referred to as cooling water) that cools the engine EG and the blown air that has passed through the evaporator 13 to heat the blown air that has passed through the evaporator 13. It is a heat exchanger.

具体的には、ヒータコア14とエンジンEGとの間に冷却水流路41が設けられて、ヒータコア14とエンジンEGとの間を冷却水が循環する冷却水回路40が構成されている。そして、この冷却水回路40には、冷却水を循環させるための電動ウォータポンプ42が設置されている。電動ウォータポンプ42は、空調制御装置50から出力される制御電圧によって回転数(冷却水循環量)が制御される電動式の水ポンプである。   Specifically, a cooling water flow path 41 is provided between the heater core 14 and the engine EG, and the cooling water circuit 40 is configured in which the cooling water circulates between the heater core 14 and the engine EG. The cooling water circuit 40 is provided with an electric water pump 42 for circulating the cooling water. The electric water pump 42 is an electric water pump whose rotation speed (cooling water circulation amount) is controlled by a control voltage output from the air conditioning control device 50.

PTCヒータ15は、PTC素子(正特性サーミスタ)を有し、このPTC素子に電力が供給されることによって発熱して、ヒータコア14通過後の空気を加熱する電気ヒータである。なお、本実施形態のPTCヒータ15を作動させるために必要な消費電力は、冷凍サイクル30の圧縮機31を作動させるために必要な消費電力よりも少ない。   The PTC heater 15 is an electric heater that has a PTC element (positive characteristic thermistor), generates heat when electric power is supplied to the PTC element, and heats air after passing through the heater core 14. Note that the power consumption required to operate the PTC heater 15 of this embodiment is less than the power consumption required to operate the compressor 31 of the refrigeration cycle 30.

より具体的には、このPTCヒータ15は、図3に示すように、複数(本実施形態では、3本)のPTCヒータ15a、15b、15cから構成されている。なお、図3は、本実施形態のPTCヒータ15の電気的接続態様を示す回路図である。   More specifically, as shown in FIG. 3, the PTC heater 15 includes a plurality of (in this embodiment, three) PTC heaters 15a, 15b, and 15c. FIG. 3 is a circuit diagram showing an electrical connection mode of the PTC heater 15 of the present embodiment.

図3に示すように、各PTCヒータ15a、15b、15cの正極側はバッテリ81側に接続され、負極側は各PTCヒータ15a、15b、15cが有する各スイッチ素子SW1、SW2、SW3を介して、グランド側へ接続されている。各スイッチ素子SW1、SW2、SW3は、各PTCヒータ15a、15b、15cが有する各PTC素子h1、h2、h3の通電状態(ON状態)と非通電状態(OFF状態)とを切り替えるものである。   As shown in FIG. 3, the positive side of each PTC heater 15a, 15b, 15c is connected to the battery 81 side, and the negative side is connected to each PTC heater 15a, 15b, 15c via each switch element SW1, SW2, SW3. Connected to the ground side. Each switch element SW1, SW2, SW3 switches the energized state (ON state) and the non-energized state (OFF state) of each PTC element h1, h2, h3 included in each PTC heater 15a, 15b, 15c.

さらに、各スイッチ素子SW1、SW2、SW3の作動は、空調制御装置50から出力される制御信号によって、独立して制御される。従って、空調制御装置50は、各スイッチ素子SW1、SW2、SW3の通電状態と非通電状態とを独立に切り替えることによって、各PTCヒータ15a、15b、15cのうち、通電状態となり加熱能力を発揮するものを切り替えて、PTCヒータ15全体としての加熱能力を変化させることができる。   Further, the operation of each switch element SW1, SW2, SW3 is independently controlled by a control signal output from the air conditioning control device 50. Therefore, the air-conditioning control apparatus 50 switches to the energized state and the non-energized state of each switch element SW1, SW2, SW3, and becomes an energized state among the PTC heaters 15a, 15b, 15c, and exhibits the heating capability. By switching the thing, the heating capability as the whole PTC heater 15 can be changed.

一方、冷風バイパス通路17は、蒸発器13通過後の空気を、ヒータコア14およびPTCヒータ15を通過させることなく、混合空間18に導くための空気通路である。従って、混合空間18にて混合された送風空気の温度は、加熱用冷風通路16を通過する空気および冷風バイパス通路17を通過する空気の風量割合によって変化する。   On the other hand, the cold air bypass passage 17 is an air passage for guiding the air after passing through the evaporator 13 to the mixing space 18 without passing the heater core 14 and the PTC heater 15. Therefore, the temperature of the blown air mixed in the mixing space 18 varies depending on the air volume ratio of the air passing through the heating cool air passage 16 and the air passing through the cold air bypass passage 17.

そこで、本実施形態では、蒸発器13の空気流れ下流側であって、加熱用冷風通路16および冷風バイパス通路17の入口側に、加熱用冷風通路16および冷風バイパス通路17へ流入させる冷風の風量割合を連続的に変化させるエアミックスドア19を配置している。   Therefore, in the present embodiment, the amount of cold air that flows into the heating cold air passage 16 and the cold air bypass passage 17 on the downstream side of the air flow of the evaporator 13 and on the inlet side of the heating cold air passage 16 and the cold air bypass passage 17. An air mix door 19 that continuously changes the ratio is disposed.

従って、エアミックスドア19は、混合空間18内の空気温度(車室内へ送風される送風空気の温度)を調整する温度調整手段を構成する。より具体的には、エアミックスドア19は、エアミックスドア用の電動アクチュエータ63によって駆動され、この電動アクチュエータ63は、空調制御装置50から出力される制御信号によって、その作動が制御される。   Therefore, the air mix door 19 constitutes a temperature adjusting means for adjusting the air temperature in the mixing space 18 (the temperature of the blown air blown into the vehicle interior). More specifically, the air mix door 19 is driven by an electric actuator 63 for the air mix door, and the operation of the electric actuator 63 is controlled by a control signal output from the air conditioning controller 50.

さらに、ケーシング11の送風空気流れ最下流部には、混合空間18から空調対象空間である車室内へ温度調整された送風空気を吹き出す吹出口24〜26が配置されている。この吹出口24〜26としては、具体的に、車室内の乗員の上半身に向けて空調風を吹き出すフェイス吹出口24、乗員の足元に向けて空調風を吹き出すフット吹出口25、および、車両前面窓ガラスW内側面に向けて空調風を吹き出すデフロスタ吹出口26が設けられている。   Furthermore, blower outlets 24 to 26 that blow out the blown air whose temperature has been adjusted from the mixing space 18 to the vehicle interior that is the air-conditioning target space are disposed in the most downstream portion of the blown air flow of the casing 11. Specifically, the air outlets 24 to 26 include a face air outlet 24 that blows air-conditioned air toward the upper body of an occupant in the vehicle interior, a foot air outlet 25 that blows air-conditioned air toward the feet of the occupant, and the front of the vehicle. A defroster outlet 26 that blows air-conditioned air toward the inner surface of the window glass W is provided.

また、フェイス吹出口24、フット吹出口25、およびデフロスタ吹出口26の空気流れ上流側には、それぞれ、フェイス吹出口24の開口面積を調整するフェイスドア24a、フット吹出口25の開口面積を調整するフットドア25a、デフロスタ吹出口26の開口面積を調整するデフロスタドア26aが配置されている。   Further, on the upstream side of the air flow of the face air outlet 24, the foot air outlet 25, and the defroster air outlet 26, the face door 24a for adjusting the opening area of the face air outlet 24 and the opening area of the foot air outlet 25 are adjusted. The defroster door 26a which adjusts the opening area of the foot door 25a to perform and the defroster blower outlet 26 is arrange | positioned.

これらのフェイスドア24a、フットドア25a、デフロスタドア26aは、吹出口モードを切り替える吹出口モード切替手段を構成するものであって、図示しないリンク機構を介して、吹出口モードドア駆動用の電動アクチュエータ64に連結されて連動して回転操作される。なお、この電動アクチュエータ64も、空調制御装置50から出力される制御信号によってその作動が制御される。   The face door 24a, the foot door 25a, and the defroster door 26a constitute an outlet mode switching means for switching the outlet mode, and an electric actuator 64 for driving the outlet mode door via a link mechanism (not shown). It is linked to and rotated in conjunction with it. The operation of the electric actuator 64 is also controlled by a control signal output from the air conditioning control device 50.

また、吹出口モードとしては、フェイス吹出口24を全開してフェイス吹出口24から車室内乗員の上半身に向けて空気を吹き出すフェイスモード、フェイス吹出口24とフット吹出口25の両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出すバイレベルモード、フット吹出口25を全開するとともにデフロスタ吹出口26を小開度だけ開口して、フット吹出口25から主に空気を吹き出すフットモード、およびフット吹出口25およびデフロスタ吹出口26を同程度開口して、フット吹出口25およびデフロスタ吹出口26の双方から空気を吹き出すフットデフロスタモードがある。   Further, as the air outlet mode, the face air outlet 24 is fully opened and air is blown out from the face air outlet 24 toward the upper body of the passenger in the vehicle. Both the face air outlet 24 and the foot air outlet 25 are opened. A bi-level mode that blows air toward the upper body and feet of passengers in the passenger compartment, a foot mode in which the foot blower outlet 25 is fully opened and the defroster blower opening 26 is opened by a small opening, and air is mainly blown from the foot blower outlet 25. In addition, there is a foot defroster mode in which the foot outlet 25 and the defroster outlet 26 are opened to the same extent and air is blown out from both the foot outlet 25 and the defroster outlet 26.

次に、図2により、本実施形態の電気制御部について説明する。空調制御装置50、エンジン制御装置70、およびバッテリ制御装置90は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種機器の作動を制御する。   Next, the electric control unit of the present embodiment will be described with reference to FIG. The air conditioning control device 50, the engine control device 70, and the battery control device 90 are composed of a well-known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof, and various types based on a control program stored in the ROM. Performs computation and processing, and controls the operation of various devices connected to the output side.

エンジン制御装置70の出力側には、エンジンEGを構成する各種エンジン構成機器等が接続されている。具体的には、エンジンEGを始動させるスタータ、エンジンEGに燃料を供給する燃料噴射弁(インジェクタ)の駆動回路(図示せず)等が接続されている。   To the output side of the engine control device 70, various engine constituent devices constituting the engine EG are connected. Specifically, a starter that starts the engine EG, a drive circuit (not shown) of a fuel injection valve (injector) that supplies fuel to the engine EG, and the like are connected.

空調制御装置50の出力側には、空調機器として、送風機12、圧縮機31の電動モータ31b用のインバータ61、送風ファン35、各種電動アクチュエータ62、63、64、第1〜第3PTCヒータ15a、15b、15c、電動ウォータポンプ42等が接続されている。   On the output side of the air conditioning control device 50, as an air conditioner, an air blower 12, an inverter 61 for the electric motor 31b of the compressor 31, a blower fan 35, various electric actuators 62, 63, 64, first to third PTC heaters 15a, 15b and 15c, the electric water pump 42, etc. are connected.

空調制御装置50の出力側には、送風機12、圧縮機31の電動モータ31b用のインバータ61、送風ファン35、各種電動アクチュエータ62、63、64、第1〜第3PTCヒータ15a、15b、15c、電動ウォータポンプ42等が接続されている。   On the output side of the air conditioning control device 50, the blower 12, the inverter 61 for the electric motor 31b of the compressor 31, the blower fan 35, various electric actuators 62, 63, 64, the first to third PTC heaters 15a, 15b, 15c, An electric water pump 42 and the like are connected.

また、空調制御装置50の入力側には、車室内温度Trを検出する内気センサ51、外気温Tamを検出する外気センサ52(外気温検出手段)、車室内の日射量Tsを検出する日射センサ53、圧縮機31吐出冷媒温度Tdを検出する吐出温度センサ54(吐出温度検出手段)、圧縮機31吐出冷媒圧力Pdを検出する吐出圧力センサ55(吐出圧力検出手段)、蒸発器13からの吹出空気温度(冷媒蒸発温度)TEを検出する蒸発器温度センサ56(冷媒蒸発温度検出手段)、エンジンEGから流出した冷却水の冷却水温度Twを検出する冷却水温度センサ58等の種々の空調制御用のセンサ群の検出信号が接続されている。   Further, on the input side of the air-conditioning control device 50, an inside air sensor 51 that detects the vehicle interior temperature Tr, an outside air sensor 52 (outside air temperature detection means) that detects the outside air temperature Tam, and a solar radiation sensor that detects the amount of solar radiation Ts in the vehicle interior. 53, a discharge temperature sensor 54 (discharge temperature detection means) for detecting the compressor 31 discharge refrigerant temperature Td, a discharge pressure sensor 55 (discharge pressure detection means) for detecting the compressor 31 discharge refrigerant pressure Pd, and an outlet from the evaporator 13 Various air-conditioning controls such as an evaporator temperature sensor 56 (refrigerant evaporation temperature detecting means) for detecting the air temperature (refrigerant evaporation temperature) TE, a cooling water temperature sensor 58 for detecting the cooling water temperature Tw of the cooling water flowing out from the engine EG, etc. The detection signal of the sensor group for use is connected.

なお、本実施形態の蒸発器温度センサ56は、具体的に蒸発器13の熱交換フィン温度を検出している。もちろん、蒸発器温度センサ56として、蒸発器13のその他の部位の温度を検出する温度検出手段を採用してもよいし、蒸発器13を流通する冷媒自体の温度を直接検出する温度検出手段を採用してもよい。   Note that the evaporator temperature sensor 56 of the present embodiment specifically detects the heat exchange fin temperature of the evaporator 13. Of course, as the evaporator temperature sensor 56, temperature detection means for detecting the temperature of other parts of the evaporator 13 may be adopted, or temperature detection means for directly detecting the temperature of the refrigerant itself flowing through the evaporator 13 may be used. It may be adopted.

さらに、空調制御装置50の入力側には、車室内前部の計器盤付近に配置された操作パネル60に設けられた各種空調操作スイッチからの操作信号が入力される。操作パネル60に設けられた各種空調操作スイッチとしては、具体的に、車両用空調装置1の作動スイッチ(図示せず)、エアコンのオン・オフ(具体的には圧縮機31のオン・オフ)を切り替えるエアコンスイッチ60a、車両用空調装置1の自動制御を設定・解除するオートスイッチ60b、運転モードの切替スイッチ(図示せず)、吸込口モードを切り替える吸込口モードスイッチ(図示せず)、吹出口モードを切り替える吹出口モードスイッチ(図示せず)、送風機12の風量設定スイッチ(図示せず)、車室内温度Trを設定する車室内温度設定スイッチ60c、冷凍サイクル30の省動力化を優先させる指令を出力するエコノミースイッチ60d等が設けられている。   Further, operation signals from various air conditioning operation switches provided on the operation panel 60 disposed near the instrument panel in the front part of the vehicle interior are input to the input side of the air conditioning control device 50. As various air conditioning operation switches provided on the operation panel 60, specifically, an operation switch (not shown) of the vehicle air conditioner 1 and an air conditioner on / off (specifically, the compressor 31 is on / off). Air conditioner switch 60a for switching, auto switch 60b for setting / releasing automatic control of the vehicle air conditioner 1, operation mode switch (not shown), suction port mode switch (not shown) for switching the suction port mode, blowing Prioritize power saving of the outlet mode switch (not shown) for switching the outlet mode, the air volume setting switch (not shown) of the blower 12, the vehicle interior temperature setting switch 60c for setting the vehicle interior temperature Tr, and the refrigeration cycle 30. An economy switch 60d for outputting a command is provided.

