JP2011058178A - Breakwater - Google Patents

Breakwater Download PDF

Info

Publication number
JP2011058178A
JP2011058178A JP2009206093A JP2009206093A JP2011058178A JP 2011058178 A JP2011058178 A JP 2011058178A JP 2009206093 A JP2009206093 A JP 2009206093A JP 2009206093 A JP2009206093 A JP 2009206093A JP 2011058178 A JP2011058178 A JP 2011058178A
Authority
JP
Japan
Prior art keywords
wave
dissipating
breakwater
hollow
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009206093A
Other languages
Japanese (ja)
Other versions
JP5413723B2 (en
Inventor
Kenji Yano
賢二 谷野
Toshinobu Yaginuma
利信 柳沼
Masaharu Narita
正春 成田
Kazuo Tokikawa
和夫 時川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Toray Engineering Co Ltd
Original Assignee
Tokai University
Toyo Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University, Toyo Construction Co Ltd filed Critical Tokai University
Priority to JP2009206093A priority Critical patent/JP5413723B2/en
Publication of JP2011058178A publication Critical patent/JP2011058178A/en
Application granted granted Critical
Publication of JP5413723B2 publication Critical patent/JP5413723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Revetment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a breakwater which makes a fishing boat approach thereto while attenuating wave energy and enabling the circulation of sea water inside and outside a harbor. <P>SOLUTION: The breakwater 1 includes, on a foundation mound 2 constructed on a sea bottom, a hollow wave-breaking type covering block 3 laid in a wave-breaking direction and in a direction orthogonal to the wave-breaking direction in a plurality of rows up to the sea-surface in a plurality of steps. The hollow wave-breaking type covering block includes block body 13 having a horizontally long opening 10 and a vertically long opening 11 at respective side walls 14a, 14b and a fully opened opening 12 at the top side. This attenuates the wave energy, enables the circulation of sea water inside and outside the harbor for improvement in water quality inside the harbor while making fishing boats approach to the breakwater 1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、特に、港湾や漁港等を外海との間で仕切るように配置され、港内外での海水循環を可能とする海水交換型の防波堤に関するものである。   In particular, the present invention relates to a seawater exchange type breakwater that is arranged so as to partition a port, a fishing port, and the like from the outside sea and enables seawater circulation inside and outside the harbor.

一般的に、港湾や漁港等を外海との間で仕切る防波堤としては、コンクリート製の函体を用い、該函体内に砂を詰め上面に蓋をして上部工及びパラペットを配置したケーソン式防波堤、ブロック塊を積み外海側の面に消波ブロックを積み上げたブロック式防波堤及びセルラーブロックを積み上げ内部に砂を詰めて上面に蓋をして上部工を配置した防波堤等が使用されてきた。   Generally, as a breakwater that partitions a port or fishing port from the open sea, a caisson-type breakwater using a concrete box, filling the box with sand and covering the upper surface, and placing a superstructure and a parapet Block-type breakwaters in which block blocks are stacked and wave-dissipating blocks are stacked on the surface of the outside sea side, and breakwaters in which cellular blocks are stacked, sand is packed inside, the upper surface is covered, and superstructures are arranged have been used.

しかしながら、上述したような防波堤では、港外からの波浪は、防波堤の港外側に面する壁部により大きな反射波として港外に向かって伝播され、一方、港内からの航跡波や吹送波(風波)についても防波堤の港内側に面する壁部により反射し、その反射波が港内の船舶や浮体に悪い影響を及ぼすことになる。
そのため、防波堤の港外側及び港内側に消波ブロックを積み上げることで、反射波を低減させるようにしているが、消波ブロックが海底面まで勾配を付けながら積み上げられるため、防波堤付近への漁船の接近が困難となり好ましくない。
しかも、上述したような防波堤では、港内と港外とが完全に遮断されているため、港内奥の海底域にある有機浮泥や細粒泥土などが沈殿、堆積し、港内で腐敗、発酵して水環境が悪化する現象を招く。
However, in the breakwater as described above, waves from the outside of the port are propagated toward the outside of the port as a large reflected wave by the wall facing the outside of the port of the breakwater, while wake waves and blowing waves from the inside of the port (wind waves) ) Is reflected by the wall of the breakwater facing the harbor, and the reflected waves have a negative effect on the ships and floating bodies in the harbor.
Therefore, the reflected waves are reduced by stacking the wave-dissipating blocks outside and inside the port of the breakwater. However, since the wave-dissipating blocks are piled up to the bottom of the sea, the fishing boats near the breakwater Access is difficult, which is not preferable.
In addition, the breakwater as described above is completely cut off from inside and outside the port, so organic floating mud and fine mud in the seabed area at the back of the port are precipitated and deposited, and rot and ferment in the port. This leads to a deterioration of the water environment.

そこで、上述した問題を解決すべく提案された特許文献1には、堤中に貫通孔を有するブロックが少なくとも1層積み上げられて構成される海水交換型防波堤が開示されている。   Therefore, Patent Document 1 proposed to solve the above-described problem discloses a seawater exchange type breakwater constituted by stacking at least one layer of blocks having through holes in the bank.

特開平09−165727号公報JP 09-165727 A

しかしながら、特許文献1の発明では、堤中に貫通孔を有するブロックの上に、被覆石や消波ブロックが港外側及び港内側に海底面付近まで勾配を付けながら積み上げられているため、上述したように、防波堤付近への漁船の接近が困難となり好ましくない。   However, in the invention of Patent Document 1, since the covering stones and the wave-dissipating blocks are stacked on the block having a through hole in the embankment while being inclined to the vicinity of the sea bottom on the outer side and the inner side of the port, it has been described above. In this way, it is difficult to make the fishing boat approach to the vicinity of the breakwater.

本発明は、かかる点に鑑みてなされたものであり、波浪エネルギーを減衰させると共に、港内外での海水循環を可能とし、防波堤付近への漁船の接近を可能とする防波堤を提供することを目的とする。   The present invention has been made in view of such points, and an object thereof is to provide a breakwater that attenuates wave energy and enables circulation of seawater in and out of a port and enables a fishing boat to approach the breakwater. And

本発明は、上記課題を解決するための手段として、請求項1に記載した発明は、海底に造成したマウンド上に、上面及び側面に開口部を有する中空消波型被覆ブロックを、波浪方向と、該波浪方向に対して直交する方向とに夫々複数列敷設し、且つ海面上まで複数積み上げて構成したことを特徴とするものである。
請求項1の発明では、港外から防波堤に到達した波浪は、各中空消波型被覆ブロック内に流動し、各中空消波型被覆ブロック内での渦及び乱流により波浪エネルギーが減衰され、港外への反射波及び港内への波浪の伝播が抑えられる。しかも、港外から港内への波浪エネルギーの伝播は抑制されるものの、港外から多量の海水が港内へ流入するために、港内に浮遊する有機浮泥や細粒泥土などが、海水交換により除去され、港内の水質が向上される。しかも、本防波堤では、消波ブロックを勾配を付けながら海底面付近まで積み上げていないので、防波堤付近への漁船の接近が可能となる。
According to the present invention, as means for solving the above-mentioned problems, the invention described in claim 1 is characterized in that a hollow wave-dissipating type covering block having openings on the upper surface and side surfaces is provided on the mound formed on the seabed. A plurality of rows are laid in a direction orthogonal to the wave direction, and a plurality are stacked up to the sea surface.
In the invention of claim 1, the waves that have reached the breakwater from outside the port flow into each hollow wave-dissipating-type covering block, and the wave energy is attenuated by vortices and turbulence in each hollow wave-dissipating-type covering block, Reflection of waves outside the port and propagation of waves into the port can be suppressed. Moreover, although the propagation of wave energy from outside the port to the inside of the port is suppressed, a large amount of seawater flows from the outside of the port into the port, so organic floating mud and fine mud mud floating in the port are removed by seawater exchange. The water quality in the port will be improved. Moreover, in this breakwater, since the wave-dissipating blocks are not piled up near the sea bottom with a gradient, the fishing boat can approach the breakwater.

請求項2に記載した発明は、請求項1に記載した発明において、前記各中空消波型被覆ブロック内には、開口部有り消波板または開口部無し消波板のいずれか一方が波浪に対向する向きで配置されることを特徴とするものである。
請求項3に記載した発明は、請求項2に記載した発明において、前記各中空消波型被覆ブロック内には、沖側から最も離れた位置に複数積層された各中空消波型被覆ブロックのうち、最も海底に近い各中空消波型被覆ブロックを除く各中空消波型被覆ブロック内だけに前記開口部無し消波板が配置されることを特徴とするものである。
請求項2及び3の発明では、港外からの波浪に対する、港外への反射波及び港内への波浪の伝播をより一層抑制することができる。
The invention described in claim 2 is the invention described in claim 1, wherein either one of the wave-dissipating plate with an opening or the wave-dissipating plate without an opening is waved in each hollow wave-dissipating-type coating block. It arrange | positions in the direction which opposes, It is characterized by the above-mentioned.
The invention described in claim 3 is the invention described in claim 2, wherein in each of the hollow wave-dissipating-type covering blocks, a plurality of hollow wave-dissipating-type covering blocks stacked in a position farthest from the offshore side are provided. Among these, the openingless wave-dissipating plate is disposed only in each hollow wave-dissipating-type covering block excluding each hollow wave-dissipating-type covering block closest to the seabed.
In invention of Claim 2 and 3, the propagation of the reflected wave to the outside of a port and the wave to the inside of a port with respect to the wave from the outside of a port can be suppressed further.

請求項4に記載した発明は、請求項1〜3のいずれかに記載した発明において、前記各中空消波型被覆ブロックの下面には複数の脚部が突設されると共に、各中空消波型被覆ブロックの上面には前記各脚部が嵌合する凹部が形成されることを特徴とするものである。
請求項4の発明では、港外から波浪が衝突した際、上方に積み上げられた各中空消波型被覆ブロックが揺動することで、各中空消波型被覆ブロックの安定性が維持される。
The invention described in claim 4 is the invention described in any one of claims 1 to 3, wherein a plurality of legs project from the lower surface of each hollow wave-dissipating-type covering block, and each hollow wave-dissipating wave is provided. The upper surface of the mold covering block is formed with a recess into which each of the leg portions is fitted.
In the invention of claim 4, when the waves collide from the outside of the harbor, the respective hollow wave-dissipating-type covering blocks stacked upwardly swing, so that the stability of each hollow wave-dissipating-type covering block is maintained.

請求項5に記載した発明は、請求項4に記載した発明において、前記各脚部と前記凹部とは、鉛直面に対して傾斜するテーパ面で接触して嵌合することを特徴とするものである。
請求項5の発明では、港外からの波浪の衝撃により、上方に積み上げられた各中空消波型被覆ブロックが大きく揺動した場合でも容易に復元される。
The invention described in claim 5 is characterized in that, in the invention described in claim 4, each of the leg portions and the concave portion are brought into contact with each other by a tapered surface inclined with respect to a vertical surface. It is.
In the invention of claim 5, even if each hollow wave-dissipating-type covering block piled upward is largely swung due to the impact of waves from the outside of the harbor, it can be easily restored.

本発明の防波堤によれば、波浪エネルギーを減衰させると共に、港内外での海水循環を可能にし、防波堤付近への漁船の接近を可能にする。   According to the breakwater of the present invention, the wave energy is attenuated and the seawater can be circulated inside and outside the port, allowing the fishing boat to approach the breakwater.

図1は、本発明の実施の形態に係る防波堤を示す図である。FIG. 1 is a diagram showing a breakwater according to an embodiment of the present invention. 図2は、図1の防波堤に採用される中空消波型被覆ブロックの斜視図である。FIG. 2 is a perspective view of a hollow wave-dissipating-type covering block employed in the breakwater of FIG. 図3は、(a)が中空消波型被覆ブロックの平面図であり、(b)が側面図であり、(c)が正面図である。3A is a plan view of a hollow wave-dissipating coating block, FIG. 3B is a side view, and FIG. 3C is a front view. 図4は、(a)が開口部有り消波板の斜視図であり、(b)が開口部無し消波板の斜視図である。4A is a perspective view of a wave-dissipating plate with an opening, and FIG. 4B is a perspective view of a wave-dissipating plate without an opening. 図5は、図1の防波堤における、開口率と無次元輸送流量との関係図を示している。FIG. 5 shows the relationship between the aperture ratio and the dimensionless transport flow rate in the breakwater of FIG. 図6は、本実施形態に係る防波堤を使用した海水交換率を算出するための想定漁港を示す模式図である。FIG. 6 is a schematic diagram illustrating an assumed fishing port for calculating a seawater exchange rate using the breakwater according to the present embodiment. 図7は、開口部有り消波板の他の実施形態を示す斜視図である。FIG. 7 is a perspective view showing another embodiment of the wave breaker with an opening. 図8は、図7の開口部有り消波板をブロック本体に装着した状態を示す断面図である。FIG. 8 is a cross-sectional view showing a state in which the wave-dissipating plate with openings of FIG. 7 is attached to the block body.

以下、本発明を実施するための形態を図1〜図8に基いて詳細に説明する。
本発明の実施の形態に係る防波堤1が形成される海底の所定位置には、図1に示すように、基礎マウンド2が海底に石を投棄することにより造成される。該基礎マウンド2は、後述する中空消波型被覆ブロック3を安定的に複数敷設できるように、その天端が平坦に均される。また、基礎マウンド2の平坦面4から港外側及び港内側には、平坦面4から離れるに従って下方傾斜する傾斜面5、5がそれぞれ形成される。
この基礎マウンド2の平坦面4に底板6が敷設される。底板6の周りには、根固めブロック7が複数敷設される。また、基礎マウンド2に設けた、港外に向かって下方傾斜する傾斜面5には被覆ブロック8が複数敷設される。なお、底板6の上面には、後述する中空消波型被覆ブロック3の下面の4隅に設けた脚部20が嵌合する凹部9が、底板6上に敷設される中空消波型被覆ブロック3の数量に対応して形成される。該凹部9は、中空消波型被覆ブロック3の下面に設けた脚部20に対応した形状で形成される。
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to FIGS.
As shown in FIG. 1, the foundation mound 2 is formed at a predetermined position on the seabed where the breakwater 1 according to the embodiment of the present invention is formed by dumping stones on the seabed. The foundation mound 2 is flattened at the top so that a plurality of hollow wave-dissipating coating blocks 3 to be described later can be stably laid. In addition, inclined surfaces 5 and 5 that are inclined downward as the distance from the flat surface 4 is formed from the flat surface 4 of the foundation mound 2 to the outer side and the inner side of the port, respectively.
A bottom plate 6 is laid on the flat surface 4 of the foundation mound 2. A plurality of rooting blocks 7 are laid around the bottom plate 6. A plurality of covering blocks 8 are laid on the inclined surface 5 provided in the foundation mound 2 and inclined downward toward the outside of the port. In addition, the hollow wave-dissipating-type covering block in which the recessed part 9 which the leg part 20 provided in the four corners of the lower surface of the hollow wave-dissipating-type covering block 3 mentioned later fits on the upper surface of the bottom plate 6 is laid on the bottom plate 6 is provided. It is formed corresponding to the quantity of 3. The concave portion 9 is formed in a shape corresponding to the leg portion 20 provided on the lower surface of the hollow wave-dissipating-type coating block 3.

そして、本発明の実施の形態に係る防波堤1は、上述した基礎マウンド2上の底板6の上面に、中空消波型被覆ブロック3が波浪方向と、該波浪方向に直交する方向に夫々複数列敷設され、且つ海面上まで複数積み上げられて構成される。   The breakwater 1 according to the embodiment of the present invention includes a plurality of rows of hollow wave-dissipating-type covering blocks 3 in the wave direction and in a direction perpendicular to the wave direction on the upper surface of the bottom plate 6 on the foundation mound 2 described above. It is constructed by laying and stacking a plurality of sea level.

中空消波型被覆ブロック3は、図2及び図3に示すように、一対の側板部14aに縦長開口部11を2箇所、また一対の側板部14bに横長開口部10を1箇所それぞれ設けると共に、上面に全面開放の開口部12を設けた有底のブロック本体13と、該ブロック本体13内に、該ブロック本体13の、縦長開口部11が形成された側板部14aと同じ向きに備えられた矩形板状の開口部有り消波板15(図4(a)に示す)または開口部無し消波板16(図4(b)に示す)とからなる。   As shown in FIGS. 2 and 3, the hollow wave-dissipating-type covering block 3 is provided with two vertically long openings 11 in a pair of side plate portions 14a and one horizontally long opening 10 in a pair of side plate portions 14b. A bottomed block main body 13 having an opening 12 that is open to the entire surface on the upper surface, and a side plate 14a of the block main body 13 in which the vertically long opening 11 is formed. The rectangular plate-shaped wave-dissipating plate 15 with openings (shown in FIG. 4A) or the wave-dissipating plate 16 without openings (shown in FIG. 4B).

開口部有り消波板15及び開口部無し消波板16は、図4に示すように、コンクリート製からなり矩形状に形成される。また、開口部有り消波板15及び開口部無し消波板16は、これらをブロック本体13内に一体的に装着した際、ブロック本体13の上面より突出する高さで形成される。その突出量は、後述する突起板部材23の高さと略同じである。また、開口部有り消波板15には、図4(a)に示すように、略中央部に矩形の開口部15aが形成される。   As shown in FIG. 4, the wave-dissipating plate 15 with openings and the wave-dissipating plate 16 without openings are made of concrete and formed in a rectangular shape. Further, the wave-dissipating plate 15 with an opening and the wave-dissipating plate 16 without an opening are formed at a height that protrudes from the upper surface of the block body 13 when these are integrally mounted in the block body 13. The protruding amount is substantially the same as the height of the protruding plate member 23 described later. In addition, the wave-dissipating plate 15 with an opening is formed with a rectangular opening 15a at a substantially central portion as shown in FIG.

ブロック本体13は、図2及び図3に示すように、中空の有底直方体からなり、コンクリートにて後述するように一体成形される。ブロック本体13の下面の4隅には脚部20が形成されている。これらの脚部20は、互いに対向する面がハの字を描くように、鉛直面に対して傾斜したテーパ面21aがそれぞれ形成され、結果的に、1個の脚部20に対して2つのテーパ面21aが形成されることになる。このブロック本体13の対向する側板部14bには、その中央部に矩形の横長開口部10が一箇所形成され、その他の対向する側板部14aには、前記横長開口部10よりも面積の小さい矩形の縦長開口部11が二箇所形成される。
そして、ブロック本体13内には、横長開口部10が形成される各側板部14bの内面の幅方向略中央に、縦長開口部11が2箇所形成される各側板部14aと同方向に延びる開口部有り消波板15または開口部無し消波板16が一体的に装着される。なお、図3では、ブロック本体13内に開口部有り消波板15が一体的に装着される。
As shown in FIGS. 2 and 3, the block body 13 is formed of a hollow bottomed rectangular parallelepiped and is integrally formed of concrete as described later. Legs 20 are formed at the four corners of the lower surface of the block body 13. These leg portions 20 are each formed with a tapered surface 21a inclined with respect to a vertical surface so that the surfaces facing each other draw a square shape. A tapered surface 21a is formed. A rectangular laterally long opening 10 is formed in the central part of the opposing side plate part 14b of the block body 13, and a rectangular area having a smaller area than the laterally opening part 10 is formed in the other opposing side plate part 14a. Are formed in two places.
And in the block main body 13, the opening extended in the same direction as each side plate part 14a in which the longitudinally long opening part 11 is formed in the width direction approximate center of the inner surface of each side plate part 14b in which the horizontally long opening part 10 is formed. The wave-dissipating plate 15 with a portion or the wave-dissipating plate 16 without an opening is mounted integrally. In FIG. 3, the wave-dissipating plate 15 with an opening is integrally mounted in the block main body 13.

そこで、開口部有り消波板15または開口部無し消波板16は、ブロック本体13をコンクリートにて一体成形する際に一体的に装着される。その成形手順を簡単に説明(図示略)する。まず、各脚部20を成形すべく4隅に下方突部を有する底型枠を設置し、該底型枠上にブロック本体13の形状に即して組まれた鉄筋を設置する。その後、鉄筋の外側に外型枠を設置すると共に、鉄筋の内部に既成のコンクリート製からなる開口部有り消波板15または開口部無し消波板16を設置して、鉄筋の一部を開口部有り消波板15または開口部無し消波板16の側面に連結部材を介して挿入する。この時、開口部有り消波板15または開口部無し消波板16の下面から延びる複数の鉄筋の先端が底型枠の上面に近接する位置に達する。その後、鉄筋の内部に内型枠を設置して、外型枠と内型枠との間にコンクリートを打設して養生した後、底型枠、外型枠及び内型枠を脱型して、開口部有り消波板15または開口部無し消波板16が内部に装着されたブロック本体13が完成される。
なお、ブロック本体13に横長開口部10が形成された各側板部14bの内面の幅方向略中央に縦溝を形成して、該一対の側板部14bに設けた縦溝に、モルタル、アスファルト等の接着材を介して差込み式で矩形板状の開口部有り消波板15または開口部無し消波板16を装着してもよい。
Therefore, the wave-dissipating plate 15 with an opening or the wave-dissipating plate 16 without an opening is integrally mounted when the block body 13 is integrally formed of concrete. The forming procedure will be briefly described (not shown). First, in order to mold each leg 20, a bottom mold having lower protrusions is installed at four corners, and reinforcing bars assembled in accordance with the shape of the block body 13 are installed on the bottom mold. After that, an outer mold is installed outside the reinforcing bar, and an opening-containing wave-dissipating plate 15 or an opening-less wave-dissipating plate 16 made of a pre-made concrete is installed inside the reinforcing bar to open a part of the reinforcing bar. It inserts into the side surface of the wave-dissipating plate 15 with a part or the wave-dissipating plate 16 without an opening part via a connection member. At this time, the tips of a plurality of reinforcing bars extending from the lower surface of the wave-dissipating plate 15 with an opening or the wave-dissipating plate 16 without an opening reach a position close to the upper surface of the bottom mold. After that, after installing the inner mold inside the reinforcing bar and placing and curing the concrete between the outer mold and the inner mold, the bottom mold, the outer mold, and the inner mold are removed. Thus, the block main body 13 in which the wave-dissipating plate 15 with an opening or the wave-dissipating plate 16 without an opening is mounted is completed.
In addition, a vertical groove is formed in the center in the width direction of the inner surface of each side plate portion 14b in which the horizontally long opening 10 is formed in the block body 13, and mortar, asphalt, etc. are formed in the vertical groove provided in the pair of side plate portions 14b. Alternatively, the rectangular plate-shaped wave-dissipating plate 15 with an opening or the wave-dissipating plate 16 without an opening may be attached through an adhesive.

さらに、ブロック本体13の各側板部14a、14bの上面には、突起板部材23、23がブロック本体13と共にそれぞれ一体成形される。なお、各突起板部材23は、上述したように、ブロック本体13を、内部に開口部有り消波板15または開口部無し消波板16を設置した上でコンクリートにて一体成形する際に簡易的な型枠を使用することでブロック本体13と一体成形される。
各突起板部材23、23は、ブロック本体13の各側板部14a、14bの厚みと同じ厚みを有し、ブロック本体13の下面に設けた各脚部20の高さと同じ高さを有するものである。また、これら突起板部材23、23は、ブロック本体13の各側板部14a、14bの長さよりも若干短く形成され、その両端面は、ハの字を描くように鉛直面に対して傾斜するテーパ面21b(脚部20に設けたテーパ面21aの傾斜角度と略同一)が形成される。その結果、ブロック本体13の上面の4隅には、ブロック本体13の下面に設けた脚部20が、互いのテーパ面21a、21bが接触して嵌合する凹部25が形成される。
Further, projecting plate members 23 and 23 are integrally formed with the block body 13 on the upper surfaces of the side plate portions 14 a and 14 b of the block body 13. As described above, each protruding plate member 23 is simplified when the block body 13 is integrally formed with concrete with the opening-side wave-dissipating plate 15 or the opening-less wave-dissipating plate 16 installed therein. It is integrally formed with the block main body 13 by using a typical formwork.
Each protruding plate member 23, 23 has the same thickness as that of each side plate portion 14 a, 14 b of the block main body 13, and has the same height as each leg portion 20 provided on the lower surface of the block main body 13. is there. Further, the protruding plate members 23 and 23 are formed slightly shorter than the lengths of the side plate portions 14a and 14b of the block main body 13, and both end surfaces thereof are tapered so as to incline with respect to the vertical plane so as to draw a square shape. A surface 21b (substantially the same as the inclination angle of the tapered surface 21a provided on the leg 20) is formed. As a result, at the four corners of the upper surface of the block main body 13, recesses 25 are formed in which the leg portions 20 provided on the lower surface of the block main body 13 are engaged with each other by contacting the taper surfaces 21 a and 21 b.

そして、本発明の実施の形態に係る防波堤1を形成する際には、図1に示すように、上述した中空消波型被覆ブロック3を、基礎マウンド2上の底板6の上面に、各ブロック本体13の、縦長開口部11が2箇所形成された側の一対の側板部14aが波浪と対向するように配置し、波浪方向に複数列(本実施の形態では3列)及び該波浪方向と直交する方向に複数列(図示はされてはいないが本実施の形態では5列)敷設する。この時、各中空消波型被覆ブロック3の下面の4隅に設けた各脚部20を、底板6に設けた各凹部9に嵌合させて位置決めする。
さらに、中空消波型被覆ブロック3を、上方に複数段(本実施の形態では4段)積層して、図1に示すように、最も上段の各中空消波型被覆ブロック3全体が海面から突出するように直方体の防波堤1を構成する。また、各中空消波型被覆ブロック3を積層する際には、上側の中空消波型被覆ブロック3の下面の4隅に設けた各脚部20を、下側の中空消波型被覆ブロック3の上面の4隅に設けた各凹部25に、互いのテーパ面21a、21bが接触するように嵌合して、順次積層していく。
And when forming the breakwater 1 which concerns on embodiment of this invention, as shown in FIG. 1, each hollow block type | mold covering block 3 mentioned above is provided in the upper surface of the baseplate 6 on the foundation mound 2, each block. A pair of side plate portions 14a on the side of the main body 13 on which two vertically long openings 11 are formed are arranged so as to face the waves, and a plurality of rows (three rows in the present embodiment) in the wave direction and the wave directions A plurality of rows (5 rows in this embodiment, although not shown) are laid in the orthogonal direction. At this time, the leg portions 20 provided at the four corners of the lower surface of each hollow wave-dissipating-type covering block 3 are fitted into the concave portions 9 provided in the bottom plate 6 to be positioned.
Furthermore, the hollow wave-dissipating-type covering blocks 3 are laminated in a plurality of stages (four stages in the present embodiment) on the upper side, and as shown in FIG. The rectangular parallelepiped breakwater 1 is configured to protrude. Further, when the hollow wave-dissipating-type covering blocks 3 are stacked, the leg portions 20 provided at the four corners of the lower surface of the upper hollow wave-dissipating-type covering block 3 are connected to the lower hollow wave-dissipating-type covering block 3. The respective concave portions 25 provided at the four corners of the upper surface are fitted so that the taper surfaces 21a and 21b come into contact with each other, and are sequentially laminated.

そこで、図1に示すように、最も港内側に位置する各中空消波型被覆ブロック3のうち、最も下段に位置する各中空消波型被覆ブロック3を除く上3段の中空消波型被覆ブロック3内だけに開口部無し消波板16が配置され、その他の各中空消波型被覆ブロック3内には開口部有り消波板15が配置されている。本実施の形態では、上述したように、各中空消波型被覆ブロック3に備えた開口部有り消波板15または開口部無し消波板16は、ブロック本体13内に、ブロック本体13をコンクリートにて一体成形する際に一体的に装着される。なお、図7に示すように、開口部有り消波板15または開口部無し消波板16(図7では開口部有り消波板15が図示されている)は、底板部26を有する形状としてもよく、この場合には、図8に示すように、開口部有り消波板15または開口部無し消波板16の底板部26をブロック本体13内の底部に、現場打ちのコンクリート層27により定着させて、ブロック本体13と一体化させてもよい。   Therefore, as shown in FIG. 1, among the hollow wave-dissipating-type covering blocks 3 positioned at the innermost port, the upper three-stage hollow wave-dissipating-type coverings excluding the hollow wave-dissipating-type covering blocks 3 positioned at the lowermost stage. A waveless plate 16 having no opening is disposed only in the block 3, and a waveless plate 15 having an opening is disposed in each of the other hollow wave-dissipating coating blocks 3. In the present embodiment, as described above, the wave-dissipating plate 15 with openings or the wave-dissipating plate 16 without openings provided in each hollow wave-dissipating-type covering block 3 is placed in the block main body 13 with the block main body 13 being concrete. When integrally molded with, it is mounted integrally. As shown in FIG. 7, the wave-dissipating plate 15 with an opening or the wave-dissipating plate 16 without an opening (the wave-dissipating plate 15 with an opening is shown in FIG. 7) has a shape having a bottom plate 26. In this case, as shown in FIG. 8, the bottom plate portion 26 of the wave-dissipating plate 15 with an opening or the wave-dissipating plate 16 without an opening is placed on the bottom of the block body 13 by a concrete layer 27 cast in place. It may be fixed and integrated with the block body 13.

さらに、最も上段に位置する各中空消波型被覆ブロック3の上面開口部12を塞ぐように上部工30が配設される。この上部工30の上面で港外側に、断面台形状のパラペット31が配置される。なお、このパラぺット31の鉛直面が、最も港外側に位置する各中空消波型被覆ブロック3(ブロック本体13)の側板部14a(縦長開口部11が2箇所形成される)の外面と略一致する。   Further, an upper work 30 is disposed so as to close the upper surface opening 12 of each hollow wave-dissipating-type covering block 3 positioned at the uppermost stage. A parapet 31 having a trapezoidal cross section is disposed outside the harbor on the upper surface of the superstructure 30. In addition, the vertical surface of this parapet 31 is the outer surface of the side plate part 14a (two vertically long openings 11 are formed) of each hollow wave-dissipating covering block 3 (block body 13) located on the outermost port side. Is approximately the same.

そこで、本発明の実施形態に係る防波堤1において、港内外の海水交換作用、港外への反射率及び港内への波浪の伝達率の観点から、最も港内側(港外から3列目)に4段積層される各中空消波型被覆ブロック3における、開口部有り消波板15または開口部無し消波板16の配置を検討した結果を以下に説明する。
なお、下記に説明する第1試験形態〜第4試験形態では、最も港内側に4段積層される各中空消波型被覆ブロック3以外で、港外から1列目及び2列目それぞれに4層積層される各中空消波型被覆ブロック3内には、開口部有り消波板15が配置される。
Then, in the breakwater 1 which concerns on embodiment of this invention, from the viewpoint of the seawater exchange effect | action inside and outside a port, the reflectance to the outside of a port, and the transmission rate of the wave to the inside of a port, it is in the port innermost (the 3rd row from the outside of a port). The result of examining the arrangement of the wave-dissipating plate 15 with openings or the wave-dissipating plate 16 without openings in each hollow wave-dissipating-type covering block 3 stacked in four stages will be described below.
In the first test mode to the fourth test mode described below, except for each hollow wave-dissipating-type covering block 3 that is laminated in the most four stages inside the port, 4 in each of the first and second rows from the outside of the port. A wave-dissipating plate 15 with an opening is disposed in each hollow wave-dissipating-type covering block 3 that is laminated.

まず、防波堤1の開口率(港内と港外とを連通率)の相違による海水交換作用について図5に基いて説明する。図5は、開口率と無次元輸送流量との関係図を示しており、縦軸に無次元輸送流量、横軸に周期(波高4m)を示す。そこで、開口率とは、基礎マウンド2厚を含む防波堤1の海水中に配置される面積(以下面積Aという)に対する、波浪に対向する部位に形成された開口部の総面積(港内と港外とを連通する開口部の総面積)の比率である。また、無次元輸送流量は、港外から到達した波水塊が防波堤1を介して港内に流入した流量、すなわち、海水交換流量を示すものである。なお、図5では、港外からの波水塊を1とした場合の無次元輸送流量(海水交換流量)の値を示す。   First, the seawater exchange action by the difference in the opening ratio of the breakwater 1 (communication ratio between inside and outside the port) will be described with reference to FIG. FIG. 5 shows the relationship between the aperture ratio and the dimensionless transport flow rate, where the vertical axis represents the dimensionless transport flow rate and the horizontal axis represents the period (wave height 4 m). Therefore, the aperture ratio is the total area of the openings formed in the part facing the waves (the inside and outside of the port) with respect to the area (hereinafter referred to as area A) arranged in the seawater of the breakwater 1 including the thickness of the foundation mound 2. The total area of the openings communicating with each other). The dimensionless transport flow rate indicates the flow rate of wave water masses that have reached from the outside of the port through the breakwater 1 into the port, that is, the seawater exchange flow rate. In addition, in FIG. 5, the value of the dimensionless transport flow volume (seawater exchange flow volume) when the wave water mass from the outside of the port is 1 is shown.

図5において、□印は、最も港内側(港外から3列目)に4段積層される各中空消波型被覆ブロック3(ブロック本体13)のうち、上から1段目〜3段目の各中空消波型被覆ブロック3内に開口部無し消波板16を配置し、上から4段目の各中空消波型被覆ブロック3内に開口部有り消波板15を配置した第1試験形態(開口率3.5%:面積Aに対する縦長開口部11の10個(ブロック本体13の一方の側壁部14aに設けた2個の縦長開口部11×5列)の総面積)によるものを示し、△印は、上から1段目、2段目及び4段目の各中空消波型被覆ブロック3内に開口部無し消波板16を配置し、上から3段目の各中空消波型被覆ブロック3内に開口部有り消波板15を配置した第2試験形態(開口率3.5%)によるものを示す。また、図5中の×印は、上から1段目、3段目及び4段目の各中空消波型被覆ブロック3内に開口部無し消波板16を配置し、上から2段目の各中空消波型被覆ブロック3内に開口部有り消波板15を配置した第3試験形態(開口率3.5%)によるものを示し、◇印は、上から1段目及び2段目の各中空消波型被覆ブロック3内に開口部無し消波板16を配置し、上から3段目及び4段目の中空消波型被覆ブロック3内に開口部有り消波板15を配置した第4試験形態(開口率7.01%:面積Aに対する縦長開口部11の20個の総面積)によるものを示す。   In FIG. 5, □ marks indicate the first to third tiers from the top among the hollow wave-dissipating-type coating blocks 3 (block body 13) that are stacked in four tiers on the innermost port side (third row from outside the port). A first wave-dissipating plate 16 having no opening is disposed in each hollow wave-dissipating-type covering block 3 and a wave-dissipating plate 15 having an opening is disposed in each hollow wave-dissipating-type covering block 3 in the fourth stage from the top. According to test form (opening ratio 3.5%: total area of ten vertically long openings 11 with respect to area A (two vertically long openings 11 × 5 rows provided on one side wall 14a of block body 13)) △ marks indicate the opening-less wave-dissipating plate 16 in the hollow wave-dissipating-type coating blocks 3 in the first, second, and fourth stages from the top, and the third hollow from the top. The thing by the 2nd test form (opening ratio 3.5%) which has arrange | positioned the wave-dissipating plate 15 with an opening part in the wave-dissipating-type coating block 3 is shown. In addition, the crosses in FIG. 5 indicate the opening-less wave-dissipating plates 16 in the first, third, and fourth hollow wave-dissipating coating blocks 3 from the top, and the second-stage from the top. Shows a third test configuration (opening ratio: 3.5%) in which a wave-dissipating plate 15 with an opening is arranged in each hollow wave-dissipating-type coating block 3, and the ◇ marks indicate the first and second steps from the top. A waveless plate 16 having no opening is disposed in each hollow wave-dissipating-type covering block 3 of the eye, and a wave-dissipating plate 15 having an opening is provided in the third and fourth steps of the hollow wave-dissipating-type covering block 3 from the top. The thing by the arrange | positioned 4th test form (opening ratio 7.01%: 20 total area of the vertically long opening part 11 with respect to the area A) is shown.

そして、第1〜第4試験形態の比較によると、無次元輸送流量(海水交換流量)は、波の周期の相違によって大きな差異はなく、海水交換作用の観点からは、第1試験形態(□印)である、上から1段目〜3段目の各中空消波型被覆ブロック3内に開口部無し消波板16を配置し、上から4段目の各中空消波型被覆ブロック3内に開口部有り消波板15を配置した試験形態が最適であることが解る。   And according to the comparison of the first to fourth test forms, the dimensionless transport flow rate (seawater exchange flow rate) is not greatly different due to the difference in the wave period. From the viewpoint of the seawater exchange action, the first test form (□ The opening-less wave-dissipating plate 16 is arranged in each of the first to third hollow wave-dissipating covering blocks 3 from the top, and each hollow wave-dissipating covering block 3 in the fourth line from the top. It can be seen that the test configuration in which the wave-dissipating plate 15 with an opening is disposed inside is optimal.

また、波高4m時の防波堤1からの反射波及び伝達率を前述の第1試験形態〜第4試験形態において比較した。
その結果、反射波については、第1試験形態〜第4試験形態において大きな差異はなくその値は0.5程度であった。また、伝達率についても、第1試験形態〜第4試験形態において大きな差異はなくその値は0.2程度であった。
Moreover, the reflected wave and the transmissibility from the breakwater 1 when the wave height was 4 m were compared in the first to fourth test forms described above.
As a result, the reflected wave was not significantly different between the first test form to the fourth test form, and the value was about 0.5. Moreover, there was no big difference in the transmission rate in the first test form to the fourth test form, and the value was about 0.2.

上述した試験結果に基いて、本発明の実施形態に係る防波堤1では、海水交換作用、波浪の反射率及び伝達率の観点から、最も港内側(港外から3列目)に4段積層される各中空消波型被覆ブロック3のうち、上から1段目、2段目及び3段目の各中空消波型被覆ブロック3内に開口部無し消波板16を配置し、上から4段目の各中空消波型被覆ブロック3内に開口部有り消波板15を配置した形態を採用することが好ましい。   Based on the test results described above, the breakwater 1 according to the embodiment of the present invention is laminated in four layers on the innermost port side (third row from the outside of the port) from the viewpoint of seawater exchange action, wave reflectance and transmission rate. Among the hollow wave-dissipating-type covering blocks 3, the openingless wave-dissipating plate 16 is disposed in each of the first, second, and third-stage hollow wave-dissipating-type covering blocks 3 from the top. It is preferable to adopt a configuration in which a wave-dissipating plate 15 with an opening is disposed in each hollow wave-dissipating-type coating block 3 at the stage.

次に、想定漁港(図6に示すL1=100m,L2=100m,深さH=5m)に本実施の形態に係る防波堤1、すなわち、最も港内側に4段積層される各中空消波型被覆ブロック3のうち、上から1段目、2段目及び3段目の各中空消波型被覆ブロック3内に開口部無し消波板16を配置し、上から4段目の各中空消波型被覆ブロック3内に開口部有り消波板15を配置した上述した第1試験形態(無次元輸送流量が略1.5%(図5では0.015)見込める)に係る防波堤1を使用した場合の海水交換率を算出した結果を説明する。なお、図5に示す無次元輸送流量は、波高4mの場合を想定して算出したものであるが、他の試験結果に基いて波高2mの場合でも、上述の第1試験形態では、周期に関係なく無次元輸送流量が略1.5%になることを確認している。
図6の漁港内の水塊量は50000mであり、試験した中で波峰水塊量の最も小さい波浪として、H1/3(波高)=2m,T(周期)=6sec,L(波長)=47mの場合の海水交換量を算出した。その結果、縦長開口部11が10孔(開口率3.5%)、防波堤1の幅が略15m程度であると、1日当たりの海水交換量が5373mとなり、1日の当たりの海水交換率が10.7%となる。
また、波浪条件をH1/3(波高)=4m,T(周期)=9sec,L(波長)=80mに設定すると、1日当たりの海水交換量が12046mとなり、1日当たりの海水交換率が24.1%となる。
なお、4段目に配列されるブロック本体13の一方の側壁部14aの縦長開口部11の数量や防波堤1の幅を適宜調整すれば、海水交換率をさらに増加させることが可能になる。
Next, the breakwater 1 according to the present embodiment in the assumed fishing port (L1 = 100 m, L2 = 100 m, depth H = 5 m shown in FIG. 6), that is, each hollow wave-dissipating type that is stacked in four stages on the innermost side of the port Among the covering blocks 3, the opening-less wave-dissipating plates 16 are arranged in the first, second, and third-stage hollow wave-dissipating-type covering blocks 3 from the top, and the fourth-stage hollow extinguishers are arranged from the top. Using the breakwater 1 according to the above-described first test form (where the dimensionless transport flow rate is expected to be approximately 1.5% (0.015 in FIG. 5)) in which the wave-dissipating plate 15 with an opening is disposed in the corrugated covering block 3 The result of calculating the seawater exchange rate in the case of having been performed will be described. Note that the dimensionless transport flow rate shown in FIG. 5 is calculated assuming a wave height of 4 m. However, even in the case of a wave height of 2 m based on other test results, in the first test configuration described above, the cycle is Regardless, it has been confirmed that the dimensionless transport flow rate is approximately 1.5%.
The water mass in the fishing port of FIG. 6 is 50000 m 3 , and H 1/3 (wave height) = 2 m, T (cycle) = 6 sec, L (wavelength) = Seawater exchange amount for 47 m was calculated. As a result, when the vertically long opening 11 has 10 holes (opening ratio of 3.5%) and the width of the breakwater 1 is about 15 m, the amount of seawater exchange per day becomes 5373 m 3 , and the seawater exchange rate per day Is 10.7%.
If the wave conditions are set to H 1/3 (wave height) = 4 m, T (cycle) = 9 sec, L (wavelength) = 80 m, the amount of seawater exchange per day is 12046 m 3 , and the seawater exchange rate per day is 24.1%.
It should be noted that the seawater exchange rate can be further increased by appropriately adjusting the number of vertically elongated openings 11 in one side wall portion 14a of the block main body 13 arranged in the fourth stage and the width of the breakwater 1.

以上説明したように、本発明の実施の形態に係る防波堤1では、各側壁部14a、14bに横長開口部10及び縦長開口部11を設けると共に上面に全面開放の開口部12を設けたブロック本体13を備えた中空消波型被覆ブロック3を、波浪方向と、該波浪方向に対して直交する方向とに夫々複数列敷設し、且つ海面上まで複数積み上げて構成したので、各中空消波型被覆ブロック3の内部に乱流及び渦が発生して、これらの相互干渉作用により波浪エネルギーが大きく減衰される。しかも、本防波堤1により、港外から港内への波浪エネルギーの伝播は抑制されるものの、本防波堤1を介して港外から多量の海水が港内へ流入するために、港内外の海水循環が可能になり、港内の水質が向上される。   As described above, in the breakwater 1 according to the embodiment of the present invention, the block main body in which the side wall portions 14a and 14b are provided with the horizontally long opening portions 10 and the vertically long opening portions 11 and the entire surface is provided with the opening portions 12 that are open to the entire surface. Since the hollow wave-dissipating-type covering block 3 provided with 13 is constructed by laying a plurality of rows in the wave direction and in a direction perpendicular to the wave direction and stacking a plurality of the waves to the sea surface, Turbulence and vortices are generated inside the covering block 3, and the wave energy is greatly attenuated by the mutual interference action. Moreover, although the propagation of wave energy from the outside of the port to the inside of the port is suppressed by the breakwater 1, a large amount of seawater flows from the outside of the port to the inside of the port via the breakwater 1, so that seawater circulation inside and outside the port is possible. The water quality in the port will be improved.

また、本発明の実施の形態に係る防波堤1では、港外から1列目及び2列目それぞれに4層積層される各中空消波型被覆ブロック3内に開口部有り消波板15を配置して、最も港内側(港外から3列目)に4段積層される各中空消波型被覆ブロック3のうち、上から1段目、2段目及び3段目の各中空消波型被覆ブロック3のブロック本体13内に開口部無し消波板16を配置し、上から4段目の各中空消波型被覆ブロック3のブロック本体13内に開口部有り消波板15を配置しているので、港内外の海水循環がより一層促進される。   Further, in the breakwater 1 according to the embodiment of the present invention, the wave breaker 15 with an opening is disposed in each hollow wave breaker-type covering block 3 that is laminated in each of the first and second rows from the outside of the port. Of the hollow wave-dissipating coating blocks 3 that are stacked in four layers on the innermost side of the port (the third row from the outside of the port), the hollow wave-dissipating blocks in the first, second, and third stages from the top A waveless plate 16 without openings is arranged in the block main body 13 of the covering block 3, and a wave-dissipating plate 15 with openings is arranged in the block main body 13 of each hollow wave-dissipating type covering block 3 in the fourth stage from the top. Therefore, the seawater circulation inside and outside the port is further promoted.

さらに、本発明の実施の形態に係る防波堤1では、各中空消波型被覆ブロック3の積層は、上側の中空消波型被覆ブロック3の下面に設けた各脚部20と、下側の中空消波型被覆ブロック3の上面に設けた各凹部25とが、互いのテーパ面21a、21bが接触して嵌合して構成されるため、港外からの波浪の衝撃により、各中空消波型被覆ブロック3が、鉛直面に対して多少傾斜(揺動)しても容易に復元され、安定性を維持することができる。   Furthermore, in the breakwater 1 which concerns on embodiment of this invention, lamination | stacking of each hollow wave-dissipating-type coating block 3 has each leg part 20 provided in the lower surface of the upper hollow wave-dissipating-type coating block 3, and lower hollow Since each of the concave portions 25 provided on the upper surface of the wave-dissipating-type covering block 3 is configured such that the respective tapered surfaces 21a and 21b come into contact with each other, each hollow wave-dissipation is caused by the impact of waves from outside the port. Even if the mold covering block 3 is slightly inclined (swinged) with respect to the vertical plane, it can be easily restored and the stability can be maintained.

しかも、本発明の実施の形態に係る防波堤1は直方体で構成されるため、従来の、消波ブロックを海底面付近まで勾配を付けながら積み上げた防波堤に比して、防波堤付近への漁船の接近が可能になる。   In addition, since the breakwater 1 according to the embodiment of the present invention is configured by a rectangular parallelepiped, the fishing boat approaches the breakwater as compared with the conventional breakwater that is piled up with a gradient to the vicinity of the sea bottom. Is possible.

1 防波堤,2 基礎マウンド,3 中空消波型被覆ブロック,10 横長開口部,11 縦長開口部,12 開口部,13 ブロック本体,15 開口部有り消波板,16 開口部無し消波板,20 脚部,21a、21b テーパ面,25 凹部   DESCRIPTION OF SYMBOLS 1 Breakwater, 2 Foundation mound, 3 Hollow wave-dissipating type | mold covering block, 10 Horizontally long opening part, 11 Longitudinal opening part, 12 Opening part, 13 Block main body, 15 Wave breaking board with an opening part, 16 Wave breaking board without an opening part, 20 Leg, 21a, 21b Tapered surface, 25 Recess

Claims (5)

海底に造成したマウンド上に、上面及び側面に開口部を有する中空消波型被覆ブロックを、波浪方向と、該波浪方向に対して直交する方向とに夫々複数列敷設し、且つ海面上まで複数積み上げて構成したことを特徴とする防波堤。   On the mound constructed on the sea floor, a plurality of hollow wave-dissipating-type covering blocks having openings on the upper surface and side surfaces are laid in the wave direction and in a direction perpendicular to the wave direction, and a plurality of them are extended to the sea surface. Breakwater characterized by being built up. 前記各中空消波型被覆ブロック内には、開口部有り消波板または開口部無し消波板のいずれか一方が、波浪に対向する向きで配置されることを特徴とする請求項1に記載の防波堤。   2. The hollow wave-dissipating type coating block according to claim 1, wherein either one of the wave-dissipating plate with an opening or the wave-dissipating plate without an opening is disposed in a direction facing the wave. Breakwater. 前記各中空消波型被覆ブロック内には、沖側から最も離れた位置に複数積層された各中空消波型被覆ブロックのうち、最も海底に近い各中空消波型被覆ブロックを除く各中空消波型被覆ブロック内だけに前記開口部無し消波板が配置されることを特徴とする請求項2に記載の防波堤。   In each hollow wave-dissipating-type covering block, among the hollow wave-dissipating-type covering blocks that are stacked in a position farthest from the offshore side, each hollow-dissipating-type covering block except for each hollow wave-dissipating-type covering block that is closest to the seabed is used. The breakwater according to claim 2, wherein the openingless wave breaker plate is disposed only in the corrugated covering block. 前記各中空消波型被覆ブロックの下面には複数の脚部が突設されると共に、各中空消波型被覆ブロックの上面には前記各脚部が嵌合する凹部が形成されることを特徴とする請求項1〜3のいずれかに記載の防波堤。   A plurality of leg portions project from the lower surface of each hollow wave-dissipating-type covering block, and a concave portion into which each leg portion is fitted is formed on the upper surface of each hollow wave-dissipating-type covering block. The breakwater according to any one of claims 1 to 3. 前記各脚部と前記凹部とは、鉛直面に対して傾斜するテーパ面で接触して嵌合することを特徴とする請求項4に記載の防波堤。   5. The breakwater according to claim 4, wherein each of the leg portions and the concave portion are fitted in contact with each other on a tapered surface inclined with respect to a vertical surface.
JP2009206093A 2009-09-07 2009-09-07 breakwater Active JP5413723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009206093A JP5413723B2 (en) 2009-09-07 2009-09-07 breakwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009206093A JP5413723B2 (en) 2009-09-07 2009-09-07 breakwater

Publications (2)

Publication Number Publication Date
JP2011058178A true JP2011058178A (en) 2011-03-24
JP5413723B2 JP5413723B2 (en) 2014-02-12

Family

ID=43946108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009206093A Active JP5413723B2 (en) 2009-09-07 2009-09-07 breakwater

Country Status (1)

Country Link
JP (1) JP5413723B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016079803A (en) * 2014-10-16 2016-05-16 ソク−ムン,キム Marine resort structure
CN110409365A (en) * 2019-08-14 2019-11-05 武汉理工大学 A kind of box water surface breakwater hanging pocket water flexible membrane
CN110747807A (en) * 2019-11-28 2020-02-04 交通运输部天津水运工程科学研究所 X-shaped artificial surface protecting wave dissipating block
JP2020023840A (en) * 2018-08-08 2020-02-13 裕弘 増田 Wave dissipating block
CN117562011A (en) * 2024-01-04 2024-02-20 水利部交通运输部国家能源局南京水利科学研究院 Ecological type wave-eliminating reef body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150826A (en) * 1978-05-19 1979-11-27 Wakachiku Constr Block for building wave damping structure
JPS6117964A (en) * 1984-07-05 1986-01-25 Toshiba Corp Inspection system
JPH03119214A (en) * 1989-09-29 1991-05-21 Kosutaru Eng:Kk Wave dissipating device
JP2003027446A (en) * 2001-07-18 2003-01-29 Yoshicon Co Ltd Block for construction and manufacturing device therefor
JP2003041548A (en) * 2001-07-27 2003-02-13 Toyo Constr Co Ltd Multipurpose man-made reef and its construction method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150826A (en) * 1978-05-19 1979-11-27 Wakachiku Constr Block for building wave damping structure
JPS6117964A (en) * 1984-07-05 1986-01-25 Toshiba Corp Inspection system
JPH03119214A (en) * 1989-09-29 1991-05-21 Kosutaru Eng:Kk Wave dissipating device
JP2003027446A (en) * 2001-07-18 2003-01-29 Yoshicon Co Ltd Block for construction and manufacturing device therefor
JP2003041548A (en) * 2001-07-27 2003-02-13 Toyo Constr Co Ltd Multipurpose man-made reef and its construction method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016079803A (en) * 2014-10-16 2016-05-16 ソク−ムン,キム Marine resort structure
JP2020023840A (en) * 2018-08-08 2020-02-13 裕弘 増田 Wave dissipating block
CN110409365A (en) * 2019-08-14 2019-11-05 武汉理工大学 A kind of box water surface breakwater hanging pocket water flexible membrane
CN110747807A (en) * 2019-11-28 2020-02-04 交通运输部天津水运工程科学研究所 X-shaped artificial surface protecting wave dissipating block
CN117562011A (en) * 2024-01-04 2024-02-20 水利部交通运输部国家能源局南京水利科学研究院 Ecological type wave-eliminating reef body
CN117562011B (en) * 2024-01-04 2024-05-03 水利部交通运输部国家能源局南京水利科学研究院 Ecological type wave-eliminating reef body

Also Published As

Publication number Publication date
JP5413723B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5413723B2 (en) breakwater
KR101448092B1 (en) Prefabricated caisson blocks and breakwater, seawall using it
CN103321180A (en) Perforated case type floating breakwater with built-in buoyancy unit
KR101254488B1 (en) Caisson
KR101132861B1 (en) Block of breakwater
KR101366814B1 (en) Seawater exchanging caisson
KR200272975Y1 (en) A quay wall structure of gravity in which various methods are mixed
KR20150141225A (en) Seawater exchanging caisson type breakwater
KR101156309B1 (en) Fish-way which is easily manageable and is capable of coping with water level
JP5587489B1 (en) Wavebreak block, wavebreak block structure, and construction method thereof
KR101352461B1 (en) Breakwater caisson
KR200201513Y1 (en) Breakwater circulating seawater
KR20230012351A (en) Wave dissipating block and oceanaic structure using the same
RU197845U1 (en) FLOATING WAVE
KR100837848B1 (en) Honeycomb breakwater for sea-water flowing and method for consturcting thereof
KR101123780B1 (en) Wave dissipation block and habour tructure method thereof
KR100461584B1 (en) Breakwater using of buoyancy of deep softground
KR200447682Y1 (en) Scour prevention Block for plants
KR101122544B1 (en) Breakwater for removing wave and construction method for the same
JPS6358965B2 (en)
ES2246667A1 (en) Fabrication of a lightweight reinforced concrete and expanded polystyrene sandwich e.g. retaining wall comprises insertion of guide rods traversing the polystyrene and the concrete slabs
KR102248753B1 (en) Marine structure and construction method thereof
KR102211097B1 (en) Sofa block and manufacturing method of the same
KR100622802B1 (en) Pier-type wharf structure having permeable wave wall
JP5656143B2 (en) Construction method of sea area control structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131031

R150 Certificate of patent or registration of utility model

Ref document number: 5413723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250