JP2011058370A - Savonius wind power generator and savonius wind turbine - Google Patents

Savonius wind power generator and savonius wind turbine Download PDF

Info

Publication number
JP2011058370A
JP2011058370A JP2009205658A JP2009205658A JP2011058370A JP 2011058370 A JP2011058370 A JP 2011058370A JP 2009205658 A JP2009205658 A JP 2009205658A JP 2009205658 A JP2009205658 A JP 2009205658A JP 2011058370 A JP2011058370 A JP 2011058370A
Authority
JP
Japan
Prior art keywords
wind
box
savonius
blades
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009205658A
Other languages
Japanese (ja)
Other versions
JP5187974B2 (en
Inventor
Junji Takahashi
順治 高橋
Osami Takahashi
長美 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009205658A priority Critical patent/JP5187974B2/en
Publication of JP2011058370A publication Critical patent/JP2011058370A/en
Application granted granted Critical
Publication of JP5187974B2 publication Critical patent/JP5187974B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Savonius wind power generator and a Savonius wind turbine used for the Savonius wind power generator, recovering wind power energy by a wind turbine stored in a box, compactly controlling the box itself in a wind direction and efficiently converting the wind power energy into electric energy by simplifying control over the excessive rotation of the wind turbine during strong wind. <P>SOLUTION: This wind power generator includes as constituent elements, the wing turbine, a wind turbine direction control section, an excessive rotation control section, a power transmission device, a generator, and a tower. The wind direction control section 5 is composed of the side plates 11 of the box 14 formed by an area ratio rotating the box 14 on the windward, air guide paths 19, and a chevron-shaped wind receiving projection 12 with the center of the box 14 in a horizontal direction as an apex. The Savonius wind turbine 4 is configured by alternately arranging two types of aerofoil blades, namely, arcuate blades 26, 28 and ship bottom-like blades 27, 29, and a restriction flow passage 30 is formed between aerofoil profiles having different shapes. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、風力エネルギーを電気エネルギーに変換する風力発電技術に関し、詳しくはサボニウス型風力発電装置と、該サボニウス型風力発電装置に使用されるサボニウス型風車に関する。   The present invention relates to wind power generation technology that converts wind energy into electrical energy, and more particularly to a Savonius type wind power generator and a Savonius type windmill used in the Savonius type wind power generator.

従来から提案されているサボニウス型風車は、特許文献1に開示されているように、回転可能に支持された垂直軸に対して点対称に円弧面を有する一対のブレードを固着し、各ブレードに垂直軸に平行なスリットを穿孔し、ブレード回転軸の渦流を小さくするものや、特許文献2に示されるように、ブレードに相当する円弧状の受風板を入力軸(垂直軸)に対して上下二段に渡ってそれぞれ点対称に接合したものなどである。
一方、曝気装置に使用される二対のサボニウス型風車が、それぞれ帯同士相互を互いに回転方向を反対にして対毎のシャフトの下方に連結された撹拌部材を互いに反対方向に回転させて装置全体の回転を抑制する技術が、特許文献3に開示されている。
前記の特許文献1、2の技術からは、翼形の形態の異なるブレードの組み合わせによる高トルク発現の技術思想は創出できないものである。
また、特許文献3に開示された技術は、各一対のサボニウス型風車が、同方向に回転し入力された風力エネルギーを下方のスクリューに伝達するに過ぎず、両風車から得られる風力エネルギーを集合して発電機へ入力する技術は、何ら開示されていないものである上、ブレードの翼形も一般的に公知なものである。
さらに、風車の風向方向制御としては、特許文献4や特許文献5に開示されているように、尾翼による制御である。
また、風車の過回転制御としては、特許文献6に提案されているように、風車翼の翼ピッチ角度を変えるものや、特許文献7に提案されているように、ブレードの回転を停止させるものなどである。
このような特許文献4乃至7に提案された風向制御技術や過回転制御技術は、ボックス内に収納される一対のサボニウス型風車には採用できない技術である。
As disclosed in Patent Document 1, a Savonius type windmill that has been proposed conventionally has a pair of blades having an arc surface symmetrically with respect to a vertical axis that is rotatably supported, and is attached to each blade. A slit parallel to the vertical axis is perforated to reduce the eddy current of the blade rotation axis, and as shown in Patent Document 2, an arc-shaped wind receiving plate corresponding to the blade is connected to the input axis (vertical axis). They are joined point-symmetrically over two upper and lower stages.
On the other hand, the two pairs of Savonius type windmills used in the aeration apparatus rotate the stirring members connected below the shafts of each pair in opposite directions with the belts rotating in opposite directions. Patent Document 3 discloses a technique for suppressing the rotation of the lens.
From the techniques of Patent Documents 1 and 2 described above, it is impossible to create a technical idea of high torque expression by combining blades having different airfoil shapes.
Further, the technology disclosed in Patent Document 3 is that each pair of Savonius-type wind turbines merely transmits wind energy input by rotating in the same direction to the lower screw, and collects wind energy obtained from both wind turbines. The technology for inputting to the generator is not disclosed at all, and the blade airfoil is also generally known.
Further, as the wind direction control of the windmill, as disclosed in Patent Document 4 and Patent Document 5, control by the tail is used.
Further, as the over-rotation control of the wind turbine, as proposed in Patent Document 6, the blade pitch angle of the wind turbine blade is changed, or as proposed in Patent Document 7, the rotation of the blade is stopped. Etc.
Such wind direction control technology and over-rotation control technology proposed in Patent Documents 4 to 7 cannot be applied to a pair of Savonius type wind turbines housed in a box.

特開平6−323237号公報JP-A-6-323237 特開2005―83206号公報JP-A-2005-83206 実用新案登録第3131007号Utility model registration No. 3131007 特開2006―132514号公報JP 2006-132514 A 特開2006―322383号公報JP 2006-322383 A 特開2008―184932号公報JP 2008-184932 A 特開2007―046575号公報JP 2007-046575 A

本発明は、ボックスに収める風車により、風力エネルギーを回収でき、ボックス自体をコンパクトに風向方向制御できるとともに、強風時の前記風車の過回転制御を簡易にして、風力エネルギーを効率的に電気エネルギーに変換できるサボニウス型風力発電装置と、該サボニウス型風力発電装置に用いられるサボニウス型風車の提供をその目的とするものである。   According to the present invention, wind energy can be recovered by a windmill housed in a box, the box itself can be compactly controlled in the direction of the wind, and overwind control of the windmill in a strong wind is simplified to efficiently convert wind energy into electrical energy. It is an object of the present invention to provide a Savonius type wind turbine generator that can be converted and a Savonius wind turbine used in the Savonius wind turbine generator.

上記課題を達成するための本発明の請求項1に記載したサボニウス型風力発電装置は、風車と、風向方向制御部と、過回転制御部と、動力伝達装置と、発電機と、タワーとを構成要素とする風力発電装置において、
前記風車が、タワー頂部で動力伝達装置の出力軸を中心に回転自在に軸支される風車装置のボックス内に対設されるとともに、左右の導風路から各個に風力が導入され、各個の回転方向が相互に逆回転状に軸支され、両者の回転力が前記ボックス下面に垂下される差動歯車装置に伝達されて成る一対のサボニウス型風車から成り、
前記風向方向制御部が、風車装置のボックスの回転中心(前記出力軸中心)から前方所要位置で左右側方に開口される導風路と、該回転中心から該導風路始端までの側面の面積より、該回転中心から後端までの側面の面積を大にしてボックスを風上に回動する面積比で形成して成る側板と、ボックスの左右方向中心を頂点として左右に導風斜面を形成する山形受風突起部とから成り、
前記過回転制御部が、風車装置のボックスにおける前記山形受風突起部の両導風斜面の中間部の上下に配設される軸受と、該軸受に軸支される支軸と、該支軸に一体で導風路を開閉自在に閉塞するとともに、風車の回転側へ風力を導く風導板と、前記支軸を駆動する駆動源とから成り、
前記動力伝達装置が、両サボニウス型風車のそれぞれの垂直回転軸にその一方が軸着され、他方が水平軸に軸着される傘歯車対と、各水平軸がそれぞれ入力軸となる差動歯車装置と、該差動歯車装置の出力軸と発電機の入力軸間に接合される増速機とから成る。
請求項2に記載した発明は、請求項1に記載したサボニウス型風力発電装置において、
前記サボニウス型風車が、複数のブレードを垂直回転軸に対して点対称に配設して成るサボニウス型風車において、
前記ブレードが、円弧状のブレードと舟底状のブレードとの交互に配設される2形態の翼形の各2枚から成り、一方の円弧状のブレードの内面と他方の舟底状のブレードの外面との下端間に、一方の舟底状のブレードの内面に直角な絞り流路が形成される。
請求項3に記載したサボニウス型風車は、
複数のブレードを垂直回転軸に対して点対称に配設して成るサボニウス型風車において、
前記ブレードが、円弧状のブレードと舟底状のブレードとの交互に配設される2形態の翼形の各2枚から成り、一方の円弧状のブレードの内面と他方の舟底状のブレードの外面との下端間に、一方の舟底状の内面に直角な絞り流路が形成される。
To achieve the above object, a Savonius-type wind power generator according to claim 1 of the present invention includes a windmill, a wind direction control unit, an overspeed control unit, a power transmission device, a generator, and a tower. In the wind power generator as a component,
The windmill is installed in a box of a windmill device that is rotatably supported around the output shaft of the power transmission device at the top of the tower, and wind power is introduced into each individual from the left and right wind guide paths. It consists of a pair of Savonius type windmills whose rotational directions are pivotally supported in a mutually reverse rotation manner, and whose rotational force is transmitted to a differential gear device that hangs down from the lower surface of the box,
The wind direction control unit includes a wind guide path that is opened to the left and right sides at a required front position from a rotation center of the box of the wind turbine device (the output shaft center), and a side surface from the rotation center to the wind guide path start end. A side plate formed by an area ratio that turns the box upwind by increasing the area of the side surface from the center of rotation to the rear end of the area, and a wind guide slope on the left and right with the center in the left-right direction of the box as the apex It consists of a mountain-shaped wind receiving projection to form,
The over-rotation control unit includes a bearing disposed above and below an intermediate portion of both wind guide slopes of the mountain-shaped wind receiving projections in a box of a wind turbine device, a support shaft supported by the bearing, and the support shaft The wind guide path is closed to be freely opened and closed, and includes a wind guide plate that guides wind power to the rotating side of the windmill, and a drive source that drives the support shaft,
The power transmission device includes a pair of bevel gears, one of which is attached to the respective vertical rotation shafts of both Savonius type wind turbines and the other of which is attached to the horizontal shaft, and a differential gear having each horizontal shaft serving as an input shaft. And a speed increasing device joined between the output shaft of the differential gear device and the input shaft of the generator.
The invention described in claim 2 is the Savonius type wind power generator described in claim 1,
In the Savonius type windmill, the Savonius type windmill is configured by arranging a plurality of blades symmetrically with respect to a vertical rotation axis.
The blade is composed of two pieces of two types of airfoils arranged alternately with arc-shaped blades and boat-bottomed blades, the inner surface of one arc-shaped blade and the other blade-shaped blade A throttle channel perpendicular to the inner surface of one of the boat-bottom blades is formed between the lower ends of the outer surface and the outer surface.
The Savonius type windmill according to claim 3 is:
In a Savonius type windmill in which a plurality of blades are arranged symmetrically with respect to a vertical rotation axis,
The blade is composed of two pieces of two types of airfoils arranged alternately with arc-shaped blades and boat-bottomed blades, the inner surface of one arc-shaped blade and the other blade-shaped blade A throttle channel perpendicular to the inner surface of one of the boat bottoms is formed between the lower ends of the outer surface and the outer surface.

本発明のサボニウス型風力発電装置によれば、ボックス内で左右に対設されるサボニウス型風車は、相互に回転方向が逆回転となるように配設されるから、受風姿勢では相互の回転力による反力が相殺されてボックスにはブレがなく、安定した受風姿勢で風力エネルギーを取得できるものであり、かつ、両サボニウス型風車からの回転エネルギーは、風導板により両風車のそれぞれ外方側へ風力が導風される上、両者の回転数の平均回転数として差動歯車装置の出力軸から回転効率よく出力されるから、トルク大にして増速機に入力され、増速機による回転速度の増速も容易となって発電機に入力されるので、抗力風車の特徴が引き出されて効率的な発電を実現できる効果がある。
また、風向きの変動に対しては、ボックスの回転中心(前記出力軸中心)に対するボックスの側板面積比による風上姿勢に向かうトルクの発現と、風向側の導風路から導風される風力によって回転するサボニウス型風車の回転力により誘発されるトルクの発現とによってボックスを自動的に風上姿勢に向かわせるものである。
さらに、過回転制御部では山形受風突起部の斜板(導風斜面)に開口する各導風路が風導板で閉塞されるから、内部の両サボニウス型風車の過回転が防止されるとともに、ボックス自体も前記山形受風突起部により風圧抵抗がボックスの回転中心に対して左右にバランスして負荷されるためブレることなく、風上に追従するのみであるから、強風時のカットアウトが簡易となる。
一方、請求項3に記載したサボニウス型風車は、絞り流路における流体(風)の粘性抵抗によるトルクの発現と、該流路から噴出する風力と円弧状のブレードの外面から導入される風力とが、下方(一方)に位置取りされる舟底状のブレードの内面に略直角に滑りなく作用することによる高トルクの発現と、一度作用した風力がさらに、上方(他方)に位置取りされる舟底状のブレードの内面に略直角に滑りなく作用することによるトルクの発現とが、順次に繰り返されることにより、風力エネルギーを効率的に回転トルクとして入手できるものである。
According to the Savonius-type wind power generator of the present invention, the Savonius-type windmills arranged on the left and right sides in the box are arranged so that their rotational directions are opposite to each other. The reaction force due to the force is offset, the box is not shaken, and wind energy can be acquired with a stable wind receiving posture, and the rotational energy from both Savonius-type wind turbines can be Wind power is guided to the outside, and the average rotation speed of both rotation speeds is output from the output shaft of the differential gear device with high rotational efficiency. Since the rotational speed of the machine can be easily increased and input to the generator, the characteristics of the drag wind turbine can be brought out, and efficient power generation can be realized.
In addition, with respect to fluctuations in the wind direction, it is caused by the expression of torque toward the windward attitude by the ratio of the side plate area of the box to the rotation center of the box (center of the output shaft) and the wind force guided from the wind guide path on the wind direction side. The box is automatically turned to the windward posture by the expression of torque induced by the rotational force of the rotating Savonius type windmill.
Further, in the over-rotation control unit, each wind guide path opened in the swash plate (wind guide slope) of the mountain-shaped wind receiving projection is blocked by the wind guide plate, so that over-rotation of both internal Savonius type wind turbines is prevented. In addition, the wind pressure resistance is balanced by the left and right with respect to the center of rotation of the box by the mountain-shaped wind receiving projections, so the box itself only follows the windward without being shaken. Out is simple.
On the other hand, the Savonius-type windmill described in claim 3 includes the expression of torque due to the viscous resistance of the fluid (wind) in the throttle channel, the wind force ejected from the channel, and the wind force introduced from the outer surface of the arcuate blade. However, high torque is generated by acting on the inner surface of the bottom-shaped blade positioned at the lower side (one side) at a substantially right angle and the wind force that has once acted is further positioned at the upper side (the other side). The expression of torque by acting on the inner surface of the boat-bottomed blade substantially at right angles without slipping is sequentially repeated, so that wind energy can be efficiently obtained as rotational torque.

本発明のサボニウス型風力発電装置の脚やタワーの一部を破断した状態の説明図である。It is explanatory drawing of the state which fractured | ruptured the leg of the Savonius type | mold wind power generator of this invention, or a part of tower. 図1における風車装置の平面図である。It is a top view of the windmill apparatus in FIG. 本発明における動力伝達装置に用いられる差動歯車装置の説明図である。It is explanatory drawing of the differential gear apparatus used for the power transmission device in this invention. 本発明の風車装置に対設されるサボニウス型風車の横断面説明図である。It is a cross-sectional explanatory drawing of the Savonius type | mold windmill provided in the windmill apparatus of this invention. 両風車との差動歯車装置との動力伝達の模式図である。It is a schematic diagram of the power transmission with the differential gear apparatus with both windmills. 本発明の他の実施例のサボニウス型風力発電装置Bの正面図である。It is a front view of the Savonius type | formula wind power generator B of the other Example of this invention. 図6の平面図である。FIG. 7 is a plan view of FIG. 6.

本発明のサボニウス型風力発電装置の一実施例を添付図面に基づいて、以下に説明する。
図1、図2に示すように、本発明のサボニウス型風力発電装置Aは、風車装置3と、風向方向制御部5と、過回転制御部6と、動力伝達装置7と、発電機8と、タワー1とを構成要素とする。
前記タワー1頂部で動力伝達装置7の出力軸35を中心に回転自在に軸支される風車装置3のボックス14内に風車4,40が対設されるとともに、左右の導風路19,19から各個に風力が導入され、各個の回転方向が相互に逆回転状に軸支され、両者の回転力が前記ボックス14下面に垂下される差動歯車装置33に伝達されて成る一対のサボニウス型風車から成り、
図2に示すように、前記風向方向制御部5が、風車装置3のボックス14の回転中心(前記出力軸中心)18から前方所要位置で左右側方に開口される導風路19,19と、該回転中心18から該導風路19,19始端までの側面の面積より、該回転中心18から後端までの側面の面積を大にしてボックス14を風上に回動する面積比で形成して成る側板11,11と、ボックス14の左右方向中心を頂点として左右に導風斜面を形成する山形受風突起部12とから成り、
前記過回転制御部6が、風車装置3のボックス14における前記山形受風突起部12の両導風斜面の中間部の上下に配設される軸受20,20と、該軸受20,20に軸支される支軸21,21と、該支軸21に一体で導風路19,19を開閉自在に閉塞するとともに、風車4,40の回転側へ風力を導く風導板22,22と、前記支軸21,21を駆動する駆動源23,23とから成り、
図1に示すように、前記動力伝達装置7が、両サボニウス型風車4,40のそれぞれの垂直回転軸35にその一方が軸着され、他方が水平軸34,34に軸着される傘歯車対32,32と、各水平軸34,34がそれぞれ入力軸となる差動歯車装置33と、該差動歯車装置33の出力軸35と発電機8の入力軸間に接合される増速機36とから成る。
本発明のサボニウス型風力発電装置における一対のサボニウス型風車4,40が、ボックス14を介してタワー1の頂部で風上に向けてその受風姿勢が自動的に制御されるには、動力伝達装置7における差動歯車装置33の出力軸35において、ボックス14全体(風力装置)を回転自在に支持するとともに、該出力軸35を安全かつ安定的に軸支しなければならないから、ボックス14全体(風車装置全体)を旋回軸受で軸支するものから、前記出力軸35を含む近傍を軸受メタルで支持するとともに、ボックス14の下面を下端に滑動ボール39を備えた脚38で安定的にバランスよく支持して旋回自在とするなどである。
また、過回転制御部6で使用される駆動源23、23としては、旋回系に存在するものであるから、油圧や空圧によるアクチュエータではスイベルジョイントを介することとなり、モータによるものでは一般商用電源によるもののほか、太陽光発電により駆動されるものから、風力発電による電力の一部で旋回接点を介して駆動されるものなどである。
さらに、本発明のサボニウス型風車における異形翼形ブレード間に形成される絞り流路は、平行なものから絞りテーパ状のものまで選択される。
One embodiment of the Savonius type wind power generator according to the present invention will be described below with reference to the accompanying drawings.
As shown in FIGS. 1 and 2, the Savonius type wind power generator A of the present invention includes a windmill device 3, a wind direction control unit 5, an overspeed control unit 6, a power transmission device 7, and a generator 8. The tower 1 is a component.
Wind turbines 4 and 40 are provided in the box 14 of the wind turbine device 3 that is rotatably supported around the output shaft 35 of the power transmission device 7 at the top of the tower 1, and the right and left air guide paths 19 and 19. A pair of Savonius type is constructed in which wind power is introduced to each individual, the rotational directions of the individual are pivotally supported in a mutually reverse rotation manner, and the rotational force of both is transmitted to the differential gear unit 33 suspended from the lower surface of the box 14. A windmill,
As shown in FIG. 2, the wind direction control unit 5 includes air guide paths 19 and 19 that are opened to the left and right sides at a required front position from the rotation center (the output shaft center) 18 of the box 14 of the windmill device 3. The area of the side surface from the rotation center 18 to the rear end is made larger than the area of the side surface from the rotation center 18 to the air guide passages 19, 19 at the start end, and the box 14 is formed at an area ratio that turns the box 14 upwind. The side plates 11 and 11 and the mountain-shaped wind receiving projections 12 that form a wind guide slope on the left and right with the center in the left-right direction of the box 14 as a vertex,
The over-rotation control unit 6 includes bearings 20 and 20 disposed above and below an intermediate portion of both wind guide slopes of the mountain-shaped wind receiving projection 12 in the box 14 of the wind turbine device 3, and the bearings 20 and 20 have shafts. The supporting shafts 21 and 21 to be supported, and the air guide plates 22 and 22 that are integrated with the supporting shaft 21 so as to be openable and closable, and that guide wind force to the rotating side of the windmills 4 and 40; Drive sources 23 and 23 for driving the support shafts 21 and 21;
As shown in FIG. 1, the power transmission device 7 is a bevel gear in which one of the two Savonius-type wind turbines 4 and 40 is axially attached to the vertical rotation shaft 35 and the other is attached to the horizontal shafts 34 and 34. The pair 32, 32, the differential gear device 33 in which each horizontal shaft 34, 34 serves as an input shaft, and the speed increaser joined between the output shaft 35 of the differential gear device 33 and the input shaft of the generator 8. 36.
In order to automatically control the wind receiving posture of the pair of Savonius type wind turbines 4 and 40 in the Savonius type wind power generator of the present invention toward the wind at the top of the tower 1 via the box 14, power transmission is required. In the output gear 35 of the differential gear device 33 in the device 7, the entire box 14 (wind power device) is rotatably supported and the output shaft 35 must be supported safely and stably. The bearing including the output shaft 35 is supported by a bearing metal from the one that pivotally supports the whole (wind turbine device) with a bearing metal, and the lower surface of the box 14 is stably balanced by a leg 38 having a sliding ball 39 at the lower end. For example, it can support and turn freely.
In addition, since the drive sources 23 and 23 used in the over-rotation control unit 6 exist in the turning system, an actuator using hydraulic pressure or pneumatic pressure passes through a swivel joint. In addition to the above, those driven by solar power generation, those driven by a part of wind power generation through a turning contact, and the like.
Further, the throttle flow path formed between the deformed airfoil blades in the Savonius type wind turbine of the present invention is selected from a parallel one to a throttle tapered shape.