なお、本実施形態の車室内温度設定スイッチ60cは、車室内の目標温度(車室内設定温度)Tsetを設定する目標温度設定手段を構成しており、エコノミースイッチ60dは、乗員の操作によって、車室内の空調に必要とされる動力の省動力化を要求する指令を出力する省動力化要求手段を構成している。   The vehicle interior temperature setting switch 60c of the present embodiment constitutes a target temperature setting means for setting a target temperature (vehicle interior set temperature) Tset in the vehicle interior, and the economy switch 60d is operated by the occupant's operation. A power saving requesting means for outputting a command for requesting power saving of power required for indoor air conditioning is configured.

さらに、空調制御装置50は、エンジンEGの作動を制御するエンジン制御装置70に電気的接続されており、空調制御装置50およびエンジン制御装置70は互いに電気的に通信可能に構成されている。これにより、一方の制御装置に入力された検出信号あるいは操作信号に基づいて、他方の制御装置が出力側に接続された各種機器の作動を制御することもできる。例えば、空調制御装置50がエンジン制御装置70へエンジンEGの作動要求指令を出力することによって、エンジンEGを作動させることができる。   Further, the air conditioning control device 50 is electrically connected to an engine control device 70 that controls the operation of the engine EG, and the air conditioning control device 50 and the engine control device 70 are configured to be capable of electrical communication with each other. Thereby, based on the detection signal or operation signal input into one control apparatus, the other control apparatus can also control the operation | movement of the various apparatuses connected to the output side. For example, the engine EG can be operated by the air conditioning control device 50 outputting an operation request command for the engine EG to the engine control device 70.

また、空調制御装置50およびエンジン制御装置70それぞれは、バッテリ81の蓄電残量(以下、単にバッテリ残量という。)の監視等を行うバッテリ制御装置90に電気的に接続されており、バッテリ制御装置90から出力される検出信号(バッテリ残量を示すデータ等)が入力される。   In addition, each of the air conditioning control device 50 and the engine control device 70 is electrically connected to a battery control device 90 that performs monitoring of the remaining amount of power stored in the battery 81 (hereinafter simply referred to as the remaining battery amount). A detection signal (such as data indicating the remaining battery level) output from the device 90 is input.

バッテリ制御装置90は、バッテリ残量を検出するバッテリ残量検出手段を構成している。バッテリ残量の検出方法としては、例えば、バッテリの電解液の比重、バッテリ全体の重量を測定して検出する方法や、充電・放電の電流値および時間に基づいて検出する方法や、バッテリ81の内部抵抗を測定して検出する方法を採用することができる。   The battery control device 90 constitutes battery remaining amount detecting means for detecting the remaining amount of battery. Examples of the method for detecting the remaining battery level include a method for measuring and detecting the specific gravity of the battery electrolyte, the weight of the entire battery, a method for detecting based on the current value and time of charging / discharging, A method of measuring and detecting the internal resistance can be employed.

本実施形態のバッテリ制御装置90は、走行条件によりエンジンEGが停止している場合に、走行用電動モータによる走行や車室内の空調によりバッテリ残量が所定の下限値まで低下すると、エンジン制御装置70に対して、エンジンEGの作動要求信号(エンジンON要求信号)を出力するように構成されている。換言すれば、バッテリ残量が所定の下限値となるまでは、走行用電動モータから出力される駆動力にて走行可能となるように、走行用電動モータへのバッテリ81に蓄えられた電力の供給を許可するように構成されている。   When the engine EG is stopped due to travel conditions, the battery control device 90 according to the present embodiment causes the engine control device to reduce the remaining battery level to a predetermined lower limit due to travel by the travel electric motor or air conditioning in the passenger compartment. 70 is configured to output an engine EG operation request signal (engine ON request signal). In other words, until the remaining battery level reaches a predetermined lower limit value, the electric power stored in the battery 81 to the electric motor for traveling can be traveled with the driving force output from the electric motor for traveling. It is configured to allow supply.

エンジン制御装置70に対してエンジンON要求信号を出力することで、エンジンEGが作動するので、走行用に必要な駆動力の確保や発電機80等によるバッテリ81の充電が可能となる。   By outputting the engine ON request signal to the engine control device 70, the engine EG operates, so that it is possible to secure the driving force necessary for traveling and charge the battery 81 by the generator 80 or the like.

また、空調制御装置50は、上述した各種空調制御機器を制御する制御手段が一体に構成されたものであるが、本実施形態では、特に、圧縮機31の電動モータ31bに接続されたインバータ61から出力される交流電圧の周波数を制御して、圧縮機31の冷媒吐出能力を制御する構成(ハードウェアおよびソフトウェア)を圧縮機制御手段50aとし、送風手段である送風機12の作動を制御して、送風機12の送風能力を制御する構成を送風機制御手段50bとする。もちろん、圧縮機制御手段50a等を空調制御装置50に対して別体で構成してもよい。   In addition, the air conditioning control device 50 is configured integrally with control means for controlling the various air conditioning control devices described above, but in this embodiment, in particular, an inverter 61 connected to the electric motor 31b of the compressor 31. The configuration (hardware and software) that controls the frequency of the AC voltage output from the compressor 31 to control the refrigerant discharge capacity of the compressor 31 is the compressor control means 50a, and the operation of the blower 12 that is the blower means is controlled. The configuration for controlling the blowing capacity of the blower 12 is referred to as a blower control means 50b. Of course, the compressor control means 50a and the like may be configured separately from the air conditioning control device 50.

まず、ステップS1では、フラグ、タイマ等の初期化、および上述した電動アクチュエータを構成するステッピングモータの初期位置合わせ等のイニシャライズが行われる。なお、このイニシャライズでは、フラグや演算値のうち、前回の車両用空調装置1の作動終了時に記憶された値が維持されるものもある。   First, in step S1, initialization such as initialization of flags, timers, etc., and initial alignment of the stepping motor constituting the electric actuator described above is performed. In this initialization, some of the flags and calculation values that are stored at the end of the previous operation of the vehicle air conditioner 1 are maintained.

次のステップS2では、操作パネル60の操作信号を読み込んでステップS3へ進む。具体的な操作信号としては、車室内温度設定スイッチ60cによって設定される車室内設定温度Tset、吹出口モードの選択信号、吸込口モードの選択信号、送風機12の風量の設定信号、エコノミースイッチ60dの設定信号等がある。   In the next step S2, the operation signal of the operation panel 60 is read and the process proceeds to step S3. As specific operation signals, the vehicle interior temperature setting Tset set by the vehicle interior temperature setting switch 60c, the air outlet mode selection signal, the air inlet mode selection signal, the air volume setting signal of the blower 12, the economy switch 60d There are setting signals.

ステップS3では、空調制御に用いられる車両環境状態の信号、すなわち上述のセンサ群51〜58やバッテリ制御装置90等の検出信号を読み込んで、ステップS4へ進む。ステップS4では、車室内吹出空気の目標吹出温度TAOを算出する。目標吹出温度TAOは、下記数式F1により算出される。
TAO=Kset×Tset−Kr×Tr−Kam×Tam−Ks×Ts+C…(F1)
ここで、Tsetは車室内温度設定スイッチ60cによって設定された車室内設定温度、Trは内気センサ51によって検出された車室内温度、Tamは外気センサ52によって検出された外気温、Tsは日射センサ53によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
In step S3, a vehicle environmental state signal used for air-conditioning control, that is, detection signals from the sensor groups 51 to 58, the battery control device 90, and the like are read, and the process proceeds to step S4. In step S4, the target blowing temperature TAO of the vehicle compartment blowing air is calculated. The target blowing temperature TAO is calculated by the following formula F1.
TAO = Kset × Tset−Kr × Tr−Kam × Tam−Ks × Ts + C (F1)
Here, Tset is the vehicle interior set temperature set by the vehicle interior temperature setting switch 60c, Tr is the vehicle interior temperature detected by the internal air sensor 51, Tam is the outside air temperature detected by the outside air sensor 52, and Ts is the solar radiation sensor 53. Is the amount of solar radiation detected by. Kset, Kr, Kam, Ks are control gains, and C is a correction constant.

続くステップS5〜S13では、空調制御装置50に接続された各種機器の制御状態が決定される。まず、ステップS5では、エアミックスドア19の目標開度SWを上記TAO、蒸発器温度センサ56によって検出された吹出空気温度(蒸発器13の冷媒蒸発温度)TE、エアミックス前の温風温度TWDに基づいて算出する。   In subsequent steps S5 to S13, control states of various devices connected to the air conditioning control device 50 are determined. First, in step S5, the target opening degree SW of the air mix door 19 is set to the above TAO, the blown air temperature detected by the evaporator temperature sensor 56 (the refrigerant evaporation temperature of the evaporator 13) TE, and the hot air temperature TWD before the air mix. Calculate based on

具体的には、目標開度SWは、次の数式F2−1により算出できる。
SW=[{TAO−(TE+2)}/{TWD−(TE+2)}]×100(%)…(F2−1)
エアミックス前の温風温度TWDとは、加熱用冷風通路16に配置されたヒータコア14、およびPTCヒータ15の加熱能力に応じて決定される値であって、具体的には、次の数式F2−2により算出できる。
TWD=Tw×0.8+TE×0.2+ΔTptc…(F2−2)
ここで、Twは冷却水温度センサ58によって検出された冷却水温度、ΔTptcは、PTCヒータ15の作動による吹出温上昇量、すなわち吹出口から車室内へ吹き出される空調風の温度(吹出温)のうちPTCヒータ15の作動が寄与した温度上昇量である。
Specifically, the target opening degree SW can be calculated by the following formula F2-1.
SW = [{TAO- (TE + 2)} / {TWD- (TE + 2)}] × 100 (%) ... (F2-1)
The hot air temperature TWD before air mixing is a value determined according to the heating capacity of the heater core 14 and the PTC heater 15 disposed in the heating cold air passage 16, and specifically, the following formula F2 -2.
TWD = Tw × 0.8 + TE × 0.2 + ΔTptc (F2-2)
Here, Tw is the cooling water temperature detected by the cooling water temperature sensor 58, ΔTptc is the amount of increase in the blowing temperature due to the operation of the PTC heater 15, that is, the temperature of the conditioned air blown out from the outlet to the vehicle interior (outlet temperature). Among these, the temperature rise amount contributed by the operation of the PTC heater 15.

つまり、式F3では、エアミックス前の温風温度TWDを、ヒータコア14による吹出温上昇量(Tw×0.8+TE×0.2)とPTCヒータ15の作動による吹出温上昇量ΔTptcとの合計値として求めている。   That is, in Formula F3, the warm air temperature TWD before the air mix is the total value of the blowout temperature rise amount (Tw × 0.8 + TE × 0.2) by the heater core 14 and the blowout temperature rise amount ΔTptc by the operation of the PTC heater 15. Asking.

ヒータコア14による吹出温上昇量(Tw×0.8+TE×0.2)は、ヒータコア14の熱交換効率が100%とすれば、送風空気はヒータコア14にて冷却水温度Twまで上昇すると考えられる。これに対して、実際のヒータコア14では、熱交換効率が80%前後となってしまうことから0.8という係数を決定している。   It is considered that the air temperature rise amount (Tw × 0.8 + TE × 0.2) by the heater core 14 increases to the cooling water temperature Tw at the heater core 14 if the heat exchange efficiency of the heater core 14 is 100%. On the other hand, in the actual heater core 14, the coefficient of 0.8 is determined because the heat exchange efficiency is about 80%.

また、本発明者らの検討により、ヒータコア14へ流入する送風空気の温度によっても、ヒータコア14による吹出温上昇量が変化することが判っている。ヒータコア14へ流入する送風空気の温度は、蒸発器13にて冷却された冷風の温度であるから、吹出空気温度TEを採用することができる。そして、このヒータコア14へ流入する送風空気の温度の吹出温上昇量に対する寄与度として実験的に求められた0.2という係数を採用している。   Further, it has been found by the present inventors that the amount of temperature rise by the heater core 14 varies depending on the temperature of the blown air flowing into the heater core 14. Since the temperature of the blown air flowing into the heater core 14 is the temperature of the cool air cooled by the evaporator 13, the blown air temperature TE can be adopted. And the coefficient of 0.2 calculated | required experimentally is employ | adopted as a contribution with respect to the blowing temperature rise amount of the temperature of the ventilation air which flows in into this heater core 14. FIG.

一方、PTCヒータ15の作動による吹出温上昇量ΔTptcは、PTCヒータ15の消費電力W(Kw)、空気密度ρ(kg/m3)、空気比熱Cp、PTCヒータ15を通過する風量であるPTC通過風量Va(m3/h)を用いて、数式F2−3により演算できる。
ΔTptc=W/ρ/Cp/Va×3600…(F2−3)
ここで、PTC通過風量Vaとしては、送風機12の送風空気量に対して、前回のステップS5で算出したエアミックス開度SWを考慮したものを用いている。
On the other hand, the blowout temperature rise amount ΔTptc due to the operation of the PTC heater 15 is the power consumption W (Kw) of the PTC heater 15, the air density ρ (kg / m 3), the specific air heat Cp, and the amount of air passing through the PTC heater 15. Using the air volume Va (m3 / h), it can be calculated by the formula F2-3.
ΔTptc = W / ρ / Cp / Va × 3600 (F2-3)
Here, as the PTC passing air volume Va, the air mix opening SW calculated in the previous step S5 is considered with respect to the blown air volume of the blower 12.

なお、SW=0(%)は、エアミックスドア19の最大冷房位置であり、冷風バイパス通路17を全開し、加熱用冷風通路16を全閉する。これに対し、SW=100(%)は、エアミックスドア19の最大暖房位置であり、冷風バイパス通路17を全閉し、加熱用冷風通路16を全開する。   SW = 0 (%) is the maximum cooling position of the air mix door 19, and the cold air bypass passage 17 is fully opened and the heating cold air passage 16 is fully closed. On the other hand, SW = 100 (%) is the maximum heating position of the air mix door 19, and the cold air bypass passage 17 is fully closed and the heating cold air passage 16 is fully opened.

ステップS6では、送風機12により送風される空気の目標送風量、具体的には、電動モータに印加するブロワ電圧を決定する。すなわち、本実施形態のS6の処理は、本発明の目標送風量決定手段を構成する。送風機12のブロワ電圧の決定方法の詳細については後述する。   In step S6, the target air volume of the air blown by the blower 12, specifically, the blower voltage applied to the electric motor is determined. That is, the process of S6 of this embodiment constitutes the target air flow rate determining means of the present invention. Details of the method for determining the blower voltage of the blower 12 will be described later.

