JP2011062043A - Power factor improving circuit and led luminaire using the same - Google Patents

Power factor improving circuit and led luminaire using the same Download PDF

Info

Publication number
JP2011062043A
JP2011062043A JP2009211685A JP2009211685A JP2011062043A JP 2011062043 A JP2011062043 A JP 2011062043A JP 2009211685 A JP2009211685 A JP 2009211685A JP 2009211685 A JP2009211685 A JP 2009211685A JP 2011062043 A JP2011062043 A JP 2011062043A
Authority
JP
Japan
Prior art keywords
circuit
voltage
pulse width
transformer
rectifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009211685A
Other languages
Japanese (ja)
Inventor
Yuji Sayama
勇二 佐山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2009211685A priority Critical patent/JP2011062043A/en
Priority to KR1020100073801A priority patent/KR101193451B1/en
Publication of JP2011062043A publication Critical patent/JP2011062043A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power factor improving circuit that improves a power factor and can constitute a power supply that need to comply with harmonic guidelines, and also to provide an LED luminaire using the same. <P>SOLUTION: The power factor improving circuit includes: an AC power supply AC; a rectifier circuit RC1 for rectifying the AC voltage of the AC power supply; a transformer T1 having a primary winding P1, a secondary winding S1, and a tertiary winding P2; a series circuit consisting of the primary winding of the transformer and a switching element Q1 and connecting to both output terminals of the rectifier circuit; rectifying and smoothing circuits D1, C1 that rectify and smooth the voltage appearing on the secondary winding of the transformer and supply the obtained DC voltage to a load; and a control circuit 10 that generates an on-pulse width signal having a predetermined width based on the DC voltage of the rectifying and smoothing circuit and turns on/off the switching element based on the on-pulse width signal. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、力率改善回路及びこれを用いたLED照明器具に関し、特に、力率を改善し且つノイズを抑制する技術に関する。   The present invention relates to a power factor correction circuit and an LED lighting apparatus using the circuit, and more particularly to a technique for improving a power factor and suppressing noise.

図9に従来の力率改善回路を備えた直流電源装置の回路図を示す(特許文献1)。図9に示す直流電源装置は、整流ブリッジ101の出力両端に通常接続される電解コンデンサからなる平滑コンデンサを削除したものである。図9において、交流電源ACの交流電圧は、整流ブリッジ101で整流されて全波整流電圧に変換される。全波整流電圧は、スイッチング制御回路105によりスイッチングされて、直流電源出力回路106に所定の直流電圧が得られる。   FIG. 9 shows a circuit diagram of a DC power supply device having a conventional power factor correction circuit (Patent Document 1). The direct-current power supply device shown in FIG. 9 is obtained by eliminating a smoothing capacitor composed of an electrolytic capacitor that is normally connected to both ends of the output of the rectifier bridge 101. In FIG. 9, the AC voltage of the AC power supply AC is rectified by the rectifier bridge 101 and converted into a full-wave rectified voltage. The full-wave rectified voltage is switched by the switching control circuit 105, and a predetermined DC voltage is obtained at the DC power supply output circuit 106.

スイッチング制御回路105は、一次巻線Np、スイッチング素子であるMOSFET、1SHOTと時定数を決める素子(Ct,Rt)で構成されている。抵抗Rtを全波整流電圧ラインに接続することで、瞬時電圧が高い時にはコンデンサCtの充電が速くなり、パルス幅が減少する。瞬時電圧が低い時には逆にパルス幅が増加する。   The switching control circuit 105 includes a primary winding Np, MOSFETs 1SHOT as switching elements, and elements (Ct, Rt) that determine a time constant. By connecting the resistor Rt to the full-wave rectified voltage line, when the instantaneous voltage is high, the capacitor Ct is charged faster and the pulse width is reduced. Conversely, when the instantaneous voltage is low, the pulse width increases.

図10は一次巻線Npを流れる電流波形を示し、三角形の斜線部分の角度は電圧上昇に伴い大きくなるが、Tonを電圧上昇に合わせて短くすることで、ピーク電流Ipを一定値にし、出力電圧は周波数制御により安定化されている。   FIG. 10 shows a current waveform flowing through the primary winding Np, and the angle of the hatched portion of the triangle increases as the voltage rises. By shortening Ton as the voltage rises, the peak current Ip is set to a constant value and output. The voltage is stabilized by frequency control.

補助電源回路102は、IC電源回路104に直流電源を供給し、かつ、直流電源出力回路106の電圧をモニターする。補助電源回路102の出力にPUTのゲートを制御させるための分圧抵抗を接続し、PUT発振回路103は補助電源回路102の出力電圧を一定にするように発振周波数を変えて、スイッチング制御回路105の1SHOTにトリガパルスを出力する。   The auxiliary power circuit 102 supplies DC power to the IC power circuit 104 and monitors the voltage of the DC power output circuit 106. A voltage dividing resistor for controlling the gate of the PUT is connected to the output of the auxiliary power supply circuit 102, and the PUT oscillation circuit 103 changes the oscillation frequency so as to make the output voltage of the auxiliary power supply circuit 102 constant, and the switching control circuit 105 A trigger pulse is output at 1 SHOT.

特開2000−32748号公報JP 2000-32748 A

しかしながら、従来の直流電源装置では、スイッチング電流のピーク電流Ipを平均化しているため、入力電流波形は台形波状の電流波形となり、力率は0.6程度となる。また、入力電流波形は台形波に近似しているため、電流の流れ始めと終わりは急峻な傾きとなる。このため、トランスから異音が発生したり、あるいは、力率が0.6程度になるため、ACアダプタ、照明器具などの高調波規制対応が必要な電源を構成できないという問題があった。   However, in the conventional DC power supply device, since the peak current Ip of the switching current is averaged, the input current waveform is a trapezoidal current waveform, and the power factor is about 0.6. Also, since the input current waveform approximates a trapezoidal wave, the current flow starts and ends with a steep slope. For this reason, abnormal noise is generated from the transformer, or the power factor becomes about 0.6, so that there is a problem that it is not possible to configure a power source that requires harmonic regulation such as an AC adapter and a lighting fixture.

本発明の課題は、力率を改善し、高調波規制対応が必要な電源を構成することができる力率改善回路及びこれを用いたLED照明器具を提供することにある。   The subject of this invention is providing the power factor improvement circuit which can improve the power factor, and can comprise the power supply which needs a harmonic regulation response | compatibility, and an LED lighting fixture using the same.

