JP2011058374A - Method for detecting collection distribution of particulate matter and device therefor - Google Patents

Method for detecting collection distribution of particulate matter and device therefor Download PDF

Info

Publication number
JP2011058374A
JP2011058374A JP2009205944A JP2009205944A JP2011058374A JP 2011058374 A JP2011058374 A JP 2011058374A JP 2009205944 A JP2009205944 A JP 2009205944A JP 2009205944 A JP2009205944 A JP 2009205944A JP 2011058374 A JP2011058374 A JP 2011058374A
Authority
JP
Japan
Prior art keywords
electromagnetic waves
electromagnetic wave
intensity
transmittance
particulate matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009205944A
Other languages
Japanese (ja)
Other versions
JP5337640B2 (en
Inventor
Shigeki Omichi
重樹 大道
Seiji Ogawara
誠治 大河原
Akimichi Kawase
晃道 川瀬
Takayuki Shibuya
孝幸 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2009205944A priority Critical patent/JP5337640B2/en
Publication of JP2011058374A publication Critical patent/JP2011058374A/en
Application granted granted Critical
Publication of JP5337640B2 publication Critical patent/JP5337640B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately detect the collection distribution of particulate matter for absorbing electromagnetic waves such as PM. <P>SOLUTION: Multiple kinds of electromagnetic waves of different frequencies with their transmittances in passing through a filter different to each other are radiated at two or more radiation angles for detecting the intensities of the electromagnetic waves having passed through the filter. Coefficients α, β are set for the multiple kind of electromagnetic waves each for the two or more radiation angles so that the transmittances of the electromagnetic waves having passed through the filter before collection of the PM are the same between the two or more radiation angles. The intensity of an electromagnetic wave with a higher filter transmittance before collection of the PM is selected out of the intensities of the detected multiple electromagnetic waves. The PM collection amount is calculated each for the two or more radiation angles by multiplying the difference between the intensity of the selected electromagnetic wave and the intensities of the electromagnetic waves having passed through the filter before collection of the PM by the coefficients α, β. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、粒子状物質の捕集分布検出方法及びその装置、並びにこれを用いた排ガス浄化装置に関するものであり、特にディーゼルエンジンの排気系に配置されたフィルタのPM堆積分布を検出する場合などに用いられる。   The present invention relates to a particulate matter collection distribution detection method and apparatus, and an exhaust gas purification apparatus using the same, and particularly to detect PM deposition distribution of a filter disposed in an exhaust system of a diesel engine. Used for.

内燃機関たとえばディーゼルエンジンの排気系には、PM(主として炭素微粒子からなるスート、高分子量炭化水素微粒子、サルフェートなどの硫黄系微粒子など)を捕集するフィルタなどの捕集装置が装着されている。捕集装置に捕集されたPM量を検出する方法としては、従来、特許文献1に開示された方法がある。この方法は、PMなどの電磁波を吸収する粒子状物質の捕集分布を、外部から数10GHz〜数THzの電磁波を照射し、捕集装置を透過した電磁波の強度を検出し、予め決められた電磁波強度と捕集量との関係式に強度を代入して捕集分布を検出する方法である。この方法は、非破壊でPM捕集分布を検出できるため、PM捕集分布検出に飛躍的な効果をもたらしている。   An exhaust system of an internal combustion engine such as a diesel engine is equipped with a collecting device such as a filter that collects PM (soot mainly composed of carbon fine particles, high-molecular-weight hydrocarbon fine particles, sulfur-based fine particles such as sulfate). As a method for detecting the amount of PM collected by the collection device, there is a method disclosed in Patent Document 1 conventionally. In this method, the collection distribution of particulate matter that absorbs electromagnetic waves such as PM is irradiated with electromagnetic waves of several tens of GHz to several THz from the outside, and the intensity of the electromagnetic waves transmitted through the collecting device is detected and determined in advance. In this method, the collection distribution is detected by substituting the intensity into the relational expression between the electromagnetic wave intensity and the collection amount. Since this method can detect the PM collection distribution in a non-destructive manner, it has a dramatic effect on the PM collection distribution detection.

特開2009−57948号公報JP 2009-57948 A

ところで、上記特許文献1の非破壊方法を用いて、CT(コンピュータ断層撮影)画像を得るために、捕集装置の全周(360°)方向からのデータ信号を取得しなければならないという要望がある。   By the way, in order to obtain a CT (computer tomography) image using the non-destructive method of the above-mentioned Patent Document 1, there is a demand that a data signal from the entire circumference (360 °) of the collection device must be acquired. is there.

上記特許文献1で開示された方法は、数10GHz〜数THzの電磁波を検査対象物に照射している。しかしながら、DPFの構造によっては、周波数を80GHz以上とすると、捕集装置の壁構造と電磁波の照射方向との角度によって電磁波は屈折や反射による干渉現象で、受信信号強度が増減されてしまう。このため、CTとして必要な全周方向から充分に強いデータ信号を得ることが困難である。   The method disclosed in Patent Document 1 irradiates an inspection object with an electromagnetic wave of several tens GHz to several THz. However, depending on the structure of the DPF, if the frequency is 80 GHz or more, the received signal strength is increased or decreased due to an interference phenomenon caused by refraction or reflection of the electromagnetic wave depending on the angle between the wall structure of the collection device and the irradiation direction of the electromagnetic wave. For this reason, it is difficult to obtain a sufficiently strong data signal from the entire circumference necessary for CT.

照射する電磁波の周波数を80GHz未満とすることが発明者らの実験によって可能であることを確認している。しかし、全周方向から充分な強さのデータ信号を得るためには、DPFの種類、構造によっては、電磁波の空間分解能を理論上4mm以下にできない。このため、捕集装置に堆積した微粒子状物質の捕集分布の空間分解能力に上限が生じる。   It has been confirmed by the inventors' experiments that the frequency of the electromagnetic wave to be irradiated can be less than 80 GHz. However, in order to obtain a sufficiently strong data signal from the entire circumference, the spatial resolution of electromagnetic waves cannot theoretically be 4 mm or less depending on the type and structure of the DPF. For this reason, an upper limit arises in the space resolution capability of the collection distribution of the particulate matter deposited on the collection device.

本発明はかかる事情に鑑みてなされたものであり、PMなどの電磁波を吸収する粒子状物質の捕集分布を、精度良く検出することを課題とする。   This invention is made | formed in view of this situation, and makes it a subject to detect the collection distribution of the particulate matter which absorbs electromagnetic waves, such as PM, with sufficient precision.

発明者は、数10GHz〜数THzの電磁波を、捕集装置に照射する実験を行った。捕集装置の壁構造は、電磁波の照射角度によって、電磁波を屈折・反射させる向き・量が異なるため電磁波の透過率が相違する。この壁構造による屈折・反射特性は、照射する電磁波の周波数により変化することを見出した。   The inventor conducted an experiment of irradiating the collection device with electromagnetic waves of several tens GHz to several THz. Since the wall structure of the collecting device differs in the direction and amount of refracting / reflecting the electromagnetic wave depending on the irradiation angle of the electromagnetic wave, the transmittance of the electromagnetic wave is different. It has been found that the refraction and reflection characteristics of this wall structure change depending on the frequency of the electromagnetic wave to be irradiated.

そこで、複数の電磁波の周波数を適宜選択することにより、2以上の照射角度毎の電磁波の透過率の大小を互いに補完できることに着目した。   Therefore, attention was paid to the fact that the magnitude of the transmittance of the electromagnetic wave for each of two or more irradiation angles can be complemented by appropriately selecting the frequency of the plurality of electromagnetic waves.

(1)本発明の粒子状物質の捕集分布検出方法は、粒子状物質が捕集された捕集装置に対して外部から電磁波を照射することにより、捕集された該粒子状物質の該捕集装置内の捕集分布を検出する方法において、
周波数が異なり且つ前記捕集装置に照射したときの透過率が互いに異なる複数の電磁波を、前記捕集装置に対して2以上の照射角度で照射し、該捕集装置を透過した該電磁波の強度を検出する検出工程と、
前記2以上の照射角度に対して前記粒子状物質を捕集する前の捕集装置を透過した電磁波の透過率が、該2以上の照射角度間で等しくなるように、該2以上の照射角度毎に前記複数の電磁波にそれぞれ係数を設定する設定工程と、
前記複数の電磁波のうちの少なくとも一つの電磁波の前記透過率が前記複数の電磁波のうちの他の電磁波の前記透過率よりも小さくなる角度領域で検出された前記電磁波の強度を、該他の電磁波の該角度領域で検出された前記電磁波の強度で補完する補完工程と、
前記2以上の照射角度毎に、前記補完工程で補完された前記電磁波の強度と、前記粒子状物質を捕集する前の捕集装置を透過した電磁波の強度との差に、前記設定工程で設定された係数を掛けることにより、前記2以上の照射角度毎の前記粒子状物質の捕集量を演算する演算工程と、
を行うことを特徴とする(請求項1)。
(1) The method for detecting the collection and distribution of particulate matter according to the present invention is a method of irradiating an electromagnetic wave from the outside to a collection device in which the particulate matter is collected. In the method of detecting the collection distribution in the collection device,
Intensities of the electromagnetic waves transmitted through the collection device by irradiating the collection device with a plurality of electromagnetic waves having different frequencies and different transmittances when irradiated to the collection device. A detection step for detecting
The two or more irradiation angles so that the transmittance of the electromagnetic wave transmitted through the collection device before collecting the particulate matter with respect to the two or more irradiation angles is equal between the two or more irradiation angles. A setting step for setting a coefficient for each of the plurality of electromagnetic waves,
The intensity of the electromagnetic wave detected in an angular region in which the transmittance of at least one electromagnetic wave of the plurality of electromagnetic waves is smaller than the transmittance of the other electromagnetic waves of the plurality of electromagnetic waves, A complementing step of complementing with the intensity of the electromagnetic wave detected in the angular region of
For each of the two or more irradiation angles, the difference between the intensity of the electromagnetic wave supplemented in the complementing process and the intensity of the electromagnetic wave transmitted through the collection device before collecting the particulate matter is determined in the setting process. A calculation step of calculating the trapped amount of the particulate matter for each of the two or more irradiation angles by multiplying by a set coefficient;
(Claim 1).

