JP2017053755A - Temperature measuring instrument for three-dimensional devices, temperature measuring instrument for combustion engines, and temperature measuring method for combustion engines and three-dimensional devices - Google Patents

Temperature measuring instrument for three-dimensional devices, temperature measuring instrument for combustion engines, and temperature measuring method for combustion engines and three-dimensional devices Download PDF

Info

Publication number
JP2017053755A
JP2017053755A JP2015178530A JP2015178530A JP2017053755A JP 2017053755 A JP2017053755 A JP 2017053755A JP 2015178530 A JP2015178530 A JP 2015178530A JP 2015178530 A JP2015178530 A JP 2015178530A JP 2017053755 A JP2017053755 A JP 2017053755A
Authority
JP
Japan
Prior art keywords
temperature
measurement
internal space
gas component
temperature measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015178530A
Other languages
Japanese (ja)
Other versions
JP6558164B2 (en
Inventor
宗篤 柿木
Muneatsu Kakigi
宗篤 柿木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2015178530A priority Critical patent/JP6558164B2/en
Publication of JP2017053755A publication Critical patent/JP2017053755A/en
Application granted granted Critical
Publication of JP6558164B2 publication Critical patent/JP6558164B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a temperature measuring instrument for three-dimensional devices and the like that can measure temperatures less expensively with higher precision than by the prior art in limited areas of internal spaces of three-dimensional devices, such as in engine cylinders, with the result that temperatures in three-dimensional devices can be measured less expensively with higher precision.SOLUTION: Different kinds of gas components Gi are supplied to each of measurable sub-areas Rmi set within a measurable area Rm, terahertz waves Te of multiple wavelengths within the frequency range of 0.01 THz to 10 THz are transmitted toward an internal space R of a three-dimensional device and terahertz waves Te of multiple wavelengths having passed the measurable area Rm are received to detect the intensity of the terahertz waves Te of multiple wavelengths. The variation quantity of this intensity of the terahertz waves Te of multiple wavelengths is compared with the variation characteristics of each wavelength of the terahertz waves in each of preset multiple gas components Gi to calculate the temperatures Tmi of the measurable sub-areas Rmi.SELECTED DRAWING: Figure 1

Description

本発明は、立体装置の内部空間の温度を低コストかつ高精度で計測することができる立体装置の温度計測装置、燃焼機関の温度計測装置、燃焼機関及び立体装置の温度計測方法に関する。   The present invention relates to a three-dimensional device temperature measuring device, a combustion engine temperature measuring device, a combustion engine, and a three-dimensional device temperature measuring method capable of measuring the temperature of the internal space of the three-dimensional device with low cost and high accuracy.

内燃機関の気筒(シリンダ)の内の燃焼状況は、この内燃機関を搭載した車両の燃費や排気ガスの浄化処理性能に影響を強く及ぼすため、気筒の内の燃焼状況を制御する必要があり、そのために、気筒の内部空間の温度を把握することが非常に重要となる。この気筒の内部空間の温度の計測は、気筒の内部空間の局所的な領域の温度を計測して、この局所的な温度を計測場所と対応させて集約することにより温度分布を作成するのが一般的である。   Since the combustion state in the cylinder of the internal combustion engine strongly affects the fuel consumption and exhaust gas purification performance of the vehicle equipped with this internal combustion engine, it is necessary to control the combustion state in the cylinder. Therefore, it is very important to grasp the temperature of the internal space of the cylinder. The measurement of the temperature of the internal space of the cylinder is to create a temperature distribution by measuring the temperature of a local region of the internal space of the cylinder and aggregating the local temperature corresponding to the measurement location. It is common.

この気筒の内部空間の局所的な領域の温度の計測手法としては、2次元レーザー誘起蛍光法(LIF法)やレーザー吸収法に、CT法(コンピュータ断層撮影法)を組み合わせる手法、及び、さらに、気筒内に蛍光体(粒子)を混入させ、この蛍光体にレーザー光を照射して、この照射による蛍光体の発光強度に基づいて、気筒の内部空間の局所的な領域の温度を計測する手法が用いられている。   As a method of measuring the temperature of a local region of the internal space of the cylinder, a method of combining a CT method (computer tomography) with a two-dimensional laser induced fluorescence method (LIF method) or a laser absorption method, and A method of measuring the temperature of a local region in the internal space of a cylinder based on the emission intensity of the phosphor by irradiating this phosphor with laser light by mixing phosphor (particles) into the cylinder Is used.

しかしながら、この蛍光体を用いた計測手法は、次のような多くの問題を抱えている。第1の問題として、気筒内に蛍光体を混入させる必要があるため、通常のエンジンの気筒の内部空間では使用できず、この計測手法を用いることができる内部空間は限定されてしまう。   However, this measurement method using a phosphor has many problems as follows. As a first problem, since it is necessary to mix phosphors in the cylinder, it cannot be used in the internal space of a normal engine cylinder, and the internal space in which this measurement technique can be used is limited.

第2の問題として、この計測手法は、レーザー光を蛍光体に入射しても、いわゆる失活現象により、蛍光体が発光しない場合があり、そのために、温度の推定が難しくなる場合がある。   As a second problem, in this measurement method, even if laser light is incident on the phosphor, the phosphor may not emit light due to a so-called deactivation phenomenon, and therefore it may be difficult to estimate the temperature.

第3の問題として、この計測手法は、発光強度を検出した蛍光体の存在位置の測定精度が高くないため、計測位置を精度良く特定できない。   As a third problem, this measurement method cannot accurately identify the measurement position because the measurement accuracy of the position of the phosphor from which the emission intensity is detected is not high.

一方、温度測定ではなく、粒子状物質の濃度測定に関するものであるが、ディーゼルエンジンの排気系に配置されたフィルタのPM堆積分布を検出する場合等に用いる粒子状物質の捕集量分布検出装置として、粒子状物質を含む気体が流通する流路中に配置されて粒子状物質を捕集する捕集装置に対して、この捕集装置の外部から捕集装置に周波数が数10GHz〜数THzの電磁波を照射する照射手段と、捕集装置を透過した電磁波の強度を検出する受信手段を、互いに対向させた状態で設けて、照射手段より電磁波を2以上の照射角度で照射して、それぞれの角度で透過した電磁波の強度を受信手段によってそれぞれ検出することで、捕集装置内の粒子状物質の捕集分布を検出する粒子状物質の捕集量分布検出装置が提案されている(例えば、特許文献1参照)。   On the other hand, it is related to concentration measurement of particulate matter, not temperature measurement, but it is a particulate matter collection amount detection device for detecting PM accumulation distribution of a filter arranged in the exhaust system of a diesel engine. As for the collection device that is arranged in the flow path through which the gas containing the particulate matter flows and collects the particulate matter, the frequency is several tens GHz to several THz from the outside of the collection device to the collection device. An irradiating means for irradiating the electromagnetic wave and a receiving means for detecting the intensity of the electromagnetic wave transmitted through the collection device are provided facing each other, and the irradiating means irradiates the electromagnetic wave at two or more irradiation angles, A collection amount distribution detection device for particulate matter that detects the collection distribution of the particulate matter in the collection device by detecting the intensity of the electromagnetic wave transmitted at an angle of each by the receiving means has been proposed (example) If, see Patent Document 1).

特開2011−58374号公報JP 2011-58374 A

本発明者は、蛍光体とレーザー光を用いて内部空間の局所的な領域の温度を計測する従来の計測手法ではなく、電波の透過性と光の直進性を有する、電波と光の中間の波長を持つ、周波数が0.01THz〜10THzの範囲のテラヘルツ波を使用することにより、従来の計測手法が有する上記の第1〜第3の問題を解決して、気筒等のガスを内包する内部空間の局所的な領域の温度をより低コストかつ高精度で計測でき、その結果、内部空間の温度をより低コストかつ高精度で計測することができるとの知見を得た。   The present inventor is not a conventional measurement method for measuring the temperature of a local area in an internal space using a phosphor and laser light, but has a radio wave transmissivity and a light straightness between the radio wave and the light. By using a terahertz wave having a wavelength and a frequency in the range of 0.01 THz to 10 THz, the above first to third problems of the conventional measurement technique are solved, and an internal gas containing a gas such as a cylinder We obtained the knowledge that the temperature of the local area of the space can be measured with low cost and high accuracy, and as a result, the temperature of the internal space can be measured with low cost and high accuracy.

更に、本発明者は、計測領域を通過した後のテラヘルツ波の減衰量即ち強度の変化量が計測領域の温度と密接な関係があること、及び、図3に模式的に示すように、この減衰量と温度と濃度の関係はガス成分の分子(例えば、二酸化炭素、窒素、酸素、水等)の種類ごとに異なることを見出し、特定の範囲の波長を複数持つテラヘルツ波を使用することで、計測領域の測定温度を測定できるとの知見を得た。   Furthermore, the present inventor has shown that the attenuation amount of the terahertz wave after passing through the measurement region, that is, the amount of change in intensity is closely related to the temperature of the measurement region, and as schematically shown in FIG. We found that the relationship between attenuation, temperature, and concentration differs for each type of gas component molecule (for example, carbon dioxide, nitrogen, oxygen, water, etc.), and by using terahertz waves with multiple wavelengths in a specific range. The knowledge that the measurement temperature of the measurement area can be measured was obtained.

また、テラヘルツ波のスペクトラム分析ができるので、各ガス成分に特徴的なスペクトラムがある場合には、テラヘルツ波の透過光を検出することで、各ガス成分ごとのスペクトラムを検出することができ、これにより、特定のガス成分のスペクトラムの変化量を見ることで、そのガス成分のある領域の温度を測定することが可能になるとの知見を得た。   In addition, since spectrum analysis of terahertz waves can be performed, if there is a spectrum that is characteristic of each gas component, the spectrum of each gas component can be detected by detecting the transmitted light of terahertz waves. Thus, it has been found that the temperature of a certain region of a gas component can be measured by observing the amount of change in the spectrum of the specific gas component.

なお、図3は、実際のガス成分におけるテラヘルツ波の透過スペクトラムと周波数の関係を示すものではなく、模式的に、ガス成分(G1)とガス成分(G2)で、テラヘルツ波の透過スペクトラムで見られる減衰量が著しい周波数(下向き矢印部分)が幾つかあり、それぞれの周波数によって減衰量が異なるが、ガス成分(G1)とガス成分(G2)とでは、その減衰の著しい周波数も、その周波数における、減衰量も異なることを説明するための模式的な図であり、実際の特定のガス成分に相当する図ではない。   FIG. 3 does not show the relationship between the transmission spectrum of the terahertz wave in the actual gas component and the frequency, but schematically shows the transmission spectrum of the terahertz wave with the gas component (G1) and the gas component (G2). There are some frequencies with significant attenuation (downward arrow part), and the attenuation varies depending on each frequency. However, the frequency with significant attenuation is different between the gas component (G1) and the gas component (G2). FIG. 6 is a schematic diagram for explaining that the attenuation amounts are different, and is not a diagram corresponding to an actual specific gas component.

本発明は、上記のことを鑑みてなされたものであり、その目的は、例えば、エンジンの気筒内のように、立体装置の内部空間の局所的な領域の温度を、従来技術よりも低コストかつ高精度で計測でき、その結果、立体装置の内部空間の温度を低コストかつ高精度で計測することができる立体装置の温度計測装置、立体装置の温度計測方法、燃焼機関の温度計測装置、及び、燃焼機関を提供することにある。   The present invention has been made in view of the above, and an object of the present invention is to reduce the temperature of a local region in the internal space of a three-dimensional device, for example, in a cylinder of an engine, at a lower cost than in the prior art. And, as a result, it is possible to measure the temperature of the internal space of the three-dimensional device at low cost and with high accuracy, the temperature measuring device of the three-dimensional device, the temperature measuring method of the three-dimensional device, the temperature measuring device of the combustion engine, And providing a combustion engine.

上記の目的を達成するための本発明の立体装置の温度計測装置は、立体装置の内部空間の温度を計測する温度計測装置において、前記計測領域の内部に設定された小計測領域のそれぞれに対して異なる種類のガス成分を供給するガス成分供給装置と、前記立体装置の前記内部空間に向けて周波数が0.01THz〜10THzの範囲内にある複数の波長のテラヘルツ波を前記内部空間の計測領域に送信する送信ユニットと、前記計測領域を通過してくる複数の波長のテラヘルツ波を受信する受信ユニットと、前記受信ユニットで受信した複数の波長のテラヘルツ波の強度の変化量と、予め設定された前記ガス成分のそれぞれにおけるテラヘルツ波の各波長での変化特性と比較して、前記小計測領域のそれぞれにおける温度を算出する温度算出装置を備えて構成される。   In order to achieve the above object, a temperature measuring device for a three-dimensional device according to the present invention is a temperature measuring device that measures the temperature of the internal space of a three-dimensional device, and each of the small measurement regions set inside the measurement region. A gas component supply device that supplies different types of gas components, and a terahertz wave having a plurality of wavelengths within a range of 0.01 THz to 10 THz toward the internal space of the three-dimensional device. A transmitting unit for transmitting to the receiving unit, a receiving unit for receiving terahertz waves of a plurality of wavelengths passing through the measurement region, and a change in intensity of the terahertz waves of a plurality of wavelengths received by the receiving unit are set in advance. Further, the temperature calculation for calculating the temperature in each of the small measurement regions in comparison with the change characteristics at each wavelength of the terahertz wave in each of the gas components Configured with the location.

つまり、計測領域を通過した複数の波長のテラヘルツ波を受信ユニットで受信して、この受信した信号強度(計測領域を通過した透過強度)の変化量(減衰量)を、温度算出装置内の演算機構で、理論的に計算される各周波数のテラヘルツ波の減衰量と温度の関係と比較し、テラヘルツ波の通過領域である計測領域に設けられた小計測領域の各ガス成分中を通過して吸収された信号強度から、小計測領域のそれぞれにおける、それぞれのガス成分(分子)に対しての温度を算出し、これらの温度から計測領域の温度を算出する。なお、このテラヘルツ波の強度は、テラヘルツ波の振幅と密接な関係を持っているので、テラヘルツ波の振幅を検出又は算出できる場合はこの振幅を強度の代用としてもよい。   That is, terahertz waves of multiple wavelengths that have passed through the measurement area are received by the receiving unit, and the amount of change (attenuation) in the received signal intensity (transmission intensity that has passed through the measurement area) is calculated in the temperature calculation device. Compared with the theoretically calculated relationship between the terahertz wave attenuation of each frequency and the temperature, it passes through each gas component in the small measurement area provided in the measurement area that is the terahertz wave passage area. The temperature for each gas component (molecule) in each small measurement region is calculated from the absorbed signal intensity, and the temperature in the measurement region is calculated from these temperatures. Since the intensity of the terahertz wave has a close relationship with the amplitude of the terahertz wave, this amplitude may be used as a substitute for the intensity when the amplitude of the terahertz wave can be detected or calculated.

この構成では、立体装置の内部空間の温度を算出するために、計測領域の内部に設定された小計測領域のそれぞれに対して異なる種類のガス成分(分子)を供給すると共に、複数の波長のテラヘルツ波を送信する。そして、ガス成分ごとに特徴的な吸収スペクトルの変化を検出することで温度の推定を行う。この異なるガス成分を異なる小計測領域に供給することで、テラヘルツ波の通過領域全体の温度分布を同時に計測することが可能となる。つまり、これまでの従来技術のように、センサ・配線、レーザー光学系などの部品を多数配置する構造を改めて、対向する1組のセンサシステムと、温度に対して安定な分子(ガス成分)を微量供給するシステムで温度の分布を検出することが可能になる。   In this configuration, in order to calculate the temperature of the internal space of the three-dimensional device, different types of gas components (molecules) are supplied to each of the small measurement regions set inside the measurement region, and a plurality of wavelengths Transmit terahertz waves. The temperature is estimated by detecting a characteristic change in absorption spectrum for each gas component. By supplying these different gas components to different small measurement regions, it becomes possible to simultaneously measure the temperature distribution of the entire terahertz wave passage region. In other words, as in the conventional technology so far, a structure in which a large number of components such as sensors, wiring, and laser optical systems are arranged has been redesigned, and a pair of opposing sensor systems and temperature-stable molecules (gas components). It becomes possible to detect the temperature distribution in a system that supplies a trace amount.

これにより、従来技術の計測手法に対して、煤などの汚れに強いテラヘルツ波の特定の波長を活用して、分子の回転準位を直接観察していることになるため、従来技術のような蛍光物質の失活現象を回避することができる。また、立体装置の内部空間に反応性のある蛍光物質を混入する必要がない。さらに、テラヘルツ波の進路上に異なる分子(ガス成分)を適宜配置する仕組みであることから、ジェットエンジンの燃焼室等の内燃機関以外の内部空間にも適用が可能となる。   As a result, the rotational level of the molecule is directly observed using the specific wavelength of the terahertz wave that is resistant to dirt such as wrinkles, compared to the conventional measurement method. The deactivation phenomenon of the fluorescent substance can be avoided. Moreover, it is not necessary to mix a reactive fluorescent substance in the internal space of the three-dimensional apparatus. Furthermore, since it is a mechanism in which different molecules (gas components) are appropriately arranged on the path of the terahertz wave, it can be applied to an internal space other than the internal combustion engine such as a combustion chamber of a jet engine.

この構成によれば、従来技術のような精度良く位置を特定することが難しい発光強度を検出した蛍光体の存在位置ではなく、テラヘルツ波の送信及び受信の位置及び各ガス成分が供給される位置を用いるので、これらの位置を正確に確定でき、テラヘルツ波が通過する計測領域と各ガス成分が供給される小計測領域のそれぞれの位置を明確に把握した上で、温度を計測できるので、計測位置が正確となる。   According to this configuration, the position of transmitting and receiving the terahertz wave and the position where each gas component is supplied, not the position of the phosphor that detects the emission intensity that is difficult to specify with high accuracy as in the prior art Therefore, these positions can be accurately determined, and the temperature can be measured after clearly grasping the positions of the measurement area where the terahertz wave passes and the small measurement area where each gas component is supplied. The position becomes accurate.

更に、この構成では、従来技術のレーザー誘起蛍光法のように、蛍光体とレーザー光を使用しないので、レーザー光学系の設備が不要になる上に、立体装置の内部空間の各領域の温度を計測するための多数の部品を配置する必要がなくなるので、装置が簡略化され、低コスト化することができる。また、立体装置の内部空間に蛍光体を混入しないので、通常のエンジンの気筒の内部空間等でも使用できるようになり、本発明の温度計測装置を採用できる内部空間は制限されなくなる。その上、蛍光体の失活現象により温度の推定が難しくなることもない。   Further, in this configuration, unlike the laser-induced fluorescence method of the prior art, no phosphor and laser light are used, so that there is no need for laser optical equipment, and the temperature of each area of the internal space of the three-dimensional device is set. Since there is no need to arrange a large number of parts for measurement, the apparatus can be simplified and the cost can be reduced. Further, since the phosphor is not mixed in the internal space of the three-dimensional device, it can be used in the internal space of a normal engine cylinder and the internal space in which the temperature measuring device of the present invention can be employed is not limited. In addition, it is not difficult to estimate the temperature due to the phosphor deactivation phenomenon.

従って、電波の透過性と光の直進性を有する、電波と光の中間の波長を持つ、周波数が0.01THz〜10THzの範囲のテラヘルツ波を活用することにより、ボイラーやガスタービンなどの燃焼装置の内部空間のように、立体装置の内部空間の局所的な領域の温度を、従来技術よりも低コストかつ高精度で計測でき、その結果、立体装置の内部空間の温度を低コストかつ高精度で計測することができる。   Therefore, by using a terahertz wave having a radio wave transmission property and light straight traveling property, having a wavelength between the radio wave and light and having a frequency in the range of 0.01 THz to 10 THz, a combustion apparatus such as a boiler or a gas turbine. As in the interior space, the temperature of the local area of the interior space of the stereoscopic device can be measured with lower cost and higher accuracy than the conventional technology. As a result, the temperature of the internal space of the stereoscopic device can be measured at lower cost and higher accuracy. Can be measured.

上記の立体装置の温度計測装置において、前記送信ユニットから送信されるテラヘルツ波の進行方向と前記ガス成分供給装置から噴射される各ガス成分の噴射方向とが交差するように、前記送信ユニットと前記受信ユニットとガス成分供給装置を配置して構成されると、テラヘルツ波の一つの進行方向に対して、複数の小計測領域の温度を同時に計測できるので効率よく温度計測できる。   In the three-dimensional device temperature measurement device, the transmission unit and the transmission unit are arranged so that the traveling direction of the terahertz wave transmitted from the transmission unit intersects the injection direction of each gas component injected from the gas component supply device. When the receiving unit and the gas component supply device are arranged, the temperature in a plurality of small measurement regions can be measured simultaneously in one traveling direction of the terahertz wave, so that the temperature can be measured efficiently.

このテラヘルツ波の進行方向と各ガス成分の噴射方向とは、直交でもよいが、傾きがあって交差している箇所の領域であっても、略ピンポイントとなり同党の計測が可能であり、傾きがあることにより、装置の配置の自由度が増す。つまり、直交の条件では部品の取り付けが不可能な場合でも、交差すればよいという条件の下では、部品同士の干渉を避けて取り付けることができる。   The traveling direction of this terahertz wave and the injection direction of each gas component may be orthogonal, but even in the area where there is an inclination and intersects, it becomes almost a pinpoint and the party can measure, The inclination increases the degree of freedom of arrangement of the device. In other words, even if it is impossible to attach the components under the orthogonal condition, the components can be attached while avoiding interference between the components under the condition that they should cross.

また、上記の立体装置の温度計測装置において、前記送信ユニットと前記受信ユニットとガス成分供給装置のいずれか一つ又はいくつかの組み合わせ又は全部が移動可能に構成されると、テラヘルツ波の進行方向となる計測領域、又は、ガス成分が供給される小計測領域の位置を変更することができ、立体装置の内部空間の多くの場所を少ない装置で計測できるようになる。   Further, in the temperature measuring device of the above three-dimensional device, when any one or some combination or all of the transmission unit, the reception unit, and the gas component supply device are configured to be movable, the traveling direction of the terahertz wave Thus, the position of the measurement area or the small measurement area to which the gas component is supplied can be changed, and many places in the internal space of the stereoscopic apparatus can be measured with a small number of apparatuses.

そして、上記の目的を達成するための本発明の燃焼機関の温度計測装置は、上記の立体装置の温度計測装置を備えて、燃焼機関の内部空間の温度を計測するように構成され、上記の温度計測装置と同様の作用効果を奏することができる。   A combustion engine temperature measuring device according to the present invention for achieving the above object comprises the above three-dimensional device temperature measuring device, and is configured to measure the temperature of the internal space of the combustion engine. The same effects as the temperature measuring device can be obtained.

また、上記の目的を達成するための本発明の燃焼機関は、上記の燃焼機関の温度計測装置を備えて構成され、上記の温度計測装置、及び、上記の燃焼機関の温度計測装置と同様の作用効果を奏することができる。   Further, a combustion engine of the present invention for achieving the above object is provided with the temperature measuring device for the combustion engine, and is similar to the temperature measuring device and the temperature measuring device for the combustion engine. An effect can be produced.

特に、燃焼機関がボイラーやガスタービン等の燃焼室の場合には、内部空間で計測された温度から、燃焼室に備えられた燃料噴射装置に対する指示信号を変更することで、例えば、温度上昇を検知したときに燃料噴射量を低減する指示をする等で、燃焼室への熱負荷を低減することが可能となる。   In particular, when the combustion engine is a combustion chamber such as a boiler or a gas turbine, for example, an increase in temperature can be achieved by changing the instruction signal for the fuel injection device provided in the combustion chamber from the temperature measured in the internal space. It is possible to reduce the heat load on the combustion chamber by giving an instruction to reduce the fuel injection amount when detected.

上記の目的を達成するための本発明の立体装置の温度計測方法は、立体装置の内部空間の温度を計測する温度計測方法において、前記計測領域の内部に設定された小計測領域のそれぞれに対して異なる種類のガス成分を供給すると共に、前記立体装置の前記内部空間に向けて周波数が0.01THz〜10THzの範囲内にある複数の波長のテラヘルツ波を前記内部空間の計測領域に送信して、前記計測領域を通過してくる複数の波長のテラヘルツ波を受信して複数の波長のテラヘルツ波の強度を検出して、この複数の波長のテラヘルツ波の強度の変化量と、予め設定された前記ガス成分のそれぞれにおけるテラヘルツ波の各波長での変化特性と比較して、前記小計測領域のそれぞれにおける温度を算出することを特徴とする方法である。この方法によれば、上記の立体装置の温度計測装置と同様の作用効果を奏することができる。   In order to achieve the above object, a method for measuring a temperature of a three-dimensional device according to the present invention is the temperature measuring method for measuring the temperature of the internal space of a three-dimensional device, and for each of the small measurement regions set inside the measurement region. Supplying different types of gas components and transmitting terahertz waves having a plurality of wavelengths within a range of 0.01 THz to 10 THz toward the internal space of the three-dimensional device to the measurement region of the internal space. , Receiving the terahertz waves of a plurality of wavelengths passing through the measurement region, detecting the intensities of the terahertz waves of a plurality of wavelengths, and the amount of change in the intensity of the terahertz waves of the plurality of wavelengths The method is characterized in that the temperature in each of the small measurement regions is calculated in comparison with the change characteristics of each of the gas components at each wavelength of the terahertz wave. According to this method, it is possible to achieve the same effects as the above-described temperature measurement device for a three-dimensional device.

本発明の立体装置の温度計測装置、燃焼機関の温度計測装置、燃焼機関及び立体装置の温度計測方法によれば、電波の透過性と光の直進性を有する、電波と光の中間の波長を持つ、周波数が0.01THz〜10THzの範囲の複数の波長のテラヘルツ波を活用して、計測領域の内部に設定された小計測領域のそれぞれに対して異なる種類のガス成分を供給して、それぞれのガス成分に対するテラヘルツ波の各波長での変化特性から各ガス成分の温度を算出することで、それぞれのガス成分が供給された小計測領域における温度を算出することができるので、エンジンの気筒の内部空間のように、立体装置の内部空間の局所的な領域の温度を、従来技術よりも低コストかつ高精度で計測でき、その結果、立体装置の内部空間の温度を低コストかつ高精度で計測することができる。   According to the three-dimensional device temperature measuring device, the combustion engine temperature measuring device, the combustion engine, and the three-dimensional device temperature measuring method of the present invention, the intermediate wavelength between the radio wave and the light having the radio wave permeability and the light straightness is obtained. Utilizing terahertz waves with a plurality of wavelengths in the frequency range of 0.01 THz to 10 THz, supplying different types of gas components to each of the small measurement regions set inside the measurement region, By calculating the temperature of each gas component from the change characteristics at each wavelength of the terahertz wave with respect to the gas component, it is possible to calculate the temperature in the small measurement region to which each gas component is supplied. Like the internal space, the temperature of the local area of the internal space of the stereoscopic device can be measured with lower cost and higher accuracy than the conventional technology, and as a result, the temperature of the internal space of the stereoscopic device can be reduced. One can be measured with high accuracy.

本発明に係る第1の実施の形態の燃焼機関における本発明に係る実施の形態の立体装置の温度計測装置及び燃焼機関の温度計測装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the temperature measuring device of the three-dimensional apparatus of embodiment which concerns on this invention in the combustion engine of 1st Embodiment which concerns on this invention, and the temperature measuring device of a combustion engine. 本発明に係る第2の実施の形態の燃焼機関における本発明に係る実施の形態の立体装置の温度計測装置及び燃焼機関の温度計測装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the temperature measuring device of the three-dimensional apparatus of embodiment which concerns on this invention in the combustion engine of 2nd Embodiment which concerns on this invention, and the temperature measuring device of a combustion engine. ガス成分別における、受信ユニットで受信したテラヘルツ波の透過スペクトラムと温度による減衰量の大きい周波数との関係を説明するための図である。It is a figure for demonstrating the relationship between the transmission spectrum of the terahertz wave received with the receiving unit according to gas component, and the frequency with the large attenuation amount by temperature. 特定の濃度の特定のガス成分を通過したテラヘルツ波の特定周波数における温度と透過光強度比の対数との関係の一例を模式的に示す図である。It is a figure which shows typically an example of the relationship between the temperature in the specific frequency of the terahertz wave which passed the specific gas component of a specific density | concentration, and the logarithm of transmitted light intensity ratio.

以下、本発明に係る実施の形態の立体装置の温度計測装置、燃焼機関の温度計測装置、燃焼機関及び立体装置の温度計測方法について図面を参照しながら説明する。なお、本実施形態では、燃焼機関の例として内燃機関を、立体装置の例として、内燃機関の気筒(シリンダ)を採用して説明しているが、本発明はこれに限定されず、例えば、ガスタービン等を燃焼機関とし、その燃焼室を立体装置としてもよく、また、立体装置も燃焼機関に含まれるものでなくてもよい。   DESCRIPTION OF EMBODIMENTS Hereinafter, a three-dimensional device temperature measurement device, a combustion engine temperature measurement device, a combustion engine, and a three-dimensional device temperature measurement method according to embodiments of the present invention will be described with reference to the drawings. In the present embodiment, the internal combustion engine is described as an example of the combustion engine, and the cylinder (cylinder) of the internal combustion engine is employed as an example of the three-dimensional device. However, the present invention is not limited to this, for example, A gas turbine or the like may be a combustion engine, and its combustion chamber may be a three-dimensional device. The three-dimensional device may not be included in the combustion engine.

この本発明に係る実施の形態の立体装置の温度計測装置として、エンジン(内燃機関:燃焼機関)の気筒内の温度を測定する燃焼機関の温度計測装置で説明する。つまり、この実施の形態の立体装置の温度計測装置は、本発明の実施の形態の燃焼機関の温度計測装置でもあり、このエンジンは、本発明の実施の形態の燃焼機関でもある。   As a temperature measuring device for a three-dimensional apparatus according to an embodiment of the present invention, a temperature measuring device for a combustion engine that measures the temperature in a cylinder of an engine (internal combustion engine: combustion engine) will be described. That is, the temperature measuring device of the three-dimensional device of this embodiment is also the temperature measuring device of the combustion engine of the embodiment of the present invention, and this engine is also the combustion engine of the embodiment of the present invention.

図1に示すように、本発明に係る第1の実施の形態の燃焼機関1は、本発明に係る実施の形態の立体装置の温度計測装置((この実施例では、燃焼機関の温度計測装置となっている:以下、温度計測装置という)10を備えて構成される。この燃焼機関1は、ボイラーやガスタービン等の燃焼機関の場合であり、この燃焼機関1の燃焼室2の内部に空気Aと燃料Fを導入して燃焼させるために、空気供給装置3と燃料噴射装置4を設ける。これらの空気供給装置3と燃料噴射装置4には流量調整機能を備えて構成され、制御装置20に接続される。なお、図1の太線FLは燃料が燃えている火炎のイメージを示す。   As shown in FIG. 1, the combustion engine 1 of the first embodiment according to the present invention includes a three-dimensional device temperature measurement device (in this embodiment, a combustion engine temperature measurement device according to the present invention). The combustion engine 1 is a combustion engine such as a boiler or a gas turbine, and is disposed inside the combustion chamber 2 of the combustion engine 1. In order to introduce and burn the air A and the fuel F, an air supply device 3 and a fuel injection device 4 are provided.The air supply device 3 and the fuel injection device 4 are configured to have a flow rate adjusting function, and are controlled by a control device. 1, a thick line FL in Fig. 1 shows an image of a flame in which fuel is burning.

そして、この燃焼機関の温度計測装置10のテラヘルツ波Teの送信ユニット12と受信ユニット13を、燃焼室2の内部をテラヘルツ波Teが通過するように配置する。また、ガス成分供給装置(ガス供給ノズル)11iと、これらのガス成分供給装置11iのそれぞれの流量調整を行うための流量調整器15が設けられる。   Then, the transmission unit 12 and the reception unit 13 of the terahertz wave Te of the temperature measuring device 10 of this combustion engine are arranged so that the terahertz wave Te passes through the inside of the combustion chamber 2. In addition, a gas component supply device (gas supply nozzle) 11i and a flow rate adjuster 15 for adjusting the flow rate of each of these gas component supply devices 11i are provided.

これらのガス成分供給装置11iは、燃焼室2の内部に供給されるガス成分Giがテラヘルツ波Teと交差するように、テラヘルツ波Teの進行方向に沿って支持体5で支持される。この支持体5は、金属ブロック、金属メッシュ等の多孔質構造で形成することで、燃焼室2への影響を少なくすることが好ましい。また、ガス成分供給装置11iは、ラバルノズル等を用いてできるだけ拡散しないように、かつ、微量で噴射するように構成される。   These gas component supply devices 11i are supported by the support 5 along the traveling direction of the terahertz wave Te so that the gas component Gi supplied into the combustion chamber 2 intersects the terahertz wave Te. It is preferable to reduce the influence on the combustion chamber 2 by forming the support 5 with a porous structure such as a metal block or a metal mesh. Further, the gas component supply device 11i is configured to inject as little as possible by using a Laval nozzle or the like so as not to diffuse as much as possible.

燃焼機関1が図1に示すようなボイラーやガスタービン等の燃焼室2の場合には、内部空間Rで計測された温度Tmiを基にして、燃焼室2に備えられた空気供給装置3と燃料噴射装置4に対する指示信号を変更することで、例えば、温度上昇を検知したときに、供給空気量と燃料噴射量を低減する指示をする等で、燃焼室2への熱負荷を低減することが可能となる。   In the case where the combustion engine 1 is a combustion chamber 2 such as a boiler or a gas turbine as shown in FIG. 1, an air supply device 3 provided in the combustion chamber 2 based on the temperature Tmi measured in the internal space R; By changing the instruction signal for the fuel injection device 4, for example, when an increase in temperature is detected, an instruction to reduce the supply air amount and the fuel injection amount is given to reduce the thermal load on the combustion chamber 2. Is possible.

そして、図2に示すように、本発明に係る第2の実施の形態の燃焼機関1Aは、本発明に係る実施の形態の立体装置の温度計測装置(この実施例でも、燃焼機関の温度計測装置となっている:以下、温度計測装置という)10を備えて構成される。この燃焼機関1Aは、ピストン6を有する内燃機関の場合であり、この燃焼機関1Aの燃焼室2の内部に燃料Fを導入して燃焼させるために、燃料噴射装置4と、図示しないが吸気を導入するための吸気弁や燃焼ガスを排出するための排気弁が設けられる。   As shown in FIG. 2, the combustion engine 1 </ b> A according to the second embodiment of the present invention is a three-dimensional device temperature measurement device according to the present invention (also in this example, the temperature measurement of the combustion engine). It is a device: hereinafter, it is configured with a temperature measuring device 10). The combustion engine 1A is an internal combustion engine having a piston 6. In order to introduce and burn the fuel F into the combustion chamber 2 of the combustion engine 1A, the fuel injection device 4 and intake air (not shown) are taken. An intake valve for introduction and an exhaust valve for discharging combustion gas are provided.

それとともに、この燃焼機関の温度計測装置10のテラヘルツ波Teの送信ユニット12と受信ユニット13が、テラヘルツ波Teが燃焼室2の内部を通過するように配置される。また、ガス成分供給装置11iが、燃焼室2の内部に供給されるガス成分Giがテラヘルツ波Teと交差するように、テラヘルツ波Teの進行方向に沿って配置される。このガス成分供給装置11iは、シリンダヘッド7側に埋め込まれ、内部空間Rの計測領域Rmに設けられた小計測流域Rmiにガス成分(分子)Giを、ラバルノズル等を用いてできるだけ拡散しないように、かつ、微量で噴射するように構成される。さらに、燃焼機関の温度計測装置10が、小計測流域Rmiで検出された温度Tmiが予め設定した温度以上の高温部分が検出されたときには、燃料噴射装置4からの燃料噴射量を低減させるように制御される。   At the same time, the transmission unit 12 and the reception unit 13 of the terahertz wave Te of the temperature measuring device 10 of this combustion engine are arranged so that the terahertz wave Te passes through the inside of the combustion chamber 2. Further, the gas component supply device 11i is arranged along the traveling direction of the terahertz wave Te so that the gas component Gi supplied into the combustion chamber 2 intersects the terahertz wave Te. This gas component supply device 11i is embedded on the cylinder head 7 side so that the gas component (molecule) Gi is not diffused as much as possible to the small measurement flow area Rmi provided in the measurement area Rm of the internal space R using a Laval nozzle or the like. And it is configured to inject in a minute amount. Further, when the temperature measurement device 10 of the combustion engine detects a high temperature portion where the temperature Tmi detected in the small measurement basin Rmi is equal to or higher than a preset temperature, the fuel injection amount from the fuel injection device 4 is reduced. Be controlled.

そして、より詳細には、図1及び図2に示すように、この温度計測装置10は、エンジン(立体装置)1の内部空間Rの内部の計測領域Rmに設けられた小計測領域Rmiの温度Tmiを計測する温度計測装置であり、この温度計測装置10において、この計測領域Rmの内部に設定された小計測領域Rmiのそれぞれに対して異なる種類のガス成分Giを供給するガス成分供給装置11iと、この計測領域Rmに向けて周波数が0.01THz〜10THzの範囲内にある複数の波長のテラヘルツ波Teを送信する送信ユニット12と、計測領域Rmを通過してくる複数の波長のテラヘルツ波Teを受信する受信ユニット13を備えて構成される。   In more detail, as shown in FIGS. 1 and 2, the temperature measurement device 10 includes a temperature of a small measurement region Rmi provided in a measurement region Rm inside the internal space R of the engine (stereoscopic device) 1. This is a temperature measurement device that measures Tmi. In this temperature measurement device 10, gas component supply devices 11i that supply different types of gas components Gi to each of the small measurement regions Rmi set inside the measurement region Rm. And a transmission unit 12 that transmits terahertz waves Te having a plurality of wavelengths in the range of 0.01 THz to 10 THz toward the measurement region Rm, and terahertz waves having a plurality of wavelengths that pass through the measurement region Rm. The receiving unit 13 is configured to receive Te.

それと共に、受信ユニット13で受信した複数の波長のテラヘルツ波Teの強度の変化量と、予め実験などにより設定されたガス成分Giのそれぞれにおけるテラヘルツ波Teの各波長での変化特性と比較して、小計測領域Rmiのそれぞれにおける温度Tmiを算出する温度算出装置14を備えて構成される。   At the same time, the amount of change in the intensity of the terahertz waves Te of a plurality of wavelengths received by the receiving unit 13 is compared with the change characteristics at each wavelength of the terahertz waves Te in each of the gas components Gi set in advance by experiments or the like. The temperature calculation device 14 that calculates the temperature Tmi in each of the small measurement regions Rmi is provided.

そして、送信ユニット12から送信されるテラヘルツ波Teの進行方向とガス成分供給装置11iから噴射される各ガス成分Giの噴射方向とが交差するように、送信ユニット12と受信ユニット13とガス成分供給装置11iを配置して構成する。これにより、テラヘルツ波Teの一つの進行方向に対して、複数の小計測領域Rmiの温度Tmiを同時に計測できるようにして効率よく温度計測できるようにする。   Then, the transmission unit 12, the reception unit 13, and the gas component supply are performed so that the traveling direction of the terahertz wave Te transmitted from the transmission unit 12 and the injection direction of each gas component Gi injected from the gas component supply device 11i intersect each other. The apparatus 11i is arranged and configured. Thereby, the temperature Tmi of a plurality of small measurement regions Rmi can be simultaneously measured with respect to one traveling direction of the terahertz wave Te so that the temperature can be efficiently measured.

また、送信ユニット12と受信ユニット13とガス成分供給装置11iのいずれか一つ又はいくつかの組み合わせ又は全部を移動可能に構成して、テラヘルツ波Teの進行方向となる計測領域Rm、又は、ガス成分Giが供給される小計測領域Rmiの位置を変更することができ、立体装置1の内部空間Rの多くの場所を少ない装置で計測できるようになる。   In addition, any one or some combination or all of the transmission unit 12, the reception unit 13, and the gas component supply device 11i are configured to be movable, and the measurement region Rm that is the traveling direction of the terahertz wave Te or the gas The position of the small measurement region Rmi to which the component Gi is supplied can be changed, and many places in the internal space R of the stereoscopic apparatus 1 can be measured with a small number of apparatuses.

次に本発明に係る実施の形態の立体装置の温度計測方法について説明する。この立体装置の温度計測方法は、立体装置の内部空間Rの温度Tmiを計測する温度計測方法であり、この方法において、計測領域Rmの内部に設定された小計測領域Rmiのそれぞれに対して異なる種類のガス成分Giを供給すると共に、立体装置の内部空間Rに向けて周波数が0.01THz〜10THzの範囲内にある複数の波長のテラヘルツ波Teを内部空間Rの計測領域Rmに送信して、計測領域Rmを通過してくる複数の波長のテラヘルツ波Teを受信して複数の波長のテラヘルツ波Teの強度を検出して、この複数の波長のテラヘルツ波Teの強度の変化量と、予め設定されたガス成分Giのそれぞれにおけるテラヘルツ波Teの各波長での変化特性と比較して、小計測領域Rmiのそれぞれにおける温度Tmiを算出することを特徴とする方法である。   Next, a temperature measurement method for the three-dimensional apparatus according to the embodiment of the present invention will be described. This temperature measurement method of the three-dimensional device is a temperature measurement method for measuring the temperature Tmi of the internal space R of the three-dimensional device, and in this method, it is different for each of the small measurement regions Rmi set inside the measurement region Rm. While supplying various types of gas components Gi, terahertz waves Te having a plurality of wavelengths in the range of 0.01 THz to 10 THz are transmitted to the measurement region Rm of the internal space R toward the internal space R of the three-dimensional device. , Receiving the terahertz waves Te of a plurality of wavelengths passing through the measurement region Rm, detecting the intensities of the terahertz waves Te of the plurality of wavelengths, and the amount of change in the intensity of the terahertz waves Te of the plurality of wavelengths, The temperature Tmi in each of the small measurement regions Rmi is calculated by comparing with the change characteristics at each wavelength of the terahertz wave Te in each of the set gas components Gi. Is a method which is characterized in.

上記の構成の温度計測装置10及び立体装置の温度計測方法によれば、計測領域Rmを通過した複数の波長のテラヘルツ波Teを受信ユニット13で受信して、この受信した信号強度(計測領域を通過した透過強度)の変化量(減衰量)を、温度算出装置内の演算機構で、理論的に計算される各周波数のテラヘルツ波Teの減衰量と温度の関係と比較し、テラヘルツ波Teの通過領域である計測領域Rmに設けられた小計測領域Rmiの各ガス成分Gi中を通過して吸収された信号強度から、小計測領域Rmiのそれぞれにおける、それぞれのガス成分(分子)Giに対しての温度Tiを算出し、これらの温度Tiから計測領域Rmiの温度Tmiを算出する。なお、このテラヘルツ波Teの強度は、テラヘルツ波Teの振幅と密接な関係を持っているので、テラヘルツ波Teの振幅を検出又は算出できる場合はこの振幅を強度の代用としてもよい。   According to the temperature measuring device 10 and the three-dimensional device temperature measuring method configured as described above, the reception unit 13 receives the terahertz waves Te having a plurality of wavelengths that have passed through the measurement region Rm, and receives the received signal strength (measurement region as the measurement region). The amount of change (attenuation) of the transmitted transmission intensity) is compared with the relationship between the attenuation of the terahertz wave Te of each frequency theoretically calculated by the calculation mechanism in the temperature calculation device and the temperature, and the terahertz wave Te From the signal intensity absorbed through each gas component Gi in the small measurement region Rmi provided in the measurement region Rm, which is the passage region, for each gas component (molecule) Gi in each of the small measurement regions Rmi All the temperatures Ti are calculated, and the temperature Tmi of the measurement region Rmi is calculated from these temperatures Ti. Note that the intensity of the terahertz wave Te has a close relationship with the amplitude of the terahertz wave Te. Therefore, when the amplitude of the terahertz wave Te can be detected or calculated, this amplitude may be used as a substitute for the intensity.

この構成では、立体装置の内部空間Rの温度Tmiを算出するために、計測領域Rmの内部に設定された小計測領域Rmiのそれぞれに対して異なる種類のガス成分Giを供給すると共に、複数の波長のテラヘルツ波Teを送信する。図3に示すように、この複数の波長のテラヘルツ波Teの強度の変化量(減衰量又は吸収量)と温度Tの関係が顕著に表れる波長(又は、周波数=波の位相速度/波長)は、ガス成分Giの種類によって異なるので、この波長の使い分けにより、それぞれのガス成分Giが供給された小計測領域Rmiにおける温度Tmiを算出することができる。   In this configuration, in order to calculate the temperature Tmi of the internal space R of the three-dimensional device, different types of gas components Gi are supplied to each of the small measurement regions Rmi set inside the measurement region Rm, and a plurality of gas components Gi are supplied. A terahertz wave Te having a wavelength is transmitted. As shown in FIG. 3, the wavelength (or frequency = wave phase velocity / wavelength) at which the relationship between the amount of change in the intensity (attenuation or absorption) of the terahertz wave Te having a plurality of wavelengths and the temperature T appears remarkably is The temperature Tmi in the small measurement region Rmi to which each gas component Gi is supplied can be calculated by properly using the wavelength, since it varies depending on the type of the gas component Gi.

そして、この計測領域Rmの温度Tmに起因するテラヘルツ波Teの変化量と、計測領域Rmの温度Tmとの関係は、図4に示すように、各ガス成分Gi及びその濃度に対して、予め実験等により求めておき、それぞれのガス成分Gi別に更にその濃度別に図4に示すような較正データを作成しておく。このガス成分Gi別かつその濃度別の較正データに基づいて、温度計測時において、検出したテラヘルツ波Teの変化量から、小計測領域Rmiの温度Tmiを算出する。つまり、ガス成分Giの濃度はガス供給装置11iでその供給量を測定できるので、その供給量に相当するガス成分Giの濃度に対応する較正データにより、温度Tiを算出する。なお、使用するテラヘルツ波Teの波長の数としては、2つ以上で、上限は実用的に定まり、計算能力を考えると100程度であるが、通常は2〜8程度が考えられる。   The relationship between the amount of change in the terahertz wave Te caused by the temperature Tm in the measurement region Rm and the temperature Tm in the measurement region Rm is shown in FIG. 4 in advance for each gas component Gi and its concentration. Calibration data as shown in FIG. 4 is created for each gas component Gi and for each concentration. Based on the calibration data for each gas component Gi and for each concentration, the temperature Tmi of the small measurement region Rmi is calculated from the amount of change in the detected terahertz wave Te during temperature measurement. That is, since the supply amount of the gas component Gi can be measured by the gas supply device 11i, the temperature Ti is calculated from the calibration data corresponding to the concentration of the gas component Gi corresponding to the supply amount. Note that the number of wavelengths of the terahertz wave Te to be used is two or more, and the upper limit is practically determined and is about 100 in terms of calculation capability, but normally about 2 to 8 is conceivable.

なお、ガス成分Giの濃度はガス供給装置11iで測定した値を用いることができるが、使用するテラヘルツ波Teの波長の数が多いときには、小計測領域Rmiの温度Tmiだけでなく、この温度Tmiを基準にして、テラヘルツ波Teの減衰量からガス成分Giの濃度を算出できるので、この計測で得た取得データのガス成分Giの濃度とガス供給装置11iで測定した既知のガス成分Giの濃度値とを比較して、ガス供給装置11iにおけるガス成分Giの供給精度のチェックやテラヘルツ波Teによる計測の精度チェックを行うことが好ましい。   Although the concentration measured by the gas supply device 11i can be used as the concentration of the gas component Gi, when the number of wavelengths of the terahertz wave Te used is large, not only the temperature Tmi of the small measurement region Rmi but also this temperature Tmi. Therefore, the concentration of the gas component Gi can be calculated from the attenuation amount of the terahertz wave Te. Therefore, the concentration of the gas component Gi in the acquired data obtained by this measurement and the concentration of the known gas component Gi measured by the gas supply device 11i. It is preferable to compare the values and check the supply accuracy of the gas component Gi in the gas supply device 11i and the measurement accuracy of the terahertz wave Te.

言い換えれば、それぞれのガス成分Gi毎に、テラヘルツ波Teの減衰量を検出することにより、受信ユニット13で検出されたテラヘルツ波Teの強度から算出される温度Tに対して、それぞれのガス成分Giに対応する温度Tiを、それぞれのガス成分Giが供給された小計測領域Rmiの温度Tmiとして計測できることになる。なお、使用するガス成分Giの種類の数としては、同時に計測する小計測領域Tmiの数(i=1〜I:I=正数)となるが、この供給するガス成分(分子)Giとしては、酸素、一酸化炭素、二酸化窒素、一酸化窒素、水、未燃HC等が考えられる。このガス成分としては、温度差によりテラヘルツ波Teで吸収スペクトラムの差が検出可能で、かつ、熱分解しないかあるいは熱分解し難いガス成分(分子)を選択する必要がある。   In other words, by detecting the attenuation amount of the terahertz wave Te for each gas component Gi, each gas component Gi with respect to the temperature T calculated from the intensity of the terahertz wave Te detected by the receiving unit 13. Can be measured as the temperature Tmi of the small measurement region Rmi supplied with the respective gas components Gi. The number of types of gas components Gi to be used is the number of small measurement regions Tmi (i = 1 to I: I = positive number) to be measured at the same time. As the gas components (molecules) Gi to be supplied, , Oxygen, carbon monoxide, nitrogen dioxide, nitric oxide, water, unburned HC, and the like. As this gas component, it is necessary to select a gas component (molecule) that can detect a difference in absorption spectrum with a terahertz wave Te due to a temperature difference and that is not thermally decomposed or difficult to thermally decompose.

従って、電波の透過性と光の直進性を有する、電波と光の中間の波長を持つ、周波数が0.01THz〜10THzの範囲のテラヘルツ波Teを活用することにより、ボイラーやガスタービンなどの燃焼装置1や内燃機関などの燃焼装置1Aの内部空間Rのように、立体装置の内部空間Rの局所的な領域Rmiの温度Tmiを、従来技術よりも低コストかつ高精度で計測でき、その結果、立体装置の内部空間Rの温度Tmiを低コストかつ高精度で計測することができる。   Therefore, combustion of boilers, gas turbines, and the like by utilizing a terahertz wave Te having a radio wave permeability and light straightness, having an intermediate wavelength between radio waves and light and having a frequency in the range of 0.01 THz to 10 THz. Like the internal space R of the combustion apparatus 1A such as the apparatus 1 or the internal combustion engine, the temperature Tmi of the local region Rmi of the internal space R of the three-dimensional apparatus can be measured with lower cost and higher accuracy than the prior art, and as a result The temperature Tmi of the internal space R of the stereoscopic apparatus can be measured with low cost and high accuracy.

そして、上記の構成の立体装置の温度計測装置10、燃焼機関の温度計測装置10、燃焼機関及び立体装置の温度計測方法によれば、電波の透過性と光の直進性を有する、電波と光の中間の波長を持つ、周波数が0.01THz〜10THzの範囲の複数の波長のテラヘルツ波Teを活用して、計測領域Rmの内部に設定された小計測領域Rmiのそれぞれに対して異なる種類のガス成分Giを供給して、それぞれのガス成分Giに対するテラヘルツ波Teの各波長での変化特性から各ガス成分Giの温度Tiを算出することで、それぞれのガス成分Giが供給された小計測領域Rmiにおける温度Tmiを算出することができるので、エンジン1の気筒の内部空間Rのように、立体装置の内部空間Rの局所的な領域Rmiの温度Tmiを、従来技術よりも低コストかつ高精度で計測でき、その結果、立体装置の内部空間Rの温度Tmiを低コストかつ高精度で計測することができる。   According to the three-dimensional device temperature measuring device 10, the combustion engine temperature measuring device 10, and the combustion engine and three-dimensional device temperature measuring method configured as described above, the radio wave and light having radio wave permeability and light straightness are provided. By utilizing terahertz waves Te having a wavelength in the range of 0.01 THz to 10 THz and having a frequency in the range of 0.01 THz to 10 THz, different types of small measurement regions Rmi set inside the measurement region Rm By supplying the gas component Gi and calculating the temperature Ti of each gas component Gi from the change characteristics at each wavelength of the terahertz wave Te with respect to each gas component Gi, a small measurement region to which each gas component Gi is supplied Since the temperature Tmi in Rmi can be calculated, the temperature Tmi of the local region Rmi in the internal space R of the three-dimensional device, like the internal space R of the cylinder of the engine 1, Than coming technology can be measured at low cost and with high accuracy, as a result, it is possible to measure the temperature Tmi of the internal space R of the three-dimensional device at low cost and with high accuracy.

また、従来技術のような精度良く位置を特定することが難しい発光強度を検出した蛍光体の存在位置ではなく、テラヘルツ波Teの送信及び受信の位置及び各ガス成分Giが供給される位置を用いるので、これらの位置を正確に確定でき、テラヘルツ波Teが通過する計測領域Rmと各ガス成分Giが供給される小計測領域Rmiのそれぞれの位置を明確に把握した上で、温度Tmiを計測できるので、計測位置が正確となる。   In addition, the position where the terahertz wave Te is transmitted and received, and the position where each gas component Gi is supplied, are used instead of the position where the fluorescent substance whose emission intensity is difficult to be detected as in the prior art is detected. Therefore, these positions can be accurately determined, and the temperature Tmi can be measured after clearly knowing the positions of the measurement region Rm through which the terahertz wave Te passes and the small measurement region Rmi to which each gas component Gi is supplied. Therefore, the measurement position becomes accurate.

更に、この構成では、従来技術のレーザー誘起蛍光法のように、蛍光体とレーザー光を使用しないので、レーザー光学系の設備が不要になる上に、立体装置の内部空間の各領域の温度を計測するための多数の部品を配置する必要がなくなるので、装置が簡略化され、低コスト化することができる。   Further, in this configuration, unlike the laser-induced fluorescence method of the prior art, no phosphor and laser light are used, so that there is no need for laser optical equipment, and the temperature of each area of the internal space of the three-dimensional device is set. Since there is no need to arrange a large number of parts for measurement, the apparatus can be simplified and the cost can be reduced.

また、立体装置の内部空間Rに蛍光体を混入しないので、通常の内燃機関の気筒の内部空間等でも使用できるようになり、本発明の温度計測装置10を採用できる内部空間Rは制限されなくなる。その上、蛍光体の失活現象により温度の推定が難しくなることもない。   Further, since the phosphor is not mixed in the internal space R of the three-dimensional device, it can be used even in the internal space of a cylinder of a normal internal combustion engine, and the internal space R in which the temperature measuring device 10 of the present invention can be used is not limited. . In addition, it is not difficult to estimate the temperature due to the phosphor deactivation phenomenon.

1、1A 燃焼機関
2 燃焼室
3 空気供給装置
4 燃料噴射装置
5 支持体
6 ピストン
7 シリンダヘッド
10 立体装置の温度計測装置
11i ガス成分供給装置
12 送信ユニット
13 受信ユニット
14 温度算出装置
15 流量調整器
20 制御装置
Gi ガス成分
R 内部空間
Rm 計測領域
Rmi 小計測領域
Te テラヘルツ波(発信波)
DESCRIPTION OF SYMBOLS 1, 1A Combustion engine 2 Combustion chamber 3 Air supply apparatus 4 Fuel injection apparatus 5 Support body 6 Piston 7 Cylinder head 10 Three-dimensional apparatus temperature measurement apparatus 11i Gas component supply apparatus 12 Transmission unit 13 Reception unit 14 Temperature calculation apparatus 15 Flow rate adjuster 20 Control device Gi Gas component R Internal space Rm Measurement area Rmi Small measurement area Te Terahertz wave (transmitted wave)

Claims (6)

立体装置の内部空間の温度を計測する温度計測装置において、
前記計測領域の内部に設定された小計測領域のそれぞれに対して異なる種類のガス成分を供給するガス成分供給装置と、
前記立体装置の前記内部空間に向けて周波数が0.01THz〜10THzの範囲内にある複数の波長のテラヘルツ波を前記内部空間の計測領域に送信する送信ユニットと、
前記計測領域を通過してくる複数の波長のテラヘルツ波を受信する受信ユニットと、
前記受信ユニットで受信した複数の波長のテラヘルツ波の強度の変化量と、予め設定された前記ガス成分のそれぞれにおけるテラヘルツ波の各波長での変化特性と比較して、前記小計測領域のそれぞれにおける温度を算出する温度算出装置を備えて構成されることを特徴とする立体装置の温度計測装置。
In the temperature measurement device that measures the temperature of the internal space of the three-dimensional device,
A gas component supply device that supplies different types of gas components to each of the small measurement regions set inside the measurement region;
A transmission unit for transmitting terahertz waves having a plurality of wavelengths within a range of 0.01 THz to 10 THz toward the internal space of the stereoscopic apparatus to the measurement region of the internal space;
A receiving unit for receiving terahertz waves of a plurality of wavelengths passing through the measurement region;
Compared with the amount of change in the intensity of the terahertz waves of a plurality of wavelengths received by the receiving unit and the change characteristics of each of the terahertz waves in each wavelength of the gas component set in advance, in each of the small measurement regions A temperature measuring device for a three-dimensional device, comprising a temperature calculating device for calculating temperature.
前記送信ユニットから送信されるテラヘルツ波の進行方向と前記ガス成分供給装置から噴射される各ガス成分の噴射方向とが交差するように、前記送信ユニットと前記受信ユニットとガス成分供給装置を配置して構成される請求項1に記載の立体装置の温度計測装置。   The transmission unit, the reception unit, and the gas component supply device are arranged so that the traveling direction of the terahertz wave transmitted from the transmission unit intersects the injection direction of each gas component injected from the gas component supply device. The temperature measuring device for a three-dimensional device according to claim 1 configured as described above. 前記送信ユニットと前記受信ユニットとガス成分供給装置のいずれか一つ又はいくつかの組み合わせ又は全部が移動可能に構成される請求項1又は2に記載の立体装置の温度計測装置。   The temperature measuring device for a three-dimensional device according to claim 1 or 2, wherein any one or some combination or all of the transmission unit, the reception unit, and the gas component supply device are configured to be movable. 請求項1〜3のいずれか1項に記載の立体装置の温度計測装置を備えて、燃焼機関の内部空間の温度を計測するように構成された燃焼機関の温度計測装置。   A temperature measuring device for a combustion engine comprising the three-dimensional device temperature measuring device according to any one of claims 1 to 3 and configured to measure a temperature of an internal space of the combustion engine. 請求項4の燃焼機関の温度計測装置を備えた燃焼機関。   A combustion engine comprising the combustion engine temperature measuring device according to claim 4. 立体装置の内部空間の温度を計測する温度計測方法において、
前記計測領域の内部に設定された小計測領域のそれぞれに対して異なる種類のガス成分を供給すると共に、
前記立体装置の前記内部空間に向けて周波数が0.01THz〜10THzの範囲内にある複数の波長のテラヘルツ波を前記内部空間の計測領域に送信して、
前記計測領域を通過してくる複数の波長のテラヘルツ波を受信して複数の波長のテラヘルツ波の強度を検出して、
この複数の波長のテラヘルツ波の強度の変化量と、予め設定された前記ガス成分のそれぞれにおけるテラヘルツ波の各波長での変化特性と比較して、前記小計測領域のそれぞれにおける温度を算出することを特徴とする立体装置の温度計測方法。
In the temperature measurement method for measuring the temperature of the internal space of the three-dimensional device,
While supplying different types of gas components to each of the small measurement areas set inside the measurement area,
Transmitting terahertz waves having a plurality of wavelengths within a range of 0.01 THz to 10 THz toward the internal space of the stereoscopic apparatus to the measurement region of the internal space;
Receiving the terahertz waves of a plurality of wavelengths passing through the measurement region and detecting the intensity of the terahertz waves of a plurality of wavelengths;
The amount of change in the intensity of the terahertz waves of the plurality of wavelengths is compared with the change characteristics at each wavelength of the terahertz wave in each of the gas components set in advance, and the temperature in each of the small measurement regions is calculated. A method for measuring the temperature of a three-dimensional apparatus characterized by the above.
JP2015178530A 2015-09-10 2015-09-10 Three-dimensional device temperature measuring device, combustion engine temperature measuring device, combustion engine and three-dimensional device temperature measuring method Active JP6558164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015178530A JP6558164B2 (en) 2015-09-10 2015-09-10 Three-dimensional device temperature measuring device, combustion engine temperature measuring device, combustion engine and three-dimensional device temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015178530A JP6558164B2 (en) 2015-09-10 2015-09-10 Three-dimensional device temperature measuring device, combustion engine temperature measuring device, combustion engine and three-dimensional device temperature measuring method

Publications (2)

Publication Number Publication Date
JP2017053755A true JP2017053755A (en) 2017-03-16
JP6558164B2 JP6558164B2 (en) 2019-08-14

Family

ID=58316294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015178530A Active JP6558164B2 (en) 2015-09-10 2015-09-10 Three-dimensional device temperature measuring device, combustion engine temperature measuring device, combustion engine and three-dimensional device temperature measuring method

Country Status (1)

Country Link
JP (1) JP6558164B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004251766A (en) * 2003-02-20 2004-09-09 Yukio Yamada Temperature measuring method, and measuring instrument used therefor
WO2009070667A1 (en) * 2007-11-30 2009-06-04 Shell Oil Company Methods of identifying fluids using terahertz irradiation
JP2011058374A (en) * 2009-09-07 2011-03-24 Nippon Soken Inc Method for detecting collection distribution of particulate matter and device therefor
JP2011137445A (en) * 2009-12-01 2011-07-14 Ngk Insulators Ltd Method and device for detecting accumulation amount of particulate matter
CN103076107A (en) * 2013-01-17 2013-05-01 杭州电子科技大学 Terahertz pulse measurement-based burning temperature sensing device and method
JP2013249838A (en) * 2012-05-30 2013-12-12 General Electric Co <Ge> Flame detection in no-flame region of gas turbine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004251766A (en) * 2003-02-20 2004-09-09 Yukio Yamada Temperature measuring method, and measuring instrument used therefor
WO2009070667A1 (en) * 2007-11-30 2009-06-04 Shell Oil Company Methods of identifying fluids using terahertz irradiation
JP2011058374A (en) * 2009-09-07 2011-03-24 Nippon Soken Inc Method for detecting collection distribution of particulate matter and device therefor
JP2011137445A (en) * 2009-12-01 2011-07-14 Ngk Insulators Ltd Method and device for detecting accumulation amount of particulate matter
JP2013249838A (en) * 2012-05-30 2013-12-12 General Electric Co <Ge> Flame detection in no-flame region of gas turbine
CN103076107A (en) * 2013-01-17 2013-05-01 杭州电子科技大学 Terahertz pulse measurement-based burning temperature sensing device and method

Also Published As

Publication number Publication date
JP6558164B2 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
Docquier et al. Combustion control and sensors: a review
Simonsson et al. Wavelength dependence of extinction in sooting flat premixed flames in the visible and near-infrared regimes
JP4038631B2 (en) High-speed measurement method and system for temperature, concentration, and chemical species using semiconductor laser spectroscopy
RU2573168C2 (en) Method and device to detect concentration of soot in motor oil of internal combustion engines
CN102116192B (en) Systems and apparatus relating to the monitoring and/or controlling of selective catalytic reduction processes
RU2452922C2 (en) Apparatus for measuring parameters of fluid medium
US9157780B2 (en) Device generating exhaust gas, especially a boat, comprising a system for determining the volume of exhaust gas
US20140016130A1 (en) Method and system for gas measurements in a combustion chamber
RU2456549C2 (en) Apparatus for measuring parameters of fluid medium and method of measuring parameters of fluid medium
Payri et al. Experimental study of the influence of the fuel and boundary conditions over the soot formation in multi-hole diesel injectors using high-speed color diffused back-illumination technique
US20130195245A1 (en) Method for characterizing flame and spray structures in windowless chambers
Zhang et al. Droplet temperature measurement based on 2-color laser-induced exciplex fluorescence
Adam et al. Visualization of the evaporation of a diesel spray using combined Mie and Rayleigh scattering techniques
JP6558164B2 (en) Three-dimensional device temperature measuring device, combustion engine temperature measuring device, combustion engine and three-dimensional device temperature measuring method
WO2014030555A1 (en) Leaked fuel measurement method and leaked fuel measurement device for internal combustion engine
Lee et al. Quantitative measurements of soot particles in a laminar diffusion flame using a LII/LIS technique
JP2017191017A (en) Temperature and concentration measurement device of solid device, temperature and concentration measurement device of combustion engine, temperature and concentration measurement method of combustion engine and solid device
Wang et al. Industrial applications of tunable diode laser absorption spectroscopy
JP6476922B2 (en) Temperature and concentration measuring device for three-dimensional device, temperature and concentration measuring device for combustion engine, temperature and concentration measuring method for combustion engine and three-dimensional device
US20160069822A1 (en) Method and device for determining at least one concentration of coal particles in a gas flow
Xavier et al. Phosphor thermometry on a rotating flame holder for combustion applications
Pal et al. A computational study of tomographic measurement of carbon monoxide at minor concentrations
Wu et al. A Comprehensive Review of Optical Systems for Soot Volume Fraction Measurements in Co-Flow Laminar Flames: Laser-Induced Incandescence (LII) and Laser Extinction Method (LEM)
Potenza et al. Two‐dimensional measurements of primary soot diameter in diffusion flames by two‐dimensional time resolved laser induced incandescence
Stone et al. Optical techniques that can be applied to investigate GDI engine combustion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190701

R150 Certificate of patent or registration of utility model

Ref document number: 6558164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150