上記課題を解決するために、本発明の力率改善回路は、交流電源と、前記交流電源の交流電圧を整流する整流回路と、一次巻線と二次巻線と三次巻線とを有するトランスと、前記整流回路の出力両端に接続され、前記トランスの一次巻線とスイッチング素子とかなる直列回路と、前記トランスの二次巻線に発生する電圧を整流平滑して得られた直流電圧を負荷に供給する整流平滑回路と、前記整流平滑回路の直流電圧に基づき一定幅のオンパルス幅信号を生成し、このオンパルス幅信号により前記スイッチング素子をオン/オフさせる制御回路とを備えることを特徴とする。   In order to solve the above problems, a power factor correction circuit according to the present invention includes an AC power source, a rectifier circuit that rectifies an AC voltage of the AC power source, a primary winding, a secondary winding, and a tertiary winding. A series circuit composed of a primary winding and a switching element connected to both ends of the output of the rectifier circuit, and a DC voltage obtained by rectifying and smoothing a voltage generated in the secondary winding of the transformer. And a control circuit for generating an on-pulse width signal having a constant width based on a DC voltage of the rectifying and smoothing circuit and turning on / off the switching element by the on-pulse width signal. .

本発明のLED照明器具は、交流電源と、前記交流電源の交流電圧を整流する整流回路と、一次巻線と二次巻線と三次巻線とを有するトランスと、前記整流回路の出力両端に接続され、前記トランスの一次巻線とスイッチング素子とかなる直列回路と、前記トランスの二次巻線に発生する電圧を整流平滑して得られた直流電圧を負荷に供給する整流平滑回路と、前記負荷に流れる出力電流を検出する電流検出回路と、前記整流平滑回路の直流電圧に基づき一定幅のオンパルス幅信号を生成し、このオンパルス幅信号により前記スイッチング素子をオン/オフさせるとともに前記電流検出回路で検出された出力電流を一定値に制御する制御回路と、前記整流平滑回路の直流電圧を検出する電圧検出回路と、前記電圧検出回路及び前記制御回路に接続され、位相補償用抵抗と位相補償用コンデンサとを有する時定数回路とを有し、前記位相補償用抵抗と前記位相補償用コンデンサとの時定数が、前記交流電源の交流電圧の整流波形の周期の1/2倍以上の応答時間となるように設定され、前記制御回路は、前記トランスの三次巻線に発生する電圧に基づきゼロ電圧を検出するゼロ電圧検出回路と、前記ゼロ電圧検出回路で検出されたゼロ電圧により前記スイッチング素子をターンオンさせるための前記オンパルス幅信号を生成するパルス幅制御回路とを備えることを特徴とする。   The LED lighting apparatus of the present invention includes an AC power source, a rectifier circuit that rectifies an AC voltage of the AC power source, a transformer having a primary winding, a secondary winding, and a tertiary winding, and both ends of the output of the rectifier circuit. A series circuit including a primary winding and a switching element connected to each other, a rectifying / smoothing circuit for supplying a DC voltage obtained by rectifying and smoothing a voltage generated in the secondary winding of the transformer to a load, A current detection circuit for detecting an output current flowing through a load, and generating an on-pulse width signal having a constant width based on a DC voltage of the rectifying and smoothing circuit, and turning on / off the switching element by the on-pulse width signal and the current detection circuit A control circuit that controls the output current detected at a constant value; a voltage detection circuit that detects a DC voltage of the rectifying and smoothing circuit; and the voltage detection circuit and the control circuit. And a time constant circuit having a phase compensation resistor and a phase compensation capacitor, and the time constant of the phase compensation resistor and the phase compensation capacitor is a rectified waveform of the AC voltage of the AC power supply. The control circuit is set to have a response time of ½ times or more of the cycle, and the control circuit detects a zero voltage based on a voltage generated in the tertiary winding of the transformer, and the zero voltage detection circuit And a pulse width control circuit that generates the on-pulse width signal for turning on the switching element by the zero voltage detected in step (1).

本発明の力率改善回路によれば、全波整流波形の略1周期の入力電圧波形に関係なく、トランスの二次側からの直流電圧であるフィードバック信号に基づき生成された一定幅のオンパルス幅信号でスイッチング素子をオン/オフさせることにより、トランスの二次側の出力に電力を供給する。オンパルス幅信号は、オンパルス幅が一定であるので、入力電圧に応じて入力電流が流れる。従って、力率が大幅に改善される。   According to the power factor correction circuit of the present invention, a constant width on-pulse width generated based on a feedback signal which is a DC voltage from the secondary side of the transformer, regardless of the input voltage waveform of substantially one cycle of the full-wave rectified waveform. Power is supplied to the output on the secondary side of the transformer by turning on / off the switching element with a signal. Since the on-pulse width signal has a constant on-pulse width, an input current flows according to the input voltage. Therefore, the power factor is greatly improved.

また、本発明のLED照明器具によれば、力率が大幅に改善されるとともに、二次側のダイオードのリカバリ電流をなくしてノイズの発生を抑制でき、しかも出力電流を一定値に制御できるので、LEDを均一に点灯させることができる。   Further, according to the LED lighting apparatus of the present invention, the power factor is greatly improved, the recovery current of the secondary diode can be eliminated, noise can be suppressed, and the output current can be controlled to a constant value. The LEDs can be turned on uniformly.