ステップS7では、吸込口モード、すなわち内外気切替箱20の切替状態を決定する。この吸込口モードもTAOに基づいて、予め空調制御装置50に記憶された制御マップを参照して決定する。本実施形態では、基本的に外気を導入する外気モードが優先されるが、TAOが極低温域となって高い冷房性能を得たい場合等に内気を導入する内気モードが選択される。さらに、外気の排ガス濃度を検出する排ガス濃度検出手段を設け、排ガス濃度が予め定めた基準濃度以上となったときに、内気モードを選択するようにしてもよい。   In step S7, the suction port mode, that is, the switching state of the inside / outside air switching box 20 is determined. This inlet mode is also determined based on TAO with reference to a control map stored in advance in the air conditioning controller 50. In the present embodiment, priority is given mainly to the outside air mode for introducing outside air. However, the inside air mode for introducing inside air is selected when TAO is in a very low temperature range and high cooling performance is desired. Further, an exhaust gas concentration detecting means for detecting the exhaust gas concentration of the outside air may be provided, and the inside air mode may be selected when the exhaust gas concentration becomes equal to or higher than a predetermined reference concentration.

ステップS8では、吹出口モードを決定する。この吹出口モードも、TAOに基づいて、予め空調制御装置50に記憶された制御マップを参照して決定する。本実施形態では、TAOが低温域から高温域へと上昇するにつれて吹出口モードをフットモード→バイレベルモード→フェイスモードへと順次切り替える。   In step S8, the outlet mode is determined. This air outlet mode is also determined with reference to a control map stored in advance in the air conditioning control device 50 based on TAO. In this embodiment, as the TAO rises from the low temperature range to the high temperature range, the outlet mode is sequentially switched from the foot mode to the bi-level mode to the face mode.

従って、夏季は主にフェイスモード、春秋季は主にバイレベルモード、そして冬季は主にフットモードが選択される。さらに、湿度センサの検出値から窓ガラスWに曇りが発生する可能性が高い場合には、フットデフロスタモードあるいはデフロスタモードを選択するようにしてもよい。   Accordingly, the face mode is mainly selected in the summer, the bi-level mode is mainly selected in the spring and autumn, and the foot mode is mainly selected in the winter. Furthermore, when there is a high possibility that fogging will occur on the window glass W from the detection value of the humidity sensor, the foot defroster mode or the defroster mode may be selected.

ステップS9では、蒸発器13の目標冷媒蒸発温度TEOを決定する。すなわち、本実施形態のS9の処理は、本発明の目標冷媒蒸発温度決定手段を構成する。TEOは、蒸発器13における冷媒蒸発温度(吹出空気温度)TEの目標温度であり、吹出空気の温度調整や湿度調整を行うために決定される。なお、TEOは、所定秒(例えば1秒)毎に更新される。TEOの決定方法の詳細については後述する。   In step S9, the target refrigerant evaporation temperature TEO of the evaporator 13 is determined. That is, the process of S9 of this embodiment constitutes the target refrigerant evaporation temperature determining means of the present invention. TEO is a target temperature of the refrigerant evaporation temperature (blow air temperature) TE in the evaporator 13, and is determined in order to adjust the temperature and humidity of the blown air. The TEO is updated every predetermined second (for example, 1 second). Details of the TEO determination method will be described later.

ステップS10では、圧縮機31の冷媒吐出能力(具体的には、回転数[rpm])を決定する。このステップ10の詳細については、図5のフローチャートに基づいて説明する。なお、図5のステップ21中に記載の圧縮機回転数の偏差Enと偏差変化率Edotとの関係図は、圧縮機31の回転数変化量Δfを算出するためのファジー推論のルールの一例を示す図である。   In step S10, the refrigerant discharge capacity (specifically, the rotational speed [rpm]) of the compressor 31 is determined. Details of step 10 will be described with reference to the flowchart of FIG. The relationship diagram between the compressor revolution speed deviation En and the deviation rate of change Edot described in step 21 of FIG. 5 is an example of a fuzzy inference rule for calculating the revolution speed change amount Δf of the compressor 31. FIG.

まず、ステップS21にて、ファジー推論に基づいて前回の圧縮機回転数fn−1に対する回転数変化量Δfを算出する。具体的には、ステップS9で決定したTEOと吹出空気温度TEの偏差En(=TEO−TE)、および今回算出された偏差Enから前回算出された偏差En−1を減算した偏差変化率Edot(=En−(En−1))を用いて、予め空調制御装置50に記憶されたメンバシップ関数とルールに基づいて、回転数変化量Δfを算出する。   First, in step S21, a rotational speed change amount Δf with respect to the previous compressor rotational speed fn−1 is calculated based on fuzzy inference. Specifically, the deviation En (ETE) obtained by subtracting the deviation En-1 previously calculated from the deviation En (= TEO-TE) calculated in step S9 and the deviation En calculated this time from the deviation En calculated this time. = En− (En−1)) is used to calculate the rotational speed change amount Δf based on the membership function and rules stored in advance in the air conditioning control device 50.

そして、ステップS22にて、前回の圧縮機回転数fn−1に回転数変化量Δfを加算したものを今回の圧縮機回転数fn[rpm]とする。なお、圧縮機回転数は、1秒毎に更新されるので、前回の圧縮機回転数fn−1は今回の圧縮機回転数fnに対して1秒前の値となる。   In step S22, a value obtained by adding the rotational speed change amount Δf to the previous compressor rotational speed fn−1 is set as the current compressor rotational speed fn [rpm]. Since the compressor speed is updated every second, the previous compressor speed fn−1 is a value one second before the current compressor speed fn.

次のステップS11では、PTCヒータ15の作動本数を決定する。PTCヒータ15の作動本数は、エアミックス開度SWおよび冷却水温度Twに応じて決定される。ここで、エアミックス開度SWが小さくなることは、加熱用冷風通路16にて送風空気を加熱する必要性が少なくなることを意味している。従って、エアミックス開度SWが小さくなるに伴ってPTCヒータ15を作動させる必要性も少なくなる。   In the next step S11, the number of operating PTC heaters 15 is determined. The number of operating PTC heaters 15 is determined according to the air mix opening SW and the cooling water temperature Tw. Here, the smaller the air mix opening degree SW means that the necessity of heating the blown air in the heating cool air passage 16 is reduced. Therefore, the necessity of operating the PTC heater 15 is reduced as the air mix opening SW is reduced.

そこで、本実施形態では、まず、エアミックス開度SWが予め定めた基準開度(本実施形態では、40%)より小さい場合は、PTCヒータ15を作動させる必要は無いものとして、PTCヒータ15の作動状態を非通電(OFF)に決定する。一方、エアミックス開度SWが予め定めた基準開度以上であれば、PTCヒータ15を作動させる必要があるものとして、PTCヒータ15の作動状態を通電(ON)に決定する。   Therefore, in this embodiment, first, when the air mix opening degree SW is smaller than a predetermined reference opening degree (40% in this embodiment), it is assumed that there is no need to operate the PTC heater 15, and the PTC heater 15 Is determined to be non-energized (OFF). On the other hand, if the air mix opening SW is equal to or larger than a predetermined reference opening, it is determined that the PTC heater 15 needs to be operated, and the operating state of the PTC heater 15 is determined to be energized (ON).

次に、PTCヒータ15の作動状態が通電(ON)に決定された場合は、冷却水温度Twに基づいて、予め定めた制御マップを参照して、PTCヒータ15の作動本数を決定する。具体的には、冷却水温度Twの低下に伴って、PTCヒータ15の作動本数を増加させる。   Next, when the operating state of the PTC heater 15 is determined to be energized (ON), the operating number of the PTC heater 15 is determined with reference to a predetermined control map based on the coolant temperature Tw. Specifically, the number of operating PTC heaters 15 is increased as the cooling water temperature Tw decreases.

ステップS12では、エンジンEGの作動要求(エンジンON要求)の要否を決定する。このステップS12では、バッテリ残量および走行条件によってエンジンEGが停止している場合に、空調のためのエンジンEGの作動および停止を決定する。   In step S12, it is determined whether or not an engine EG operation request (engine ON request) is necessary. In this step S12, when the engine EG is stopped due to the remaining battery level and the running conditions, the operation and stop of the engine EG for air conditioning are determined.

ここで、車両走行用の駆動力をエンジンEGのみから得る通常の車両では、エンジンEGを作動させているので冷却水も常時高温となる。従って、通常の車両では冷却水をヒータコア14に流通させることで充分な暖房性能を発揮することができる。   Here, in a normal vehicle that obtains the driving force for vehicle travel only from the engine EG, since the engine EG is operated, the cooling water is always at a high temperature. Therefore, in a normal vehicle, sufficient heating performance can be exhibited by circulating cooling water through the heater core 14.

これに対して、本実施形態のようなハイブリッド車両では、バッテリ残量に余裕があれば、走行用電動モータのみから走行用の駆動力を得て走行することができる。このため、高い暖房性能が必要な場合であっても、エンジンEGが停止していると冷却水温度TWが40℃程度にしか上昇せず、ヒータコア14にて充分な暖房性能が発揮できなくなる。   On the other hand, in the hybrid vehicle as in the present embodiment, if the remaining battery level is sufficient, the vehicle can travel by obtaining the driving force for traveling only from the traveling electric motor. For this reason, even when high heating performance is required, when the engine EG is stopped, the coolant temperature TW only rises to about 40 ° C., and the heater core 14 cannot exhibit sufficient heating performance.

そこで、本実施形態では、高い暖房性能が必要にもかかわらず冷却水温度Twが予め定めた基準冷却水温度よりも低いときは、冷却水温度Twを所定温度以上に維持するため、空調制御装置50からエンジン制御装置70に対して、エンジンEGを作動するように作動要求信号を出力している。   Therefore, in the present embodiment, when the cooling water temperature Tw is lower than the predetermined reference cooling water temperature even though high heating performance is required, the air conditioning control device maintains the cooling water temperature Tw above a predetermined temperature. An operation request signal is output from 50 to the engine control device 70 so as to operate the engine EG.

なお、このような作動要求信号の出力は、車両走行用の駆動源としてエンジンEGを作動させる必要の無い場合であってもエンジンEGを作動させることになるので、燃費を悪化させる要因となる。このため、作動要求信号を出力する頻度は極力低減させることが望ましい。   Note that such an output of the operation request signal causes the fuel consumption to deteriorate because the engine EG is operated even when it is not necessary to operate the engine EG as a vehicle driving source. For this reason, it is desirable to reduce the frequency of outputting the operation request signal as much as possible.

次のステップ13では、ヒータコア14とエンジンEGとの間で冷却水を循環させる電動ウォータポンプ42を作動させるか否かを決定する。このステップS13の詳細については、図6のフローチャートを用いて説明する。まず、ステップS31では、冷却水温度TWが蒸発器13の吹出空気温度(冷媒蒸発温度)TEより高いか否かを判定する。   In the next step 13, it is determined whether or not to operate the electric water pump 42 that circulates the cooling water between the heater core 14 and the engine EG. Details of step S13 will be described with reference to the flowchart of FIG. First, in step S31, it is determined whether or not the coolant temperature TW is higher than the blown air temperature (refrigerant evaporation temperature) TE of the evaporator 13.

ステップS31にて、冷却水温度TWが蒸発器13の吹出空気温度TE以下となっている場合は、ステップS34へ進み、電動ウォータポンプ42を停止(OFF)させることを決定する。その理由は、冷却水温度TWが蒸発器13の吹出空気温度TE以下となっている場合に冷却水をヒータコア14へ流すと、ヒータコア14を流れる冷却水が蒸発器13通過後の空気を冷却してしまうことになるため、かえって吹出口からの吹出空気温度を低くしてしまうからである。   In step S31, when the cooling water temperature TW is equal to or lower than the blown air temperature TE of the evaporator 13, the process proceeds to step S34, and it is determined that the electric water pump 42 is stopped (OFF). The reason is that when the cooling water temperature TW is equal to or lower than the blown air temperature TE of the evaporator 13 and the cooling water is flowed to the heater core 14, the cooling water flowing through the heater core 14 cools the air after passing through the evaporator 13. This is because the temperature of the air blown from the outlet is lowered.

一方、ステップS31にて、冷却水温度TWが蒸発器13の吹出空気温度TEより高い場合は、ステップS32へ進む。ステップS32では、送風機12が作動しているか否かが判定される。ステップS32にて、送風機12が作動していないと判定された場合は、ステップS34に進み、省動力化のために電動ウォータポンプ42を停止(OFF)させることを決定する。   On the other hand, when the cooling water temperature TW is higher than the blown air temperature TE of the evaporator 13 in step S31, the process proceeds to step S32. In step S32, it is determined whether or not the blower 12 is operating. When it is determined in step S32 that the blower 12 is not operating, the process proceeds to step S34, and it is determined to stop (OFF) the electric water pump 42 for power saving.

一方、ステップS32にて送風機12が作動していると判定された場合は、ステップS33へ進み、電動ウォータポンプ42を作動(ON)させることを決定する。これにより、電動ウォータポンプ42が作動して、冷却水が冷却水回路40内を循環するので、ヒータコア14を流れる冷却水とヒータコア14を通過する空気とを熱交換させて送風空気を加熱することができる。   On the other hand, when it determines with the air blower 12 operating in step S32, it progresses to step S33 and determines operating the electric water pump 42 (ON). As a result, the electric water pump 42 operates and the cooling water circulates in the cooling water circuit 40, so that the cooling water flowing through the heater core 14 and the air passing through the heater core 14 are heat-exchanged to heat the blown air. Can do.

図4に戻り、ステップS14では、上述のステップS5〜S13で決定された制御状態が得られるように、空調制御装置50より各種機器12、61、35、62、63、64、15a、15b、15c、42やエンジン制御装置70に対して制御信号および制御電圧が出力される。   Returning to FIG. 4, in step S <b> 14, various devices 12, 61, 35, 62, 63, 64, 15 a, 15 b, and so on are obtained from the air conditioning controller 50 so that the control state determined in steps S <b> 5 to S <b> 13 described above is obtained. Control signals and control voltages are output to 15 c and 42 and the engine control device 70.

これにより、例えば、空調制御装置50の圧縮機制御手段50aからインバータ61に対して制御信号が出力され、送風機制御手段50bから送風機12の電動モータに対して制御電圧(ブロア電圧V)が出力される。さらに、空調制御装置50からエンジン制御装置70に対して、エンジンの作動要求信号が出力されれば、走行条件によってエンジンEGが停止している場合であっても、エンジンEGが作動する。   Thereby, for example, a control signal is output from the compressor control means 50a of the air conditioning control device 50 to the inverter 61, and a control voltage (blower voltage V) is output from the blower control means 50b to the electric motor of the blower 12. The Further, if an engine operation request signal is output from the air-conditioning control device 50 to the engine control device 70, the engine EG is operated even when the engine EG is stopped due to traveling conditions.

ステップS15では、制御周期τの間待機し、制御周期τの経過を判定するとステップS2に戻るようになっている。なお、本実施形態は制御周期τを250msとしている。これは、車室内の空調制御は、エンジン制御等と比較して遅い制御周期であってもその制御性に悪影響を与えないからである。さらに、車両内における空調制御のための通信量を抑制して、エンジン制御等のように高速制御を行う必要のある制御系の通信量を充分に確保することができる。   In step S15, the process waits for the control period τ, and returns to step S2 when it is determined that the control period τ has elapsed. In the present embodiment, the control cycle τ is 250 ms. This is because the air conditioning control in the passenger compartment does not adversely affect the controllability even if the control period is slower than the engine control or the like. Furthermore, it is possible to suppress a communication amount for air conditioning control in the vehicle and to sufficiently secure a communication amount of a control system that needs to perform high-speed control such as engine control.

ところで、走行条件によってエンジンEGが停止している際に(エンジンが停止したタイミングを含むエンジン停止中に)、バッテリ81からの電力供給により各空調機器を作動させること等で、バッテリ残量が所定の下限値まで低下すると、走行用の駆動力の確保や発電機80等によるバッテリ充電のためにエンジンEGを駆動させる必要がある。この場合、エンジンEGを駆動させることでの車両燃費の悪化が懸念されるので、車室内の空調によるバッテリ81の消費電力を抑制することが望ましい。   By the way, when the engine EG is stopped due to traveling conditions (while the engine is stopped including the timing at which the engine is stopped), the remaining amount of the battery is predetermined by operating each air conditioner by supplying power from the battery 81 or the like. When the value is lowered to the lower limit value, it is necessary to drive the engine EG in order to secure driving force for traveling or to charge the battery by the generator 80 or the like. In this case, since there is a concern about deterioration of vehicle fuel consumption due to driving of the engine EG, it is desirable to suppress power consumption of the battery 81 due to air conditioning in the passenger compartment.

そこで、本実施形態では、エンジンEGの作動状態を考慮して送風機12のブロワ電圧(送風量)や、圧縮機31の回転数を決定する際に用いる蒸発器13のTEOを調整することで、車室内の空調によるバッテリ81の消費電力の抑制を図っている。   Therefore, in the present embodiment, by adjusting the blower voltage (air flow rate) of the blower 12 and the TEO of the evaporator 13 used when determining the rotation speed of the compressor 31 in consideration of the operating state of the engine EG, The power consumption of the battery 81 is suppressed by air conditioning in the passenger compartment.

まず、本実施形態の送風機12のブロワ電圧の決定方法(S6)の詳細について、図7のフローチャートを用いて説明する。本実施形態では、送風機12のブロワ電圧を決定するために、空調熱負荷やエンジンEGの作動状態に応じて設定する複数の仮ブロワ電圧のうちから、送風機12の電動モータに印加するブロワ電圧(目標送風量)を決定する。   First, the detail of the blower voltage determination method (S6) of the air blower 12 of this embodiment is demonstrated using the flowchart of FIG. In this embodiment, in order to determine the blower voltage of the blower 12, a blower voltage (to be applied to the electric motor of the blower 12) from among a plurality of temporary blower voltages set according to the air conditioning heat load and the operating state of the engine EG. Target air flow).

ステップS41では、ステップS41中に記載の目標吹出温度TAOとf(TAO)との関係図の通り、ステップS4にて決定されたTAOに応じて第1仮ブロワ電圧f(TAO)を設定する。   In step S41, the first temporary blower voltage f (TAO) is set according to the TAO determined in step S4, as shown in the relationship diagram between the target blowing temperatures TAO and f (TAO) described in step S41.

具体的には、TAOの極低温域および極高温域で、第1仮ブロワ電圧f(TAO)を高電圧とし、送風機12の送風量を最大風量にする。また、TAOが極低温域から中間温度域に向かって上昇すると、TAOの上昇に応じて第1仮ブロワ電圧f(TAO)を減少して、送風機12の送風量を減少させる。さらに、TAOが極高温域から中間温度域に向かって低下すると、TAOの低下に応じて第1仮ブロワ電圧f(TAO)を減少して、送風機12の送風量を減少させる。また、TAOが所定の中間温度域に入ると、第1仮ブロワ電圧f(TAO)を低電圧とし、送風機12の送風量を最小風量にする。ここで、本実施形態の第1仮ブロワ電圧f(TAO)は、極低温域から極高温域までの全温度域における最大電圧を12V、最低電圧値を4Vに設定している。   Specifically, the first temporary blower voltage f (TAO) is set to a high voltage in the extremely low temperature range and the very high temperature range of TAO, and the air volume of the blower 12 is set to the maximum air volume. Further, when TAO rises from the extremely low temperature region toward the intermediate temperature region, the first temporary blower voltage f (TAO) is decreased in accordance with the increase in TAO, and the amount of air blown by the blower 12 is decreased. Further, when the TAO decreases from the extremely high temperature range toward the intermediate temperature range, the first temporary blower voltage f (TAO) is decreased in accordance with the decrease in TAO, and the amount of air blown by the blower 12 is decreased. Further, when TAO enters a predetermined intermediate temperature range, the first temporary blower voltage f (TAO) is set to a low voltage, and the air volume of the blower 12 is set to the minimum air volume. Here, the first temporary blower voltage f (TAO) of the present embodiment is set such that the maximum voltage in the entire temperature range from the extremely low temperature range to the extremely high temperature range is 12V and the minimum voltage value is 4V.

ここで、本実施形態では、ステップS41で決定される第1仮ブロワ電圧f(TAO)を電動モータに印可した際の送風量を「通常時の送風量」とする。この第1仮ブロワ電圧f(TAO)は、TAOに基づいて決定される値であるから、車室内設定温度Tset、車室内温度Tr、外気温Tam、日射量Tsといった空調熱負荷に基づいて決定される値である。なお、ステップS41中に記載の目標吹出温度TAOとf(TAO)との関係図は、目標吹出温度TAOと第1仮ブロワ電圧との関係を示す一例であり、これに限定されるものではない。   Here, in the present embodiment, the blowing amount when the first temporary blower voltage f (TAO) determined in step S41 is applied to the electric motor is referred to as “normal blowing amount”. Since the first temporary blower voltage f (TAO) is a value determined based on TAO, the first temporary blower voltage f (TAO) is determined based on the air conditioning heat load such as the vehicle interior set temperature Tset, the vehicle interior temperature Tr, the outside air temperature Tam, and the solar radiation amount Ts. Is the value to be The relationship diagram between the target blowing temperature TAO and f (TAO) described in step S41 is an example showing the relationship between the target blowing temperature TAO and the first temporary blower voltage, and is not limited to this. .

次のステップS42では、エンジン制御装置70からのエンジンEGの作動状態を示す制御信号に基づいて、エンジンEGが停止している(エンジン停止中である)か否かを判定する。   In the next step S42, it is determined whether or not the engine EG is stopped (the engine is stopped) based on a control signal indicating the operating state of the engine EG from the engine control device 70.

この結果、エンジン停止中と判定された場合(S42:YES)は、ステップS44に進み、エンジンEGが停止してからの経過時間に応じてブロワ電圧を調整するための第2仮ブロワ電圧f(エンジン停止)を設定する。   As a result, when it is determined that the engine is stopped (S42: YES), the process proceeds to step S44, and the second temporary blower voltage f (for adjusting the blower voltage according to the elapsed time since the engine EG stopped). Set engine stop.

本実施形態では、ステップS44中に記載のエンジンEGを停止してからの経過時間とf(エンジン停止)との関係図の通り、エンジン停止中に、エンジンEGが停止してからの時間の経過に伴って、目標送風量が低下するように第2仮ブロワ電圧f(エンジン停止)を設定する。   In the present embodiment, the elapsed time since the engine EG stopped during the engine stop, as shown in the relationship diagram between the elapsed time after the engine EG stopped and the f (engine stop) described in step S44. Accordingly, the second temporary blower voltage f (engine stop) is set so that the target air flow rate decreases.

具体的には、エンジン停止してからの経過時間が短い初期段階(本実施形態では0分〜2分)で、第2仮ブロワ電圧f(エンジン停止)を第1仮ブロワ電圧f(TAO)の最大電圧(12V)よりも低い電圧(例えば10V)に設定し、送風機12の送風量を最大風量よりも低下させる。   Specifically, the second temporary blower voltage f (engine stop) is changed to the first temporary blower voltage f (TAO) at an initial stage (0 to 2 minutes in the present embodiment) after the engine has stopped. Is set to a voltage (for example, 10 V) lower than the maximum voltage (12 V), and the air flow rate of the blower 12 is reduced below the maximum air flow rate.

そして、エンジン停止からの経過時間が初期段階を経て中間期(本実施形態では2分〜5分)となると、時間経過に伴い徐々に第2仮ブロワ電圧f(エンジン停止)を低下させる。   Then, when the elapsed time from the engine stop reaches the intermediate period (2 to 5 minutes in the present embodiment) after the initial stage, the second temporary blower voltage f (engine stop) is gradually decreased with the passage of time.

さらに、エンジン停止からの経過時間が中間期の段階を経て後期段階(本実施形態では5分以上)となると、第2仮ブロワ電圧f(エンジン停止)を第1仮ブロワ電圧f(TAO)の最低電圧(4V)よりも低い電圧(例えば3V)に設定する。そのため、後期段階では、第2仮ブロワ電圧f(エンジン停止)を電動モータに印可した際の送風量が「通常時の送風量」よりも低くなるので、バッテリ81の消費電力を効果的に抑制することが可能となる。なお、ステップS44中に記載のエンジンEGを停止してからの経過時間とf(エンジン停止)との関係図は、エンジンEGを停止してからの経過時間と第2仮ブロワ電圧との関係を示す一例であり、これに限定されるものではない。   Further, when the elapsed time from the engine stop reaches the later stage (in this embodiment, 5 minutes or more) after the intermediate stage, the second temporary blower voltage f (engine stop) is changed to the first temporary blower voltage f (TAO). The voltage is set lower than the lowest voltage (4V) (for example, 3V). Therefore, in the later stage, the amount of air flow when the second temporary blower voltage f (engine stop) is applied to the electric motor is lower than the “normal amount of air flow”, so the power consumption of the battery 81 is effectively suppressed. It becomes possible to do. In addition, the relationship diagram between the elapsed time after stopping the engine EG and the f (engine stop) described in step S44 shows the relationship between the elapsed time after stopping the engine EG and the second temporary blower voltage. However, the present invention is not limited to this example.

ところで、車室内温度Trが低い場合には、送風機12の送風量が少なくても、乗員が温感的に違和感を持つことが少ないが、車室内温度Trが高い場合には、送風機12の送風量が少ないと、乗員が温感的に違和感を持つ場合がある。この場合は、乗員の空調フィーリングの悪化が懸念される。   By the way, when the passenger compartment temperature Tr is low, the occupant is less likely to feel a sense of incongruity even if the air flow rate of the fan 12 is small. If the air volume is low, the passenger may feel uncomfortable. In this case, there is a concern about the deterioration of the air conditioning feeling of the passenger.

そこで、本実施形態では、エンジン停止中における送風機12の下限送風量を車室内温度Trに応じて設定している。具体的には、ステップS44にて第2仮ブロワ電圧を設定した後、ステップS46に進み、ステップS46中に記載の車室内温度Trとf(車室内温度)との関係図の通り、車室内温度Trに応じて第3仮ブロワ電圧f(車室内温度)を設定する。   Therefore, in the present embodiment, the lower limit blowing amount of the blower 12 when the engine is stopped is set according to the vehicle interior temperature Tr. Specifically, after setting the second temporary blower voltage in step S44, the process proceeds to step S46, and the vehicle interior is as shown in the relationship diagram between the vehicle interior temperature Tr and f (vehicle interior temperature) described in step S46. The third temporary blower voltage f (vehicle interior temperature) is set according to the temperature Tr.

ステップS46では、車室内温度Trが低温側の基準温度(本実施形態では25℃)以下である場合には、第3仮ブロワ電圧f(車室内温度)を第1仮ブロワ電圧f(TAO)の最低電圧(4V)よりも低い電圧(3V)に設定する。   In step S46, when the vehicle interior temperature Tr is equal to or lower than the low temperature side reference temperature (25 ° C. in the present embodiment), the third temporary blower voltage f (vehicle interior temperature) is changed to the first temporary blower voltage f (TAO). Is set to a voltage (3V) lower than the lowest voltage (4V).

一方、車室内温度Trが低温側の基準温度(本実施形態では25℃)より高くなる場合には、車室内温度Trの上昇とともに第3仮ブロワ電圧f(車室内温度)を上昇させる。そして、車室内温度Trが高温側の基準温度(本実施形態では30℃)より高くなると、第3仮ブロワ電圧f(車室内温度)を第1仮ブロワ電圧f(TAO)の最大電圧(12V)付近の電圧(10V)に設定する。なお、ステップS46中に記載の車室内温度Trとf(車室内温度)との関係図は、車室内温度Trと第3仮ブロワ電圧との関係を示す一例であり、これに限定されるものではない。   On the other hand, when the vehicle interior temperature Tr becomes higher than the reference temperature on the low temperature side (25 ° C. in the present embodiment), the third temporary blower voltage f (vehicle interior temperature) is increased as the vehicle interior temperature Tr increases. When the vehicle interior temperature Tr becomes higher than the reference temperature on the high temperature side (30 ° C. in this embodiment), the third temporary blower voltage f (vehicle interior temperature) is changed to the maximum voltage (12V) of the first temporary blower voltage f (TAO). ) Set the voltage near (10V). Note that the relationship diagram between the vehicle interior temperature Tr and f (vehicle interior temperature) described in step S46 is an example of the relationship between the vehicle interior temperature Tr and the third temporary blower voltage, and is not limited to this. is not.

次のステップS47では、次の数式F4に基づいて、上記第1〜第3仮ブロワ電圧のうちから今回のブロワ電圧を決定する。
今回のブロワ電圧=MIN{f(TAO)、MAX(f(エンジン停止)、f(車室内温度))}…(F3)
ステップS47では、ステップS44で設定した第2仮ブロワ電圧f(エンジン停止)とステップS46で設定した第3仮ブロワ電圧f(車室内温度)とを比較して電圧値の大きい方を選択する。
In the next step S47, the current blower voltage is determined from the first to third temporary blower voltages based on the following formula F4.
Current blower voltage = MIN {f (TAO), MAX (f (engine stop), f (vehicle interior temperature))} (F3)
In step S47, the second temporary blower voltage f (engine stop) set in step S44 is compared with the third temporary blower voltage f (vehicle interior temperature) set in step S46, and the one having the larger voltage value is selected.

この選択によれば、エンジン停止からの経過時間が長くなるに連れて、送風機12の送風量を低下させすぎてきしまうことを、車室内温度Trに応じて規制することとなる。すなわち、ステップS46にて第3仮ブロワ電圧f(車室内温度)を設定することは、エンジン停止中における第2仮ブロワ電圧f(エンジン停止)の下限値(下限送風量)を設定することを意味する。なお、第3仮ブロワ風量f(車室内温度)が、本発明の下限送風量に相当する。   According to this selection, it is restricted according to the vehicle interior temperature Tr that the air flow rate of the blower 12 is excessively reduced as the elapsed time from the engine stop becomes longer. That is, setting the third temporary blower voltage f (vehicle interior temperature) in step S46 means setting the lower limit value (lower limit air flow rate) of the second temporary blower voltage f (engine stop) while the engine is stopped. means. Note that the third temporary blower air volume f (vehicle interior temperature) corresponds to the lower limit air flow rate of the present invention.

そして、第2仮ブロワ電圧f(エンジン停止)と第3仮ブロワ電圧f(車室内温度)との比較により選択された電圧値と、第1仮ブロワ電圧f(TAO)とを比較して、電圧値の小さい方を今回のブロワ電圧に決定する。   Then, the voltage value selected by comparing the second temporary blower voltage f (engine stop) and the third temporary blower voltage f (vehicle interior temperature) is compared with the first temporary blower voltage f (TAO), The smaller voltage value is determined as the current blower voltage.

従って、第2仮ブロワ電圧f(エンジン停止)が第3仮ブロワ電圧f(車室内温度)よりも大きく、かつ、第2仮ブロワ電圧f(エンジン停止)が第1仮ブロワ電圧f(TAO)よりも小さい場合、第2仮ブロワ電圧f(エンジン停止)を今回のブロワ電圧に決定する。   Therefore, the second temporary blower voltage f (engine stop) is larger than the third temporary blower voltage f (vehicle interior temperature), and the second temporary blower voltage f (engine stop) is the first temporary blower voltage f (TAO). Is smaller than the second temporary blower voltage f (engine stop) is determined as the current blower voltage.

また、第3仮ブロワ電圧f(車室内温度)が第2仮ブロワ電圧f(エンジン停止)よりも大きく、かつ、第3仮ブロワ電圧f(エンジン停止)が第1仮ブロワ電圧f(TAO)よりも小さい場合、第2仮ブロワ電圧f(エンジン停止)を今回のブロワ電圧に決定する。   Further, the third temporary blower voltage f (vehicle interior temperature) is larger than the second temporary blower voltage f (engine stop), and the third temporary blower voltage f (engine stop) is the first temporary blower voltage f (TAO). Is smaller than the second temporary blower voltage f (engine stop) is determined as the current blower voltage.

また、第2、第3仮ブロワ電圧それぞれが第1仮ブロワ電圧f(TAO)よりも大きい場合、第1仮ブロワ電圧f(エンジン停止)を電動モータに印加して送風機12を作動させた方がバッテリ81の消費電力が少ないので、第1仮ブロワ電圧f(エンジン停止)を今回のブロワ電圧に決定する。   Also, when each of the second and third temporary blower voltages is larger than the first temporary blower voltage f (TAO), the first temporary blower voltage f (engine stop) is applied to the electric motor to operate the blower 12 However, since the power consumption of the battery 81 is small, the first temporary blower voltage f (engine stop) is determined as the current blower voltage.

なお、ステップS42での判定処理の結果、エンジン停止中と判定されなかった場合は、エンジンEGから車両走行用の駆動力を得ることができ、エンジンEGの駆動力にて発電機80を作動可能である。   If it is not determined that the engine is stopped as a result of the determination process in step S42, the driving force for driving the vehicle can be obtained from the engine EG, and the generator 80 can be operated by the driving force of the engine EG. It is.

そのため、エンジン停止中と判定されなかった場合は、通常時の送風機12の送風量が得られるブロワ電圧に決定する。つまり、エンジン停止中と判定されなかった場合(S42:NO)は、ステップS48に進み、第2仮ブロワ電圧f(エンジン停止)および第3仮ブロワ電圧f(車室内温度)それぞれを第1仮ブロワ電圧f(TAO)の最大電圧(12V)に設定する。この場合、第2仮ブロワ電圧f(エンジン停止)と第3仮ブロワ電圧f(車室内温度)とが、第1仮ブロワ電圧f(TAO)の最大電圧に設定されているので、ステップS47では、第1仮ブロワ電圧f(TAO)を今回のブロワ電圧に決定する。   Therefore, when it is not determined that the engine is stopped, the blower voltage is determined so that the air flow rate of the blower 12 at the normal time can be obtained. That is, when it is not determined that the engine is stopped (S42: NO), the process proceeds to step S48, and the second temporary blower voltage f (engine stop) and the third temporary blower voltage f (vehicle interior temperature) are respectively set to the first temporary blower. The maximum voltage (12V) of the blower voltage f (TAO) is set. In this case, since the second temporary blower voltage f (engine stop) and the third temporary blower voltage f (vehicle interior temperature) are set to the maximum voltage of the first temporary blower voltage f (TAO), in step S47 The first temporary blower voltage f (TAO) is determined as the current blower voltage.

次に、蒸発器13の目標冷媒蒸発温度TEOの決定方法(S9)の詳細について、図8のフローチャートを用いて説明する。   Next, details of the method (S9) for determining the target refrigerant evaporation temperature TEO of the evaporator 13 will be described using the flowchart of FIG.

本実施形態では、圧縮機31の回転数を決定する際に用いるTEOを決定するために、空調熱負荷やエンジンEGの作動状態に応じて設定する複数の仮目標温度のうちから、TEOを決定する。なお、基本的には、TEOの設定値が高温に設定されるほど冷凍サイクル30の高低圧差が拡大するので、圧縮機31の消費動力が増大し、TEOの設定値が低温に設定されるほど冷凍サイクル30の高低圧差が縮小するので圧縮機31の消費動力が減少する。   In the present embodiment, in order to determine the TEO used when determining the rotation speed of the compressor 31, the TEO is determined from a plurality of temporary target temperatures set according to the air conditioning heat load and the operating state of the engine EG. To do. Basically, as the TEO set value is set to a higher temperature, the difference between the high and low pressures of the refrigeration cycle 30 increases. Therefore, the power consumption of the compressor 31 increases and the TEO set value is set to a lower temperature. Since the high / low pressure difference of the refrigeration cycle 30 is reduced, the power consumption of the compressor 31 is reduced.

まず、ステップS51では、車両前面窓ガラスWの防曇を図るために、ステップS51中に記載の外気温Tamとf(車室内温度)との関係図の通り、外気温度Tamに応じてTEOの第1仮目標温度f(Tam)を設定する。   First, in step S51, in order to prevent defogging of the vehicle front window glass W, as shown in the relationship diagram between the outside air temperature Tam and f (vehicle interior temperature) described in step S51, the TEO is changed according to the outside air temperature Tam. A first temporary target temperature f (Tam) is set.

具体的には、ステップS51では、外気温度Tamが高温である場合、防曇の必要性が低いと考えられるので、予め設定した基準外気温度(本実施形態では20℃)以上のときは、第1仮目標温度f(Tam)を予め設定した最大温度(本実施形態では8℃)に設定する。   Specifically, in step S51, when the outside air temperature Tam is high, the necessity for anti-fogging is considered to be low. Therefore, when the outside air temperature Tam is higher than a preset reference outside air temperature (20 ° C. in the present embodiment), 1 Temporary target temperature f (Tam) is set to a preset maximum temperature (8 ° C. in the present embodiment).

また、外気温度Tamが低温の場合、車両前面窓ガラスWが曇る可能性があるので、基準外気温度よりも低いときは、外気温度Tamの低下に応じて第1仮目標温度f(Tam)を減少させ、蒸発器12にて車室内への吹出空気を除湿する。ここで、第1仮目標温度f(Tam)は、蒸発器13がフロスト(凍結)防止のため、予め最小温度(本実施形態では1℃)以下とならないようにしている。なお、ステップS51中に記載の外気温Tamとf(車室内温度)との関係図は、ステップS51中に記載の外気温Tamと第1仮目標温度との関係を示す一例であり、これに限定されものではない。   Further, when the outside air temperature Tam is low, the vehicle front window glass W may be fogged. Therefore, when the outside air temperature Tam is lower than the reference outside air temperature, the first temporary target temperature f (Tam) is set according to the decrease in the outside air temperature Tam. Decrease, and the evaporator 12 dehumidifies the air blown into the passenger compartment. Here, the first temporary target temperature f (Tam) is set so as not to be lower than the minimum temperature (1 ° C. in the present embodiment) in advance in order to prevent the evaporator 13 from being frosted (freezing). The relationship diagram between the outside air temperature Tam described in step S51 and f (vehicle interior temperature) is an example showing the relationship between the outside air temperature Tam described in step S51 and the first temporary target temperature. It is not limited.

次のステップS52では、ステップS52中に記載の目標吹出温度TAOとf(TAO)との関係図の通り、ステップS4にて決定されたTAOに応じて第2仮目標温度f(TAO)を設定する。   In the next step S52, the second provisional target temperature f (TAO) is set according to the TAO determined in step S4, as shown in the relationship diagram between the target blowing temperature TAO and f (TAO) described in step S52. To do.

具体的には、TAOが基準吹出温度(本実施形態では12℃)以上であれば、第2仮目標温度f(TAO)を高い温度(本実施形態では8℃)とする。また、TAOが基準吹出温度よりも低いときには、TAOの低下に応じて第2仮目標温度f(TAO)を低下させる。ここで、第2仮目標温度f(TAO)は、第1仮目標温度f(Tam)と同様に、蒸発器13のフロスト(凍結)防止のため、予め最小温度(1℃)以下とならないようにしている。なお、ステップS52中に記載の目標吹出温度TAOとf(TAO)との関係図は、目標吹出温度TAOと第2仮目標温度との関係を示す一例であり、これに限定されるものではない。   Specifically, if TAO is equal to or higher than the reference blowing temperature (12 ° C. in this embodiment), the second temporary target temperature f (TAO) is set to a high temperature (8 ° C. in this embodiment). Further, when TAO is lower than the reference blowing temperature, the second temporary target temperature f (TAO) is decreased according to the decrease in TAO. Here, like the first temporary target temperature f (Tam), the second temporary target temperature f (TAO) does not become lower than the minimum temperature (1 ° C.) in advance in order to prevent the evaporator 13 from frosting (freezing). I have to. The relationship diagram between the target blowing temperature TAO and f (TAO) described in step S52 is an example showing the relationship between the target blowing temperature TAO and the second temporary target temperature, and is not limited to this. .

次のステップS53では、エンジン制御装置70からのエンジンEGの作動状態を示す制御信号に基づいて、エンジン停止中か否かを判定する。   In the next step S53, it is determined whether or not the engine is stopped based on a control signal indicating the operating state of the engine EG from the engine control device 70.

上述のようにエンジン停止中には、バッテリ81の消費電力を抑制することが望ましい。そのため、本実施形態では、エンジンEGの作動状態に応じてTEOの設定値を調整して、エンジン停止中のバッテリ81の消費電力の抑制を図っている。   As described above, it is desirable to suppress the power consumption of the battery 81 while the engine is stopped. Therefore, in this embodiment, the set value of TEO is adjusted according to the operating state of the engine EG, and the power consumption of the battery 81 while the engine is stopped is reduced.

S53の判定処理の結果、エンジン停止中と判定された場合(S53:YES)は、ステップS55に進み、エンジンEGが停止してからの経過時間に応じてTEOを調整するための第3仮目標温度f(エンジン停止)を設定する。   As a result of the determination process of S53, when it is determined that the engine is stopped (S53: YES), the process proceeds to step S55, and the third temporary target for adjusting TEO according to the elapsed time since the engine EG stopped. Set the temperature f (engine stop).

本実施形態では、ステップS55中に記載のエンジンEGを停止してからの経過時間とf(エンジン停止)との関係図の通り、エンジンEGを停止してからの時間の経過に伴って、TEOが上昇するように第3仮目標温度f(エンジン停止)を設定する。   In the present embodiment, as shown in the relationship diagram between the elapsed time after stopping the engine EG described in step S55 and f (engine stop), as the time elapsed after the engine EG is stopped, TEO Is set to a third temporary target temperature f (engine stop).

具体的には、エンジンEGを停止してからの経過時間が短い初期段階(0分〜2分)では、第3仮目標温度f(エンジン停止)を第1、第2仮目標温度f(TAO)の最小温度(1℃)よりも高い温度(本実施形態では3℃)に設定する。   Specifically, in the initial stage (0 minutes to 2 minutes) in which the elapsed time after the engine EG is stopped is short, the third temporary target temperature f (engine stop) is changed to the first and second temporary target temperatures f (TAO). ) Is set to a temperature (3 ° C. in this embodiment) higher than the minimum temperature (1 ° C.).

初期段階を経て中間期(2分〜5分)となると、第3仮目標温度f(エンジン停止)を時間経過とともに上昇させる。そして、後期段階(5分以上)では第3仮目標温度f(エンジン停止)を第1、第2仮目標温度f(TAO)の最大温度(8℃)に設定する。なお、ステップS55中に記載のエンジンEGを停止してからの経過時間とf(エンジン停止)との関係図は、目標吹出温度TAOと第3仮目標温度との関係を示す一例であり、これに限定されるものではない。   When the intermediate stage (2 to 5 minutes) is reached through the initial stage, the third temporary target temperature f (engine stop) is increased with the passage of time. In the latter stage (5 minutes or more), the third temporary target temperature f (engine stop) is set to the maximum temperature (8 ° C.) of the first and second temporary target temperatures f (TAO). The relationship diagram between the elapsed time after stopping the engine EG and the f (engine stop) described in step S55 is an example showing the relationship between the target blowing temperature TAO and the third temporary target temperature. It is not limited to.

ところで、車室内温度Trが低い場合に、エンジン停止中のTEOの上昇によって、蒸発器13にて冷却される送風空気の温度が上昇しても、乗員の空調フィーリングが悪化することは少ない。しかし、車室内温度Trが高い場合に、エンジン停止中のTEOの上昇によって、蒸発器13にて冷却される送風空気の温度が上昇すると、乗員の空調フィーリングの悪化が懸念される。   By the way, when the passenger compartment temperature Tr is low, even if the temperature of the blown air cooled by the evaporator 13 rises due to the rise in TEO while the engine is stopped, the air conditioning feeling of the passenger is rarely deteriorated. However, when the temperature in the passenger compartment Tr is high and the temperature of the blown air cooled by the evaporator 13 rises due to an increase in TEO while the engine is stopped, the air conditioning feeling of the occupant may be deteriorated.

そこで、本実施形態では、エンジン停止中におけるTEOの上限温度を車室内温度Trに応じて設定している。具体的には、ステップS55にて第3仮目標温度f(エンジン停止)を設定した後、ステップS57に進み、ステップS57中に記載の車室内温度Trとf(車室内温度)との関係図に示す通り、車室内温度Trに応じて第4仮目標温度f(車室内温度)を設定する。   Therefore, in this embodiment, the upper limit temperature of TEO when the engine is stopped is set according to the vehicle interior temperature Tr. Specifically, after setting the third temporary target temperature f (engine stop) in step S55, the process proceeds to step S57, and the relationship diagram between the vehicle interior temperature Tr and f (vehicle interior temperature) described in step S57. As shown, the fourth temporary target temperature f (vehicle interior temperature) is set according to the vehicle interior temperature Tr.

ステップS57では、車室内温度Trが低温側の基準温度(本実施形態では25℃)以下である場合には、第4仮目標温度f(車室内温度)を第1、第2仮目標温度f(TAO)の最大温度(8℃)とする。   In step S57, if the vehicle interior temperature Tr is equal to or lower than the low temperature side reference temperature (25 ° C. in this embodiment), the fourth temporary target temperature f (vehicle interior temperature) is set to the first and second temporary target temperatures f. Let (TAO) be the maximum temperature (8 ° C.).

一方、車室内温度Trが低温側の基準温度(25℃)より高くなる場合には、車室内温度Trの上昇とともに第4仮目標温度f(車室内温度)を上昇させて、圧縮機31の回転数を徐々に増加させる。そして、車室内温度Trが高温側の基準温度(本実施形態では30℃)より高くなると、第4仮目標温度f(車室内温度)を蒸発器13のフロスト(凍結)防止のための最小温度(1℃)に設定する。なお、ステップS57中に記載の車室内温度Trとf(車室内温度)との関係図は、ステップS57中に記載の車室内温度Trと第4仮目標温度との関係を示す一例であり、これに限定されるものではない。   On the other hand, when the vehicle interior temperature Tr becomes higher than the reference temperature (25 ° C.) on the low temperature side, the fourth temporary target temperature f (vehicle interior temperature) is increased with the increase in the vehicle interior temperature Tr, and the compressor 31 Increase the rotational speed gradually. When the vehicle interior temperature Tr becomes higher than the reference temperature on the high temperature side (30 ° C. in this embodiment), the fourth temporary target temperature f (vehicle interior temperature) is set to the minimum temperature for preventing the frost (freezing) of the evaporator 13. Set to (1 ° C). The relationship diagram between the vehicle interior temperature Tr and f (vehicle interior temperature) described in step S57 is an example showing the relationship between the vehicle interior temperature Tr described in step S57 and the fourth temporary target temperature. It is not limited to this.

次のステップS58では、次の数式F4に基づいて、上記第1〜第4仮目標温度のうちから今回の目標冷媒蒸発温度TEOを決定する。
TEO=MAX{MIN(f(外気温)、f(TAO))、MIN(f(エンジン停止)、f(車室内温度))}…(F4)
ステップS58では、第1仮目標温度f(外気温)と第2仮目標温度f(TAO)とを比較して、温度の低い方を第1の候補として選択する。第1の候補の選択によれば、例えば、TAOが高い場合であっても、防曇の必要がある場合にはTEOを低下させ、車室内の除湿を行なうこととなる。
In the next step S58, the current target refrigerant evaporation temperature TEO is determined from the first to fourth temporary target temperatures based on the following formula F4.
TEO = MAX {MIN (f (outside air temperature), f (TAO)), MIN (f (engine stopped), f (vehicle interior temperature))} (F4)
In step S58, the first temporary target temperature f (outside air temperature) and the second temporary target temperature f (TAO) are compared, and the lower one is selected as the first candidate. According to the selection of the first candidate, for example, even when the TAO is high, if the anti-fogging is necessary, the TEO is lowered and the vehicle interior is dehumidified.

また、第3仮目標温度f(エンジン停止)と第4仮目標温度f(車室内温度)とを比較して、温度の低い方を第2の候補として選択する。この第2の候補の選択によれば、エンジン停止からの経過時間が長くなるに連れて、TEOを上昇させすぎてしまうことを、車室内温度Trに応じて規制することとなる。すなわち、ステップS57にて第4仮目標温度f(車室内温度)を設定することは、エンジン停止中における第3仮目標温度f(エンジン停止)の上限値(上限温度)を設定することを意味する。なお、第4仮目標温度f(車室内温度)が、本発明の上限温度に相当する。   Further, the third temporary target temperature f (engine stop) and the fourth temporary target temperature f (vehicle interior temperature) are compared, and the lower one is selected as the second candidate. According to the selection of the second candidate, it is restricted according to the vehicle interior temperature Tr that the TEO is increased too much as the elapsed time from the engine stop becomes longer. That is, setting the fourth temporary target temperature f (vehicle interior temperature) in step S57 means setting the upper limit (upper limit temperature) of the third temporary target temperature f (engine stop) during engine stop. To do. The fourth temporary target temperature f (vehicle interior temperature) corresponds to the upper limit temperature of the present invention.

そして、第1仮目標温度f(外気温)と第2仮目標温度f(TAO)から選択した第1の候補と、第3仮目標温度f(エンジン停止)と第4仮目標温度f(車室内温度)から選択した第2の候補とを比較して、温度の高い方を今回のTEOに決定する。   The first candidate selected from the first temporary target temperature f (outside air temperature) and the second temporary target temperature f (TAO), the third temporary target temperature f (engine stop), and the fourth temporary target temperature f (vehicle) The second candidate selected from the room temperature is compared with the second candidate, and the higher temperature is determined as the current TEO.

従って、第3仮目標温度f(エンジン停止)が第4仮目標温度f(車室内温度)よりも低く、かつ、第3仮目標温度f(エンジン停止)が第1の候補(目標温度)よりも高い場合、第3仮目標温度f(エンジン停止)を今回のTEOに決定する。   Accordingly, the third temporary target temperature f (engine stop) is lower than the fourth temporary target temperature f (vehicle interior temperature), and the third temporary target temperature f (engine stop) is lower than the first candidate (target temperature). Is also higher, the third temporary target temperature f (engine stop) is determined to be the current TEO.

また、第4仮目標温度f(車室内温度)が第3仮目標温度f(エンジン停止)よりも低く、かつ、第4仮目標温度f(車室内温度)が第1の候補(目標温度)よりも高い場合、第4仮目標温度f(車室内温度)を今回のTEOに決定する。   Further, the fourth temporary target temperature f (vehicle interior temperature) is lower than the third temporary target temperature f (engine stop), and the fourth temporary target temperature f (vehicle interior temperature) is the first candidate (target temperature). If it is higher, the fourth temporary target temperature f (vehicle compartment temperature) is determined to be the current TEO.

また、第3、第4仮目標温度それぞれが第1の候補(目標温度)よりも低い場合、第1の候補(目標温度)の目標温度をTEOとなるように圧縮機31を作動させた方が、バッテリ81の消費電力が少ないので、第1の候補を今回のブロワ電圧に決定する。   When each of the third and fourth temporary target temperatures is lower than the first candidate (target temperature), the compressor 31 is operated so that the target temperature of the first candidate (target temperature) becomes TEO. However, since the power consumption of the battery 81 is small, the first candidate is determined to be the current blower voltage.

なお、ステップS53の判定処理の結果、エンジン停止中と判定されなかった場合は、エンジンEGから車両走行用の駆動力を得ることができ、エンジンEGの駆動力にて発電機80を作動可能である。   If it is determined that the engine is not stopped as a result of the determination process in step S53, the driving force for traveling the vehicle can be obtained from the engine EG, and the generator 80 can be operated by the driving force of the engine EG. is there.

そのため、エンジン停止中と判定されなかった場合は、第1仮目標温度f(外気温)と第2仮目標温度f(TAO)とを比較して、温度の低い方をTEOに設定する。具体的には、エンジン停止中と判定されなかった場合(S53:NO)は、ステップS59に進み、第3仮目標温度f(エンジン停止)および第4仮目標温度f(車室内温度)を第1、第2仮目標温度の最小温度(1℃)に設定する。この場合、第3、第4仮目標温度が、第1、第2仮目標温度の最小温度に設定されているので、ステップS58では、第1仮目標温度f(外気温)と第2仮目標温度f(TAO)とを比較して、温度の低い方を今回のTEOに決定する。   Therefore, when it is not determined that the engine is stopped, the first temporary target temperature f (outside air temperature) is compared with the second temporary target temperature f (TAO), and the lower temperature is set to TEO. Specifically, when it is not determined that the engine is stopped (S53: NO), the process proceeds to step S59, and the third temporary target temperature f (engine stop) and the fourth temporary target temperature f (vehicle interior temperature) are set to the first. 1. Set to the minimum temperature (1 ° C.) of the second temporary target temperature. In this case, since the third and fourth temporary target temperatures are set to the minimum temperatures of the first and second temporary target temperatures, in step S58, the first temporary target temperature f (outside air temperature) and the second temporary target temperature are set. The temperature f (TAO) is compared and the lower temperature is determined as the current TEO.

本実施形態の車両用空調装置1は、以上の如く作動するので、送風機12から送風された送風空気が、蒸発器13にて冷却される。そして蒸発器13にて冷却された冷風は、エアミックスドア19の開度に応じて、加熱用冷風通路16および冷風バイパス通路17へ流入する。   Since the vehicle air conditioner 1 of this embodiment operates as described above, the blown air blown from the blower 12 is cooled by the evaporator 13. Then, the cool air cooled by the evaporator 13 flows into the heating cool air passage 16 and the cool air bypass passage 17 according to the opening degree of the air mix door 19.

加熱用冷風通路16へ流入した冷風は、ヒータコア14およびPTCヒータ15を通過する際に加熱されて、混合空間18にて冷風バイパス通路17を通過した冷風と混合される。そして、混合空間18にて温度調整された空調風が、混合空間18から各吹出口を介して車室内に吹き出される。   The cold air that has flowed into the heating cold air passage 16 is heated when passing through the heater core 14 and the PTC heater 15, and is mixed with the cold air that has passed through the cold air bypass passage 17 in the mixing space 18. Then, the conditioned air whose temperature is adjusted in the mixing space 18 is blown out from the mixing space 18 into the vehicle interior via the respective outlets.

この車室内に吹き出される空調風によって車室内温度Trが外気温Tamより低く冷やされる場合には、車室内の冷房が実現されており、一方、車室内温度Trが外気温Tamより高く加熱される場合には、車室内の暖房が実現されることになる。   When the vehicle interior temperature Tr is cooled below the outside air temperature Tam by the conditioned air blown into the vehicle interior, cooling of the vehicle interior is realized, while the vehicle interior temperature Tr is heated higher than the outside air temperature Tam. In such a case, heating of the passenger compartment is realized.

この際、ステップS9では、空調熱負荷やエンジンEGの作動状態に応じて設定する第1〜第4仮目標温度のうちから、蒸発器13の目標冷媒蒸発温度TEOを決定する。   At this time, in step S9, the target refrigerant evaporation temperature TEO of the evaporator 13 is determined from the first to fourth temporary target temperatures set according to the air conditioning heat load and the operating state of the engine EG.

上述のステップS58にて第1〜第4仮目標温度のうちから第3仮目標温度f(エンジン停止)をTEOに決定する場合は、エンジン停止中に、エンジンEGを停止してからの時間の経過に伴ってTEOを上昇させるので、冷凍サイクル30の高低圧差を縮小して、圧縮機31の消費動力を低減させることができる。従って、車室内の空調によるバッテリ81の消費電力を抑制することができる。   When the third temporary target temperature f (engine stop) is determined as TEO from the first to fourth temporary target temperatures in step S58 described above, the time from when the engine EG is stopped during the engine stop is determined. Since TEO is raised with progress, the power consumption of the compressor 31 can be reduced by reducing the high-low pressure difference of the refrigeration cycle 30. Therefore, the power consumption of the battery 81 due to air conditioning in the passenger compartment can be suppressed.

加えて、エンジンEGが停止してからの時間の経過に伴って、TEOを上昇させるので、車室内への送風空気の温度の急変を抑制することができ、乗員の空調フィーリングの悪化を抑制することができる。   In addition, since TEO is raised with the passage of time since the engine EG stopped, it is possible to suppress a sudden change in the temperature of the air blown into the passenger compartment and suppress deterioration of the air conditioning feeling of the passengers can do.

さらに、圧縮機31の消費動力を低減させて、バッテリ81に蓄えられた電力のうち空調用に消費される電力を低減することで、走行用電動モータへ供給される電力を増加させることができる。その結果、走行用電動モータによる車両の走行距離を延ばすことができる。ひいては、バッテリ81に蓄えられる電力を発電するためにエンジンEGを駆動させる頻度を低減することや、走行用電動モータおよび内燃機関(EG)による車両の走行距離の合計距離を延ばすことができるので、燃費の向上を図ることができる。   Furthermore, by reducing the power consumed by the compressor 31 and reducing the power consumed for air conditioning among the power stored in the battery 81, the power supplied to the traveling electric motor can be increased. . As a result, the travel distance of the vehicle by the travel electric motor can be extended. As a result, the frequency of driving the engine EG to generate the electric power stored in the battery 81 can be reduced, and the total distance of the vehicle traveled by the travel electric motor and the internal combustion engine (EG) can be extended. The fuel consumption can be improved.

一方、ステップS58にて第1〜第4仮目標温度のうちから第4仮目標温度f(車室内温度)をTEOに決定する場合は、エンジンEGの作動停止からの経過時間が長くても、車室内温度Trの上昇に伴ってTEOの上昇を規制する。つまり、エンジンEGを停止している際のTEOの上限温度を車室内温度Trに応じて設定することとなるので、エンジンEGが停止している際の車室内温度Trの過度の上昇を抑制することができる。   On the other hand, when the fourth temporary target temperature f (vehicle interior temperature) is determined as TEO from the first to fourth temporary target temperatures in step S58, even if the elapsed time from the stop of the operation of the engine EG is long, A rise in TEO is regulated as the passenger compartment temperature Tr rises. That is, since the TEO upper limit temperature when the engine EG is stopped is set according to the vehicle interior temperature Tr, an excessive increase in the vehicle interior temperature Tr when the engine EG is stopped is suppressed. be able to.

従って、エンジンEGが停止している際の乗員の空調フィーリングの悪化を抑制することができる。なお、車室内温度Trが低い場合には、第3仮目標温度が選択されて、TEOを上昇させるので、圧縮機31の省動力化を図ることができ、車室内の空調によるバッテリ81の消費電力を抑制することができる。   Therefore, it is possible to suppress the deterioration of the air conditioning feeling of the occupant when the engine EG is stopped. When the vehicle interior temperature Tr is low, the third temporary target temperature is selected and TEO is raised, so that the compressor 31 can be saved in power and the battery 81 is consumed by air conditioning in the vehicle interior. Electric power can be suppressed.

また、ステップS6では、空調熱負荷やエンジンEGの作動状態に応じて設定する第1〜第3仮ブロワ電圧のうちから、送風機12の電動モータに印加するブロワ電圧(目標送風量)を決定する。   Moreover, in step S6, the blower voltage (target ventilation amount) applied to the electric motor of the blower 12 is determined from the first to third temporary blower voltages set according to the air conditioning heat load and the operating state of the engine EG. .

上述のステップS47にて第1〜第3仮ブロワ電圧のうちから第2仮ブロワ電圧f(エンジン停止)を今回のブロワ電圧に決定する場合は、エンジン停止中に、エンジンEGが停止してからの時間の経過に伴って、送風機12のブロワ電圧(目標送風量)を低下させるので、送風機12の消費動力を低減させることができる。従って、車室内の空調によるバッテリ81の消費電力を抑制することができる。   When the second temporary blower voltage f (engine stop) is determined as the current blower voltage from the first to third temporary blower voltages in step S47 described above, the engine EG is stopped while the engine is stopped. Since the blower voltage (target air flow rate) of the blower 12 is reduced as time elapses, the power consumption of the blower 12 can be reduced. Therefore, the power consumption of the battery 81 due to air conditioning in the passenger compartment can be suppressed.

この際、エンジンEGが停止してからの時間の経過に伴って、目標送風量を低下させるので、車室内への送風空気の送風量の急変を抑制することができ、乗員の空調フィーリングの悪化を抑制することができる。   At this time, since the target air flow rate is reduced with the passage of time after the engine EG has stopped, a sudden change in the air flow rate of the blown air into the passenger compartment can be suppressed, and the air conditioning feeling of the passenger can be reduced. Deterioration can be suppressed.

さらに、送風機12の消費動力を低減させて、バッテリ81に蓄えられた電力のうち空調用に消費される電力を低減することで、走行用電動モータへ供給される電力を増加させることができるので、上述のように車両の燃費の向上を図ることができる。   Furthermore, by reducing the power consumption of the blower 12 and reducing the electric power consumed for air conditioning among the electric power stored in the battery 81, the electric power supplied to the traveling electric motor can be increased. As described above, the fuel efficiency of the vehicle can be improved.