次に、本発明のサボニウス型風力発電装置Aの一実施例をより詳細に説明する。
図1に示すように、タワー1と、該タワー1の頂部2で360°全方位に回転自在に支持される風車装置3と、該風車装置3に配設される一対のサボニウス型風車4、40と、風向方向制御部5と、過回転制御部6と、動力伝達装置7と、発電機8とを構成要素として成る。
そこで、先ず風車装置3について説明すると、図2の平面視でその輪郭を示すボックス14は、外郭五角形状の上板9と下板10、及び両板9、10の左右平行な側面に接合される各側板11と、前方の山形受風突起部12を形成すべく前記両板9、10の山形状の両導風斜面に接合される各斜板13とから成る。
このようにして成るボックス14には前記したサボニウス型風車4、40が、その垂直回転軸15において、相互に回転方向を逆回転状に上板9と下板10に配設される各軸受16、17に軸支される。そして、前記の両垂直回転軸15にはそれぞれその下端に直角な傘歯車対32の一方の大傘歯車が接合され、他方の小傘歯車はボックス14の下面に接合垂下される差動歯車装置33の各水平軸(入力軸)34に接合され、この差動歯車装置33の出力軸35はタワー1の頂部2に設けた軸受メタル37で軸支される。
また、ボックス14の下面4個所の均等部位に垂下された脚38の伸縮自在部31の下端には滑動ボール39を回転自在に装着して、風車装置3を安定的に、かつ軽やかにして旋回自在に支持して成る。
なお、ボックス14は下面に垂下される垂直回転軸15に係る動力伝達部は、仮想線で示すように、円筒状のカバーで被覆されるものである。
Next, an embodiment of the Savonius type wind power generator A of the present invention will be described in more detail.
As shown in FIG. 1, a tower 1, a windmill device 3 that is rotatably supported at 360 ° in all directions at the top 2 of the tower 1, and a pair of Savonius type windmills 4 disposed in the windmill device 3, 40, the wind direction control part 5, the overspeed control part 6, the power transmission device 7, and the generator 8 are comprised as a component.
First, the wind turbine device 3 will be described. The box 14 whose outline is shown in plan view in FIG. 2 is joined to the left and right parallel side surfaces of the upper plate 9 and the lower plate 10 and the both plates 9 and 10 of the outer pentagon. Each side plate 11 and each swash plate 13 joined to the mountain-shaped wind guide slopes of the both plates 9 and 10 to form a front mountain-shaped wind receiving projection 12.
In the box 14 constructed in this manner, the Savonius type wind turbines 4 and 40 are arranged on the upper plate 9 and the lower plate 10 with their vertical rotation shafts 15 rotating in opposite directions. , 17. A differential gear device in which one large bevel gear of a pair of bevel gears 32 perpendicular to the lower ends of each of the vertical rotary shafts 15 is joined and the other small bevel gear is joined and suspended on the lower surface of the box 14. The output shaft 35 of the differential gear device 33 is pivotally supported by a bearing metal 37 provided on the top 2 of the tower 1.
In addition, a sliding ball 39 is rotatably mounted on the lower end of the telescopic part 31 of the leg 38 suspended from four equal parts on the lower surface of the box 14 to turn the windmill device 3 stably and lightly. Support freely.
In addition, the power transmission part which concerns on the vertical rotating shaft 15 with which the box 14 is hung on the lower surface is coat | covered with a cylindrical cover, as shown with a virtual line.

ここで、本発明の特徴である風向方向制御部5について説明すると、図2に示すように、ボックス14の回転中心18から前方所要位置で左右側方に開口される導風路19と、該回転中心18から該導風路19の始端までの側面の面積より該回転中心18から後端までの側面の面積を大にしてボックス14を風上に回動する面積比で形成して成る側板11と、ボックス14の左右方向の中心を頂点として左右に導風斜面(斜板13による)を形成する山形受風突起部12とから成る。
前記風向方向制御部5が左右何れかの一方から側方へ風圧を受けると、側板11の面積比により風上に向かうトルクが発現し、併せて風向方向の導風路19から導風される風力は、その側のサボニウス型風車4又は40を回転することとなり、その駆動力がボックス14の風上に向かうトルクを発現させ、このような作用でボックス14はタワー1の頂部2で自動的に風上に正対するまで回転される。
さらに、風上に正対後はその風力が図2の矢印に示すように、山形受風突起部12の左右の斜板13に沿って導風路19に導風され、両サボニウス型風車4、40の中心より外側半分に導風され、両サボニウス型風車4、40の中心より内側半分には導風されないので、導風された風が両サボニウス型風車4、40の回転の抵抗とならない。
しかも、風導板22により各風車4、40の外方側へ案内されるからボックス14の安定した受風姿勢で両サボニウス型風車4、40が回転効率よく相互に逆回転される。
Here, the wind direction control unit 5 which is a feature of the present invention will be described. As shown in FIG. 2, the air guide path 19 opened to the left and right sides at the required front position from the rotation center 18 of the box 14, A side plate formed by making the area of the side surface from the rotation center 18 to the rear end larger than the area of the side surface from the rotation center 18 to the start end of the air guide path 19 to rotate the box 14 to the windward. 11 and a mountain-shaped wind receiving projection 12 that forms a wind guide slope (by the swash plate 13) on the left and right with the center in the left-right direction of the box 14 as a vertex.
When the wind direction control unit 5 receives wind pressure from one of the left and right sides, torque toward the windward is generated by the area ratio of the side plates 11 and is also guided from the wind guide path 19 in the wind direction. The wind force rotates the Savonius type wind turbine 4 or 40 on the side, and the driving force develops a torque toward the windward of the box 14, and the box 14 is automatically generated at the top 2 of the tower 1 by such an action. Rotate until facing upwind.
Further, after facing the windward, the wind force is guided to the wind guide path 19 along the left and right swash plates 13 of the mountain-shaped wind receiving projection 12 as shown by the arrows in FIG. The wind is guided to the outer half from the center of 40 and is not guided to the inner half from the center of both Savonius type wind turbines 4, 40, so that the guided wind does not become a resistance to rotation of both Savonius type wind turbines 4, 40. .
In addition, since the wind guide plate 22 guides the wind turbines 4 and 40 outward, the two Savonius wind turbines 4 and 40 are rotated reversely with each other in a stable wind receiving posture of the box 14.