本発明の実施例1に係る力率改善回路の構成を示すブロック図である。It is a block diagram which shows the structure of the power factor improvement circuit which concerns on Example 1 of this invention. 本発明の実施例1に係る力率改善回路内のゼロ電圧検出回路及びパルス幅制御回路の詳細を示す回路図である。It is a circuit diagram which shows the detail of the zero voltage detection circuit and pulse width control circuit in the power factor improvement circuit based on Example 1 of this invention. 実施例1のパルス幅制御回路の動作波形を示す図である。It is a figure which shows the operation | movement waveform of the pulse width control circuit of Example 1. FIG. 実施例1の力率改善回路においてAC100V入力時で50%負荷及び100%負荷時のスイッチング電流波形を示す図である。It is a figure which shows the switching current waveform at the time of 50% load and 100% load at the time of AC100V input in the power factor improvement circuit of Example 1. FIG. 実施例1の力率改善回路においてAC100V入力時の入力電圧と入力電流との波形を示す図である。It is a figure which shows the waveform of the input voltage and input current at the time of AC100V input in the power factor improvement circuit of Example 1. FIG. 実施例1の力率改善回路において各電圧に対する力率と効率とを示す図である。It is a figure which shows the power factor and efficiency with respect to each voltage in the power factor improvement circuit of Example 1. FIG. 本発明の実施例2に係る力率改善回路の構成を示すブロック図である。It is a block diagram which shows the structure of the power factor improvement circuit which concerns on Example 2 of this invention. 本発明の実施例3に係る力率改善回路の構成を示すブロック図である。It is a block diagram which shows the structure of the power factor improvement circuit which concerns on Example 3 of this invention. 従来の力率改善回路を備えた直流電源装置の構成を示すブロック図である。It is a block diagram which shows the structure of the direct-current power supply device provided with the conventional power factor improvement circuit. 図9に示す従来の直流電源装置の制御によるスイッチング時の電流波形図であるFIG. 10 is a current waveform diagram during switching by control of the conventional DC power supply device shown in FIG. 9.

以下、本発明の実施の形態の力率改善回路のいくつかを図面を参照しながら詳細に説明する。   Hereinafter, some of the power factor correction circuits according to the embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の実施例1に係る力率改善回路の構成を示すブロック図である。図1において、交流電源ACの両端にはコンデンサCoとリアクトルL1とが接続され、リアクトルL1の出力には交流電源ACの交流電圧を整流する全波整流回路RC1の入力端が接続されている。   FIG. 1 is a block diagram showing a configuration of a power factor correction circuit according to Embodiment 1 of the present invention. In FIG. 1, a capacitor Co and a reactor L1 are connected to both ends of the AC power supply AC, and an input terminal of a full-wave rectifier circuit RC1 that rectifies the AC voltage of the AC power supply AC is connected to the output of the reactor L1.

全波整流回路RC1の出力端には、トランスT1の一次巻線P1とMOSFETからなるスイッチング素子Q1との直列回路が接続されている。   A series circuit of a primary winding P1 of the transformer T1 and a switching element Q1 made of a MOSFET is connected to the output terminal of the full-wave rectifier circuit RC1.

トランスT1は、フライバックトランスからなり、一次巻線P1と二次巻線S1と三次巻線P2とを有している。   The transformer T1 is formed of a flyback transformer, and includes a primary winding P1, a secondary winding S1, and a tertiary winding P2.

トランスT1の二次巻線S1の両端には、ダイオードD1と平滑コンデンサC1との直列回路が接続されている。ダイオードD1と平滑コンデンサC1とは、整流平滑回路を構成し、トランスT1の二次巻線S1に発生する電圧を整流平滑して得られた直流電圧を図示しない負荷に供給する。   A series circuit of a diode D1 and a smoothing capacitor C1 is connected to both ends of the secondary winding S1 of the transformer T1. The diode D1 and the smoothing capacitor C1 constitute a rectifying and smoothing circuit, and supply a DC voltage obtained by rectifying and smoothing the voltage generated in the secondary winding S1 of the transformer T1 to a load (not shown).

平滑コンデンサC1の両端には、抵抗R2と抵抗R3との直列回路が接続され、抵抗R2と抵抗R3との接続点には誤差増幅器OP1の反転入力端子が接続されている。オペアンプOP1の非反転入力端子には基準電源Ref1が接続されている。誤差増幅器OP1の出力端子と平滑コンデンサC1の一端との間には抵抗R1とフォトカプラPC1のフォトダイオードとダイオードD2との直列回路が接続されている。誤差増幅器OP1は、平滑コンデンサC1の出力電圧を抵抗R2と抵抗R3とで分圧した分圧電圧と基準電源Ref1の電圧との差電圧を増幅して出力する。この差電圧に応じてフォトカプラPC1に電流が流れて、パルス幅制御回路12によりパルスのオン幅が制御される。   A series circuit of a resistor R2 and a resistor R3 is connected to both ends of the smoothing capacitor C1, and an inverting input terminal of the error amplifier OP1 is connected to a connection point between the resistor R2 and the resistor R3. A reference power supply Ref1 is connected to the non-inverting input terminal of the operational amplifier OP1. A series circuit of a resistor R1, a photodiode of the photocoupler PC1, and a diode D2 is connected between the output terminal of the error amplifier OP1 and one end of the smoothing capacitor C1. The error amplifier OP1 amplifies and outputs the difference voltage between the divided voltage obtained by dividing the output voltage of the smoothing capacitor C1 by the resistors R2 and R3 and the voltage of the reference power source Ref1. A current flows through the photocoupler PC1 according to this differential voltage, and the pulse width control circuit 12 controls the on width of the pulse.

誤差増幅器OP1、基準電源Ref1、抵抗R2、抵抗R3は、出力電圧検出回路を構成する。   The error amplifier OP1, the reference power supply Ref1, the resistor R2, and the resistor R3 constitute an output voltage detection circuit.

制御回路10は、フォトカプラPC1からの電圧(フィードバック信号)に基づき一定幅のオンパルス幅信号を生成し、このオンパルス幅信号によりスイッチング素子Q1をオン/オフさせる。   The control circuit 10 generates an on-pulse width signal having a constant width based on the voltage (feedback signal) from the photocoupler PC1, and turns on / off the switching element Q1 based on the on-pulse width signal.

制御回路10は、トランスT1の三次巻線P2に発生する電圧に基づきゼロ電圧を検出するゼロ電圧検出回路11と、ゼロ電圧検出回路11で検出されたゼロ電圧によりスイッチング素子Q1をターンオンさせるためのオンパルス幅信号を生成するパルス幅制御回路12と、パルス幅制御回路12からのオンパルス幅信号に基づきスイッチング素子Q1をオン/オフさせるための駆動信号を生成するドライブ制御回路13とを備えている。   The control circuit 10 detects a zero voltage based on the voltage generated in the tertiary winding P2 of the transformer T1, and turns on the switching element Q1 using the zero voltage detected by the zero voltage detection circuit 11. A pulse width control circuit 12 that generates an on-pulse width signal and a drive control circuit 13 that generates a drive signal for turning on / off the switching element Q1 based on the on-pulse width signal from the pulse width control circuit 12 are provided.

図2は本発明の実施例1に係る力率改善回路内のゼロ電圧検出回路及びパルス幅制御回路の詳細を示す回路図である。図2において、ゼロ電圧検出回路11は、コンパレータCP1、基準電源Vro、ワンショット回路111を有している。コンパレータCP1は、基準電源Vroの電圧とトランスT1の三次巻線P2に発生した電圧とを比較し、トランスT1の三次巻線P2に発生した電圧がゼロ電圧となったときにHレベルを出力する。   FIG. 2 is a circuit diagram showing details of a zero voltage detection circuit and a pulse width control circuit in the power factor correction circuit according to Embodiment 1 of the present invention. In FIG. 2, the zero voltage detection circuit 11 includes a comparator CP1, a reference power supply Vro, and a one-shot circuit 111. The comparator CP1 compares the voltage of the reference power source Vro with the voltage generated in the tertiary winding P2 of the transformer T1, and outputs an H level when the voltage generated in the tertiary winding P2 of the transformer T1 becomes zero voltage. .

ワンショット回路111は、コンパレータCP1からHレベルを入力したときに負のワンショットパルスを生成し、この負のワンショットパルスをパルス幅制御回路12内のコンデンサCsに出力する。   The one-shot circuit 111 generates a negative one-shot pulse when the H level is input from the comparator CP1, and outputs this negative one-shot pulse to the capacitor Cs in the pulse width control circuit 12.

パルス幅制御回路12は、電流源I1、電流源I2、コンパレータCP2、コンデンサCsで構成されている。コンパレータCP2の非反転入力端子とグランドとの間には、フォトカプラPC1のフォトトランジスタと位相補償用抵抗Rfと位相補償用コンデンサCfとの並列回路が接続され、コンパレータCP2の非反転入力端子には電流源I2が接続されている。   The pulse width control circuit 12 includes a current source I1, a current source I2, a comparator CP2, and a capacitor Cs. A parallel circuit of a phototransistor of the photocoupler PC1, a phase compensation resistor Rf, and a phase compensation capacitor Cf is connected between the non-inverting input terminal of the comparator CP2 and the ground. The non-inverting input terminal of the comparator CP2 is connected to the non-inverting input terminal of the comparator CP2. A current source I2 is connected.

コンパレータCP2の反転入力端子には電流源I1とコンデンサCsの一端とが接続され、コンデンサCsの他端はグランドに接続されている。コンデンサCsの一端はワンショット回路111の出力に接続されている。コンパレータCP2の出力はドライブ制御回路13に接続されている。   The inverting input terminal of the comparator CP2 is connected to the current source I1 and one end of the capacitor Cs, and the other end of the capacitor Cs is connected to the ground. One end of the capacitor Cs is connected to the output of the one-shot circuit 111. The output of the comparator CP2 is connected to the drive control circuit 13.

なお、位相補償用抵抗Rfと位相補償用コンデンサCfとは、時定数回路を構成し、位相補償用抵抗Rfと位相補償用コンデンサCfとの時定数が、交流電源ACの交流電圧の整流波形の周期の1/2倍以上の応答時間となるように設定されている。即ち、フォトカプラPC1のコレクタ−エミッタ間電圧が、交流電圧の全波整流波形の周期以内に大きく変動しないように(即ち、略一定となるように)前記時定数を選定する。   The phase compensation resistor Rf and the phase compensation capacitor Cf constitute a time constant circuit, and the time constant of the phase compensation resistor Rf and the phase compensation capacitor Cf represents the rectified waveform of the AC voltage of the AC power supply AC. The response time is set to be 1/2 or more times the period. That is, the time constant is selected so that the collector-emitter voltage of the photocoupler PC1 does not fluctuate significantly within the period of the full-wave rectification waveform of the AC voltage (that is, becomes substantially constant).

次に、制御回路10の動作を説明する。まず、パルス幅制御回路12のコンデンサCsに定電流源I1から所定の電流が流れ、コンデンサCsが充電される。また、位相補償用コンデンサCfと位相補償用抵抗RfとフォトカプラPC1との並列回路に定電流源I2から所定の電流が流れ、位相補償用コンデンサCfが充電される。   Next, the operation of the control circuit 10 will be described. First, a predetermined current flows from the constant current source I1 to the capacitor Cs of the pulse width control circuit 12, and the capacitor Cs is charged. Further, a predetermined current flows from the constant current source I2 to the parallel circuit of the phase compensation capacitor Cf, the phase compensation resistor Rf, and the photocoupler PC1, and the phase compensation capacitor Cf is charged.

コンデンサCsは、定電流源I1に流れる電流により充電されて、コンデンサCsの電圧Vcsは、時間に比例して直線的に上昇する。   The capacitor Cs is charged by the current flowing through the constant current source I1, and the voltage Vcs of the capacitor Cs rises linearly in proportion to time.

コンパレータCP2は、図3(a)に示すように、コンデンサCsの電圧Vcsと位相補償用コンデンサCfの電圧Vcf(フォトカプラPC1のコレクタ−エミッタ間電圧)とを比較し、位相補償用コンデンサCfの電圧VcfがコンデンサCsの電圧Vcs以下の期間に、オンパルス幅信号(CP2出力)を生成し、ドライブ制御回路13にHレベルを出力する。   As shown in FIG. 3A, the comparator CP2 compares the voltage Vcs of the capacitor Cs with the voltage Vcf of the phase compensation capacitor Cf (the collector-emitter voltage of the photocoupler PC1) and compares the voltage Vcs of the phase compensation capacitor Cf. During the period when the voltage Vcf is equal to or lower than the voltage Vcs of the capacitor Cs, an on-pulse width signal (CP2 output) is generated and the H level is output to the drive control circuit 13.

なお、フォトカプラPC1のコレクタ−エミッタ間電圧は、トランスT1の二次側からのフィードバック信号により変化し、図1に示す例では、トランスT1の二次側の出力電圧が上昇すると、フォトカプラPC1のコレクタ−エミッタ電圧、即ちコンデンサCfの両端電圧Vcfが図3(a)に示す値から図3(b)に示す値に上昇する。このため、オンパルス幅信号(CP2出力)のオンパルス幅が広がる。   Note that the collector-emitter voltage of the photocoupler PC1 changes according to the feedback signal from the secondary side of the transformer T1, and in the example shown in FIG. 1, when the output voltage on the secondary side of the transformer T1 rises, the photocoupler PC1. Collector-emitter voltage, that is, the voltage Vcf across the capacitor Cf rises from the value shown in FIG. 3A to the value shown in FIG. For this reason, the on-pulse width of the on-pulse width signal (CP2 output) increases.

コンデンサCsの電圧Vcsが上昇して、フォトカプラPC1のコレクタ−エミッタ電圧を超えると、コンパレータCP2の出力はLレベルとなる。このため、ドライブ制御回路13の出力もLレベルとなり、スイッチング素子Q1はオフする。   When the voltage Vcs of the capacitor Cs rises and exceeds the collector-emitter voltage of the photocoupler PC1, the output of the comparator CP2 becomes L level. For this reason, the output of the drive control circuit 13 also becomes L level, and the switching element Q1 is turned off.

このとき、トランスT1の一次巻線P1に蓄えられるエネルギーは、二次巻線S1及びダイオードD1を介して平滑コンデンサC1及び負荷に出力される。トランスT1の一次巻線P1に蓄えられたエネルギーの放出が完了すると、トランスT1の巻線電圧は低下し、リンキングを開始する。このため、このため、電圧の極性が反転してゼロ電圧に変化する。   At this time, the energy stored in the primary winding P1 of the transformer T1 is output to the smoothing capacitor C1 and the load via the secondary winding S1 and the diode D1. When the release of the energy stored in the primary winding P1 of the transformer T1 is completed, the winding voltage of the transformer T1 decreases and starts linking. For this reason, the polarity of the voltage is inverted to change to zero voltage.

ゼロ電圧検出回路11のコンパレータCP1は、トランスT1の三次巻線P2の電圧を基準電源の電圧Vro(ゼロ電圧より僅かに大きい電圧)と比較し、三次巻線P2の電圧がゼロ電圧になつた時にワンショット回路111にHレベルを出力する。ワンショット回路111は、入力されたHレベルに基づき1パルスのLレベルをコンデンサCsの一端に出力する。このため、コンデンサCsの電荷は放電するので、パルス幅制御回路12は、Hレベルのオンパルス幅信号をドライブ制御回路13に出力する。   The comparator CP1 of the zero voltage detection circuit 11 compares the voltage of the tertiary winding P2 of the transformer T1 with the voltage Vro of the reference power supply (a voltage slightly higher than the zero voltage), and the voltage of the tertiary winding P2 becomes zero voltage. Sometimes H level is output to the one-shot circuit 111. The one-shot circuit 111 outputs an L level of one pulse to one end of the capacitor Cs based on the input H level. For this reason, since the capacitor Cs is discharged, the pulse width control circuit 12 outputs an H-level on-pulse width signal to the drive control circuit 13.

ドライブ制御回路13は、オンパルス幅信号に基づきスイッチング素子Q1をオンさせる。   The drive control circuit 13 turns on the switching element Q1 based on the on-pulse width signal.

なお、フォトカプラPC1のコレクタ−エミッタ間電圧は、入力電圧の全波整流波形の周期以内に大きく変動しないように、位相補償用抵抗Rfと位相補償用コンデンサCfとの時定数が選定されている。具体的には、位相補償用抵抗Rfと位相補償用コンデンサCfとの時定数が入力電圧の全波整流波形の周期の1/2倍以上の応答時間に選定されている。このため、パルス信号のオンパルス幅が一定になる。   The time constant between the phase compensation resistor Rf and the phase compensation capacitor Cf is selected so that the collector-emitter voltage of the photocoupler PC1 does not fluctuate significantly within the period of the full-wave rectification waveform of the input voltage. . Specifically, the time constant of the phase compensation resistor Rf and the phase compensation capacitor Cf is selected to be a response time that is 1/2 times or more the period of the full-wave rectified waveform of the input voltage. For this reason, the on-pulse width of the pulse signal is constant.

即ち、全波整流波形の略1周期の入力電圧波形に関係なく、トランスT1の二次側からの直流電圧であるフィードバック信号に基づき生成された一定幅のオンパルス幅信号でスイッチング素子Q1をオン/オフさせることにより、トランスT1の二次側の出力に電力を供給する。オンパルス幅信号は、オンパルス幅が一定であるので、入力電圧に応じて入力電流が流れるので、力率が大幅に改善される。   That is, the switching element Q1 is turned on / off by a constant width on-pulse width signal generated based on a feedback signal that is a DC voltage from the secondary side of the transformer T1, regardless of the input voltage waveform of substantially one cycle of the full-wave rectified waveform. By turning it off, power is supplied to the output on the secondary side of the transformer T1. Since the on-pulse width signal has a constant on-pulse width, an input current flows according to the input voltage, so that the power factor is greatly improved.

図4(a)は交流電源の電圧が100Vで50%負荷時における交流入力電圧Vinと入力電流Idとを示し、図4(b)は交流電源の電圧が100Vで100%負荷時における交流入力電圧Vinと入力電流Idとを示している。図4(a)(b)からも、オンパルス幅が一定であるので、正弦波状の入力電圧Vinに応じて正弦波状のスイッチング電流からなる入力電流Idが流れており、力率が大幅に改善される。   4A shows the AC input voltage Vin and the input current Id when the voltage of the AC power supply is 100V and 50% load, and FIG. 4B shows the AC input when the voltage of the AC power supply is 100V and 100% load. The voltage Vin and the input current Id are shown. 4 (a) and 4 (b), since the on-pulse width is constant, the input current Id consisting of a sinusoidal switching current flows according to the sinusoidal input voltage Vin, and the power factor is greatly improved. The

図5に実施例1の力率改善回路においてAC100V入力時の入力電圧と入力電流との波形を示す。図6に実施例1の力率改善回路において各電圧に対する力率と効率とを示す。オンパルス幅の一定制御を行うことにより、図6に示すように、力率がAC100Vで0.99、AC240Vで0.935となり、0.9以上の力率を実現できる。   FIG. 5 shows waveforms of the input voltage and the input current when AC 100 V is input in the power factor correction circuit of the first embodiment. FIG. 6 shows the power factor and efficiency for each voltage in the power factor correction circuit of the first embodiment. By performing constant control of the on-pulse width, as shown in FIG. 6, the power factor becomes 0.99 at 100 VAC and 0.935 at 240 VAC, and a power factor of 0.9 or more can be realized.

また、ゼロ電圧検出回路11により三次巻線P2の電圧がゼロ電圧であることを検出して、スイッチング素子Q1をターンオンさせるので、二次側のダイオードD1のリカバリ電流をなくしてノイズの発生を抑制することができる。   In addition, since the zero voltage detection circuit 11 detects that the voltage of the tertiary winding P2 is zero and turns on the switching element Q1, the recovery current of the secondary diode D1 is eliminated and the generation of noise is suppressed. can do.

また、本願発明を、一般的な力率改善回路(PFC)とDC−DCコンバータとを組み合わせた電源と比較した場合、PFCと入力平滑コンデンサ(全波整流回路RC1の出力に接続される平滑コンデンサ)がなくなるので、部品を大幅に削減できる。   Further, when the present invention is compared with a power source combining a general power factor correction circuit (PFC) and a DC-DC converter, the PFC and the input smoothing capacitor (smoothing capacitor connected to the output of the full-wave rectifier circuit RC1). ) Is eliminated, so parts can be greatly reduced.

図7は本発明の実施例2に係る力率改善回路の構成を示すブロック図である。図7に示す実施例2の力率改善回路は、図1に示す実施例1の力率改善回路にさらに、出力定電流回路20、ダイオードD3を追加したものである。出力定電流回路20は、電流検出回路に対応し、抵抗R4、誤差増幅器OP3、基準電源Ref2を有する。コンデンサC1の両端には例えばLEDなどの負荷RLが接続されている。   FIG. 7 is a block diagram showing the configuration of the power factor correction circuit according to Embodiment 2 of the present invention. The power factor correction circuit of the second embodiment shown in FIG. 7 is obtained by adding an output constant current circuit 20 and a diode D3 to the power factor improvement circuit of the first embodiment shown in FIG. The output constant current circuit 20 corresponds to a current detection circuit, and includes a resistor R4, an error amplifier OP3, and a reference power supply Ref2. A load RL such as an LED is connected to both ends of the capacitor C1.

ダイオードD3は、フォトカプラPC1のフォトダイオードと誤差増幅器OP3の出力端子との間に接続されている。抵抗R4は、トランスT1の二次巻線S1の一端と負荷RLの一端との間に接続されている。   The diode D3 is connected between the photodiode of the photocoupler PC1 and the output terminal of the error amplifier OP3. The resistor R4 is connected between one end of the secondary winding S1 of the transformer T1 and one end of the load RL.

誤差増幅器OP3は、負荷RLを介して抵抗R4に流れる電流により生ずる電圧と基準電源Ref2の電圧との差電圧を増幅し、増幅された差電圧をダイオードD3及びフォトカプラPC1を介してパルス幅制御回路12に伝達する。   The error amplifier OP3 amplifies the difference voltage between the voltage generated by the current flowing through the resistor R4 through the load RL and the voltage of the reference power supply Ref2, and controls the pulse width control of the amplified difference voltage via the diode D3 and the photocoupler PC1. Is transmitted to the circuit 12.

パルス幅制御回路12は、比較出力に基づいてオンパルス幅を制御する。即ち、パルス幅制御回路12は、負荷RLを介して抵抗R4に流れる電流により生ずる電圧が基準電源Ref2の電圧となるようにオンパルス幅を制御する。つまり、オンパルス幅を制御することにより、出力電流を一定値にすることができる。   The pulse width control circuit 12 controls the on pulse width based on the comparison output. That is, the pulse width control circuit 12 controls the on pulse width so that the voltage generated by the current flowing through the resistor R4 via the load RL becomes the voltage of the reference power supply Ref2. That is, the output current can be made constant by controlling the on-pulse width.

なお、この力率改善回路は、負荷がLEDでこのLEDを点灯するLED照明器具に利用できる。この場合、出力電流を一定値に制御できるので、LEDを均一に点灯させることができる。   In addition, this power factor improvement circuit can be utilized for the LED lighting fixture which lights this LED by load being LED. In this case, since the output current can be controlled to a constant value, the LEDs can be lit uniformly.

図8は本発明の実施例3に係る力率改善回路の構成を示すブロック図である。図8に示す実施例3の力率改善回路は、1次側電圧検出回路30をトランスT1の一次側の三次巻線P2に接続し、トランスT1の二次側回路を簡略化したものである。   FIG. 8 is a block diagram showing the configuration of the power factor correction circuit according to Embodiment 3 of the present invention. The power factor correction circuit of the third embodiment shown in FIG. 8 is obtained by connecting the primary side voltage detection circuit 30 to the primary winding P2 of the transformer T1 and simplifying the secondary side circuit of the transformer T1. .

1次側電圧検出回路30は、以下のように構成される。トランスT1の三次巻線P2の両端にはダイオードD2とコンデンサC2との直列回路が接続されている。ダイオードD2とコンデンサC2との接続点には抵抗R2と抵抗R3との直列回路が接続されている。   The primary side voltage detection circuit 30 is configured as follows. A series circuit of a diode D2 and a capacitor C2 is connected to both ends of the tertiary winding P2 of the transformer T1. A series circuit of a resistor R2 and a resistor R3 is connected to a connection point between the diode D2 and the capacitor C2.

誤差増幅器OP1は、基準電源Ref1の電圧を、コンデンサC2の両端に発生した直流電圧を抵抗R2と抵抗R3とで分圧した電圧との差電圧を増幅し、増幅された差電圧をパルス幅制御回路12に出力する。パルス幅制御回路12は、オンパルス幅を制御することによりスイッチング素子Q1をオン/オフさせて出力電圧を一定値にすることができる。   The error amplifier OP1 amplifies the difference voltage between the voltage of the reference power source Ref1 and the voltage obtained by dividing the DC voltage generated at both ends of the capacitor C2 by the resistor R2 and the resistor R3, and controls the pulse width of the amplified difference voltage. Output to the circuit 12. The pulse width control circuit 12 can turn on / off the switching element Q1 by controlling the on-pulse width to make the output voltage constant.

なお、コンデンサC2、抵抗R2,R3による時定数は、入力電圧の全波整流波形の周期の1/2倍以上の応答時間に選定されている。   Note that the time constant of the capacitor C2 and the resistors R2 and R3 is selected to be a response time that is 1/2 times or more the period of the full-wave rectified waveform of the input voltage.

本発明は、LED照明器具又はACアダプタ又は充電器などの電源装置に適用可能である。   The present invention is applicable to power supply devices such as LED lighting fixtures, AC adapters, and chargers.

AC 交流電源
RC1 全波整流回路
10 制御回路
11 ゼロ電圧検出回路
12 パルス幅制御回路
13 ドライブ制御回路
20 出力定電流回路
30 1次側電圧検出回路
111 ワンショット回路
Q1 スイッチング素子
D1,D2,D3 ダイオード
C0,C1,C2,Cs コンデンサ
Cf 位相補償用コンデンサ
Rf 位相補償用抵抗
L1 リアクトル
T1 トランス
P1 一次巻線
S1 二次巻線
P2 三次巻線
OP1〜OP3 誤差増幅器
CP1.CP2 コンパレータ
I1,I2 定電流源
PC1 フォトカプラ
AC AC power supply RC1 Full wave rectifier circuit 10 Control circuit 11 Zero voltage detection circuit 12 Pulse width control circuit 13 Drive control circuit 20 Output constant current circuit 30 Primary side voltage detection circuit 111 One shot circuit Q1 Switching elements D1, D2, D3 Diodes C0, C1, C2, Cs Capacitor Cf Phase compensation capacitor Rf Phase compensation resistor L1 Reactor T1 Transformer P1 Primary winding S1 Secondary winding P2 Tertiary windings OP1 to OP3 Error amplifier CP1. CP2 Comparator I1, I2 Constant current source PC1 Photocoupler

Claims (4)

交流電源と、
前記交流電源の交流電圧を整流する整流回路と、
一次巻線と二次巻線と三次巻線とを有するトランスと、
前記整流回路の出力両端に接続され、前記トランスの一次巻線とスイッチング素子とかなる直列回路と、
前記トランスの二次巻線に発生する電圧を整流平滑して得られた直流電圧を負荷に供給する整流平滑回路と、
前記整流平滑回路の直流電圧に基づき一定幅のオンパルス幅信号を生成し、このオンパルス幅信号により前記スイッチング素子をオン/オフさせる制御回路と、
を備えることを特徴とする力率改善回路。
AC power supply,
A rectifier circuit for rectifying the AC voltage of the AC power source;
A transformer having a primary winding, a secondary winding and a tertiary winding;
A series circuit connected to both ends of the output of the rectifier circuit and including a primary winding and a switching element of the transformer;
A rectifying and smoothing circuit for supplying a DC voltage obtained by rectifying and smoothing a voltage generated in the secondary winding of the transformer to a load;
A control circuit for generating an on-pulse width signal having a constant width based on a DC voltage of the rectifying and smoothing circuit, and for turning on / off the switching element by the on-pulse width signal;
A power factor correction circuit comprising:
前記整流平滑回路の直流電圧を検出する電圧検出回路と、
前記電圧検出回路及び前記制御回路に接続され、位相補償用抵抗と位相補償用コンデンサとを有する時定数回路とを有し、
前記位相補償用抵抗と前記位相補償用コンデンサとの時定数が、前記交流電源の交流電圧の整流波形の周期の1/2倍以上の応答時間となるように設定されていることを特徴とする請求項1記載の力率改善回路。
A voltage detection circuit for detecting a DC voltage of the rectifying and smoothing circuit;
A time constant circuit connected to the voltage detection circuit and the control circuit and having a phase compensation resistor and a phase compensation capacitor;
The time constant between the phase compensation resistor and the phase compensation capacitor is set so that the response time is at least 1/2 times the period of the rectified waveform of the AC voltage of the AC power supply. The power factor correction circuit according to claim 1.
前記制御回路は、
前記トランスの三次巻線に発生する電圧に基づきゼロ電圧を検出するゼロ電圧検出回路と、
前記ゼロ電圧検出回路で検出されたゼロ電圧により前記スイッチング素子をターンオンさせるための前記オンパルス幅信号を生成するパルス幅制御回路と、
を備えることを特徴とする請求項2記載の力率改善回路。
The control circuit includes:
A zero voltage detection circuit for detecting a zero voltage based on a voltage generated in the tertiary winding of the transformer;
A pulse width control circuit for generating the on-pulse width signal for turning on the switching element by the zero voltage detected by the zero voltage detection circuit;
The power factor correction circuit according to claim 2, further comprising:
交流電源と、
前記交流電源の交流電圧を整流する整流回路と、
一次巻線と二次巻線と三次巻線とを有するトランスと、
前記整流回路の出力両端に接続され、前記トランスの一次巻線とスイッチング素子とかなる直列回路と、
前記トランスの二次巻線に発生する電圧を整流平滑して得られた直流電圧を負荷に供給する整流平滑回路と、
前記負荷に流れる出力電流を検出する電流検出回路と、
前記整流平滑回路の直流電圧に基づき一定幅のオンパルス幅信号を生成し、このオンパルス幅信号により前記スイッチング素子をオン/オフさせるとともに前記電流検出回路で検出された出力電流を一定値に制御する制御回路と、
前記整流平滑回路の直流電圧を検出する電圧検出回路と、
前記電圧検出回路及び前記制御回路に接続され、位相補償用抵抗と位相補償用コンデンサとを有する時定数回路とを有し、
前記位相補償用抵抗と前記位相補償用コンデンサとの時定数が、前記交流電源の交流電圧の整流波形の周期の1/2倍以上の応答時間となるように設定され、
前記制御回路は、
前記トランスの三次巻線に発生する電圧に基づきゼロ電圧を検出するゼロ電圧検出回路と、
前記ゼロ電圧検出回路で検出されたゼロ電圧により前記スイッチング素子をターンオンさせるための前記オンパルス幅信号を生成するパルス幅制御回路と、
を備えることを特徴とするLED照明器具。
AC power supply,
A rectifier circuit for rectifying the AC voltage of the AC power source;
A transformer having a primary winding, a secondary winding and a tertiary winding;
A series circuit connected to both ends of the output of the rectifier circuit and including a primary winding and a switching element of the transformer;
A rectifying and smoothing circuit for supplying a DC voltage obtained by rectifying and smoothing a voltage generated in the secondary winding of the transformer to a load;
A current detection circuit for detecting an output current flowing through the load;
A control for generating an on-pulse width signal having a constant width based on the DC voltage of the rectifying and smoothing circuit, turning on / off the switching element by the on-pulse width signal, and controlling the output current detected by the current detection circuit to a constant value. Circuit,
A voltage detection circuit for detecting a DC voltage of the rectifying and smoothing circuit;
A time constant circuit connected to the voltage detection circuit and the control circuit and having a phase compensation resistor and a phase compensation capacitor;
The time constant of the phase compensation resistor and the phase compensation capacitor is set to have a response time that is at least 1/2 times the period of the rectified waveform of the AC voltage of the AC power supply,
The control circuit includes:
A zero voltage detection circuit for detecting a zero voltage based on a voltage generated in the tertiary winding of the transformer;
A pulse width control circuit for generating the on-pulse width signal for turning on the switching element by the zero voltage detected by the zero voltage detection circuit;
An LED lighting apparatus comprising:
JP2009211685A 2009-09-14 2009-09-14 Power factor improving circuit and led luminaire using the same Pending JP2011062043A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009211685A JP2011062043A (en) 2009-09-14 2009-09-14 Power factor improving circuit and led luminaire using the same
KR1020100073801A KR101193451B1 (en) 2009-09-14 2010-07-30 Power factor improvement circuit and led lighting device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009211685A JP2011062043A (en) 2009-09-14 2009-09-14 Power factor improving circuit and led luminaire using the same

Publications (1)

Publication Number Publication Date
JP2011062043A true JP2011062043A (en) 2011-03-24

Family

ID=43935080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009211685A Pending JP2011062043A (en) 2009-09-14 2009-09-14 Power factor improving circuit and led luminaire using the same

Country Status (2)

Country Link
JP (1) JP2011062043A (en)
KR (1) KR101193451B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033888A (en) * 2011-03-30 2012-02-16 Sanken Electric Co Ltd Led driving device and led lighting device
CN102447405A (en) * 2011-12-29 2012-05-09 深圳市大族元亨光电股份有限公司 LED (light-emitting diode) lamp switch power supply circuit and control method
CN102740550A (en) * 2011-03-30 2012-10-17 三垦电气株式会社 Led driver and led illuminator having the same
JP2012216536A (en) * 2011-03-31 2012-11-08 Dongwoon Anatech Co Ltd Light driving apparatus
WO2013162299A1 (en) * 2012-04-26 2013-10-31 Park Chan Woong Switching-type power supply apparatus and control circuit capable of correcting power factor
JP2015115127A (en) * 2013-12-10 2015-06-22 岩崎電気株式会社 Led power supply device, and led illuminating device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130043023A (en) 2011-10-19 2013-04-29 삼성전자주식회사 Led driving apparatus, method for driving the led and display apparatus using the same
KR101393752B1 (en) * 2012-06-29 2014-05-12 엘지이노텍 주식회사 Power factor improvement circuit
KR101281431B1 (en) * 2012-10-02 2013-07-02 최창렬 Lighting control system for improvement of power factor
KR101641131B1 (en) * 2014-03-14 2016-07-21 한국광기술원 Multi-channel circuit for removing flicker
KR20180001942U (en) 2016-12-20 2018-06-28 주식회사 세라 Lighting equipment using LED
KR20180002389U (en) 2018-07-25 2018-08-06 주식회사 세라 Lighting equipment using LED

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265665A (en) * 1991-02-19 1992-09-21 Shindengen Electric Mfg Co Ltd Switching power supply
JP2009189184A (en) * 2008-02-07 2009-08-20 Toshiba Lighting & Technology Corp Power supply device and luminaire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265665A (en) * 1991-02-19 1992-09-21 Shindengen Electric Mfg Co Ltd Switching power supply
JP2009189184A (en) * 2008-02-07 2009-08-20 Toshiba Lighting & Technology Corp Power supply device and luminaire

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033888A (en) * 2011-03-30 2012-02-16 Sanken Electric Co Ltd Led driving device and led lighting device
WO2012132048A1 (en) * 2011-03-30 2012-10-04 サンケン電気株式会社 Led drive device and led illumination device
CN102740550A (en) * 2011-03-30 2012-10-17 三垦电气株式会社 Led driver and led illuminator having the same
JP2012216536A (en) * 2011-03-31 2012-11-08 Dongwoon Anatech Co Ltd Light driving apparatus
CN102447405A (en) * 2011-12-29 2012-05-09 深圳市大族元亨光电股份有限公司 LED (light-emitting diode) lamp switch power supply circuit and control method
WO2013162299A1 (en) * 2012-04-26 2013-10-31 Park Chan Woong Switching-type power supply apparatus and control circuit capable of correcting power factor
JP2015115127A (en) * 2013-12-10 2015-06-22 岩崎電気株式会社 Led power supply device, and led illuminating device

Also Published As

Publication number Publication date
KR20110029069A (en) 2011-03-22
KR101193451B1 (en) 2012-10-25

Similar Documents

Publication Publication Date Title
JP2011062043A (en) Power factor improving circuit and led luminaire using the same
US8953348B2 (en) Switching power supply circuit and power factor controller
US9866108B2 (en) PFC shutdown circuit for light load
US8787039B2 (en) Hybrid adaptive power factor correction schemes for switching power converters
KR100758127B1 (en) Power supply unit
JP6136173B2 (en) DC power supply
JP2010226807A (en) Dc power supply apparatus
US20190334431A1 (en) AC-DC Converter Circuit Arrangement and Method for Operating a Respective AC-DC Converter Circuit Arrangement
KR101183493B1 (en) Dc power supply apparatus
JP2014099948A (en) Switching power supply device
JP2010068688A (en) Switching power supply unit
JP6108750B2 (en) Lighting device and lighting apparatus
JP2012070556A (en) Dc power supply device
JP2012143134A (en) Switching power supply device
JP2011083049A (en) Voltage converter
JP5222587B2 (en) Power factor correction circuit
JP2013116003A (en) Lighting device
JP2012130143A (en) Switching power unit
CN110754032B (en) AC-DC conversion
JP5440979B2 (en) AC-DC converter
JP5660359B2 (en) Power factor correction circuit
JP5577933B2 (en) converter
JP5381027B2 (en) DC-DC converter
JP2004072866A (en) Power supply device
JP2013110776A (en) Semiconductor integrated circuit device and power conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401