一方、ステップS47にて第1〜第3仮ブロワ電圧のうちから第3仮ブロワ電圧f(車室内温度)を今回のブロワ電圧に決定する場合は、エンジンEGの作動停止からの経過時間が長くても、車室内温度Trの上昇に伴って送風機12の送風量の低下を規制する。つまり、エンジンEGを停止している際の送風機12の送風量の下限送風量を車室内温度Trに応じて設定することとなるので、エンジンEGが停止している際の車室内温度Trの過度の上昇を抑制することができる。   On the other hand, when the third temporary blower voltage f (vehicle interior temperature) is determined as the current blower voltage from the first to third temporary blower voltages in step S47, the elapsed time from the stop of the operation of the engine EG is long. Even so, a decrease in the air flow rate of the blower 12 is regulated as the vehicle interior temperature Tr rises. That is, since the lower limit air volume of the air flow of the blower 12 when the engine EG is stopped is set according to the vehicle interior temperature Tr, the vehicle interior temperature Tr when the engine EG is stopped is excessive. Can be suppressed.

従って、エンジンEGが停止している際の乗員の空調フィーリングの悪化を抑制することができる。なお、車室内温度Trが低い場合には、第2仮ブロワ電圧が選択されて、送風機12の送風量を低下させるので、送風機12の省動力化を図ることができ、車室内の空調によるバッテリ81の消費電力を抑制することができる。   Therefore, it is possible to suppress the deterioration of the air conditioning feeling of the occupant when the engine EG is stopped. In addition, when the vehicle interior temperature Tr is low, the second temporary blower voltage is selected and the air flow rate of the blower 12 is reduced. Therefore, power saving of the blower 12 can be achieved, and a battery by air conditioning in the vehicle interior is provided. The power consumption of 81 can be suppressed.

このように、本実施形態の車両用空調装置1によれば、空調熱負荷やエンジンEGの作動状態に応じて、適切なTEOおよびブロワ電圧を決定することで、乗員の空調フィーリングの悪化を抑制しつつ、バッテリ81の消費電力を充分に抑制することができる。   As described above, according to the vehicle air conditioner 1 of the present embodiment, the appropriate TEO and blower voltage are determined according to the air conditioning heat load and the operating state of the engine EG, thereby reducing the air conditioning feeling of the occupant. While suppressing, the power consumption of the battery 81 can be sufficiently suppressed.

(第2実施形態)
次に、本発明の第2実施形態について図9、図10に基づいて説明する。上記第1実施形態と同様または均等な部分について同一の符号を付し、その説明を省略する。ここで、図9は、第2実施形態におけるステップS6の詳細を示すフローチャートであり、図10は、第2実施形態におけるステップS9の詳細を示すフローチャートである。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. Parts that are the same as or equivalent to those in the first embodiment are given the same reference numerals, and descriptions thereof are omitted. Here, FIG. 9 is a flowchart showing details of step S6 in the second embodiment, and FIG. 10 is a flowchart showing details of step S9 in the second embodiment.

本実施形態では、エコノミースイッチ60dの出力(ON/OFF)に応じて、エンジン停止中の送風機12のブロワ電圧(目標送風量)や、蒸発器13の目標冷媒蒸発温度TEOを調整することで、エンジン停止中のバッテリ81の消費電力の抑制を図っている。   In this embodiment, according to the output (ON / OFF) of the economy switch 60d, by adjusting the blower voltage (target air volume) of the blower 12 when the engine is stopped and the target refrigerant evaporation temperature TEO of the evaporator 13, The power consumption of the battery 81 when the engine is stopped is suppressed.

まず、本実施形態におけるエンジン停止中の送風機12のブロワ電圧の調整について図9に基づいて説明する。図9に示すように、ステップS42にて、エンジン停止中と判定された場合(S42:YES)は、ステップS43にて、エコノミースイッチ60dがONであるか否かを判定する。   First, adjustment of the blower voltage of the blower 12 while the engine is stopped in the present embodiment will be described with reference to FIG. As shown in FIG. 9, when it is determined in step S42 that the engine is stopped (S42: YES), it is determined in step S43 whether or not the economy switch 60d is ON.

判定の結果、エコノミースイッチ60dがONと判定されなかった場合(S43:NO)、ステップS44に進み、第1実施形態と同様の第2仮ブロワ電圧を設定する。   As a result of the determination, if the economy switch 60d is not determined to be ON (S43: NO), the process proceeds to step S44, and the second temporary blower voltage similar to that of the first embodiment is set.

一方、エコノミースイッチ60dがONと判定された場合(S43:YES)、ステップS45に進み、エコノミースイッチ60dがOFFと判定された場合(S43:NO)に比べて、送風機12の第2仮ブロワ電圧f(エンジン停止)を低下させる。   On the other hand, if it is determined that the economy switch 60d is ON (S43: YES), the process proceeds to step S45, and the second temporary blower voltage of the blower 12 is compared to the case where the economy switch 60d is determined to be OFF (S43: NO). Reduce f (engine stop).

本実施形態のステップS45では、ステップS45中に記載のエンジンEGを停止してからの経過時間とf(エンジン停止)との関係図の通り、ステップS44における中間期の期間(2分〜5分)に比べて、エンジンEGを停止してからの経過時間が中間期の期間(2分〜4分)を短縮する。つまり、ステップS45では、ステップS44における中間期のブロワ電圧の低下度合いに比べて、当該中間期のブロワ電圧の低下度合いを大きくする。   In step S45 of the present embodiment, the intermediate period in step S44 (2 to 5 minutes) as shown in the relationship diagram between the elapsed time from the stop of the engine EG described in step S45 and f (engine stop). ), The elapsed time after stopping the engine EG is reduced to the intermediate period (2 to 4 minutes). That is, in step S45, the degree of decrease in the blower voltage in the intermediate period is increased as compared with the degree of decrease in the blower voltage in the intermediate period in step S44.

これによれば、エコノミースイッチ60dがONされている場合は、ONされていない場合に比べ、送風機12の省動力化を図ることができるので、車室内の空調によるバッテリ81の消費電力をより効果的に抑制することができる。   According to this, when the economy switch 60d is turned on, the power consumption of the blower 12 can be reduced as compared with the case where the economy switch 60d is not turned on. Therefore, the power consumption of the battery 81 by the air conditioning in the vehicle compartment is more effective. Can be suppressed.

次に、本実施形態におけるエンジン停止中の蒸発器13の目標冷媒蒸発温度TEOの調整について図10に基づいて説明する。図10に示すように、ステップS53にて、エンジン停止中と判定された場合(S53:YES)は、ステップS54にて、エコノミースイッチ60dがONであるか否かを判定する。   Next, adjustment of the target refrigerant evaporation temperature TEO of the evaporator 13 while the engine is stopped in the present embodiment will be described based on FIG. As shown in FIG. 10, when it is determined in step S53 that the engine is stopped (S53: YES), it is determined in step S54 whether or not the economy switch 60d is ON.

判定の結果、エコノミースイッチ60dがONと判定されなかった場合(S54:NO)、ステップS55に進み、第1実施形態と同様の第3仮目標温度を設定する。   As a result of the determination, if the economy switch 60d is not determined to be ON (S54: NO), the process proceeds to step S55, and the third temporary target temperature similar to that of the first embodiment is set.

一方、エコノミースイッチ60dがONと判定された場合(S54:YES)、ステップS56に進み、エコノミースイッチ60dがOFFと判定された場合(S54:NO)に比べて、第3仮目標温度を低下させる。   On the other hand, when it is determined that the economy switch 60d is ON (S54: YES), the process proceeds to step S56, and the third temporary target temperature is decreased as compared with the case where the economy switch 60d is determined to be OFF (S54: NO). .

本実施形態のステップS56では、ステップ56中に記載のエンジンEGを停止してからの経過時間とf(エンジン停止)との関係図の通り、ステップS55における中間期の期間(2分〜5分)に比べて、エンジンEGを停止してからの経過時間が中間期の期間(2分〜4分)を短縮する。つまり、ステップS56では、ステップS55における中間期の目標温度の上昇度合に比べて、当該中間期の目標温度の上昇度合いを大きくする。   In step S56 of the present embodiment, as shown in the relationship diagram between the elapsed time after stopping the engine EG described in step 56 and f (engine stop), the intermediate period (2 to 5 minutes) in step S55. ), The elapsed time after stopping the engine EG is reduced to the intermediate period (2 to 4 minutes). That is, in step S56, the degree of increase in the target temperature in the intermediate period is increased compared to the degree of increase in the target temperature in the intermediate period in step S55.

これによれば、エコノミースイッチ60dがONされている場合は、ONされていない場合に比べ、圧縮機31の省動力化を図ることができるので、車室内の空調によるバッテリ81の消費電力をより効果的に抑制することができる。   According to this, when the economy switch 60d is turned on, the power consumption of the compressor 31 can be reduced as compared with the case where the economy switch 60d is not turned on. It can be effectively suppressed.

以上説明したように、本実施形態では、エコノミースイッチ60dをONすることで、圧縮機31、送風機12といった空調機器の省動力化を図ることができるので、バッテリ81の消費電力をより効果的に抑制することができる。加えて、エコスイッチ60dをONすることで、省動力モードを選択できるので、車室内の空調に必要とされる動力の省動力化を望む乗員の意思を適切に反映させることができる。   As described above, in the present embodiment, by turning on the economy switch 60d, it is possible to save power of the air conditioner such as the compressor 31 and the blower 12, so that the power consumption of the battery 81 can be more effectively reduced. Can be suppressed. In addition, since the power saving mode can be selected by turning on the eco switch 60d, it is possible to appropriately reflect the intention of the occupant who desires to save the power required for air conditioning in the passenger compartment.

(他の実施形態)
以上、本発明の実施形態について説明したが、本発明はこれに限定されるものではなく、各請求項に記載した範囲を逸脱しない限り、各請求項の記載文言に限定されず、当業者がそれらから容易に置き換えられる範囲にも及び、かつ、当業者が通常有する知識に基づく改良を適宜付加することができる。例えば、以下のように種々変形可能である。
(Other embodiments)
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, Unless it deviates from the range described in each claim, it is not limited to the wording of each claim, and those skilled in the art Improvements based on the knowledge that a person skilled in the art normally has can be added as appropriate to the extent that they can be easily replaced. For example, various modifications are possible as follows.

(1)上記各実施形態では、エンジン停止中であるか否かを判定する判定処理(S42、S53)を行っているが、エンジン停止中であるか否かの判定に加えて、バッテリ残量が充分であるか否かの判定を追加してもよい。なお、バッテリ残量が充分であるか否かの判定は、バッテリ制御装置90から出力されるバッテリ残量が予め設定された基準値以上であるか否かを判定すればよい。   (1) In each of the above embodiments, the determination process (S42, S53) for determining whether or not the engine is stopped is performed. In addition to the determination whether or not the engine is stopped, the remaining battery level A determination of whether or not is sufficient may be added. Note that whether or not the remaining battery level is sufficient may be determined by determining whether or not the remaining battery level output from the battery control device 90 is equal to or greater than a preset reference value.

(2)上記各実施形態では、エンジン停止中の送風機12の送風量および蒸発器13の目標冷媒蒸発温度TEOのそれぞれを調整することで、バッテリ81の消費電力のより効果的な抑制を図っているが、これに限定されず、いずれか一方を行うようにしてもよい。   (2) In each of the above embodiments, the power consumption of the battery 81 is more effectively suppressed by adjusting each of the blower amount of the blower 12 and the target refrigerant evaporation temperature TEO of the evaporator 13 while the engine is stopped. However, the present invention is not limited to this, and either one may be performed.

(3)上記各実施形態では、空調熱負荷やエンジンEGの作動状態に応じて、第1〜第3仮ブロワ電圧および第1〜第4仮目標温度を設定しているが、これに限定されるものではない。例えば、仮ブロワ電圧として、車室内温度Trに応じて設定する第3仮ブロワ電圧f(車室内温度)および第4仮目標温度f(車室内温度)を除く、第1、第2仮ブロワ電圧、および第1〜第3仮目標温度を設定するようにしてもよい。   (3) In each of the above embodiments, the first to third temporary blower voltages and the first to fourth temporary target temperatures are set according to the air conditioning heat load and the operating state of the engine EG. However, the present invention is not limited to this. It is not something. For example, the first and second temporary blower voltages excluding the third temporary blower voltage f (vehicle interior temperature) and the fourth temporary target temperature f (vehicle interior temperature) that are set according to the vehicle interior temperature Tr as the temporary blower voltages. , And the first to third temporary target temperatures may be set.

(4)上記各各実施形態では、本発明の車両用空調装置を、ハイブリッド車両のうちエンジンEGおよび走行用電動モータの双方から直接駆動力を得て走行可能な、いわゆるパラレル型のハイブリッド車両に適用した例を説明しているが、本発明の車両用空調装置の適用はこれに限定されない。   (4) In each of the above embodiments, the vehicle air conditioner of the present invention is a so-called parallel type hybrid vehicle that can travel by directly obtaining driving force from both the engine EG and the traveling electric motor of the hybrid vehicle. Although the applied example is described, the application of the vehicle air conditioner of the present invention is not limited to this.

例えば、エンジンEGを発電機80の駆動源として用い、発電された電力をバッテリ81に蓄え、さらに、バッテリ81に蓄えられた電力を供給されることによって作動する走行用電動モータから駆動力を得て走行する、いわゆるシリアル型のハイブリッド車両に適用してもよい。   For example, the engine EG is used as a drive source for the generator 80, the generated power is stored in the battery 81, and the driving force is obtained from a traveling electric motor that operates by being supplied with the power stored in the battery 81. The present invention may also be applied to a so-called serial type hybrid vehicle that travels in a row.

(5)また、本発明の車両用空調装置を、エンジン制御装置70に対するバッテリ残量が低下してもエンジンEGの作動要求信号を出力せず、バッテリ残量が低下すると、エンジンEGにて車両走行用の駆動力を出力する車両に適用してもよい。この場合には、車室内の空調によるバッテリ81の消費電力を抑制して、走行用電動モータによる走行距離を延ばすことで、走行用電動モータおよび内燃機関(EG)による車両の走行距離の合計距離を延ばすことができる。ひいては、燃費の向上を図ることができる。   (5) Further, the vehicle air conditioner of the present invention does not output an operation request signal for the engine EG even if the remaining battery amount for the engine control device 70 is lowered, and the vehicle is driven by the engine EG when the remaining battery amount is lowered. You may apply to the vehicle which outputs the driving force for driving | running | working. In this case, the total distance of the travel distance of the vehicle by the travel electric motor and the internal combustion engine (EG) is obtained by suppressing the power consumption of the battery 81 due to the air conditioning in the vehicle interior and extending the travel distance by the travel electric motor. Can be extended. As a result, fuel consumption can be improved.

(6)また、本発明の車両用空調装置を、車両外部の外部電源(商用電源)からの電力供給にてバッテリ81を充電可能な車両、いわゆるプラグインハイブリッド車両に適用することもできる。なお、この種の車両では、送風機12や圧縮機31等の空調機器をバッテリ81の他にも外部電源からの電力供給にて直接作動可能に構成することができる。   (6) The vehicle air conditioner of the present invention can also be applied to a vehicle that can charge the battery 81 by supplying power from an external power source (commercial power source) outside the vehicle, that is, a so-called plug-in hybrid vehicle. In this type of vehicle, the air conditioners such as the blower 12 and the compressor 31 can be configured to be directly operable by supplying power from an external power source in addition to the battery 81.

1 車両用空調装置
12 送風機
13 蒸発器
30 冷凍サイクル
31 圧縮機
50 空調制御装置
50a 圧縮機制御手段
50b 送風機制御手段
60d エコノミースイッチ(省動力化要求手段)
S6 目標送風量決定手段
S9 目標冷媒蒸発温度決定手段
EG エンジン
DESCRIPTION OF SYMBOLS 1 Vehicle air conditioner 12 Blower 13 Evaporator 30 Refrigeration cycle 31 Compressor 50 Air conditioning control device 50a Compressor control means 50b Blower control means 60d Economy switch (power saving request means)
S6 Target air flow determining means S9 Target refrigerant evaporation temperature determining means EG engine

Claims (8)

車両走行用の駆動力を出力する走行用電動モータと、前記走行用電動モータへ供給される電力を蓄えるバッテリ(81)と、前記バッテリ(81)に蓄えられる電力を発電するための駆動力および車両走行用の駆動力のうち、少なくとも一方を出力する内燃機関(EG)とを有する車両に適用される車両用空調装置であって、
前記バッテリ(81)に蓄えられた電力を供給されることによって冷媒を圧縮して吐出する圧縮機(31)および前記冷媒を蒸発させて車室内に送風される送風空気を冷却する蒸発器(13)を有する蒸気圧縮式の冷凍サイクル(30)と、
前記圧縮機(31)の作動を制御する圧縮機制御手段(50a)と、
前記蒸発器(13)における目標冷媒蒸発温度(TEO)を決定する目標冷媒蒸発温度決定手段(S9)と、を備え、
前記圧縮機制御手段(50a)は、前記蒸発器(13)における冷媒蒸発温度(TE)が前記目標冷媒蒸発温度(TEO)に近づくように、前記圧縮機(31)の作動を制御し、
前記目標冷媒蒸発温度決定手段(S9)は、前記内燃機関(EG)が停止している際に、前記内燃機関(EG)が停止してからの時間の経過に伴って、前記目標冷媒蒸発温度(TEO)を上昇させることを特徴とする車両用空調装置。
A traveling electric motor that outputs a driving force for traveling the vehicle; a battery (81) that stores electric power supplied to the electric motor for traveling; a driving force for generating electric power stored in the battery (81); among the driving force for vehicle traveling, a vehicle air-conditioning apparatus applied to a vehicle having an internal combustion engine that outputs at least one (EG),
A compressor (31) that compresses and discharges refrigerant by being supplied with electric power stored in the battery (81), and an evaporator (13) that evaporates the refrigerant and cools blown air blown into the vehicle interior. A vapor compression refrigeration cycle (30) having
Compressor control means (50a) for controlling the operation of the compressor (31);
The evaporator and the target refrigerant evaporation temperature determining means for determining a target refrigerant evaporation temperature (TEO) in (13) (S9), provided with,
The compressor control means (50a) controls the operation of the compressor (31) so that the refrigerant evaporation temperature (TE) in the evaporator (13) approaches the target refrigerant evaporation temperature (TEO),
The target refrigerant evaporating temperature determining means (S9) is configured such that when the internal combustion engine (EG) is stopped, the target refrigerant evaporating temperature is increased as time elapses after the internal combustion engine (EG) is stopped. (TEO) is raised, The vehicle air conditioner characterized by the above-mentioned.
前記目標冷媒蒸発温度決定手段(S9)は、車室内温度(Tr)に応じて前記内燃機関(EG)が停止している際の前記目標冷媒蒸発温度(TEO)の上限温度を設定し、前記内燃機関(EG)が停止している際に、前記内燃機関(EG)が停止してからの時間の経過に伴って、前記上限温度となるまで前記目標冷媒蒸発温度(TEO)を上昇させることを特徴とする請求項1に記載の車両用空調装置。   The target refrigerant evaporating temperature determining means (S9) sets an upper limit temperature of the target refrigerant evaporating temperature (TEO) when the internal combustion engine (EG) is stopped according to a passenger compartment temperature (Tr), When the internal combustion engine (EG) is stopped, the target refrigerant evaporation temperature (TEO) is increased until the upper limit temperature is reached with the passage of time after the internal combustion engine (EG) is stopped. The vehicle air conditioner according to claim 1. 乗員の操作により前記車室内の空調に必要とされる動力の省動力化を要求する指令を出力する省動力化要求手段(60d)を備え、
前記目標冷媒蒸発温度決定手段(S9)は、前記省動力化要求手段(60d)によって前記省動力化を要求する指令が出力された場合は、前記省動力化を要求する指令が出力されていない場合に比べて、前記内燃機関(EG)が停止している際の前記目標冷媒蒸発温度(TEO)の上昇度合いを大きくすることを特徴とする請求項1または2に記載の車両用空調装置。
A power saving requesting means (60d) for outputting a command for requesting power saving of power required for air conditioning in the passenger compartment by an operation of a passenger;
The target refrigerant evaporating temperature determining means (S9) does not output the command for requesting power saving when the command for requesting power saving is output by the power saving request means (60d). 3. The vehicle air conditioner according to claim 1, wherein an increase degree of the target refrigerant evaporation temperature (TEO) when the internal combustion engine (EG) is stopped is increased as compared with a case.
前記バッテリ(81)に蓄えられた電力を供給されることによって前記車室内へ空気を送風する送風機(12)と、
前記送風機(12)の作動を制御する送風機制御手段(50b)と、
前記送風機(12)における目標送風量を決定する目標送風量決定手段(S6)と、を備え、
前記目標送風量決定手段(S6)は、前記内燃機関(EG)が停止している際に、前記内燃機関(EG)が停止してからの時間の経過に伴って、前記目標送風量を低下させることを特徴とする請求項1ないし3のいずれか1つに記載の車両用空調装置。
A blower (12) for blowing air into the vehicle interior by being supplied with electric power stored in the battery (81);
A blower control means (50b) for controlling the operation of the blower (12);
A target air volume determining means (S6) for determining a target air volume in the blower (12),
The target air flow determining means (S6) reduces the target air flow with the passage of time after the internal combustion engine (EG) is stopped when the internal combustion engine (EG) is stopped. The vehicle air conditioner according to any one of claims 1 to 3, wherein the air conditioner is used.
乗員の操作により前記車室内の空調に必要とされる動力の省動力化を要求する指令を出力する省動力化要求手段(60d)を備え、
前記目標送風量決定手段(S6)は、前記省動力化要求手段(60d)によって前記省動力化を要求する指令が出力された場合は、前記省動力化を要求する指令が出力されていない場合に比べて、前記内燃機関(EG)が停止している際の前記目標送風量の低下度合いを大きくすることを特徴とする請求項4に記載の車両用空調装置。
A power saving requesting means (60d) for outputting a command for requesting power saving of power required for air conditioning in the passenger compartment by an operation of a passenger;
When the command for requesting power saving is output by the power saving requesting means (60d), the target air flow determining means (S6) does not output the command requesting power saving. 5. The vehicle air conditioner according to claim 4, wherein the degree of decrease in the target air flow rate when the internal combustion engine (EG) is stopped is increased.
車両走行用の駆動力を出力する走行用電動モータと、前記走行用電動モータへ供給される電力を蓄えるバッテリ(81)と、前記バッテリ(81)に蓄えられる電力を発電するための駆動力および車両走行用の駆動力のうち、少なくとも一方を出力する内燃機関(EG)とを有する車両に適用される車両用空調装置であって、
前記バッテリ(81)に蓄えられた電力を供給されることによって前記車室内へ空気を送風する送風機(12)と、
前記送風機(12)の作動を制御する送風機制御手段(50b)と、
前記送風機(12)における目標送風量を決定する目標送風量決定手段(S6)と、を備え、
前記目標送風量決定手段(S6)は、前記内燃機関(EG)が停止している際に、前記内燃機関(EG)が停止してからの時間の経過に伴って、前記目標送風量を低下させることを特徴とする車両用空調装置。
A traveling electric motor that outputs a driving force for traveling the vehicle; a battery (81) that stores electric power supplied to the electric motor for traveling; a driving force for generating electric power stored in the battery (81); A vehicle air conditioner that is applied to a vehicle having an internal combustion engine (EG) that outputs at least one of driving power for vehicle travel,
A blower (12) for blowing air into the vehicle interior by being supplied with electric power stored in the battery (81);
A blower control means (50b) for controlling the operation of the blower (12);
A target air volume determining means (S6) for determining a target air volume in the blower (12),
The target air flow determining means (S6) reduces the target air flow with the passage of time after the internal combustion engine (EG) is stopped when the internal combustion engine (EG) is stopped. A vehicle air conditioner characterized in that
前記目標送風量決定手段(S6)は、車室内温度(Tr)に応じて前記内燃機関(EG)が停止している際の前記目標送風量の下限送風量を設定し、前記内燃機関(EG)が停止している際に、前記内燃機関(EG)が停止してからの時間の経過に伴って、前記下限送風量となるまで前記目標送風量を低下させることを特徴とする請求項4ないし6のいずれか1つに記載の車両用空調装置。   The target air flow determining means (S6) sets a lower limit air flow of the target air flow when the internal combustion engine (EG) is stopped according to the vehicle interior temperature (Tr), and the internal combustion engine (EG). ) Is stopped, the target air flow rate is decreased until the lower limit air flow rate is reached as time elapses after the internal combustion engine (EG) is stopped. The vehicle air conditioner as described in any one of thru | or 6. 前記バッテリ(81)に蓄えられる電力を発電するための駆動力を出力する前記内燃機関(EG)を有する車両に適用されることを特徴とする請求項1ないし7のいずれか1つに記載の車両用空調装置。   8. The vehicle according to claim 1, which is applied to a vehicle having the internal combustion engine (EG) that outputs a driving force for generating electric power stored in the battery (81). Vehicle air conditioner.
JP2009213165A 2009-09-15 2009-09-15 Vehicular air-conditioner Pending JP2011063058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009213165A JP2011063058A (en) 2009-09-15 2009-09-15 Vehicular air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009213165A JP2011063058A (en) 2009-09-15 2009-09-15 Vehicular air-conditioner

Publications (1)

Publication Number Publication Date
JP2011063058A true JP2011063058A (en) 2011-03-31

Family

ID=43949786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009213165A Pending JP2011063058A (en) 2009-09-15 2009-09-15 Vehicular air-conditioner

Country Status (1)

Country Link
JP (1) JP2011063058A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013086537A (en) * 2011-10-13 2013-05-13 Denso Corp Vehicle control system
CN104648158A (en) * 2013-11-21 2015-05-27 上海汽车集团股份有限公司 High-voltage load management control system of hybrid electrical vehicle and control method thereof
WO2021199777A1 (en) * 2020-03-31 2021-10-07 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135823A (en) * 1989-10-19 1991-06-10 Mazda Motor Corp Air conditioning control device for automobile
JP2001171327A (en) * 1999-12-17 2001-06-26 Denso Corp Vehicle air conditioner
JP2001180260A (en) * 1999-12-22 2001-07-03 Denso Corp Air conditioner for vehicle
JP2002154319A (en) * 2000-09-05 2002-05-28 Denso Corp Air-conditioning device for vehicle
JP2002240531A (en) * 2001-02-13 2002-08-28 Denso Corp Air conditioner for vehicle
JP2003080937A (en) * 2001-09-12 2003-03-19 Denso Corp Air conditioner for vehicle
JP2003136944A (en) * 2001-10-30 2003-05-14 Denso Corp Air-conditioner device for vehicle
JP2004276908A (en) * 2003-02-28 2004-10-07 Denso Corp Compressor control system for vehicle air conditioner
JP2005271906A (en) * 2004-02-27 2005-10-06 Denso Corp Air conditioner for vehicle
JP2006007928A (en) * 2004-06-24 2006-01-12 Mitsubishi Heavy Ind Ltd Air conditioner for vehicle
JP2008174127A (en) * 2007-01-19 2008-07-31 Toyota Motor Corp Air conditioner for vehicle

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135823A (en) * 1989-10-19 1991-06-10 Mazda Motor Corp Air conditioning control device for automobile
JP2001171327A (en) * 1999-12-17 2001-06-26 Denso Corp Vehicle air conditioner
JP2001180260A (en) * 1999-12-22 2001-07-03 Denso Corp Air conditioner for vehicle
JP2002154319A (en) * 2000-09-05 2002-05-28 Denso Corp Air-conditioning device for vehicle
JP2002240531A (en) * 2001-02-13 2002-08-28 Denso Corp Air conditioner for vehicle
JP2003080937A (en) * 2001-09-12 2003-03-19 Denso Corp Air conditioner for vehicle
JP2003136944A (en) * 2001-10-30 2003-05-14 Denso Corp Air-conditioner device for vehicle
JP2004276908A (en) * 2003-02-28 2004-10-07 Denso Corp Compressor control system for vehicle air conditioner
JP2005271906A (en) * 2004-02-27 2005-10-06 Denso Corp Air conditioner for vehicle
JP2006007928A (en) * 2004-06-24 2006-01-12 Mitsubishi Heavy Ind Ltd Air conditioner for vehicle
JP2008174127A (en) * 2007-01-19 2008-07-31 Toyota Motor Corp Air conditioner for vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013086537A (en) * 2011-10-13 2013-05-13 Denso Corp Vehicle control system
CN104648158A (en) * 2013-11-21 2015-05-27 上海汽车集团股份有限公司 High-voltage load management control system of hybrid electrical vehicle and control method thereof
CN104648158B (en) * 2013-11-21 2017-04-26 上海汽车集团股份有限公司 High-voltage load management control system of hybrid electrical vehicle and control method thereof
WO2021199777A1 (en) * 2020-03-31 2021-10-07 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner

Similar Documents

Publication Publication Date Title
JP5531889B2 (en) Air conditioner for vehicles
JP5880840B2 (en) Air conditioner for vehicles
JP5532029B2 (en) Air conditioner for vehicles
JP2013063711A (en) Vehicle air-conditioning device
JP2011068154A (en) Air conditioner for vehicle
JP5521963B2 (en) Air conditioner for vehicles
JP2011088600A (en) Air conditioner for vehicle
JP5516544B2 (en) Air conditioner for vehicles
JP2018052165A (en) Air conditioner for vehicle
JP5928225B2 (en) Air conditioner for vehicles
JP5195702B2 (en) Air conditioner for vehicles
JP2012076610A (en) Vehicle air conditioning device
JP5472024B2 (en) Air conditioner for vehicles
JP2011063058A (en) Vehicular air-conditioner
JP2014028532A (en) Vehicle air conditioner
JP2011068152A (en) Air conditioner for vehicle
JP5526675B2 (en) Air conditioner for vehicles
JP5556783B2 (en) Air conditioner for vehicles
JP2011063248A (en) Vehicular air-conditioner
JP5381549B2 (en) Air conditioner for vehicles
JP2011068151A (en) Vehicular air-conditioner
JP2011068153A (en) Air conditioner for vehicle
JP5556771B2 (en) Air conditioner for vehicles
JP6566884B2 (en) Air conditioner for vehicles
JP5556770B2 (en) Air conditioner for vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20111109

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130702