上記構成によれば、粒子状物質を捕集した捕集装置に、周波数が異なる複数の電磁波を照射している。この複数の電磁波は、照射角度毎に、捕集装置を透過した透過率が互いに異なる。このため、2以上の照射角度間での透過率が互いに等しくなるように係数を予め設定しておき、2以上の照射角度間でのブランク強度を等しくする。そして、粒子状物質を捕集した使用後捕集装置を透過した電磁波の強度と、粒子状物質を捕集していない使用前捕集装置を透過した電磁波の強度との差をもとめ、この差に、上記の係数を掛けることにより、捕集装置に捕集された粒子状物質の捕集量の分布を示すデータを得ることができる。   According to the said structure, the several electromagnetic wave from which frequency differs is irradiated to the collection apparatus which collected the particulate matter. The plurality of electromagnetic waves have different transmittances through the collection device for each irradiation angle. For this reason, the coefficient is set in advance so that the transmittances between two or more irradiation angles are equal to each other, and the blank intensity between two or more irradiation angles is made equal. Then, the difference between the intensity of the electromagnetic wave transmitted through the post-use collecting device that collected the particulate matter and the intensity of the electromagnetic wave transmitted through the pre-use collecting device that did not collect the particulate matter was determined. By multiplying the above by the above coefficient, data indicating the distribution of the collected amount of the particulate matter collected by the collection device can be obtained.

また、照射する電磁波は、各照射角度での透過率が互いに異なる。透過率が小さい角度領域では、捕集量に関する信号の検出精度が低い。そこで、各照射角度毎に、複数の電磁波の中から、透過率の高い方の電磁波を選択する。複数の電磁波を、粒子状物質を捕集した使用後捕集装置に2以上の照射角度で照射して、複数の電磁波の強度を検出した後に、透過率が小さくなる角度領域で検出された電磁波の強度は、透過率の最も高い電磁波で検出された電磁波の強度で補完する。このため、各照射角度毎に、捕集量を精度良く検出することができる。   Further, the electromagnetic waves to be irradiated have different transmittance at each irradiation angle. In the angle region where the transmittance is small, the detection accuracy of the signal related to the collection amount is low. Therefore, an electromagnetic wave having a higher transmittance is selected from a plurality of electromagnetic waves for each irradiation angle. Electromagnetic waves detected in an angular region where the transmittance is reduced after irradiating a post-use collector that collects particulate matter at an irradiation angle of 2 or more and detecting the intensity of the electromagnetic waves. Is supplemented by the intensity of the electromagnetic wave detected by the electromagnetic wave having the highest transmittance. For this reason, the amount of collection can be detected with high accuracy for each irradiation angle.

(2)複数の前記電磁波は、前記照射角度毎に、前記捕集装置を透過する透過率が異なる周波数領域の中からから2以上選択されたものであることが好ましい(請求項2)。   (2) It is preferable that two or more of the plurality of electromagnetic waves are selected from frequency regions having different transmittances that pass through the collection device for each irradiation angle.

この場合には、透過率の小さい電磁波で検出した捕集量を、透過率の大きい電磁波で検出した捕集量で補完することができる。   In this case, the collected amount detected by the electromagnetic wave having a low transmittance can be supplemented by the collected amount detected by the electromagnetic wave having a high transmittance.

(3)前記補完工程は、予め、各照射角度毎に、前記複数の電磁波の中で前記透過率の最も高い電磁波を選択する選択データを作成しておき、該選択データに基づいて前記複数の電磁波の強度の中から前記透過率の最も高い前記電磁波の強度を選択することが好ましい(請求項3)。   (3) In the complementing step, selection data for selecting the electromagnetic wave having the highest transmittance among the plurality of electromagnetic waves is prepared in advance for each irradiation angle, and the plurality of the plurality of electromagnetic waves are selected based on the selection data. It is preferable to select the intensity of the electromagnetic wave having the highest transmittance from the intensity of the electromagnetic wave.

この場合には、各照射角度毎に、前記複数の電磁波の中で前記透過率の最も高い電磁波の強度が選択される。選択された電磁波の強度を用いて演算工程で粒子状物質の捕集量を演算する。このため、2以上の照射角度のすべてで、精度の高い検出結果を得ることができる。また、360°全方位から所定間隔毎での照射角度で、複数の電磁波を捕集装置に照射して粒子状物質を検出した場合には、360°全方位からの照射データが得られ、360°全方位にわたって、精度の高い検出結果を得ることができる。   In this case, the intensity of the electromagnetic wave having the highest transmittance among the plurality of electromagnetic waves is selected for each irradiation angle. The amount of collected particulate matter is calculated in the calculation step using the intensity of the selected electromagnetic wave. For this reason, a highly accurate detection result can be obtained at all of the two or more irradiation angles. In addition, when a particulate matter is detected by irradiating a collection device with a plurality of electromagnetic waves at irradiation intervals at predetermined intervals from 360 ° in all directions, irradiation data from 360 ° in all directions is obtained. ° Accurate detection results can be obtained in all directions.

(4)本発明の粒子状物質の捕集量分布検出装置は、粒子状物質が捕集された捕集装置の外部から該捕集装置に、周波数が異なり且つ前記捕集装置に照射したときの透過率が互いに異なる複数の電磁波を、前記捕集装置に対して2以上の照射角度で照射する照射手段と、
前記捕集装置を透過した電磁波の強度を検出する受信手段と、
前記2以上の照射角度に対して前記粒子状物質を捕集する前の捕集装置を透過した電磁波の透過率が、該2以上の照射角度間で等しくなるように、該2以上の照射角度毎に前記複数の電磁波にそれぞれ係数を設定する設定手段と、
前記複数の電磁波のうちの少なくとも一つの電磁波の前記透過率が前記複数の電磁波のうちの他の電磁波の前記透過率よりも小さくなる角度領域で検出された前記電磁波の強度を、該他の電磁波の該角度領域で検出された前記電磁波の強度で補完する補完手段と、
前記2以上の照射角度毎に、前記補完手段で補完された前記電磁波の強度と、前記粒子状物質を捕集する前の捕集装置を透過した電磁波の強度との差に、前記設定工程で設定された係数を掛けることにより、前記2以上の照射角度での前記粒子状物質の捕集量を演算する演算手段と、
を備えたことを特徴とする(請求項4)。
(4) The particulate matter collection amount distribution detection device of the present invention has a different frequency and irradiates the collection device from the outside of the collection device in which the particulate matter is collected. Irradiating means for irradiating the collection device with a plurality of electromagnetic waves having different transmittances at two or more irradiation angles;
Receiving means for detecting the intensity of electromagnetic waves transmitted through the collecting device;
The two or more irradiation angles so that the transmittance of the electromagnetic wave transmitted through the collection device before collecting the particulate matter with respect to the two or more irradiation angles is equal between the two or more irradiation angles. Setting means for setting a coefficient for each of the plurality of electromagnetic waves for each;
The intensity of the electromagnetic wave detected in an angular region in which the transmittance of at least one electromagnetic wave of the plurality of electromagnetic waves is smaller than the transmittance of the other electromagnetic waves of the plurality of electromagnetic waves, Complementing means for complementing with the intensity of the electromagnetic wave detected in the angle region,
For each of the two or more irradiation angles, the difference between the intensity of the electromagnetic wave supplemented by the complementing means and the intensity of the electromagnetic wave transmitted through the collection device before collecting the particulate matter is determined in the setting step. A calculation means for calculating the trapped amount of the particulate matter at the irradiation angle of 2 or more by multiplying a set coefficient;
(Claim 4).

上記構成によれば、上記(1)と同様に、精度良く捕集装置内の粒子状物質の捕集分布を検出することができる。   According to the said structure, the collection distribution of the particulate matter in a collection apparatus can be detected with sufficient accuracy similarly to said (1).

(5)前記照射手段で、前記捕集装置に対して360°のあらゆる方向から等ピッチで電磁波を照射し、前記演算手段で360°のあらゆる方向での前記粒子状物質の捕集量を演算することが好ましい(請求項5)。   (5) The irradiation means irradiates the collection device with electromagnetic waves at an equal pitch from all directions of 360 °, and the calculation means calculates the collection amount of the particulate matter in all directions of 360 °. (Claim 5).

この場合には、360°のあらゆる方向からの粒子状物質の捕集量に関するデータを用いて、捕集装置のコンピュータ断層画像の再構成を行うことにより、捕集装置内での粒子状物質の捕集分布を、二次元又は三次元の情報に構築することができる。   In this case, by using the data on the collected amount of the particulate matter from all directions of 360 °, by reconstructing the computer tomographic image of the collection device, the particulate matter in the collection device is reconstructed. The collection distribution can be built into 2D or 3D information.

(6)本発明の排ガス浄化装置は、排ガス流路に配置されカーボンを主とするPMを捕集するフィルタと、
該フィルタを収容する収納容器と、
該収納容器に形成された入射窓から該フィルタに、周波数が異なり且つ該フィルタに照射したときの透過率が互いに異なる複数の電磁波を、前記捕集装置に対して2以上の照射角度で照射する照射手段と、
前記フィルタを透過した電磁波の強度を検出する受信手段と、
前記2以上の照射角度に対して前記粒子状物質を捕集する前のフィルタを透過した電磁波の透過率が、該2以上の照射角度間で等しくなるように、該2以上の照射角度毎に前記複数の電磁波にそれぞれ係数を設定する設定手段と、
前記複数の電磁波のうちの少なくとも一つの電磁波の前記透過率が前記複数の電磁波のうちの他の電磁波の前記透過率よりも小さくなる角度領域で検出された前記電磁波の強度を、該他の電磁波の該角度領域で検出された前記電磁波の強度で補完する補完手段と、
前記2以上の照射角度毎に、前記補完手段で補完された前記電磁波の強度と、前記粒子状物質を捕集する前のフィルタを透過した電磁波の強度との差に、前記設定工程で設定された係数を掛けることにより、前記2以上の照射角度での前記粒子状物質の捕集量を演算する演算手段と、
を備えたことを特徴とする(請求項6)。
(6) The exhaust gas purification apparatus of the present invention includes a filter that is disposed in the exhaust gas passage and collects PM mainly composed of carbon;
A storage container for storing the filter;
A plurality of electromagnetic waves having different frequencies and different transmittances when irradiated to the filter are irradiated to the filter from an incident window formed in the storage container at two or more irradiation angles. Irradiation means;
Receiving means for detecting the intensity of the electromagnetic wave transmitted through the filter;
For each of the two or more irradiation angles, the transmittance of the electromagnetic wave transmitted through the filter before collecting the particulate matter with respect to the two or more irradiation angles is equal between the two or more irradiation angles. Setting means for setting a coefficient for each of the plurality of electromagnetic waves;
The intensity of the electromagnetic wave detected in an angular region in which the transmittance of at least one electromagnetic wave of the plurality of electromagnetic waves is smaller than the transmittance of the other electromagnetic waves of the plurality of electromagnetic waves, Complementing means for complementing with the intensity of the electromagnetic wave detected in the angle region,
The difference between the intensity of the electromagnetic wave supplemented by the complementing means and the intensity of the electromagnetic wave transmitted through the filter before collecting the particulate matter is set in the setting step for each of the two or more irradiation angles. Calculating means for calculating the amount of the particulate matter collected at the irradiation angle of 2 or more,
(Claim 6).

上記構成によれば、上記(1)と同様に、精度良くフィルタ内の粒子状物質の捕集分布を検出することができる。ゆえに、フィルタ内の捕集分布に基づいて、PM捕集量の多い部分を局部的に加熱する手だてを講じることができ、フィルタの再生処理の時間を短縮したり、フィルタ再生処理までの時間を長くしたりすることができる。したがって、フィルタの再生処理を効率よく行うことができ、燃費の向上につながる。   According to the said structure, the collection distribution of the particulate matter in a filter can be detected with sufficient accuracy similarly to said (1). Therefore, based on the collection distribution in the filter, it is possible to take steps to locally heat the part with a large amount of PM collection, shortening the filter regeneration process time, and reducing the time until the filter regeneration process. It can be long. Therefore, the filter regeneration process can be performed efficiently, leading to an improvement in fuel consumption.

本発明によれば、粒子用物質を捕集した捕集装置に対して、周波数が異なり且つ捕集装置に対する透過率の異なる複数の電磁波を2以上の照射角度で照射している。このため、粒子状物質の捕集分布を精度良く検出することができる。   According to the present invention, a plurality of electromagnetic waves having different frequencies and different transmittances with respect to a collecting device are irradiated at two or more irradiation angles with respect to the collecting device that collects the particulate material. For this reason, the collection distribution of the particulate matter can be detected with high accuracy.

本発明の一実施例に係る捕集分布検出装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the collection distribution detection apparatus which concerns on one Example of this invention. 実施例に係る捕集分布検出方法を示す説明図である。It is explanatory drawing which shows the collection distribution detection method which concerns on an Example. フィルタに照射するミリ波の周波数を変えたときの透過率を示す説明図である。It is explanatory drawing which shows the transmittance | permeability when the frequency of the millimeter wave irradiated to a filter is changed. フィルタに照射するミリ波の照射角度の説明図である。It is explanatory drawing of the irradiation angle of the millimeter wave irradiated to a filter. 90GHzのミリ波の透過率を示す説明図(a)、及び110GHzのミリ波の透過率を示す説明図(b)。Explanatory drawing (a) which shows the transmittance of 90 GHz millimeter wave, and explanatory drawing (b) which shows the transmittance of 110 GHz millimeter wave. 照射角度毎の基準透過率(ブランク強度)を一定にしたときの補正透過率(補正強度)を示す説明図である。It is explanatory drawing which shows the correction | amendment transmittance | permeability (correction intensity | strength) when the standard transmittance | permeability (blank intensity | strength) for every irradiation angle is made constant.

本発明にいう粒子状物質とは、周波数が数10GHz 〜数THz のミリ波レベルの電磁波を吸収し、そのエネルギーを最終的には熱エネルギーに変換する物質であるとよく、カーボンを主とするPM、フェライト粉などの磁性体粉末などが例示される。   The particulate material referred to in the present invention is preferably a material that absorbs millimeter-wave electromagnetic waves having a frequency of several tens of GHz to several THz, and finally converts the energy into thermal energy, mainly carbon. Examples thereof include magnetic powder such as PM and ferrite powder.

電磁波の周波数は、数10GHz 〜数THz のミリ波レベルのマイクロ波を用いるとよい。周波数がこの範囲より低いと捕集された粒子状物質を透過しやすくなるが、波長が長くなって、空間分解能が低下する。また周波数がこの範囲より高くなると、捕集された粒子状物質を透過しにくくなり、やはり検出精度が低下する。特に、100〜200GHzのマイクロ波を検出する電磁波受信手段には、品質が安定した安価な汎用品を用いることができる。   As the frequency of the electromagnetic wave, a millimeter wave level microwave of several tens of GHz to several THz may be used. When the frequency is lower than this range, it becomes easy to transmit the collected particulate matter, but the wavelength becomes longer and the spatial resolution is lowered. Further, if the frequency is higher than this range, it becomes difficult for the collected particulate matter to pass through, and the detection accuracy also decreases. In particular, an inexpensive general-purpose product with stable quality can be used for the electromagnetic wave receiving means for detecting microwaves of 100 to 200 GHz.

電磁波の周波数は、粒子状物質を検出可能な範囲で、2以上選択する。また、捕集装置は、セル壁の厚み、セルの形状、セルピッチ、捕集装置の形状及び材質などについてさまざまな種類がある。そのため、捕集装置に電磁波を照射する角度によって、電磁波を屈折・反射させる特性が変わる。このため、電磁波の周波数の少なくともある範囲では、照射角度によって透過率が相違する。そこで、捕集装置を透過する透過率が照射角度によって相違する周波数領域を測定などにより取得し、周波数領域の中から、各照射角度毎に、2以上の周波数が互いに透過率の大小が異なるものを選択する。   The frequency of the electromagnetic wave is selected to be 2 or more within a range in which the particulate matter can be detected. In addition, there are various types of collection devices such as cell wall thickness, cell shape, cell pitch, collection device shape and material. Therefore, the characteristic of refracting / reflecting electromagnetic waves varies depending on the angle at which the collecting device irradiates the electromagnetic waves. For this reason, in at least a certain range of the electromagnetic wave frequency, the transmittance varies depending on the irradiation angle. Therefore, a frequency region in which the transmittance that passes through the collection device differs depending on the irradiation angle is obtained by measurement, etc., and two or more frequencies differ in magnitude from each other in each irradiation angle from the frequency region. Select.

捕集装置は、粒子状物質を含む気体が流通する流路中に配置されて粒子状物質を捕集するものであり、各種フィルタを用いることができる。この捕集装置は、周波数が数10GHz 〜数THz のミリ波レベルのマイクロ波を透過するものが用いられる。マイクロ波の一部が吸収されても構わない。排ガス浄化装置の場合には、コージェライト、炭化ケイ素、窒化ケイ素、アルミナ、チタニアなどセラミックス製のフィルタが代表的に用いられる。これらのセラミックスは、周波数が数10GHz 〜数THz のミリ波レベルのマイクロ波の透過率が高い。   The collection device is arranged in a flow path through which a gas containing particulate matter flows and collects the particulate matter, and various filters can be used. As this collection device, a device that transmits a millimeter-wave level microwave having a frequency of several tens of GHz to several THz is used. A part of the microwave may be absorbed. In the case of an exhaust gas purification device, a filter made of ceramics such as cordierite, silicon carbide, silicon nitride, alumina, titania is typically used. These ceramics have a high transmittance of millimeter wave level microwaves having a frequency of several tens of GHz to several THz.

フィルタのセル隔壁表面及びセル隔壁内の細孔表面に酸化触媒層を形成した触媒付きフィルタを用いることも好ましい。マイクロ波は触媒としてのPtなどの貴金属にも吸収されるが、貴金属の担持量及び担持分布が一定であれば、粒子状物質の捕集分布を精度高く検出することができる。   It is also preferable to use a filter with a catalyst in which an oxidation catalyst layer is formed on the cell partition wall surface of the filter and the pore surface in the cell partition wall. Microwaves are also absorbed by noble metals such as Pt as a catalyst. However, if the loading and distribution of the noble metal are constant, the collection distribution of the particulate matter can be detected with high accuracy.

照射手段は、捕集装置の外部から捕集装置に周波数が数10GHz 〜数THz の電磁波を照射する手段であり、マグネトロンなどを用いることができる。捕集装置に電磁波を直接的に照射することが望ましいが、排ガス浄化フィルタなど金属製の収納容器に収納されている捕集装置の場合には、収納容器に形成され数10GHz 〜数THz の電磁波を透過可能な入射窓を介して電磁波を照射する。この入射窓の材質としては、コージェライト、窒化ケイ素、アルミナなどのセラミックス、ガラスなどを用いることができる。   The irradiation means is means for irradiating the collection device with electromagnetic waves having a frequency of several tens of GHz to several THz from the outside of the collection device, and a magnetron or the like can be used. It is desirable to irradiate the collector directly with electromagnetic waves, but in the case of a collector that is housed in a metal container such as an exhaust gas purification filter, an electromagnetic wave of several tens of GHz to several THz is formed in the container. The electromagnetic wave is irradiated through an incident window that can pass through the light. As the material of the entrance window, cordierite, silicon nitride, ceramics such as alumina, glass, or the like can be used.

受信手段は捕集装置を透過した電磁波の強度を検出するものであり、マイクロ波センサなど公知のものを用いることができる。受信手段は、捕集装置に対して照射手段と反対側に配置され、捕集装置に近接して配置することが望ましい。しかし排ガス浄化装置の場合には、熱によって受信手段が劣化する恐れがあるので、収納容器に形成され数10GHz 〜数THz の電磁波を透過可能な放射窓を介して受信するように構成する。この放射窓は、入射窓と同様のもので耐熱性を有する材質から形成することができる。   The receiving means detects the intensity of the electromagnetic wave that has passed through the collection device, and a known device such as a microwave sensor can be used. It is desirable that the receiving means is disposed on the opposite side of the irradiation device with respect to the collecting device and is disposed in the vicinity of the collecting device. However, in the case of the exhaust gas purifying apparatus, since the receiving means may be deteriorated by heat, the receiving means is configured to be received through a radiation window formed in the storage container and capable of transmitting electromagnetic waves of several tens GHz to several THz. The radiation window can be formed of a material having heat resistance similar to the entrance window.

照射手段と受信手段とは、捕集装置に対して互いに反対側に位置するように配置される。例えばハニカムフィルタなど円柱形状の捕集装置の場合には、その直径方向の両側にそれぞれ配置することができる。あるいは排ガス流入側と排ガス流出側で、それぞれ軸を含む平面上で互いに反対側に位置するように配置することも好ましい。このようにすれば、排ガス流れ方向の全長におけるPM捕集量を検出することができる。   The irradiating means and the receiving means are arranged so as to be positioned on opposite sides of the collecting device. For example, in the case of a cylindrical collecting device such as a honeycomb filter, it can be arranged on both sides in the diameter direction. Alternatively, it is also preferable that the exhaust gas inflow side and the exhaust gas outflow side are disposed so as to be opposite to each other on the plane including the axis. In this way, it is possible to detect the amount of PM collected over the entire length in the exhaust gas flow direction.

本発明の捕集分布検出方法及び捕集分布検出装置では、粒子状物質が捕集された捕集装置を少なくとも湿度が一定の恒湿室に配置した状態で、捕集分布の検出を行うことが望ましい。周波数が数10GHz 〜数THz のミリ波レベルのマイクロ波は水分に吸収されるため、測定雰囲気の湿度が変動すると検出値も変動して精度が低下するからである。   In the collection distribution detection method and the collection distribution detection device of the present invention, the collection distribution is detected in a state where the collection device in which the particulate matter is collected is disposed in a constant humidity chamber having at least a constant humidity. Is desirable. This is because a millimeter wave level microwave with a frequency of several tens of GHz to several THz is absorbed by moisture, so that when the humidity of the measurement atmosphere varies, the detection value also varies and the accuracy decreases.

本発明の捕集分布検出方法及び捕集分布検出装置では、電磁波は捕集装置に向かって2以上の照射角度で照射され、それぞれの角度で透過した電磁波の強度が受信手段によってそれぞれ検出される。   In the collection distribution detection method and the collection distribution detection device of the present invention, the electromagnetic waves are irradiated toward the collection device at two or more irradiation angles, and the intensity of the electromagnetic waves transmitted at each angle is detected by the receiving unit. .

ここで、照射手段と受信手段とを結ぶ直線上に捕集装置が配置されている。電磁波の照射角度は、この直線の捕集装置に対する角度をいう。2以上の照射角度は、捕集装置に対して、照射手段と受信手段とが周方向に異なる複数の位置に配置され、捕集装置に対して複数の方向から電磁波が照射される、捕集装置に対する角度をいう。   Here, the collection device is arranged on a straight line connecting the irradiation means and the reception means. The irradiation angle of electromagnetic waves refers to the angle with respect to this straight line collecting device. The two or more irradiation angles are such that the irradiation unit and the reception unit are arranged at a plurality of different positions in the circumferential direction with respect to the collection device, and the collection device is irradiated with electromagnetic waves from a plurality of directions. The angle to the device.

本発明において、「照射角度」は、捕集装置に対するある照射方向を基準方向とし、この基準方向に対する照射角度をいう。2以上の照射角度は、前記捕集装置に対して360°のあらゆる方向から等ピッチで照射されたときの互いに該等ピッチの照射角度であるとよい。この場合には、捕集装置の粒子状物質の捕集分布を二次元状に検出することができる。   In the present invention, the “irradiation angle” refers to an irradiation angle with respect to the reference direction with a certain irradiation direction with respect to the collection device as a reference direction. The two or more irradiation angles may be irradiation angles at the same pitch when the collection device is irradiated at an equal pitch from all directions of 360 °. In this case, the collection distribution of the particulate matter in the collection device can be detected two-dimensionally.

照射手段と受信手段とを互いに対向させた状態で、捕集装置の周方向に沿って移動させながら2以上の照射角度で検出してもよい。あるいはCTスキャンのように、照射手段と受信手段とを捕集装置の周囲に沿って相対的に回転させながら軸方向に移動させて複数箇所で検出することも好ましい。このようにすれば、捕集装置内の粒子状物質の捕集分布を立体的に検出することができ、二次元又は三次元の情報を得ることが可能となる。   Detection may be performed at two or more irradiation angles while moving along the circumferential direction of the collection device in a state where the irradiation unit and the reception unit are opposed to each other. Alternatively, it is also preferable to detect at a plurality of locations by moving the irradiation means and the reception means in the axial direction while relatively rotating the circumference of the collection device as in a CT scan. In this way, the collection distribution of the particulate matter in the collection device can be detected three-dimensionally, and two-dimensional or three-dimensional information can be obtained.

照射手段と受信手段とを、捕集装置の表面に沿って互いに対向するようにそれぞれ複数箇所に配置することもできる。例えばハニカムフィルタなど円柱形状の捕集装置の場合には、その軸方向に複数箇所とすることが好ましく、端面の直径に沿う複数箇所とすることも好ましい。   The irradiating means and the receiving means can be arranged at a plurality of locations so as to face each other along the surface of the collection device. For example, in the case of a cylindrical collecting device such as a honeycomb filter, it is preferable to have a plurality of locations in the axial direction, and it is also preferable to have a plurality of locations along the diameter of the end face.

捕集装置に照射角度を変えて電磁波を照射すると、電磁波の照射角度が捕集装置の壁構造に対して変化する。このため、捕集装置による電磁波の屈折・反射特性が変化して、受信手段により受信する電磁波の強度が増減する。   When the collection device is irradiated with electromagnetic waves while changing the irradiation angle, the irradiation angle of the electromagnetic waves changes with respect to the wall structure of the collection device. For this reason, the refraction and reflection characteristics of the electromagnetic wave by the collecting device change, and the intensity of the electromagnetic wave received by the receiving means increases or decreases.

そこで、設定手段及び設定工程は、2以上の照射角度に対して粒子状物質を捕集する前の捕集装置を透過した電磁波の透過率が、2以上の照射角度間で等しくなるように、2以上の照射角度毎に複数の電磁波に係数を設定する。すなわち、捕集装置のみによって透過される2以上の照射角度間での受信信号の強度を等しくなるように係数を決定する。   Therefore, the setting means and the setting step are such that the transmittance of the electromagnetic wave transmitted through the collection device before collecting the particulate matter for two or more irradiation angles is equal between the two or more irradiation angles. Coefficients are set for a plurality of electromagnetic waves every two or more irradiation angles. That is, the coefficient is determined so that the intensity of the received signal is equal between two or more irradiation angles transmitted only by the collection device.

捕集装置を透過した電磁波の透過率は、捕集装置の材質、壁構造、壁厚み、セルの大小などの形状によって異なる。このため、個々の捕集装置ごとに、2以上の照射角度で複数の電磁波を照射して、透過した電磁波の透過率を測定して、複数の電磁波の係数を各照射角度毎に設定するとよい。   The transmittance of the electromagnetic wave that has passed through the collection device varies depending on the material of the collection device, the wall structure, the wall thickness, the size of the cell, and the like. For this reason, it is preferable to irradiate a plurality of electromagnetic waves at two or more irradiation angles for each individual collecting device, measure the transmittance of the transmitted electromagnetic waves, and set the coefficients of the plurality of electromagnetic waves for each irradiation angle. .

捕集装置を透過した電磁波の透過率が小さい角度領域では、受信電磁波の強度が小さく情報が乏しいため、粒子状物質の捕集量を正確に検出することができない。そこで、補完手段及び補完工程は、周波数の異なる複数の電磁波のうちの少なくとも一つの電磁波の捕集装置を透過した透過率が、複数の電磁波のうちの他の電磁波の捕集装置を透過した透過率よりも小さくなる角度領域で検出された電磁波の強度を、他の電磁波の角度領域で検出された電磁波の強度で補完する。具体的には、たとえば、各電磁波の2以上の照射角度での透過率の最大値と最小値の間の中間値以上の値を採用する方法、又は各照射角度毎に透過率の大きい方の電磁波の強度を採用する方法などがある。後者の場合には、予め、各照射角度毎に、複数の電磁波の中で透過率の最も高い電磁波を選択する選択データを作成しておく。そして、選択データに基づいて、複数の電磁波の強度の中から透過率の最も高い電磁波の強度を選択する。   In the angle region where the transmittance of the electromagnetic wave transmitted through the collection device is small, the intensity of the received electromagnetic wave is small and the information is scarce, so the amount of collected particulate matter cannot be detected accurately. Therefore, in the complementing means and the complementing process, the transmittance that has transmitted through at least one electromagnetic wave collecting device among the plurality of electromagnetic waves having different frequencies is transmitted through the other electromagnetic wave collecting device among the plurality of electromagnetic waves. The intensity of the electromagnetic wave detected in the angle region smaller than the rate is complemented by the strength of the electromagnetic wave detected in the angle region of other electromagnetic waves. Specifically, for example, a method of employing a value equal to or higher than the intermediate value between the maximum value and the minimum value of the transmittance at two or more irradiation angles of each electromagnetic wave, or the one having the larger transmittance for each irradiation angle There are methods that employ the intensity of electromagnetic waves. In the latter case, selection data for selecting the electromagnetic wave having the highest transmittance among a plurality of electromagnetic waves is prepared in advance for each irradiation angle. Based on the selection data, the intensity of the electromagnetic wave having the highest transmittance is selected from the intensity of the plurality of electromagnetic waves.

演算手段又は演算工程は、補完工程で補完された電磁波の強度と、粒子状物質が捕集されていない捕集装置のみの場合の電磁波のブランク強度との差に、設定工程で設定された係数を掛けることにより、粒子状物質の捕集量を演算する。捕集装置自体が周波数が数10GHz 〜数THz の電磁波をある程度吸収する場合が多いので、先ずブランクとして粒子状物質が捕集されていない状態の捕集装置のみの場合の受信強度を測定しておく。そうすれば、粒子状物質が捕集された状態における受信強度との差から、粒子状物質の捕集量を算出することができる。   The calculation means or the calculation process is a coefficient set in the setting process to the difference between the intensity of the electromagnetic wave supplemented in the complementing process and the electromagnetic wave blank intensity in the case of only a collecting device in which particulate matter is not collected. To calculate the amount of particulate matter collected. Since the collection device itself often absorbs electromagnetic waves with a frequency of several tens of GHz to several THz to some extent, first measure the reception intensity of only the collection device in the state where particulate matter is not collected as a blank. deep. If it does so, the amount of collection of particulate matter can be computed from the difference with the receiving intensity in the state where particulate matter was collected.

なお、「電磁波の強度」は、透過率でも、また捕集装置を透過して受信手段により受信された受信強度であってもよい。透過率とは、捕集装置を透過して受信手段により受信された受信強度に対する、照射手段から捕集装置に照射された照射強度の比率をいう。   The “electromagnetic wave intensity” may be a transmittance or a reception intensity transmitted through the collection device and received by the receiving means. The transmittance means the ratio of the irradiation intensity irradiated from the irradiation means to the collection device with respect to the reception intensity transmitted through the collection device and received by the reception means.

算出された粒子状物質の捕集量に関するデータは、コンピュータ断層映像の再構成を行うことにより、二次元的、更には三次元的な捕集分布情報を作成できる。   Data relating to the calculated amount of collected particulate matter can be reconstructed by computer tomographic images to create two-dimensional and three-dimensional collection distribution information.

本発明の排ガス浄化装置では、PMの捕集分布を検出しながら、検出されたPM捕集分布に応じてフィルタの再生処理を行うことができる。排ガス浄化装置は、フィルタへ流入する排ガスの温度を外周と内周とで異ならせるように制御する手段、フィルタの流入側端面とそこへ流入する排ガス量との関係を制御する手段、フィルタの軸方向の特定部位を加熱する手段、などを更に用いることが好ましい。これらの手段を用いることで、PMの捕集分布に応じて捕集量の多い部分を局部的に加熱することができる。   In the exhaust gas purifying apparatus of the present invention, the filter regeneration process can be performed according to the detected PM collection distribution while detecting the PM collection distribution. The exhaust gas purifying apparatus includes means for controlling the temperature of exhaust gas flowing into the filter to be different between the outer periphery and the inner periphery, means for controlling the relationship between the inflow side end face of the filter and the amount of exhaust gas flowing into the filter, and the shaft of the filter It is preferable to further use a means for heating a specific part in the direction. By using these means, it is possible to locally heat a portion with a large collection amount according to the PM collection distribution.

なお、水も電磁波吸収体であり、フィルタ内の水分量が検出値に影響を及ぼす。したがって、水分センサなどを用いて検出された水分量も加味して検出することが望ましい。しかし、フィルタの温度を一定値に制御して検出すれば、飽和水蒸気圧が一定であるので、排ガス中に含まれる水分は一定とみなすことができ、実用上は問題無くPM捕集分布を検出することができる。   Water is also an electromagnetic wave absorber, and the amount of water in the filter affects the detection value. Therefore, it is desirable to detect the amount of water detected using a moisture sensor or the like. However, if the temperature of the filter is controlled to a constant value and detected, the saturated water vapor pressure is constant, so the moisture contained in the exhaust gas can be regarded as constant, and the PM collection distribution can be detected practically without any problem. can do.

以下、実施例により本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

本例の捕集分布検出装置は、CT装置であり、その模式図を図1に示している。図1に示すように、この装置は、ディーゼルエンジンの排気系に用いられるフィルタ1と、ミリ波発信器2と、ミリ波受信器3と、演算装置4と、から構成されている。   The collection distribution detection apparatus of this example is a CT apparatus, and a schematic diagram thereof is shown in FIG. As shown in FIG. 1, this device includes a filter 1 used in an exhaust system of a diesel engine, a millimeter wave transmitter 2, a millimeter wave receiver 3, and a calculation device 4.

フィルタ1は、本発明における捕集装置に相当し、排ガス下流側で目詰めされた流入側セルと、流入側セルに隣接し排ガス上流側で目詰めされた流出側セルと、流入側セルと流出側セルを区画し多数の細孔を有する多孔質のセル隔壁と、を有するハニカム形状のウォールフロー構造をなし、コージェライトから形成されている。フィルタ1のセル隔壁は、厚みが0.3 mmであり、一辺が 1.4 mmの正方形断面のセルを形成している。フィルタ1の外形は、直径 130 mmの円筒形である。このフィルタ1は、回転可能な試料台10に流出側端面が接するように載置されている。   The filter 1 corresponds to the collection device according to the present invention, and includes an inflow side cell clogged on the exhaust gas downstream side, an outflow side cell adjacent to the inflow side cell and clogged on the exhaust gas upstream side, an inflow side cell, It has a honeycomb-shaped wall flow structure having a porous cell partition wall that partitions outflow side cells and has a large number of pores, and is formed of cordierite. The cell partition of the filter 1 has a thickness of 0.3 mm and forms a square section cell having a side of 1.4 mm. The outer shape of the filter 1 is a cylindrical shape having a diameter of 130 mm. The filter 1 is placed so that the outflow side end surface is in contact with a rotatable sample stage 10.

ミリ波発信器2には発信部20が備えられ、発信部20はフィルタ1の外周表面に配置されている、発信部20はフィルタ1の周面に向かって、ミリ波を照射する。   The millimeter wave transmitter 2 includes a transmission unit 20, which is disposed on the outer peripheral surface of the filter 1. The transmission unit 20 irradiates millimeter waves toward the peripheral surface of the filter 1.

ミリ波受信器3には受信部30が備えられ、受信部30はフィルタ1の中心軸に対して発信部20と対称位置に配置され、フィルタ1を透過したマイクロ波を受信する。発信部20と受信部30とは、電磁波の発信・受信が適切に行われる水平方向の位置関係を維持しながら、フィルタ1の軸方向に上下移動可能である。また、発信部20と受信部30は、水平方向に適切な受信位置となる位置関係を維持しながら、フィルタ1の軸方向に上下方向に固定されており、フィルタ1は回転可能な試料台10とともに上下移動可能である。   The millimeter wave receiver 3 includes a receiving unit 30. The receiving unit 30 is arranged at a position symmetrical to the transmitting unit 20 with respect to the central axis of the filter 1 and receives the microwave transmitted through the filter 1. The transmitter 20 and the receiver 30 can move up and down in the axial direction of the filter 1 while maintaining a horizontal positional relationship in which electromagnetic waves are appropriately transmitted and received. The transmitting unit 20 and the receiving unit 30 are fixed in the vertical direction in the axial direction of the filter 1 while maintaining a positional relationship that is an appropriate receiving position in the horizontal direction. It can be moved up and down.

なお、発信部20、受信部30は、それぞれ複数備えていてもよい。この場合、複数の発信部20、複数の受信部30は、互いに、フィルタ1の中心を通る直線上で互いに対向しており、フィルタの軸方向に等間隔で配置されているとよい。この場合には、各送信部及び受信部の移動、検出時間を短縮することができ、捕集分布の3次元情報を迅速に作成することができる。   A plurality of transmitters 20 and receivers 30 may be provided. In this case, the plurality of transmitters 20 and the plurality of receivers 30 are preferably opposed to each other on a straight line passing through the center of the filter 1 and arranged at equal intervals in the axial direction of the filter. In this case, the movement and detection time of each transmitter and receiver can be shortened, and the three-dimensional information of the collection distribution can be created quickly.

上記した捕集分布検出装置を用いて、捕集装置に捕集されたPMの捕集分布を検出する。   The collection distribution of PM collected by the collection device is detected using the collection distribution detection device described above.

<前工程>
先ず、図1、図2に示すように、新品のフィルタ1を試料台10に載置して、発信部20から10〜260GHzのミリ波を入力強度IBで照射した。試料台10を回転させることでフィルタ1を周方向に回転させながら、送信部20からミリ波を、フィルタ1の全周(360°)方向で等ピッチ(たとえば、0.5°毎)に照射する。そして受信部30によって、フィルタ1を直径方向に透過したミリ波の出力強度IAをそれぞれ測定する。入力強度IBに対する出力強度IAの比率(IA/IB)をもとめ、これをミリ波の透過率とする。
<Pre-process>
First, as shown in FIGS. 1 and 2, a new filter 1 was placed on the sample stage 10, and a 10 to 260 GHz millimeter wave was irradiated from the transmitter 20 at an input intensity IB. While rotating the sample stage 10, the filter 1 is rotated in the circumferential direction, and the millimeter wave is irradiated from the transmission unit 20 at an equal pitch (for example, every 0.5 °) in the entire circumference (360 °) direction of the filter 1. Then, the receiving unit 30 measures the output intensity IA of the millimeter wave that has passed through the filter 1 in the diameter direction. The ratio of the output intensity IA to the input intensity IB (IA / IB) is obtained, and this is the millimeter wave transmittance.

ミリ波の透過率を図3に示した。図3のX軸は、フィルタ1に対するミリ波の照射角度を示し、Y軸は、ミリ波の周波数を示す。座標上には、ミリ波の透過率の大小を示した。フィルタ1に対するミリ波の照射角度は、図4に示すように、フィルタ1のセル壁と平行である場合を基準角度(θ0)(θ=0°)とし、図4の紙面上で時計周りに照射方向を回転させたときの、基準角度に対する角度θである。   The millimeter wave transmittance is shown in FIG. The X axis in FIG. 3 indicates the irradiation angle of the millimeter wave with respect to the filter 1, and the Y axis indicates the frequency of the millimeter wave. On the coordinates, the millimeter wave transmittance is shown. As shown in FIG. 4, the irradiation angle of the millimeter wave with respect to the filter 1 is a reference angle (θ0) (θ = 0 °) when parallel to the cell wall of the filter 1, and clockwise on the paper surface of FIG. This is the angle θ with respect to the reference angle when the irradiation direction is rotated.

図3から明らかなように、80GHz未満では、照射角度を変えたときの透過率はほぼ一定であった。80GHz以上の場合には、照射角度を変えたときの透過率が変化した。透過率は、照射角度45°を中心に対称に変化した。また、周波数が大きくなるほど、透過率が小さくなった。80GHz以上の範囲では、同一の照射角度で、透過率が比較的大きい周波数領域と小さい周波数領域とがあった。そして、すべての照射角度で、一方の周波数の透過率が大きく、他方の周波数の透過率が小さくなるような、2つ以上の周波数の組み合わせを選ぶことができる。たとえば、90GHzと110GHz、120GHzと190GHz、140GHzと180GHzなどの組み合わせがある。この組み合わせのミリ波は、各照射角度毎に、フィルタ1を透過した出力強度IAを補完できる。すなわち、各照射角度毎に、小さい出力強度をもつ一方の周波数のミリ波の該出力強度を、大きい出力強度をもつ他方の周波数のミリ波の該出力強度で補完することができる。本例では、ミリ波の周波数の組み合わせとして、90GHzと110GHzを選び、以下の捕集分布の検出を行った。   As is apparent from FIG. 3, below 80 GHz, the transmittance was almost constant when the irradiation angle was changed. In the case of 80 GHz or more, the transmittance changed when the irradiation angle was changed. The transmittance changed symmetrically around an irradiation angle of 45 °. Further, the transmittance decreased as the frequency increased. In the range of 80 GHz or more, there were a frequency region where the transmittance was relatively large and a frequency region where the transmittance was small at the same irradiation angle. A combination of two or more frequencies can be selected so that the transmittance of one frequency is large and the transmittance of the other frequency is small at all irradiation angles. For example, there are combinations of 90 GHz and 110 GHz, 120 GHz and 190 GHz, 140 GHz and 180 GHz. This combination of millimeter waves can complement the output intensity IA transmitted through the filter 1 for each irradiation angle. That is, for each irradiation angle, the output intensity of the millimeter wave of one frequency having a small output intensity can be supplemented with the output intensity of the millimeter wave of the other frequency having a large output intensity. In this example, 90 GHz and 110 GHz were selected as a combination of millimeter wave frequencies, and the following collection distribution was detected.

<選択工程>
図5に、90GHzと110GHzのミリ波の透過率を測定した結果を示した。図5(a)は、90GHzのミリ波の透過率を示し、図5(b)は、110GHzのミリ波の透過率を示す。両図において、X軸は、フィルタ1に対する照射角度を示し、Y軸は、ミリ波の透過率を示す。フィルタ1に対する照射角度は、図4に示すように、フィルタのセル壁と平行である場合を基準角度(θ0)(θ=0°)としている。図5のX軸は、照射角度が0°の位置から図4の紙面上で時計周りに回転させる方向を「+」で、反時計方向に回転させる方向を「−」で示した。同図より、90GHzと110GHzとで、照射角度毎の透過率が相違していることがわかる。たとえば、角度0°付近では、90GHzのミリ波は60%を示すのに対して、110GHzのミリ波は5%以下と小さい。角度±23°付近では、90GHzのミリ波では5%以下と小さく、110GHzのミリ波では50%以上と大きい。このように、90GHzのミリ波と110GHzのミリ波とでは、透過率の大小が逆の関係にある。
<Selection process>
FIG. 5 shows the results of measuring the transmittance of millimeter waves at 90 GHz and 110 GHz. FIG. 5A shows the transmittance of a 90 GHz millimeter wave, and FIG. 5B shows the transmittance of a 110 GHz millimeter wave. In both figures, the X-axis indicates the irradiation angle with respect to the filter 1, and the Y-axis indicates the millimeter wave transmittance. As shown in FIG. 4, the irradiation angle with respect to the filter 1 is a reference angle (θ0) (θ = 0 °) when parallel to the cell wall of the filter. For the X axis in FIG. 5, the direction of clockwise rotation on the paper surface of FIG. 4 from the position where the irradiation angle is 0 ° is indicated by “+”, and the direction of counterclockwise rotation is indicated by “−”. From the figure, it can be seen that the transmittance for each irradiation angle is different between 90 GHz and 110 GHz. For example, in the vicinity of an angle of 0 °, the 90 GHz millimeter wave shows 60%, while the 110 GHz millimeter wave is as small as 5% or less. Near an angle of ± 23 °, it is as small as 5% or less for 90 GHz millimeter waves and as large as 50% or more for 110 GHz millimeter waves. In this way, the 90 GHz millimeter wave and the 110 GHz millimeter wave have the opposite relationship in transmittance.

各照射角度毎に、90GHzのミリ波の透過率と110GHzのミリ波の透過率とを比較して、透過率の大きい方の周波数を選択する。各照射角度毎に、選択された周波数を選択データとして保存する。たとえば、図5に示すように、照射角度が0°付近では、90GHzのミリ波の透過率が60%であり、110GHzのミリ波よりも大きく、90GHzのミリ波で検出された信号は、十分に大きく、PM捕集量に対してより精度の高い情報を含んでいる。一方、110GHzのミリ波で検出された信号は、小さすぎて、PM捕集量の精度のある情報を含んでいない。この場合、透過率の大きい90GHzのミリ波から得た信号を選ぶ。   For each irradiation angle, the transmittance of 90 GHz millimeter wave and the transmittance of 110 GHz millimeter wave are compared, and the frequency with the larger transmittance is selected. For each irradiation angle, the selected frequency is stored as selection data. For example, as shown in FIG. 5, when the irradiation angle is around 0 °, the transmittance of 90 GHz millimeter wave is 60%, which is larger than 110 GHz millimeter wave, and the signal detected by 90 GHz millimeter wave is sufficient. It contains much more accurate information on the amount of PM collected. On the other hand, the signal detected by the 110 GHz millimeter wave is too small and does not contain accurate information on the amount of PM trapped. In this case, a signal obtained from a 90 GHz millimeter wave having a high transmittance is selected.

また、照射角度が23°付近では、90GHzのミリ波の透過率は、5%以下であり、110GHzのミリ波の透過率よりも小さい。この場合、透過率の大きい110GHzのミリ波で検出された信号を選ぶ。このように、各照射角度毎に、大きい方の透過率のミリ波の信号を選ぶ。   When the irradiation angle is around 23 °, the transmittance of 90 GHz millimeter waves is 5% or less, which is smaller than the transmittance of 110 GHz millimeter waves. In this case, a signal detected with a millimeter wave of 110 GHz having a high transmittance is selected. In this way, a millimeter wave signal having a larger transmittance is selected for each irradiation angle.

<設定工程>
また、90GHzと110GHzのミリ波の各照射角度毎の透過率が一定になるように、各照射角度毎に係数をもとめた。たとえば、図5の二点鎖線で示すように、透過率を50%にしようとするには、90GHzの角度0°付近での係数α1は0.8(=50%/60%)、110GHzの角度0°付近での係数β1は10以上(=50%/5%以下)となり、90GHzの角度23°付近での係数α2は10以上(=50%/5%以下)、110GHzの角度23°付近での係数β2は1以下(=50%/50%以上)となる。90GHzと110GHzの360°方向の各照射角度毎の係数α、βをもとめる。
<Setting process>
In addition, a coefficient was obtained for each irradiation angle so that the transmittance for each irradiation angle of millimeter waves of 90 GHz and 110 GHz was constant. For example, as shown by the two-dot chain line in FIG. 5, in order to achieve a transmittance of 50%, the coefficient α1 near the 90 ° angle of 0 ° is 0.8 (= 50% / 60%) and the 110 GHz angle is 0. The coefficient β1 near ° is 10 or more (= 50% / 5% or less), and the coefficient α2 near 90 ° at an angle of 23 ° is 10 or more (= 50% / 5% or less), at an angle of around 110 ° at 110 GHz. The coefficient β2 is 1 or less (= 50% / 50% or more). Find the coefficients α and β for each irradiation angle in the 360 ° direction at 90 GHz and 110 GHz.

<検出工程>
次に、新品のフィルタ1に、PMを捕集させる。図2のS51、S52工程において、PMを捕集したフィルタ1に、90GHzと110GHzのミリ波を照射して透過率をそれぞれ測定する。すなわち、PMを捕集したフィルタ1を試料台10の上に載せて、発信部20から90GHzと110GHzのミリ波を入力強度IBで照射する。フィルタ1を周方向に回転させながら、送信部20からミリ波を、フィルタ1の全周(360°)方向で等ピッチ(たとえば、0.5°毎)に照射する。そして受信部30によって、フィルタ1を透過したミリ波の透過率ICをそれぞれ測定する。透過率ICは、発信部20から照射されてフィルタに入力された入力強度に対する、フィルタから出力されて受信部30で受信した出力強度の比率である。
<Detection process>
Next, PM is collected by the new filter 1. In steps S51 and S52 in FIG. 2, 90 mm and 110 GHz millimeter waves are applied to the filter 1 that has collected PM to measure transmittance. That is, the filter 1 that has collected PM is placed on the sample stage 10 and 90 GHz and 110 GHz millimeter waves are emitted from the transmitter 20 at the input intensity IB. While rotating the filter 1 in the circumferential direction, the millimeter wave is irradiated from the transmission unit 20 at an equal pitch (for example, every 0.5 °) in the entire circumference (360 °) direction of the filter 1. Then, the millimeter wave transmittance IC transmitted through the filter 1 is measured by the receiving unit 30. The transmittance IC is a ratio of the output intensity output from the filter and received by the receiving unit 30 to the input intensity irradiated from the transmitting unit 20 and input to the filter.

<補完工程>
各照射角度毎に、検出工程で検出された複数のミリ波の透過率IC(強度)のうち、透過率が大きいミリ波を採用する。例えば、照射角度が0°付近では、90GHzのミリ波の透過率が60%であり、110GHzのミリ波の透過率は5%以下であり、90GHzのミリ波の透過率が、110GHzのミリ波の透過率よりも大きいため、90GHzのミリ波を、PM捕集後のフィルタに照射したときの透過率ICを選択する。
<Complementary process>
For each irradiation angle, a millimeter wave having a high transmittance is adopted among a plurality of millimeter wave transmittances IC (intensity) detected in the detection step. For example, when the irradiation angle is around 0 °, the transmittance of 90 GHz millimeter waves is 60%, the transmittance of 110 GHz millimeter waves is 5% or less, and the transmittance of 90 GHz millimeter waves is 110 GHz millimeter waves. Select the transmittance IC when 90GHz millimeter wave is applied to the filter after PM collection.

選択データとして保存された周波数をもつミリ波は、複数のミリ波の中でも高い透過率をもつため、検出精度が高い。このため、高い透過率をもつミリ波をPM捕集後のフィルタに照射して検出された透過率ICを採用するのである。また、複数のミリ波のうち透過率の大きいものと小さいものとは、各照射角度毎に異なるため、各照射角度毎に、検出された複数のミリ波の透過率IC(強度)のうち、透過率が大きいミリ波を採用するのである。   A millimeter wave having a frequency stored as selection data has high transmittance among a plurality of millimeter waves, and thus has high detection accuracy. For this reason, the transmittance IC detected by irradiating the filter after PM collection with millimeter waves having high transmittance is adopted. Moreover, since the thing with a large transmittance | permeability among several millimeter waves differs for every irradiation angle, out of the several millimeter wave transmittance IC (intensity) detected for each irradiation angle, A millimeter wave with a high transmittance is used.

<演算工程>
S53工程、S54工程において、演算装置4により、各照射角度毎に、複数のミリ波の中で採用されたミリ波の透過率ICと、PM捕集前の新品のフィルタを透過したミリ波の透過率IAとの差(IC-IA)を求め、この差に、設定工程で設定された各照射角度毎の係数α、βを掛けて、補正透過率Dを得る。図6に示すように、PM が捕集されていないフィルタ1の補正基準透過率D0を例えば50%とする場合、PMが捕集されているフィルタ1の補正透過率Dは、図5の点線で示すように、50%よりも小さくなった。PM捕集量が多いほど補正基準透過率D0と補正透過率Dとの差が大きくなった。補正基準透過率D0と補正透過率Dとの差は、PMの捕集量に相関する。これにより、360°方向の各照射角度毎のPM捕集量の分布が求められる。なお、同じ仕様のDPF同士では、新品のDPFフィルタの計測は1度でまかなうことも可能である。
<Calculation process>
In steps S53 and S54, the calculation device 4 uses the millimeter wave transmittance IC adopted in the plurality of millimeter waves and a new filter before PM collection for each irradiation angle. A difference (IC-IA) from the transmittance IA is obtained, and this difference is multiplied by the coefficients α and β for each irradiation angle set in the setting step to obtain a corrected transmittance D. As shown in FIG. 6, when the corrected reference transmittance D0 of the filter 1 where PM is not collected is set to 50%, for example, the corrected transmittance D of the filter 1 where PM is collected is the dotted line in FIG. As shown by, it became smaller than 50%. The difference between the corrected reference transmittance D0 and the corrected transmittance D increased as the amount of PM collected increased. The difference between the corrected reference transmittance D0 and the corrected transmittance D correlates with the amount of collected PM. Thereby, the distribution of the amount of PM collected for each irradiation angle in the 360 ° direction is obtained. Note that it is possible to measure a new DPF filter at a time between DPFs of the same specification.

<Y方向移動>
図2には、フィルタ1の径方向断面の中心を通る位置を示すが、図2におけるDPFの下端から上端まで、図2のY方向にフィルタ1を移動させながら、上記の設定、検出、補完及び演算の各工程を行い、各位置での全周(360°)方向のPM捕集量を求める。
<Move in Y direction>
FIG. 2 shows a position passing through the center of the radial cross section of the filter 1. The above setting, detection, and interpolation are performed while moving the filter 1 in the Y direction of FIG. 2 from the lower end to the upper end of the DPF in FIG. 2. And each process of calculation is performed, and the amount of PM trapped in the entire circumference (360 °) direction at each position is obtained.

<再構成工程>
S55工程において、演算工程で算出されたPM捕集量に関するデータを用いて、フィルタ1のコンピュータ断層映像の画像再構成を行う。具体的には、位置座標(X,Y,Z)=(Y方向の位置、照射角度、PM捕集量)に、逆フーリエ変換を行うことにより、フィルタ1のコンピュータ断層映像の画像再構成を行い、二次元断面画像情報を得る。
<Reconstruction process>
In step S55, image reconstruction of the computer tomographic image of the filter 1 is performed using the data related to the amount of collected PM calculated in the calculation step. Specifically, image reconstruction of the computer tomographic image of the filter 1 is performed by performing inverse Fourier transform on the position coordinates (X, Y, Z) = (position in the Y direction, irradiation angle, PM collection amount). 2D image information is obtained.

<三次元化工程>
フィルタ1の軸方向(図2のZ方向)にフィルタ1を上下移動させながら、上記の設定、検出、補完、演算及び再構成の各工程を行い、三次元化した再生画像を作成する。
<Three-dimensional process>
While the filter 1 is moved up and down in the axial direction of the filter 1 (Z direction in FIG. 2), the above setting, detection, interpolation, calculation, and reconstruction processes are performed to create a three-dimensional reproduced image.

<表示工程>
S56工程において、PM捕集量を表す二次元及び三次元画像は、ディスプレイなどの表示装置の画面に表示する。
<Display process>
In step S56, the two-dimensional and three-dimensional images representing the amount of collected PM are displayed on a screen of a display device such as a display.

本例においては、PMを捕集したフィルタ1に、90GHzと110GHzの電磁波を照射している。この電磁波は、照射角度毎に、フィルタ1を透過した透過率が互いに異なる。このため、2以上の照射角度間での透過率が互いに等しくなるように各照射角度毎に係数α(=α1、α2・・・)、β(=β1、β2・・・)を予め設定しておき、2以上の照射角度間での基準透過率(ブランク)を等しくする。そして、PMを捕集したフィルタ1から出力された電磁波の透過率ICと、PMを捕集する前のフィルタ1を透過した電磁波の透過率IAとの差(IC-IA)を各照射角度毎にもとめ、この差に、上記の係数α、βをそれぞれ掛けることにより、フィルタ1に捕集されたPM捕集量の分布を示すデータを得ることができる。   In this example, 90 GHz and 110 GHz electromagnetic waves are applied to the filter 1 that collects PM. The transmittances of the electromagnetic waves transmitted through the filter 1 are different from each other for each irradiation angle. For this reason, coefficients α (= α1, α2,...), Β (= β1, β2,...) Are set in advance for each irradiation angle so that the transmittances between two or more irradiation angles are equal to each other. The reference transmittance (blank) between two or more irradiation angles is made equal. The difference (IC-IA) between the transmittance IC of the electromagnetic wave output from the filter 1 collecting PM and the transmittance IA of the electromagnetic wave transmitted through the filter 1 before collecting PM is calculated for each irradiation angle. In addition, by multiplying this difference by the above coefficients α and β, data indicating the distribution of the amount of PM collected collected by the filter 1 can be obtained.

また、照射する電磁波は、各照射角度での透過率が互いに異なる。透過率が小さい角度領域では、検出精度が低い。そこで、各照射角度毎に、複数のミリ波の中から、透過率の高い方のミリ波を選択する。複数のミリ波をPM捕集後の捕集装置に2以上の照射角度で照射して、複数のミリ波の強度を検出した後に、各照射角度毎に、複数のミリ波の透過率(IC)のうち、予め選択した透過率の高い方のミリ波の強度を採用する。このため、各照射角度毎に、捕集量を精度良く検出することができる。   Further, the electromagnetic waves to be irradiated have different transmittance at each irradiation angle. The detection accuracy is low in the angle region where the transmittance is small. Therefore, the millimeter wave with the higher transmittance is selected from a plurality of millimeter waves for each irradiation angle. Multiple millimeter waves are irradiated to the collection device after PM collection at two or more irradiation angles, and after detecting the intensity of the multiple millimeter waves, the transmittance of the multiple millimeter waves (IC ) Of the millimeter wave with the higher transmittance selected in advance. For this reason, the amount of collection can be detected with high accuracy for each irradiation angle.

1:フィルタ、2:ミリ波発信器、3:ミリ波受信器、4:演算装置、10:試料台、20:発信部、30:受信部。
1: Filter, 2: Millimeter wave transmitter, 3: Millimeter wave receiver, 4: Computing device, 10: Sample stage, 20: Transmitter, 30: Receiver.

Claims (6)

粒子状物質が捕集された捕集装置に対して外部から電磁波を照射することにより、捕集された該粒子状物質の該捕集装置内の捕集分布を検出する方法において、
周波数が異なり且つ前記捕集装置に照射したときの透過率が互いに異なる複数の電磁波を、前記捕集装置に対して2以上の照射角度で照射し、該捕集装置を透過した該電磁波の強度を検出する検出工程と、
前記2以上の照射角度に対して前記粒子状物質を捕集する前の捕集装置を透過した電磁波の透過率が、該2以上の照射角度間で等しくなるように、該2以上の照射角度毎に前記複数の電磁波にそれぞれ係数を設定する設定工程と、
前記複数の電磁波のうちの少なくとも一つの電磁波の前記透過率が前記複数の電磁波のうちの他の電磁波の前記透過率よりも小さくなる角度領域で検出された前記電磁波の強度を、該他の電磁波の該角度領域で検出された前記電磁波の強度で補完する補完工程と、
前記2以上の照射角度毎に、前記補完工程で補完された前記電磁波の強度と、前記粒子状物質を捕集する前の捕集装置を透過した電磁波の強度との差に、前記設定工程で設定された係数を掛けることにより、前記2以上の照射角度毎の前記粒子状物質の捕集量を演算する演算工程と、
を行うことを特徴とする粒子状物質の捕集量分布検出方法。
In the method of detecting the collection distribution of the collected particulate matter in the collection device by irradiating electromagnetic waves from the outside to the collection device in which the particulate matter is collected,
Intensities of the electromagnetic waves transmitted through the collection device by irradiating the collection device with a plurality of electromagnetic waves having different frequencies and different transmittances when irradiated to the collection device. A detection step for detecting
The two or more irradiation angles so that the transmittance of the electromagnetic wave transmitted through the collection device before collecting the particulate matter with respect to the two or more irradiation angles is equal between the two or more irradiation angles. A setting step for setting a coefficient for each of the plurality of electromagnetic waves,
The intensity of the electromagnetic wave detected in an angular region in which the transmittance of at least one electromagnetic wave of the plurality of electromagnetic waves is smaller than the transmittance of the other electromagnetic waves of the plurality of electromagnetic waves, A complementing step of complementing with the intensity of the electromagnetic wave detected in the angular region of
For each of the two or more irradiation angles, the difference between the intensity of the electromagnetic wave supplemented in the complementing process and the intensity of the electromagnetic wave transmitted through the collection device before collecting the particulate matter is determined in the setting process. A calculation step of calculating the trapped amount of the particulate matter for each of the two or more irradiation angles by multiplying by a set coefficient;
And a method for detecting the collection amount distribution of particulate matter.
複数の前記電磁波は、前記照射角度毎に、前記捕集装置を透過する透過率が異なる周波数領域の中からから2以上選択されたものである請求項1記載の捕集量分布検出方法。   2. The collection amount distribution detection method according to claim 1, wherein two or more of the plurality of electromagnetic waves are selected from frequency regions having different transmittances that pass through the collection device for each irradiation angle. 前記補完工程は、予め、各照射角度毎に、前記複数の電磁波の中で前記透過率の最も高い電磁波を選択する選択データを作成しておき、該選択データに基づいて前記複数の電磁波の強度の中から前記透過率の最も高い前記電磁波の強度を選択する請求項1又は請求項2に記載の捕集量分布検出方法。   The supplementing step creates in advance selection data for selecting the electromagnetic wave having the highest transmittance among the plurality of electromagnetic waves for each irradiation angle, and based on the selection data, the intensity of the plurality of electromagnetic waves The collection amount distribution detection method according to claim 1 or 2, wherein the intensity of the electromagnetic wave having the highest transmittance is selected from the list. 粒子状物質が捕集された捕集装置の外部から該捕集装置に、周波数が異なり且つ前記捕集装置に照射したときの透過率が互いに異なる複数の電磁波を、前記捕集装置に対して2以上の照射角度で照射する照射手段と、
前記捕集装置を透過した電磁波の強度を検出する受信手段と、
前記2以上の照射角度に対して前記粒子状物質を捕集する前の捕集装置を透過した電磁波の透過率が、該2以上の照射角度間で等しくなるように、該2以上の照射角度毎に前記複数の電磁波にそれぞれ係数を設定する設定手段と、
前記複数の電磁波のうちの少なくとも一つの電磁波の前記透過率が前記複数の電磁波のうちの他の電磁波の前記透過率よりも小さくなる角度領域で検出された前記電磁波の強度を、該他の電磁波の該角度領域で検出された前記電磁波の強度で補完する補完手段と、
前記2以上の照射角度毎に、前記補完手段で補完された前記電磁波の強度と、前記粒子状物質を捕集する前の捕集装置を透過した電磁波の強度との差に、前記設定工程で設定された係数を掛けることにより、前記2以上の照射角度での前記粒子状物質の捕集量を演算する演算手段と、
を備えたことを特徴とする粒子状物質の捕集量分布検出装置。
A plurality of electromagnetic waves having different frequencies and different transmittances when irradiated to the collecting device from the outside of the collecting device in which the particulate matter is collected are applied to the collecting device. Irradiating means for irradiating at an irradiation angle of 2 or more;
Receiving means for detecting the intensity of electromagnetic waves transmitted through the collecting device;
The two or more irradiation angles so that the transmittance of the electromagnetic wave transmitted through the collection device before collecting the particulate matter with respect to the two or more irradiation angles is equal between the two or more irradiation angles. Setting means for setting a coefficient for each of the plurality of electromagnetic waves for each;
The intensity of the electromagnetic wave detected in an angular region in which the transmittance of at least one electromagnetic wave of the plurality of electromagnetic waves is smaller than the transmittance of the other electromagnetic waves of the plurality of electromagnetic waves, Complementing means for complementing with the intensity of the electromagnetic wave detected in the angle region,
For each of the two or more irradiation angles, the difference between the intensity of the electromagnetic wave supplemented by the complementing means and the intensity of the electromagnetic wave transmitted through the collection device before collecting the particulate matter is determined in the setting step. A calculation means for calculating the trapped amount of the particulate matter at the irradiation angle of 2 or more by multiplying a set coefficient;
An apparatus for detecting the collection amount distribution of particulate matter.
前記照射手段で、前記捕集装置に対して360°のあらゆる方向から等ピッチで電磁波を照射し、前記演算手段で360°のあらゆる方向での前記粒子状物質の捕集量を演算する請求項4記載の捕集量分布検出装置。   The irradiation means irradiates the collection device with electromagnetic waves at an equal pitch from all directions of 360 °, and the calculation means calculates the collection amount of the particulate matter in all directions of 360 °. 4. The collection amount distribution detection device according to 4. 排ガス流路に配置されカーボンを主とするPMを捕集するフィルタと、
該フィルタを収容する収納容器と、
該収納容器に形成された入射窓から該フィルタに、周波数が異なり且つ該フィルタに照射したときの透過率が互いに異なる複数の電磁波を、前記捕集装置に対して2以上の照射角度で照射する照射手段と、
前記フィルタを透過した電磁波の強度を検出する受信手段と、
前記2以上の照射角度に対して前記粒子状物質を捕集する前のフィルタを透過した電磁波の透過率が、該2以上の照射角度間で等しくなるように、該2以上の照射角度毎に前記複数の電磁波にそれぞれ係数を設定する設定手段と、
前記複数の電磁波のうちの少なくとも一つの電磁波の前記透過率が前記複数の電磁波のうちの他の電磁波の前記透過率よりも小さくなる角度領域で検出された前記電磁波の強度を、該他の電磁波の該角度領域で検出された前記電磁波の強度で補完する補完手段と、
前記2以上の照射角度毎に、前記補完手段で補完された前記電磁波の強度と、前記粒子状物質を捕集する前のフィルタを透過した電磁波の強度との差に、前記設定工程で設定された係数を掛けることにより、前記2以上の照射角度での前記粒子状物質の捕集量を演算する演算手段と、
を備えたことを特徴とする排ガス浄化装置。
A filter that is arranged in the exhaust gas flow path and collects PM mainly composed of carbon;
A storage container for storing the filter;
A plurality of electromagnetic waves having different frequencies and different transmittances when irradiated to the filter are irradiated to the filter from an incident window formed in the storage container at two or more irradiation angles. Irradiation means;
Receiving means for detecting the intensity of the electromagnetic wave transmitted through the filter;
For each of the two or more irradiation angles, the transmittance of the electromagnetic wave transmitted through the filter before collecting the particulate matter with respect to the two or more irradiation angles is equal between the two or more irradiation angles. Setting means for setting a coefficient for each of the plurality of electromagnetic waves;
The intensity of the electromagnetic wave detected in an angular region in which the transmittance of at least one electromagnetic wave of the plurality of electromagnetic waves is smaller than the transmittance of the other electromagnetic waves of the plurality of electromagnetic waves, Complementing means for complementing with the intensity of the electromagnetic wave detected in the angle region,
The difference between the intensity of the electromagnetic wave supplemented by the complementing means and the intensity of the electromagnetic wave transmitted through the filter before collecting the particulate matter is set in the setting step for each of the two or more irradiation angles. Calculating means for calculating the amount of the particulate matter collected at the irradiation angle of 2 or more,
An exhaust gas purification apparatus comprising:
JP2009205944A 2009-09-07 2009-09-07 Particulate matter collection distribution detection method and apparatus Expired - Fee Related JP5337640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009205944A JP5337640B2 (en) 2009-09-07 2009-09-07 Particulate matter collection distribution detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009205944A JP5337640B2 (en) 2009-09-07 2009-09-07 Particulate matter collection distribution detection method and apparatus

Publications (2)

Publication Number Publication Date
JP2011058374A true JP2011058374A (en) 2011-03-24
JP5337640B2 JP5337640B2 (en) 2013-11-06

Family

ID=43946295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009205944A Expired - Fee Related JP5337640B2 (en) 2009-09-07 2009-09-07 Particulate matter collection distribution detection method and apparatus

Country Status (1)

Country Link
JP (1) JP5337640B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053755A (en) * 2015-09-10 2017-03-16 いすゞ自動車株式会社 Temperature measuring instrument for three-dimensional devices, temperature measuring instrument for combustion engines, and temperature measuring method for combustion engines and three-dimensional devices
JP2021076547A (en) * 2019-11-13 2021-05-20 株式会社トランストロン Device, method, and program for measuring particulate material
US11098628B2 (en) 2018-01-11 2021-08-24 Fujitsu Limited Clogging determination device
CN116983444A (en) * 2023-08-10 2023-11-03 广东人仁康科技有限公司 Adjustable intelligent illumination cabin and control system thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301126A (en) * 1991-03-29 1992-10-23 Matsushita Electric Ind Co Ltd Filter renovator for internal combustion engine
JP2009002276A (en) * 2007-06-22 2009-01-08 Nippon Soken Inc Collection quantity detecting method of particulate matter, collection quantity detecting device and exhaust emission control device
JP2009057948A (en) * 2007-09-03 2009-03-19 Toyota Motor Corp Method and device for detecting collection distribution of particulate matter, and exhaust emission control device
JP2009180714A (en) * 2008-02-01 2009-08-13 Mitsubishi Electric Corp Nondestructive inspection device and nondestructive inspection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301126A (en) * 1991-03-29 1992-10-23 Matsushita Electric Ind Co Ltd Filter renovator for internal combustion engine
JP2009002276A (en) * 2007-06-22 2009-01-08 Nippon Soken Inc Collection quantity detecting method of particulate matter, collection quantity detecting device and exhaust emission control device
JP2009057948A (en) * 2007-09-03 2009-03-19 Toyota Motor Corp Method and device for detecting collection distribution of particulate matter, and exhaust emission control device
JP2009180714A (en) * 2008-02-01 2009-08-13 Mitsubishi Electric Corp Nondestructive inspection device and nondestructive inspection method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053755A (en) * 2015-09-10 2017-03-16 いすゞ自動車株式会社 Temperature measuring instrument for three-dimensional devices, temperature measuring instrument for combustion engines, and temperature measuring method for combustion engines and three-dimensional devices
US11098628B2 (en) 2018-01-11 2021-08-24 Fujitsu Limited Clogging determination device
JP2021076547A (en) * 2019-11-13 2021-05-20 株式会社トランストロン Device, method, and program for measuring particulate material
JP7267900B2 (en) 2019-11-13 2023-05-02 株式会社トランストロン Particulate matter measuring device, particulate matter measuring method, and particulate matter measuring program
CN116983444A (en) * 2023-08-10 2023-11-03 广东人仁康科技有限公司 Adjustable intelligent illumination cabin and control system thereof
CN116983444B (en) * 2023-08-10 2024-01-26 广东人仁康科技有限公司 Adjustable intelligent illumination cabin and control system thereof

Also Published As

Publication number Publication date
JP5337640B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5337640B2 (en) Particulate matter collection distribution detection method and apparatus
JP4949976B2 (en) Particulate matter collection distribution detection method, collection distribution detection device and exhaust gas purification device
JP4426697B2 (en) Measuring method for wall thickness of cylindrical objects
JP6661548B2 (en) Method of detecting the degree of aging of catalytic converter
AU2016100570A4 (en) Nondestructive, absolute determination of thickness of or depth in dielectric materials
EP2246698B1 (en) System and method for monitoring quality of fuels
JP2014009976A (en) Three-dimensional shape measurement x-ray ct device and three-dimensional shape measurement method by x-ray ct device
US7849747B2 (en) Flaw detection in exhaust system ceramic monoliths
JP2009172184A (en) Radiographic equipment
CN113686960B (en) Phased array curved surface full-focusing imaging optimization method and system for sound field threshold segmentation
Tanaka et al. Development of low pressure and high performance GPF catalyst
JP3775599B2 (en) Honeycomb structure inspection method and inspection apparatus
JP2006106011A (en) Method and device for inspecting honeycomb structure
Kato et al. Characterization of secondary pores in washcoat layers and their effect on effective gas transport properties
CN106841825B (en) Near-field antenna beam control system based on wave-absorbing cavity structure
JP6891480B2 (en) Crystallite size measurement method, sample holder, fluid production system, fluid production method, fluid quality control system, and fluid quality control method
Nishina et al. Novel nondestructive imaging analysis for catalyst Washcoat loading and DPF soot distribution using terahertz wave computed tomography
JP5526973B2 (en) Filter evaluation method and evaluation apparatus
KR102270902B1 (en) Coating method
Strzelec et al. Neutron imaging of diesel particulate filters
JP7011051B2 (en) Methods and equipment to identify valid or invalid channels
Walter et al. Applying 3D X-ray Microscopy to Model Coated Gasoline Particulate Filters under Practical Driving Conditions
Zandhuis et al. Nondestructive X-ray inspection of thermal damage, soot and ash distributions in diesel particulate filters
JP2011094514A (en) Carrier, adhesion amount measuring apparatus, measuring method, program and recording medium
Rott et al. A New Terahertz Analytical Tool for Exhaust Aftertreatment Systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Ref document number: 5337640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees