JP2011058168A - Method for repairing bridge - Google Patents

Method for repairing bridge Download PDF

Info

Publication number
JP2011058168A
JP2011058168A JP2009205465A JP2009205465A JP2011058168A JP 2011058168 A JP2011058168 A JP 2011058168A JP 2009205465 A JP2009205465 A JP 2009205465A JP 2009205465 A JP2009205465 A JP 2009205465A JP 2011058168 A JP2011058168 A JP 2011058168A
Authority
JP
Japan
Prior art keywords
concrete
girder
steel
bridge
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009205465A
Other languages
Japanese (ja)
Inventor
Yusuke Kobayashi
裕介 小林
Ichiro Sugimoto
一朗 杉本
Manabu Ikeda
学 池田
Masamitsu Saito
雅充 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2009205465A priority Critical patent/JP2011058168A/en
Publication of JP2011058168A publication Critical patent/JP2011058168A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for repairing a bridge which can reduce the repair cost of the bridge. <P>SOLUTION: Concrete is prepared and poured in lower structures (11A and 11B) from a girder (12) including a support for supporting the girder (12) on the lower structures (11A and 11B), a deformed location of the support is covered with the concrete, and the girder (12) and the lower structures (11A and 11B) are connected to each other. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、橋梁の補修方法に関する。   The present invention relates to a method for repairing a bridge.

鋼橋は支承部近傍に亀裂などの多くの変状を有し、また、桁の端は湿潤環境のため、若しくは、上フランジのまくらぎ下の部位はまくらぎ下の耐水のため、著しい腐食を有する(図2参照)。特に、支承部において、一つの変状が他の変状を誘引することが多い。例えば、支承のバタツキは、支承の可動不良、首部の亀裂、アンカーボルトの抜け・破損、沓座の破損、沓座コンクリートの剥離を引き起こす。   Steel bridges have many deformations such as cracks in the vicinity of the bearing, and the end of the spar is in a wet environment, or the part under the upper flange sleepers is water resistant under the sleepers, causing significant corrosion. (See FIG. 2). In particular, in a bearing part, one deformation often induces another deformation. For example, the fluttering of the bearing may cause improper movement of the bearing, cracking of the neck, disconnection / damage of the anchor bolt, damage to the saddle, and peeling of the concrete.

これに対し、従来では、腐食箇所は当板で補強する。亀裂箇所は当板で補強する、または、部材の交換で補修する。支承の可動不良は支承の交換により補修する。アンカーボルトの抜けはアンカーボルトの打ち直しにより補修する。沓座の破損および支承のバタツキは沓座のモルタルの打ち直しにより補修する。または、変状は構造の変更により対処する。   On the other hand, conventionally, the corroded portion is reinforced with a contact plate. Reinforce cracks with this plate or repair them by exchanging members. Repair the defective movement of the bearing by exchanging the bearing. Anchor bolts are repaired by re-fixing the anchor bolts. Scorpio damage and bearing flapping are repaired by reworking the mortar of the Scorpio. Alternatively, the deformation is dealt with by changing the structure.

特開2004−353169号公報JP 2004-353169 A

しかし、部材の交換、支承の交換、沓座モルタルの打ち直し、構造変更は、一時的に桁をジャッキで支えることを必要とする。そして、(i)新たなジャッキ受けの設置(場合によってはベントも必要)、(ii)列車の徐行といった措置が必要となる。   However, replacement of parts, replacement of bearings, reworking of saddle mortars, and structural changes require temporary support of the girders. And measures such as (i) installation of a new jack receptacle (venting is also necessary in some cases) and (ii) slow train running are necessary.

また、一つの変状を措置した場合、または、構造を変更した場合、その後の他の変状が生じる可能性がある。   In addition, if one modification is taken, or if the structure is changed, another subsequent modification may occur.

そこで、本発明の目的は、橋梁の補修コストを低減する橋梁の補修方法を提供することにある。   Accordingly, an object of the present invention is to provide a bridge repair method that reduces the cost of repairing a bridge.

以下、符号を付して本発明の特徴を説明する。なお、符号は参照のためであり、本発明を実施形態に限定するものでない。   Hereinafter, the features of the present invention will be described with reference numerals. Note that the reference numerals are for reference, and the present invention is not limited to the embodiments.

本発明の特徴に係わる橋梁の補修方法は、コンクリートを用意し、下部構造(11A、11B)の上で桁(12)を支持する支承部(14A、14B)を含めて桁(12)から下部構造(11A、11B)にコンクリートを打設し、コンクリート(13A、13B)で支承部(14A、14B)の変状箇所(141、142、142a)を覆うと共に桁(12)と下部構造(11A、11B)とを連結する。   The method of repairing a bridge according to the feature of the present invention is to prepare concrete and lower the girder (12) from the girder (12) including the support (14A, 14B) that supports the girder (12) on the lower structure (11A, 11B). Concrete is placed on the structure (11A, 11B), and the deformed portions (141, 142, 142a) of the support portions (14A, 14B) are covered with the concrete (13A, 13B) and the girder (12) and the lower structure (11A) are covered. , 11B).

ここで、下部構造は橋台、橋脚を含む。   Here, the substructure includes an abutment and a pier.

以上の特徴において、コンクリート(13A、13B)で下部構造(11A、11B)の変状箇所(V5)を覆う。また、コンクリート(13A、13B)で桁(12)の変状箇所を覆う。   In the above features, the deformed portion (V5) of the lower structure (11A, 11B) is covered with concrete (13A, 13B). Moreover, the deformed part of the girder (12) is covered with concrete (13A, 13B).

本発明の特徴によれば、橋梁を簡易に補修するので、補修コストを低減することができる。   According to the feature of the present invention, since the bridge is simply repaired, the repair cost can be reduced.

桁の支承部はコンクリートの中に埋め込まれるので、変状による耐荷力の低下を補う。また、個々の変状に対する補修・補強は必要とされない。さらに、1つの変状が他の変状を誘引することは除去される。   Since the support part of the girder is embedded in the concrete, it compensates for a decrease in load bearing capacity due to deformation. In addition, repairs and reinforcements for individual deformations are not required. Furthermore, it is eliminated that one deformation induces another.

また、コンクリートは桁と下部構造とを連結するので、活荷重に対する応答を低減すると共に耐震性能を向上させる。   In addition, since the concrete connects the girder and the lower structure, the response to live loads is reduced and the seismic performance is improved.

第1の実施形態に係る補修された鋼橋梁の概要側面図である。It is a general | schematic side view of the repaired steel bridge which concerns on 1st Embodiment. 図1に示す鋼桁の端部を示す拡大斜視図である。It is an expansion perspective view which shows the edge part of the steel beam shown in FIG. 図2に示す支承部の拡大斜視図である。It is an expansion perspective view of the support part shown in FIG. 図1に示す鋼橋梁の端部の拡大側面図である。It is an enlarged side view of the edge part of the steel bridge shown in FIG. (A)、(B)は橋梁をモデル化した梁のモーメントを示す概要図である。(A), (B) is a schematic diagram showing the moment of a beam that models a bridge.

以下、図面を参照して実施の形態を詳細に説明する。   Hereinafter, embodiments will be described in detail with reference to the drawings.

図1に示すように、鋼橋梁10は、盛土G1に支持された鉄筋コンクリート製の橋台11A、11Bと、橋台11A、11Bによって支持された鋼桁12を有する。鋼橋梁10は、鋼桁12の端部12a、12bに配置されたコンクリート材13A、13Bを有する。   As shown in FIG. 1, the steel bridge 10 includes reinforced concrete abutments 11A and 11B supported by the embankment G1, and steel girders 12 supported by the abutments 11A and 11B. The steel bridge 10 has concrete materials 13A and 13B arranged at the ends 12a and 12b of the steel beam 12.

橋台11A、11Bは、アンカーA1、A2、A3、A4により、背面の盛土G1に固定される。   The abutments 11A and 11B are fixed to the backfill G1 by anchors A1, A2, A3, and A4.

鋼桁12は、図2に示すように、平行に配置された鋼製のウェブプレート121、122と、ウェブプレート121、122同士を連結する鋼製のラテラル材123を有する。ウェブプレート121、122は、それぞれ、上端に上フランジ121a、122aと、下端に下フランジ121b、122bを有する。上フランジ121a、122aの上には、まくらぎ15A、15Bが配置される。まくらぎの15A、15Bの上にレール16A、16Bが固定されている。   As shown in FIG. 2, the steel girder 12 includes steel web plates 121 and 122 arranged in parallel, and a steel lateral material 123 that connects the web plates 121 and 122 to each other. The web plates 121 and 122 have upper flanges 121a and 122a at the upper ends and lower flanges 121b and 122b at the lower ends, respectively. Sleepers 15A and 15B are disposed on the upper flanges 121a and 122a. Rails 16A and 16B are fixed on sleepers 15A and 15B.

鋼桁12の端部12aは支承部14A、14Bで支持されている。支承部14Aは、図3に示すように、橋台11Aに固定された沓座141と、沓座141の上に配置された支承142を有する。支承142は、鋼桁12の長手方向に摺動自在な可動部142aを有する。支承部14Bも同様の構造を有する。   The end 12a of the steel beam 12 is supported by the support portions 14A and 14B. As shown in FIG. 3, the support portion 14 </ b> A includes a saddle 141 fixed to the abutment 11 </ b> A and a support 142 disposed on the saddle 141. The support 142 has a movable portion 142 a that is slidable in the longitudinal direction of the steel beam 12. The support portion 14B has a similar structure.

コンクリート材13Aは、図4に示すように、支承部14Aを含んで鋼桁12の端部12aにおける上フランジ122aから橋台11Aまで達する。これにより、コクリート13Aは鋼桁12の端部12aと橋台11Aとを連結し、一体化する。同様に、図1において、コンクリート13Bは、鋼桁12の端部12bから橋台11Bまで達し、鋼桁12の端部12bと橋台11Bとを連結し、一体化する。   As shown in FIG. 4, the concrete material 13 </ b> A reaches the abutment 11 </ b> A from the upper flange 122 a at the end 12 a of the steel girder 12 including the support portion 14 </ b> A. Thereby, the cocrete 13A connects and integrates the end 12a of the steel beam 12 and the abutment 11A. Similarly, in FIG. 1, the concrete 13B reaches from the end part 12b of the steel girder 12 to the abutment 11B, and connects the end part 12b of the steel girder 12 and the abutment 11B to be integrated.

次に、鋼橋梁10の補修方法を説明する。   Next, a repair method for the steel bridge 10 will be described.

まず、鋼橋梁10の変状について説明する。   First, the deformation of the steel bridge 10 will be described.

図2に示すように、鋼桁12の上フランジ122aは、まくらぎ下の耐水により、まくらぎ15Aの下に腐食箇所C1、C2、C3を有する。鋼桁12の端部12aは、湿潤環境のため腐食箇所C4を有する。   As shown in FIG. 2, the upper flange 122a of the steel girder 12 has corrosion points C1, C2, and C3 under the sleeper 15A due to water resistance under the sleeper. The end 12a of the steel girder 12 has a corrosion location C4 due to the moist environment.

支承部14A、14Bは、図3に示すように、変状を有する。すなわち、支承142は、可動部142aの可動不良、バタツキ等を有する。さらに、支承部14A、14Bの一つの変状は、支承部14A、14Bおよびその近傍に他の変状を誘引する。例えば、支承142のバタツキは、ウェブプレート122の首部の亀裂V1、リベット孔からの亀裂V2、アンカーボルトB1の抜け、ソールプレート取付溶接からの亀裂V3、沓座141の破損V4、沓座141の下のコンクリートに剥離箇所V5を生じさせる。   The support portions 14A and 14B have deformation as shown in FIG. That is, the support 142 has a malfunction of the movable part 142a, fluttering, and the like. Further, one deformation of the support portions 14A and 14B induces another deformation to the support portions 14A and 14B and the vicinity thereof. For example, the fluttering of the support 142 is caused by the crack V1 at the neck of the web plate 122, the crack V2 from the rivet hole, the removal of the anchor bolt B1, the crack V3 from the welding of the sole plate, the damage V4 of the collar 141, and the collar 141. The peeling part V5 is produced in the lower concrete.

図4に示すように、支承部14Aを含むように、鋼桁12の端部12aの上フランジ122aから橋台11Aにかけて、コンクリートを打設する。次に、コンクリートを養生、硬化させ、補修材としてのコンクリート材13Aを形成する。同様に、鋼桁12の他方の端部12bに支承部14Bを含むようにコンクリート材13Bを形成する。これにより、橋台11A、11B、桁12の端部12a、12b、支承部14A、14Bはコンクリート材13A、13Bの中に埋め込まれる。そして、コンクリート材13A、13Bは、上フランジ121a、122aの腐食箇所、鋼桁12の端部12aの腐食箇所を覆う。また、コンクリート材13A、13Bは、支承部14A、14Bの破損箇所、橋台11Aの剥離箇所、ウェブプレート122の首部の亀裂、リベット孔からの亀裂を覆う。   As shown in FIG. 4, concrete is cast from the upper flange 122a of the end 12a of the steel girder 12 to the abutment 11A so as to include the support 14A. Next, the concrete is cured and hardened to form a concrete material 13A as a repair material. Similarly, the concrete material 13B is formed so that the other end 12b of the steel girder 12 includes the support 14B. Thereby, the abutments 11A and 11B, the end portions 12a and 12b of the beam 12, and the support portions 14A and 14B are embedded in the concrete materials 13A and 13B. And concrete material 13A, 13B covers the corrosion location of the upper flange 121a, 122a and the corrosion location of the edge part 12a of the steel girder 12. FIG. Further, the concrete materials 13A and 13B cover the damaged portions of the support portions 14A and 14B, the peeled portions of the abutment 11A, the cracks in the neck portion of the web plate 122, and the cracks from the rivet holes.

この補修方法によれば、既設の鋼橋梁10を簡易に補修することができるので、補修コストを低減することができる。   According to this repair method, the existing steel bridge 10 can be easily repaired, so that the repair cost can be reduced.

また、鋼桁12の端部12a、12bはコンクリート材13A、13Bに埋め込まれるので、変状による耐荷力の低下を補う。また、個々の変状に対する補修・補強は必要とされない。   Moreover, since the edge parts 12a and 12b of the steel girder 12 are embedded in concrete material 13A, 13B, the fall of the load bearing force by deformation | transformation is compensated. In addition, repairs and reinforcements for individual deformations are not required.

さらに、1つの変状が他の変状を誘引することを防止する。   In addition, one deformation is prevented from attracting another.

次に、鋼橋梁10の使用方法を説明する。   Next, the usage method of the steel bridge 10 is demonstrated.

図1に示すように、鉄道車両RVが橋梁10の上を通過する。鋼橋梁10は鉄道車両RVから活荷重を受ける。ここで、コンクリート材13A、13Bは鋼桁12と橋台11A、11Bとを連結し、一体化するので、活荷重に対する応答を低減する。   As shown in FIG. 1, the railway vehicle RV passes over the bridge 10. The steel bridge 10 receives a live load from the railway vehicle RV. Here, since the concrete materials 13A and 13B connect and integrate the steel girder 12 and the abutments 11A and 11B, the response to the live load is reduced.

すなわち、図5(B)に示すように、梁Q1の両端が自由端で支持される場合、梁Q1の最大モーメントMmax=PL/4である。一方、同図(A)に示すように、本実施形態をモデル化した梁Q1の両端が台R1、R2によって固定されている場合、梁Q1の最大モーメントMmax=[(4k+3)/8(2k+3)]PLとなる。さらに、台R1、R2に変位がない場合、Mmax=PL/8となり、梁R1の両端が自由端の場合と比べて、1/2になる。   That is, as shown in FIG. 5B, when both ends of the beam Q1 are supported by free ends, the maximum moment Mmax of the beam Q1 = PL / 4. On the other hand, as shown in FIG. 5A, when both ends of the beam Q1 modeling this embodiment are fixed by the stands R1 and R2, the maximum moment Mmax of the beam Q1 = [(4k + 3) / 8 (2k + 3). )] PL. Furthermore, when there is no displacement in the bases R1 and R2, Mmax = PL / 8, which is ½ compared to the case where both ends of the beam R1 are free ends.

また、橋台11A、11Bと鋼桁12とがラーメンとして挙動することにより、橋台11A、11B背面の受動土圧を期待できるため、橋台11A、11Bの耐震性能が向上する。   Moreover, since the abutments 11A and 11B and the steel girder 12 behave as ramen, a passive earth pressure on the back of the abutments 11A and 11B can be expected, so that the seismic performance of the abutments 11A and 11B is improved.

なお、本発明は本実施形態に限定されない。また、上記実施形態の修正、変更は、当業者によって考慮されるものを含む。例えば、図4に示すように、コンクリート材13Cを支承部部14Aおよび支承部14Aの近傍の鋼桁12および橋台11Aに配置してもよい。この形態によれば、コンクリートの使用量を減少させ、コストを低減させる。また、コンクリート材は、橋台のみならず、橋脚の支承部に配置してもよい。   The present invention is not limited to this embodiment. Further, modifications and changes of the above embodiment include those considered by those skilled in the art. For example, as shown in FIG. 4, the concrete material 13C may be disposed on the support part 14A and the steel beam 12 and the abutment 11A in the vicinity of the support part 14A. According to this form, the usage-amount of concrete is reduced and cost is reduced. Further, the concrete material may be disposed not only on the abutment but also on the support portion of the pier.

10 鋼橋梁
11A、11B 橋台
12 鋼桁
13A、13B コンクリート材
10 Steel Bridge 11A, 11B Abutment 12 Steel Girder 13A, 13B Concrete Material

Claims (3)

コンクリートを用意し、
下部構造の上で桁を支持する支承部を含めて桁から下部構造にコンクリートを打設し、コンクリートで支承部の変状箇所を覆うと共に桁と下部構造とを連結する、
橋梁の補修方法。
Prepare concrete,
Concrete is cast from the girder to the lower structure including the support part that supports the girder on the lower structure, and the deformed part of the support part is covered with concrete and the girder and the lower structure are connected.
How to repair bridges.
前記コンクリートで前記下部構造の変状箇所を覆う、
請求項1に記載の橋梁の補修方法。
Covering the deformed portion of the lower structure with the concrete,
The bridge repair method according to claim 1.
前記コンクリートで前記桁の変状箇所を覆う、
請求項1に記載の橋梁の補修方法。
Covering the deformed part of the beam with the concrete,
The bridge repair method according to claim 1.
JP2009205465A 2009-09-07 2009-09-07 Method for repairing bridge Pending JP2011058168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009205465A JP2011058168A (en) 2009-09-07 2009-09-07 Method for repairing bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009205465A JP2011058168A (en) 2009-09-07 2009-09-07 Method for repairing bridge

Publications (1)

Publication Number Publication Date
JP2011058168A true JP2011058168A (en) 2011-03-24

Family

ID=43946099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009205465A Pending JP2011058168A (en) 2009-09-07 2009-09-07 Method for repairing bridge

Country Status (1)

Country Link
JP (1) JP2011058168A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058801A (en) * 2012-09-18 2014-04-03 Railway Technical Research Institute Reinforcement method of bearing body of existent bridge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070614A (en) * 2004-09-03 2006-03-16 Chiyoda Engineering Consultants Co Ltd Reinforcing structure of steel girder bridge
JP2007321452A (en) * 2006-06-01 2007-12-13 Railway Technical Res Inst Construction method for bridge and bridge structure thereof
JP2009256938A (en) * 2008-04-15 2009-11-05 Railway Technical Res Inst Rebuilding method for existing bridge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070614A (en) * 2004-09-03 2006-03-16 Chiyoda Engineering Consultants Co Ltd Reinforcing structure of steel girder bridge
JP2007321452A (en) * 2006-06-01 2007-12-13 Railway Technical Res Inst Construction method for bridge and bridge structure thereof
JP2009256938A (en) * 2008-04-15 2009-11-05 Railway Technical Res Inst Rebuilding method for existing bridge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058801A (en) * 2012-09-18 2014-04-03 Railway Technical Research Institute Reinforcement method of bearing body of existent bridge

Similar Documents

Publication Publication Date Title
KR100837608B1 (en) J.K Bracket Method
CN109610315A (en) The dry joint connecting structure of prefabrication and assembly construction floorings and implementation method
KR100566665B1 (en) A temporary bearing for jacking up upper structure of bridge
KR100651663B1 (en) Reinforcement apparatus for preventing lateral vibration of truss bridge and falling off in case of lifting truss bridge
JP4845039B2 (en) RC slab minority main girder bridge
JP2011058168A (en) Method for repairing bridge
KR102109816B1 (en) Method of Replacing Bearing for Bridge and Bearing Structure
JP2010265623A (en) Reinforcing structure of steel floor slab
CN109505237B (en) Longitudinal connection structure of main beam at expansion joint of steel-concrete composite bridge and construction method
KR100621928B1 (en) Construction method of double composite plate girder railway bridge with precast concrete panels
JP5848716B2 (en) Floor slab replacement method
KR101522610B1 (en) Underground box structure for strengthening reinforced-concrete wall and slab using preflexion of bracing member, and method for reinforcing the same
KR101693767B1 (en) Method for constructing precast floor plate with expansion joint
JP7368685B2 (en) Bridge reconstruction method and bridge superstructure
CN211113109U (en) Rigid frame bridge structure
KR102004277B1 (en) Construction method for composite rigid-frame bridge with steel girder for reinforcing bridge support by t-shape steel and inducing pre-stress
KR101214531B1 (en) A lifting apparatus of upper structure of bridge and lifting method of upper structure of bridge by using
JP4437064B2 (en) Construction method and formwork structure of concrete floor slab for composite floor slab bridge
JP6586305B2 (en) Replacement method for existing bridges
Stroh et al. Load testing a double-composite steel box girder bridge
KR20080093263A (en) Continuous composite bridge construction method
KR20100026917A (en) Bridge having expansion joint and method of setting expansion joint
KR102279873B1 (en) Railway bridge rehabitation method using superstructure continuation, support trasition, and pier replacement
KR20100023214A (en) A method of making the decks of simple bridges continuous
Knight Use of Stay-in-Place Forms for Concrete Bridge Decks in Tennessee

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20111107

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20121112

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Effective date: 20130116

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130416