次に、過回転制御部6について説明すると、この過回転制御部6は、前記山形受風突起部12の斜板13の導風路19側の上下に接合される軸受20と、該軸受20に軸支される支軸21と、該支軸21に一体で導風路19を開閉自在に閉塞する風導板22と、支軸21を駆動する駆動源(モータ等)23とから成り、強風時などでカットアウト風速(通常15〜20m/s)が発現したときは、適宜なセンサーの指令で駆動源23により支軸21を駆動し、風導板22でボックス14の内側から各風導路19を閉塞し、両サボニウス型風車4、40に強風が作用しないように保護するとともに、風上に向けて山形受風突起部12の中心から左右の斜板13に導風されるバランスによって風車装置3も回転することなく、過回転制御部6によって強風対策が成されるものである。
すなわち、過回転制御部6では山形受風突起部12の斜板(導風斜面)13に開口する各導風路19が風導板22で閉塞されるから、内部の両サボニウス型風車4,40の過回転が防止されるとともに、ボックス14自体も前記山形受風突起部12により風圧抵抗がボックス14の回転中心に対して左右にバランスして負荷されるためブレることなく、風上に追従するのみであるから、強風時のカットアウトが簡易となる。
Next, the over-rotation control unit 6 will be described. The over-rotation control unit 6 includes a bearing 20 joined to the upper and lower sides of the swash plate 13 of the mountain-shaped wind receiving projection 12 on the air guide path 19 side, and the bearing 20. A support shaft 21 that is supported by the support shaft 21, a wind guide plate 22 that is integrated with the support shaft 21 so as to open and close the air guide path 19, and a drive source (such as a motor) 23 that drives the support shaft 21. When a cut-out wind speed (normally 15 to 20 m / s) is developed due to a strong wind, etc., the support shaft 21 is driven by the drive source 23 in accordance with a command from an appropriate sensor, and each wind is blown from the inside of the box 14 by the wind guide plate 22. The guide 19 is closed to protect the Savonius-type wind turbines 4 and 40 from being affected by strong winds, and the wind is guided toward the wind from the center of the mountain-shaped wind receiving projection 12 to the left and right swash plates 13. Without causing the windmill device 3 to rotate, Strong winds measures Te is intended to be made.
That is, in the over-rotation control unit 6, each air guide path 19 that opens to the swash plate (wind guide slope) 13 of the mountain-shaped wind receiving projection 12 is closed by the air guide plate 22, so that both internal Savonius type wind turbines 4, 4. 40 is prevented from over-rotating, and the box 14 itself is loaded by the mountain-shaped wind receiving projections 12 in a balanced manner on the left and right with respect to the rotation center of the box 14 so that the box 14 can be upwinded without shaking. Since it only follows, cut-out during strong winds is simplified.

一方、前記した風車装置3に使用される本発明のサボニウス型風車4、40について説明すると、図4に示すように、垂直回転軸15の上部に接合される上端板(図1で示す)24と、該上端板24に対して所要間隔で前記垂直回転軸15の下部に接合される下端板25にその上下端が接合されるブレードは垂直回転軸15に対して点対称に2形態の翼形で交互に4枚(各2枚)配設される。
そこで、両風車4、40は左右対称の配置であるから、左方のサボニウス型風車4について2形態のブレードを説明する。
すなわち、一方の円弧状のブレード(以下、円弧ブレードという。)26と該円弧ブレード26に対して90°の位相で異形翼形の一方の舟底状のブレード(以下、舟底ブレードという。)27とを配設し、さらに、前記一方の円弧ブレード26に対して垂直回転軸15に点対称に同形翼形の他方の円弧ブレード28を配設し、さらに、前記一方の舟底ブレード27に対して垂直回転軸15に点対称に同形翼形の他方の舟底ブレード29を配設するものであるが、この状態で、一方の円弧ブレード26の内面(凹面)と他方の舟底ブレード29の外面との下端間に、一方の舟底ブレード27の内面に直角に対面する絞り流路30が形成されるものである。
したがって、一方の円弧ブレード26の外面(凸面)から導入される風力も、前記絞り流路30から噴出される風力も一方の舟底ブレード27の内面に矢印で示すように略直角に滑りなく作用すること、及び前記絞り流路30における粘性抵抗が作用すること、さらには一度作用した風力が他方の舟底ブレード29の内面に作用することなどによって高トルクが発現し、前記の作用が円弧ブレード28と舟底ブレード27及び舟底ブレード29との関係においても成立され、順次に繰り返されるから、風力エネルギーが効率的に回転トルクとして入手され得るものである。
On the other hand, the Savonius type windmills 4 and 40 of the present invention used in the windmill device 3 will be described. As shown in FIG. 4, an upper end plate (shown in FIG. 1) 24 joined to the upper part of the vertical rotating shaft 15. The blades whose upper and lower ends are joined to the lower end plate 25 joined to the lower portion of the vertical rotating shaft 15 at a required interval with respect to the upper end plate 24 are two types of blades symmetrically with respect to the vertical rotating shaft 15. Four sheets (two each) are arranged alternately.
Therefore, since the two windmills 4 and 40 are symmetrically arranged, two types of blades will be described for the left Savonius type windmill 4.
That is, one arcuate blade (hereinafter referred to as an arc blade) 26 and one boat bottom-like blade (hereinafter referred to as a boat bottom blade) having a deformed airfoil with a phase of 90 ° with respect to the arc blade 26. 27, and the other arc blade 28 of the same shape airfoil is arranged symmetrically with respect to the vertical rotating shaft 15 with respect to the one arc blade 26, and further, On the other hand, the other boat bottom blade 29 having the same airfoil shape is arranged symmetrically with respect to the vertical rotation shaft 15. In this state, the inner surface (concave surface) of one arc blade 26 and the other boat bottom blade 29 are arranged. A throttle channel 30 that faces the inner surface of one boat bottom blade 27 at a right angle is formed between the lower ends of the outer surface and the outer surface.
Therefore, neither the wind force introduced from the outer surface (convex surface) of one arc blade 26 nor the wind force ejected from the throttle channel 30 acts on the inner surface of one ship bottom blade 27 without slipping substantially at right angles as indicated by arrows. High torque is generated by the action of the viscous resistance in the throttle passage 30 and the action of the wind once acting on the inner surface of the other boat bottom blade 29. 28 is established in the relationship between the boat bottom blade 27 and the boat bottom blade 29, and is repeated sequentially, so that wind energy can be efficiently obtained as rotational torque.

このようにして成るサボニウス型風車4は量産され、風車装置3のボックス14の左方には該サボニウス型風車4が配設され、右方にはサボニウス型風車4の天地を逆にしたサボニウス型風車40が配設されるものであり、左方のサボニウス型風車4ではボックス14の左方の導風路19から導入される風力が該風車4を矢印で示すように左回転し、右方のサボニウス型風車40ではボックス14の右方の導風路19から導入される風力が該風車40を矢印で示すように右回転し、発電時の両風車4、40の回転反力は相殺されて全体として風車装置3はブレることなく、その受風姿勢が安定的に保持されるものである。
このように風車装置3において、風力エネルギーによって両風車4、40は回転され、動力伝達装置7を介してその回転エネルギーが発電機8に入力電気エネルギーに変換されるものである。
The Savonius type windmill 4 thus constructed is mass-produced, the Savonius type windmill 4 is disposed on the left side of the box 14 of the windmill device 3, and the Savonius type windmill 4 with the top and bottom of the Savonius type windmill 4 reversed. In the left Savonius type windmill 4, the wind force introduced from the left air guide path 19 of the box 14 rotates the windmill 4 to the left as indicated by an arrow, and to the right In the Savonius type windmill 40, the wind force introduced from the right wind guide path 19 of the box 14 rotates the windmill 40 to the right as indicated by an arrow, and the rotational reaction forces of the two windmills 4 and 40 during power generation are offset. As a whole, the wind turbine device 3 is stably held without being shaken.
As described above, in the wind turbine device 3, the wind turbines 4 and 40 are rotated by wind energy, and the rotational energy is converted into electric power input to the generator 8 via the power transmission device 7.

ここで、前記した動力伝達装置7について詳述すると、図3、図5に示すように、該動力伝達装置7は両風車4、40の各垂直回転軸15の下端に配設される傘歯車対32と、ボックス14の下面に接合垂下される差動歯車装置33と、該差動歯車装置33と前記傘歯車対32とを連接する水平軸(入力軸)34と、差動歯車装置33の出力軸35と発電機8の入力軸間に連接される増速機36とから構成される。
したがって、両風車4、40から投入される風力エネルギーは、両垂直回転軸15から傘歯車対32に伝達されて差動歯車装置33の両水平軸34に入力され、両者に回転数の平均回転数で差動歯車装置33の出力軸35から出力され、高トルクの状態で増速機36に入力されるものである。
図4では説明し易くする便宜上、両風車4、40の姿勢を左右対称に示したが、実際の運転時(発電時)では、両風車4、40への風力の作用差によってその静止姿勢は別々である。
なお、本実施例で示したサボニウス型風車4、40は、2形態の翼形を特徴とするタイプのものであるが、本発明のサボニウス型風力発電装置Aにおいては、一般的な公知のサボニウス型風車も採用され得ることは勿論である。
Here, the power transmission device 7 will be described in detail. As shown in FIGS. 3 and 5, the power transmission device 7 is a bevel gear disposed at the lower end of each vertical rotating shaft 15 of both wind turbines 4 and 40. A pair 32, a differential gear device 33 joined and suspended on the lower surface of the box 14, a horizontal shaft (input shaft) 34 connecting the differential gear device 33 and the bevel gear pair 32, and a differential gear device 33. The output shaft 35 and a speed increaser 36 connected between the input shafts of the generator 8.
Accordingly, the wind energy input from both wind turbines 4 and 40 is transmitted from both vertical rotary shafts 15 to the bevel gear pair 32 and input to both horizontal shafts 34 of the differential gear device 33, and the average rotation speed of both is applied to both. Are output from the output shaft 35 of the differential gear unit 33 and input to the gearbox 36 in a high torque state.
In FIG. 4, for convenience of explanation, the postures of both wind turbines 4 and 40 are shown symmetrically. However, during actual operation (during power generation), the stationary posture is caused by the difference in the action of wind force on both wind turbines 4 and 40. It is separate.
The Savonius type windmills 4 and 40 shown in the present embodiment are of a type characterized by two types of airfoils. However, in the Savonius type wind power generator A of the present invention, a generally known Savonius is known. Of course, a type windmill can also be adopted.

次に、他の実施例である、前記の風車装置3の回転中心18と、動力伝達装置7の伝達系の形態を別形態としたサボニウス型風力発電装置Bを説明する。
このものは図6、図7に示すように、タワー1は円柱状にしてその上部に、前記と同様の風向方向制御部5と過回転制御部6と導風路19と風導板22と一対のサボニウス型風車4、40を備えた風車装置3、すなわちボックス14を360°全方位回転自在に軸支する支軸41が立設される。
前記風車装置3はボックス14における一対のサボニウス型風車4、40の両垂直回転軸15、15の中間(前記差動歯車装置33の出力軸35の中心)より所要寸法前方(重心より前方)で左右方向中心線上の上板9と下板10の部位に取着される両軸受42、43を介して支軸41に軸支される。
前記風向方向制御部5は、風力が図7の矢印に示すように、山形受風突起部12の左右の斜板13に沿って導風路19に導風され、両サボニウス型風車4、40の中心より外側半分に導風され、両サボニウス型風車4、40の中心より内側半分には導風されないので、安定した受風姿勢で両サボニウス型風車4、40が回転効率よく相互に逆回転される。
一方、動力伝達装置7の伝達系は、タワー1の支軸41に軸支される風車装置3に収められるものであり、両サボニウス型風車4、40の回転力は各垂直回転軸15より各傘歯車対32を経てそれぞれの水平軸34より差動歯車装置33に入力され、該差動歯車装置33の出力軸35に軸着されたタイミングプーリ44から増速機36の入力軸45に軸着されたタイミングプーリ46へ両者に噛合したタイミングベルト47を介して伝達され、さらに、増速機36の出力軸からカップリング48を介して発電機8の回転軸に伝達されて成る。
ここに、増速機36と発電機8はボックス14の下板10に設けた台座49に垂下されたものであるが、これに限定するものではなく、かご型の枠体を垂下してその枠体の底板に正常な姿勢(天地逆向きではなく)で取り付けたり、或いはボックス14の上板9の上板9の上面に傘歯車対32、差動歯車装置33を含み、増速機36と発電機8を設けて伝達系を構成させることもできる。
Next, a Savonius type wind power generator B, which is another embodiment, is different in the form of the rotation center 18 of the windmill device 3 and the transmission system of the power transmission device 7.
As shown in FIGS. 6 and 7, the tower 1 is formed in a columnar shape, and the air direction control unit 5, the over-rotation control unit 6, the air guide path 19, and the air guide plate 22 are the same as described above. A wind turbine device 3 including a pair of Savonius-type wind turbines 4 and 40, that is, a support shaft 41 that pivotally supports the box 14 so as to be able to rotate 360 ° in all directions is erected.
The windmill device 3 is in front of the required dimension (front of the center of gravity) from the middle of the vertical rotating shafts 15 and 15 of the pair of Savonius type windmills 4 and 40 in the box 14 (center of the output shaft 35 of the differential gear device 33). It is pivotally supported by the support shaft 41 via both bearings 42 and 43 attached to the portions of the upper plate 9 and the lower plate 10 on the center line in the left-right direction.
The wind direction control unit 5 guides the wind force to the wind guide path 19 along the left and right swash plates 13 of the mountain-shaped wind receiving projection 12 as indicated by the arrows in FIG. Since the wind is guided to the outer half from the center of the wind turbine and is not guided to the inner half of the two Savonius wind turbines 4 and 40, the two Savonius wind turbines 4 and 40 rotate reversely with each other in a stable wind receiving posture. Is done.
On the other hand, the transmission system of the power transmission device 7 is housed in the wind turbine device 3 that is pivotally supported by the support shaft 41 of the tower 1, and the rotational force of both the Savonius type wind turbines 4, 40 is transmitted from the vertical rotation shafts 15. A bevel gear pair 32 is input to the differential gear unit 33 from each horizontal shaft 34, and a timing pulley 44 mounted on the output shaft 35 of the differential gear unit 33 is connected to the input shaft 45 of the speed increaser 36. It is transmitted to the attached timing pulley 46 via a timing belt 47 meshed with both, and further transmitted from the output shaft of the speed increaser 36 to the rotating shaft of the generator 8 via the coupling 48.
Here, the speed increaser 36 and the generator 8 are suspended from a pedestal 49 provided on the lower plate 10 of the box 14, but the present invention is not limited to this. The speed increasing device 36 includes a bevel gear pair 32 and a differential gear device 33 on the upper surface of the upper plate 9 of the upper plate 9 of the box 14. And a generator 8 can be provided to form a transmission system.

このようにして成るサボニウス型風力発電装置Bは、風車装置3における一対のサボニウス型風車4、40の回転力が、回転系内に収められた発電機8に前記の動力伝達装置7を介して伝達され、風力エネルギーを電気エネルギー変換するものであるが、得られた電気エネルギーはタワー1の周面に設けられたスリップリング等の集電装置(図外)から一般的な給電装置(図外)を介して地上に配電されるものである。
なお、前記のタイミングプーリ44、46をスプロケットホイールとし、タイミングベルト47を両スプロケットホイールに噛合するチェーンとすることもできる。
In the Savonius type wind power generator B configured as described above, the rotational force of the pair of Savonius type wind turbines 4 and 40 in the wind turbine device 3 is transmitted to the generator 8 housed in the rotating system via the power transmission device 7. It is transmitted and converts wind energy into electrical energy. The obtained electrical energy is converted from a current collector (not shown) such as a slip ring provided on the peripheral surface of the tower 1 to a general power supply device (not shown). ) Through the ground.
The timing pulleys 44 and 46 may be sprocket wheels, and the timing belt 47 may be a chain that meshes with both sprocket wheels.

本発明のサボニウス型風力発電装置は、風車装置がコンパクトな簡易構造である上、一対のサボニウス型風車からの回転力を発電機に入力することによって効率的な発電を達成できること、及びボックス自体により風向方向制御できるとともに、強風時の前記風車の過回転制御も簡易であるから、構造上の耐久性の点でも優れていることなどで風力発電業界の活性化に貢献できる。
また、本発明のサボニウス型風車も、2形態の翼形の組み合わせに特徴を有し、高トルク発生の技術によって風車製造業界にも貢献できるものである。
According to the Savonius type wind power generator of the present invention, the wind turbine device has a compact and simple structure, and can achieve efficient power generation by inputting the rotational force from a pair of Savonius type wind turbines to the generator, and the box itself. The wind direction can be controlled, and the overspeed control of the windmill in a strong wind is easy, so it can contribute to the activation of the wind power generation industry due to its excellent structural durability.
The Savonius-type windmill of the present invention is also characterized by a combination of two types of airfoils, and can contribute to the windmill manufacturing industry due to the technology for generating high torque.

1 タワー
2 頂部
3 風車装置
4、40 サボニウス型風車
5 風向方向制御部
6 過回転制御部
7 動力伝達装置
8 発電機
9 上板
10 下板
11 側板
12 山形受風突起部
13 斜板
14 ボックス
15 垂直回転軸
16、17 軸受
18 回転中心
19 導風路
20 軸受
21 支軸
22 風導板
23 駆動源
24 上端板
25 下端板
26、28 円弧ブレード
27、29 舟底ブレード
30 絞り流路
31 伸縮自在部
32 傘歯車対
33 差動歯車装置
34 水平軸
35 出力軸
36 増速機
37 軸受メタル
38 脚
39 滑動ボール
41 支軸
42、43 軸受
44、46 タイミングプーリ
45 入力軸
47 タイミングベルト
48 カップリング
49 台座
A、B サボニウス型風力発電装置
DESCRIPTION OF SYMBOLS 1 Tower 2 Top part 3 Windmill apparatus 4, 40 Savonius type windmill 5 Wind direction control part 6 Over-rotation control part 7 Power transmission device 8 Generator 9 Upper board 10 Lower board 11 Side board 12 Yamagata wind receiving protrusion 13 Swash plate 14 Box 15 Vertical rotation shafts 16, 17 Bearing 18 Rotation center 19 Air guide path 20 Bearing 21 Support shaft 22 Air guide plate 23 Drive source 24 Upper end plate 25 Lower end plate 26, 28 Arc blade 27, 29 Ship bottom blade 30 Throttle channel 31 Extendable Part 32 Bevel gear pair 33 Differential gear unit 34 Horizontal shaft 35 Output shaft 36 Speed up gear 37 Bearing metal 38 Leg 39 Sliding ball 41 Support shaft 42, 43 Bearing 44, 46 Timing pulley 45 Input shaft 47 Timing belt 48 Coupling 49 Pedestal A, B Savonius wind power generator

Claims (3)

風車と、風向方向制御部と、過回転制御部と、動力伝達装置と、発電機と、タワーとを構成要素とする風力発電装置において、
前記タワー頂部で動力伝達装置の出力軸を中心に回転自在に軸支される風車装置のボックス内に風車が対設されるとともに、左右の導風路から各個に風力が導入され、各個の回転方向が相互に逆回転状に軸支され、両者の回転力が前記ボックス下面に垂下される差動歯車装置に伝達されて成る一対のサボニウス型風車から成り、
前記風向方向制御部が、風車装置のボックスの回転中心(前記出力軸中心)から前方所要位置で左右側方に開口される導風路と、該回転中心から該導風路始端までの側面の面積より、該回転中心から後端までの側面の面積を大にしてボックスを風上に回動する面積比で形成して成る側板と、ボックスの左右方向中心を頂点として左右に導風斜面を形成する山形受風突起部とから成り、
前記過回転制御部が、風車装置のボックスにおける前記山形受風突起部の両導風斜面の中間部の上下に配設される軸受と、該軸受に軸支される支軸と、該支軸に一体で導風路を開閉自在に閉塞するとともに、風車の回転側へ風力を導く風導板と、前記支軸を駆動する駆動源とから成り、
前記動力伝達装置が、両サボニウス型風車のそれぞれの垂直回転軸にその一方が軸着され、他方が水平軸に軸着される傘歯車対と、各水平軸がそれぞれ入力軸となる差動歯車装置と、該差動歯車装置の出力軸と発電機の入力軸間に接合される増速機とから成るサボニウス型風力発電装置。
In a wind turbine generator including a windmill, a wind direction control unit, an overspeed control unit, a power transmission device, a generator, and a tower,
A wind turbine is provided in a box of a wind turbine device that is rotatably supported around the output shaft of the power transmission device at the top of the tower, and wind power is introduced into each individual from the left and right air guide paths, and each individual rotation. It consists of a pair of Savonius type windmills whose directions are pivotally supported in a mutually reverse rotation manner, and whose rotational force is transmitted to a differential gear device that hangs down from the lower surface of the box,
The wind direction control unit includes a wind guide path that is opened to the left and right sides at a required front position from a rotation center of the box of the wind turbine device (the output shaft center), and a side surface from the rotation center to the wind guide path start end. A side plate formed by an area ratio that turns the box upwind by increasing the area of the side surface from the center of rotation to the rear end of the area, and a wind guide slope on the left and right with the center in the left-right direction of the box as the apex It consists of a mountain-shaped wind receiving projection to form,
The over-rotation control unit includes a bearing disposed above and below an intermediate portion of both wind guide slopes of the mountain-shaped wind receiving projections in a box of a wind turbine device, a support shaft supported by the bearing, and the support shaft The wind guide path is closed to be freely opened and closed, and includes a wind guide plate that guides wind power to the rotating side of the windmill, and a drive source that drives the support shaft,
The power transmission device includes a pair of bevel gears, one of which is attached to the respective vertical rotation shafts of both Savonius type wind turbines and the other of which is attached to the horizontal shaft, and a differential gear having each horizontal shaft serving as an input shaft. A Savonius type wind power generator comprising a device and a speed increasing device joined between an output shaft of the differential gear device and an input shaft of the generator.
前記サボニウス型風車が、複数のブレードを垂直回転軸に対して点対称に配設して成るサボニウス型風車において、
前記ブレードが、円弧状のブレードと舟底状のブレードとの交互に配設される2形態の翼形の各2枚から成り、一方の円弧状のブレードの内面と他方の舟底状のブレードの外面との下端間に、一方の舟底状のブレードの内面に直角な絞り流路が形成されることを特徴として成る請求項1記載のサボニウス型風力発電装置。
In the Savonius type windmill, the Savonius type windmill is configured by arranging a plurality of blades symmetrically with respect to a vertical rotation axis.
The blade is composed of two pieces of two types of airfoils arranged alternately with arc-shaped blades and boat-bottomed blades, the inner surface of one arc-shaped blade and the other blade-shaped blade 2. A Savonius type wind power generator according to claim 1, wherein a throttle channel perpendicular to the inner surface of one of the boat-bottom blades is formed between the lower ends of the two and the outer surface.
複数のブレードを垂直回転軸に対して点対称に配設して成るサボニウス型風車において、
前記ブレードが、円弧状のブレードと舟底状のブレードとの交互に配設される2形態の翼形の各2枚から成り、一方の円弧状のブレードの内面と他方の舟底状のブレードの外面との下端間に、一方の舟底状の内面に直角な絞り流路が形成されることを特徴として成るサボニウス型風車。
In a Savonius type windmill in which a plurality of blades are arranged symmetrically with respect to a vertical rotation axis,
The blade is composed of two pieces of two types of airfoils arranged alternately with arc-shaped blades and boat-bottomed blades, the inner surface of one arc-shaped blade and the other blade-shaped blade A Savonius type windmill characterized in that a throttle channel perpendicular to the inner surface of one of the boat bottoms is formed between the lower ends of the outer surface and the outer surface.
JP2009205658A 2009-09-07 2009-09-07 Savonius wind turbine generator and Savonius wind turbine Expired - Fee Related JP5187974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009205658A JP5187974B2 (en) 2009-09-07 2009-09-07 Savonius wind turbine generator and Savonius wind turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009205658A JP5187974B2 (en) 2009-09-07 2009-09-07 Savonius wind turbine generator and Savonius wind turbine

Publications (2)

Publication Number Publication Date
JP2011058370A true JP2011058370A (en) 2011-03-24
JP5187974B2 JP5187974B2 (en) 2013-04-24

Family

ID=43946292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009205658A Expired - Fee Related JP5187974B2 (en) 2009-09-07 2009-09-07 Savonius wind turbine generator and Savonius wind turbine

Country Status (1)

Country Link
JP (1) JP5187974B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104696157A (en) * 2015-02-12 2015-06-10 宣炯华 Wind gathering device for fan blade of wind driven generator
JP2015116075A (en) * 2013-12-13 2015-06-22 中国電力株式会社 Natural energy utilization power generator
JP2017078336A (en) * 2015-10-19 2017-04-27 真一郎 小林 Wind power generation automobile
CN111412111A (en) * 2020-04-29 2020-07-14 覃显飞 V-shaped water tank type diversion double-wheel vertical shaft windmill generator and wind power generation method thereof
KR102647340B1 (en) * 2023-08-28 2024-03-14 유재원 Aerial Aerogenerator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56101475U (en) * 1979-12-29 1981-08-10
JPS60195385A (en) * 1984-03-16 1985-10-03 Shohei Araki Wind mill
JPH01193084A (en) * 1988-01-29 1989-08-03 Yoshio Soda Movable wind mill with wind guiding way
JP2005291109A (en) * 2004-03-31 2005-10-20 Kagoshima Tlo Co Ltd Drag-type windmill

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56101475U (en) * 1979-12-29 1981-08-10
JPS60195385A (en) * 1984-03-16 1985-10-03 Shohei Araki Wind mill
JPH01193084A (en) * 1988-01-29 1989-08-03 Yoshio Soda Movable wind mill with wind guiding way
JP2005291109A (en) * 2004-03-31 2005-10-20 Kagoshima Tlo Co Ltd Drag-type windmill

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116075A (en) * 2013-12-13 2015-06-22 中国電力株式会社 Natural energy utilization power generator
CN104696157A (en) * 2015-02-12 2015-06-10 宣炯华 Wind gathering device for fan blade of wind driven generator
JP2017078336A (en) * 2015-10-19 2017-04-27 真一郎 小林 Wind power generation automobile
CN111412111A (en) * 2020-04-29 2020-07-14 覃显飞 V-shaped water tank type diversion double-wheel vertical shaft windmill generator and wind power generation method thereof
KR102647340B1 (en) * 2023-08-28 2024-03-14 유재원 Aerial Aerogenerator

Also Published As

Publication number Publication date
JP5187974B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
US8076791B2 (en) Wind and water turbine
US8232664B2 (en) Vertical axis wind turbine
KR100754790B1 (en) Wind powered generator
JP2004353637A (en) Self-rotating blade/vertical shaft type wind mill
US8657560B2 (en) Energy extraction device with at least one bank of blades
US20060151664A1 (en) Power transmission device
US10218246B2 (en) Variable diameter and angle vertical axis turbine
JP5187974B2 (en) Savonius wind turbine generator and Savonius wind turbine
KR960001479A (en) Combined input wind turbine
KR101525553B1 (en) Wind power generator with vertical rotor
US11473557B2 (en) Sail device
CN201013539Y (en) Wind power generation plant
KR20090102282A (en) A vertical axis wind turbin with rotate on it&#39;s own axis type wind plane
CN203161444U (en) Wind power generation device
JPH1047227A (en) Energy converting device
KR101125952B1 (en) Wind turbine
CN211202197U (en) Wind machine capable of adjusting angle between fan blade and wind direction
RU2039885C1 (en) Wind motor
JP2010001747A (en) Wind turbine generator
WO2010012029A1 (en) Power generator
JP2005226625A (en) Straightening type automatic speed change wind power generation
RU80894U1 (en) WIND POWER PLANT
JPS6318029B2 (en)
JP2006083839A (en) Torque arm generating device for horizontal shaft windmill and its control method
RU91602U1 (en) WIND UNIT &#34;MAKSAN&#34;

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111128

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20111128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5187974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees