JP2011058076A - Anode material for lead free plating - Google Patents

Anode material for lead free plating Download PDF

Info

Publication number
JP2011058076A
JP2011058076A JP2009211159A JP2009211159A JP2011058076A JP 2011058076 A JP2011058076 A JP 2011058076A JP 2009211159 A JP2009211159 A JP 2009211159A JP 2009211159 A JP2009211159 A JP 2009211159A JP 2011058076 A JP2011058076 A JP 2011058076A
Authority
JP
Japan
Prior art keywords
anode material
anode
plating
solder
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009211159A
Other languages
Japanese (ja)
Other versions
JP5700366B2 (en
Inventor
Yuji Kawamata
勇司 川又
Kaichi Tsuruta
加一 鶴田
Katsuji Nakamura
勝司 中村
Yuji Ozaki
裕治 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senju Metal Industry Co Ltd
Original Assignee
Senju Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senju Metal Industry Co Ltd filed Critical Senju Metal Industry Co Ltd
Priority to JP2009211159A priority Critical patent/JP5700366B2/en
Publication of JP2011058076A publication Critical patent/JP2011058076A/en
Application granted granted Critical
Publication of JP5700366B2 publication Critical patent/JP5700366B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems that, in Sn-Bi based solder alloy plating, though the feed of an Sn component has been performed with an Sn plate fitted to an anode and the feed of a Bi component has been performed using a plating liquid, e.g., of bismuth methane sulfonate obtained by dissolving bismuth oxide into acid, when bismuth methane sulfonate or the like are largely added for feeding Bi, its PH is changed into acidity, thus the plating liquid is decomposed, or, when a stabilizer is largely added for preventing the decomposition, plating properties are made to deteriorate, and the whole of the plating liquid must be exchanged. <P>SOLUTION: In the anode plate material used for Sn-Bi based solder alloy plating, the anode plate material is composed of fine grains with a solder grain size of 20 to 200 μm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電気めっきに使用する鉛フリー陽極材料およびそのめっき方法に関する。   The present invention relates to a lead-free anode material used for electroplating and a plating method thereof.

Sn−Pbの合金であるはんだは、古来から使用されてきたが、現在の主な用途としては、プリント基板に電子部品を取り付ける電子機器の組み立てに用いる、所謂はんだ付けに用いられることが挙げられる。電子機器に用いられる電子部品は、はんだ付けの工程が行われるためにその電極や端子がはんだに対してぬれ性が良くなければならない。そのため従来から電子機器に用いられる電子部品は、その電極や端子にめっき処理が行われていた。この電子部品のめっき方法は、めっきする電子部品を陰極に接続してめっき液を満たしためっき槽に浸漬し、陽極にはSn−10Pbはんだ合金などのはんだ板やバスケットに入れた該組成のボール状はんだなどを接続して、通電してはんだめっきを行う方法が取られている。このときはんだめっきに用いられる陽極に使用されるはんだ板やボール状はんだを陽極板即ち、アノードと呼んでいる。   Solder, which is an alloy of Sn—Pb, has been used since ancient times, but the current main application is that it is used for so-called soldering, which is used for assembling an electronic device for attaching an electronic component to a printed circuit board. . An electronic component used in an electronic device must have good wettability with respect to solder because its soldering process is performed. Therefore, conventionally, an electronic component used in an electronic device has been subjected to plating treatment on its electrodes and terminals. This electronic component plating method involves connecting an electronic component to be plated to a cathode, immersing it in a plating tank filled with a plating solution, and placing the anode in a solder plate such as Sn-10Pb solder alloy or a ball of this composition in a basket. A method is used in which solder plating is performed by connecting a solder-like solder and the like. At this time, a solder plate or a ball-like solder used for an anode used for solder plating is called an anode plate, that is, an anode.

ところが、従来から使用されてきたはんだは、Sn−Pb合金であり、特に電子機器のはんだ付けにはSn−Pbはんだの中でもPb−63Snという共晶はんだが多く使用されていた。そのために、電子部品の電極や端子にめっき処理に使用されるはんだ合金もSn−10質量%Pbの合金組成やSn−5質量%Pbの合金組成のはんだ合金組成が使用されていた。この従来のSn−Pbはんだは母材に対する濡れ広がりが良好であるため、はんだ付け時に未はんだ、ボイド、ブリッジ等のような不良が少なく信頼性のあるはんだ付け部が得られるという優れた特長を有している。   However, conventionally used solder is Sn—Pb alloy, and Pb-63Sn eutectic solder is often used among the Sn—Pb solders especially for soldering of electronic devices. Therefore, the solder alloy used for the plating process for the electrodes and terminals of the electronic component has also used an alloy composition of Sn-10 mass% Pb and an alloy composition of Sn-5 mass% Pb. Since this conventional Sn-Pb solder has good wetting and spreading to the base material, it has an excellent feature that a reliable soldered part with few defects such as unsolder, voids and bridges can be obtained at the time of soldering. Have.

Pb−Snはんだではんだ付けされた電子機器が古くなって使い勝手が悪くなったり故障したりした場合、性能のアップや修理等をせず、ほとんどが廃棄処分されていた。廃棄処分される電子機器の構成材料のうちフレームの金属、ケースのプラスチック、ディスプレーのガラス等は回収して再使用されるが、プリント基板は再使用ができないため埋め立て処分されていた。なぜならばプリント基板は、樹脂と銅箔が接着されており、また銅箔にははんだが金属的に接合されていて、それぞれを分離することができないからである。この埋め立て処分されたプリント基板に地中に染み込んだ酸性雨が接触すると、はんだ中のPbが酸性雨により溶け出し、Pb成分を含んだ酸性雨がさらに地中に染み込んで地下水に混入する。このPb成分を含んだ地下水を人や家畜が長年月にわたって飲用すると体内にPbが蓄積され、ついにはPb中毒を起こすとされている。そのため世界規模でPbの使用が規制されるようになってきており、Pbの含まない所謂「鉛フリーはんだ」が使用されるようになってきた。   When an electronic device soldered with Pb—Sn solder becomes old and becomes unusable or breaks down, most of them are discarded without being improved in performance or repaired. Of the constituent materials of electronic equipment to be disposed of, the metal of the frame, the plastic of the case, the glass of the display, etc. are recovered and reused, but the printed circuit board cannot be reused and has been disposed of in landfills. This is because resin and copper foil are bonded to the printed board, and solder is metallicly bonded to the copper foil, and each cannot be separated. When the acid rain soaked into the ground comes into contact with the landfilled printed circuit board, the Pb in the solder is dissolved by the acid rain, and the acid rain containing the Pb component further soaks into the ground and enters the groundwater. It is said that Pb accumulates in the body and eventually causes Pb poisoning when people or livestock drink this groundwater containing Pb components for many years. For this reason, the use of Pb has been regulated worldwide, and so-called “lead-free solder” not containing Pb has been used.

鉛フリーはんだとは、Snを主成分として、それにAg、Cu、Bi、In、Zn、Ni、Cr、P、Ge、Ga等を適宜添加したものである。現在プリント基板のはんだ付けに使用されている鉛フリーはんだは、Sn−3.5%AgなどのSn−Ag系はんだ合金、Sn−3.0%Ag−0.5%CuなどのSn−Ag−Cu系はんだ合金、Sn−0.7%CuなどのSn−Cu系はんだ合金が用いられている。
ところが、プリント基板の接合用として用いられるはんだ合金に比べて、めっきに用いられるはんだ合金の選定は遅れており、近年やっとSn−2〜5%Biはんだ合金のSn−Bi系はんだ合金、Sn−2〜3.5%Agはんだ合金のSn−Ag系はんだ合金、Sn−1〜3%Cuはんだ合金のSn−Cu系はんだ合金などに収束しつつある。これらのメッキ用の鉛フリーはんだ合金の中でも最も普及が進んでいるのは、Sn−Bi系の鉛フリーはんだ合金を使用した鉛フリーはんだめっきである。
Lead-free solder is composed of Sn as a main component, and Ag, Cu, Bi, In, Zn, Ni, Cr, P, Ge, Ga, etc. are added as appropriate. Lead-free solders currently used for soldering printed circuit boards are Sn-Ag solder alloys such as Sn-3.5% Ag and Sn-Ag such as Sn-3.0% Ag-0.5% Cu. Sn-Cu solder alloys such as -Cu solder alloys and Sn-0.7% Cu are used.
However, selection of a solder alloy used for plating is delayed as compared with a solder alloy used for joining printed circuit boards. In recent years, Sn-2 to 5% Bi solder alloy, Sn-Bi based solder alloy, Sn-- The Sn-Ag solder alloy of 2 to 3.5% Ag solder alloy and the Sn-Cu solder alloy of Sn-1 to 3% Cu solder alloy are being converged. Among these lead-free solder alloys for plating, the most widespread is lead-free solder plating using Sn-Bi-based lead-free solder alloys.

Biは、その標準電極電位が +0.317Vであり、Cuの+0.340VやAgの+0.799Vに比べて低く、Pbの−0.126Vに一番近い金属である。そのために、長所としては強酸のめっき浴が必要ないので従来の設備が使用し易いこと、めっき被膜のウィスカ発生の防止効果がSn−Pbめっき被膜と同程度であり、信頼性が高いことなどが挙げられる。短所としては、Sn−Pbはんだで処理された電子部品や基板と一緒にはんだ付けを行うと、接合面にBi−Pbの低融点合金(約56℃)が現れて、接合強度を低下させてしまうことが挙げられる。しかしながら、今後環境への配慮からSn−Pbはんだは使用されないことが予想され、はんだめっき用の合金としてSn−Bi系のはんだ合金が主流になることは間違いないと思われる。   Bi has a standard electrode potential of +0.317 V, which is lower than Cu of +0.340 V and Ag of +0.799 V, and is the closest metal to Pb of −0.126 V. Therefore, as an advantage, a strong acid plating bath is not required, so that conventional equipment is easy to use, and the effect of preventing the occurrence of whisker in the plating film is similar to that of the Sn-Pb plating film, and the reliability is high. Can be mentioned. Disadvantages are that when soldering together with electronic parts and substrates treated with Sn—Pb solder, a low melting point alloy of Bi—Pb (about 56 ° C.) appears on the joint surface, reducing the joint strength. Can be mentioned. However, it is anticipated that Sn-Pb solder will not be used in consideration of the environment in the future, and it is certain that Sn-Bi solder alloys will become the mainstream as solder plating alloys.

このSn−Bi系はんだ合金めっきは、特開平11−279789号公報(特許文献1)のような酸化ビスマスをめっき液に溶解したメタンスルフォン酸ビスマスなどのめっき液を使用して行われてきた。これについては、「鉛フリーはんだ付け技術、P217、図7.18、末次憲一郎著、株式会社工業調査会刊」(非特許文献1)に詳しく記載がある。すなわち、従来のSn−PbはんだめっきがSn−Pbはんだの陽極を使用していたのに対して、Sn−Bi系はんだ合金めっきはSn板を使用している。Sn−Bi系はんだ合金めっきがSn板を使用している理由は、Biが標準電極電位が貴で有るために、酸性浴中では陽極に用いるSn−Bi板上にBiの置換が発生しやすい、そのために陽極から溶出するはずのBiが陽極から溶出せず、Biが不足してしまう、そのためにBi成分はめっき液から供給していた。   This Sn-Bi solder alloy plating has been performed using a plating solution such as bismuth methanesulfonate in which bismuth oxide is dissolved in a plating solution as disclosed in JP-A-11-279789 (Patent Document 1). This is described in detail in “Lead-free soldering technology, P217, FIG. 7.18, written by Kenichiro Sueji, published by Industrial Research Institute, Inc.” (Non-patent Document 1) That is, the conventional Sn—Pb solder plating uses the Sn—Pb solder anode, whereas the Sn—Bi solder alloy plating uses the Sn plate. The Sn-Bi solder alloy plating uses the Sn plate because the standard electrode potential of Bi is noble, so that the substitution of Bi is likely to occur on the Sn-Bi plate used for the anode in the acid bath. Therefore, Bi that should be eluted from the anode does not elute from the anode, and Bi becomes insufficient. Therefore, the Bi component is supplied from the plating solution.

特開平11−279789号公報JP-A-11-279789

鉛フリーはんだ付け技術、P217、図7.18、末次憲一郎著、株式会社工業調査会刊Lead-free soldering technology, P217, Fig. 7.18, written by Kenichiro Sueji, published by Industrial Research Institute, Inc.

Sn−Bi系はんだ合金めっきは、Sn成分の供給は陽極に取り付けたSn板で供給し、Bi成分の供給は酸化ビスマスを酸に溶解したメタンスルフォン酸ビスマスなどのめっき液を使用して行われてきた。しかし、Biを供給するために、メタンスルフォン酸ビスマスなどを多量に追加すると、PH値が酸性に変わってしまい、めっき液が分解したり、分解を防止するために安定剤を多く添加するとめっき特性が悪くなり、めっき液を全て交換しなければならないという問題点があった。
このBiを供給するために、メタンスルフォン酸ビスマスなどを追加することでめっき液が分解したり、めっき液を全て交換しなければならないという従来の問題点は、Biの供給をめっき液を使用して行わずに、Sn−Pbはんだめっきと同様に陽極に取り付けた陽極板材料から供給すれば、改善することは考えられる。しかし、非特許文献1に記載のように、はんだ板上にBiの置換が起きやすいために不可能と考えられていた。
本発明が解決しようとする課題は、めっき中に陽極板上にBiの置換が発生しやすいSn−Bi系はんだ合金めっきにおいて、めっき中にBiの置換が起きにくい陽極板材料を供給することである。
In Sn-Bi solder alloy plating, the Sn component is supplied by an Sn plate attached to the anode, and the Bi component is supplied using a plating solution such as bismuth methanesulfonate in which bismuth oxide is dissolved in an acid. I came. However, if a large amount of bismuth methanesulfonate is added to supply Bi, the pH value changes to acidity, and the plating solution decomposes or if a large amount of stabilizer is added to prevent decomposition, plating characteristics There was a problem that the plating solution had to be replaced completely.
In order to supply this Bi, the conventional problem that the plating solution must be decomposed by adding bismuth methanesulfonate or the plating solution must be completely replaced. If it is supplied from the anode plate material attached to the anode in the same manner as the Sn—Pb solder plating, it is conceivable to improve. However, as described in Non-Patent Document 1, it was considered impossible because Bi was easily replaced on the solder plate.
The problem to be solved by the present invention is to supply an anode plate material in which Bi substitution is unlikely to occur during plating in Sn-Bi based solder alloy plating in which Bi substitution is likely to occur on the anode plate during plating. is there.

本発明者等は、Sn−Bi系はんだ合金めっきに内部構造が微細な粒子の陽極板材料を用いることで、酸性浴中での陽極に用いるSn−Bi板上にBiの置換が発生し難くなることを見いだして、本発明を完成させた。
本発明は、Sn−Bi系はんだ合金めっきに用いる陽極板材料において、該材料のはんだ粒径が20〜200μmの微細粒子からなることを特徴とする陽極板材料である。
従来の陽極材料は、はんだ粒子が均一でないために陽極材料表面の比較的細かい粒子からSn成分が溶出する。そして陽極材料表面の粗い粒子の部分は、Snが溶出しないためにSnよりイオン化傾向が高いBiが陽極から電子を受け取り、水中のO2と反応して酸化ビスマスとなり、陽極材料表面に付着する。これを一般的にSnのBi置換と呼ぶ。陽極材料表面にBi置換が起こると、スラッジ状の酸化ビスマスが陽極材料表面に付着してしまい、陽極からSnが溶出し難くなるという悪循環が生じてしまうのである。
詳しく説明すると陽極材料のイオン化傾向は、標準酸化還元電位によって決まる。例えば2価のSnの標準酸化還元電位は、E°= ?0.1375 Vであり、Biの標準酸化還元電位は、E°= 0.3172 Vである。そのために、SnよりもBiの方が貴の金属であり、めっき液中でSnよりもBiの方が溶出し易い。そのために、Sn−Biのめっき液中に陽極材料を浸漬させるとBiが析出し易いのである。実際は、メタンスルフォン酸などのPH調整剤を用いるので、Biの析出は抑制させるが、それでも陽極材料からのSnの析出量が少なければ、陽極材料表面にBiが置換し易い。
それに対して本発明の微細粒子からなる陽極材料を用いると、陽極材料表面の微細粒子から常時、均一にSn成分が溶出するので、陽極表面が酸化ビスマスで覆われてSnが部分的に溶出するようなことは無い。
By using an anode plate material having a fine internal structure for Sn—Bi solder alloy plating, the present inventors hardly substitute Bi on the Sn—Bi plate used for the anode in the acidic bath. As a result, the present invention has been completed.
The present invention is an anode plate material used for Sn—Bi solder alloy plating, wherein the solder particle size is made of fine particles of 20 to 200 μm.
In the conventional anode material, since the solder particles are not uniform, Sn components are eluted from relatively fine particles on the surface of the anode material. In the coarse particle portion on the surface of the anode material, since Sn does not elute, Bi, which has a higher ionization tendency than Sn, receives electrons from the anode, reacts with O2 in water, becomes bismuth oxide, and adheres to the surface of the anode material. This is generally called Bi substitution of Sn. When Bi substitution occurs on the surface of the anode material, sludge-like bismuth oxide adheres to the surface of the anode material, and a vicious cycle occurs in which Sn is hardly eluted from the anode.
More specifically, the ionization tendency of the anode material is determined by the standard redox potential. For example, the standard oxidation-reduction potential of divalent Sn is E ° = -0.1375 V, and the standard oxidation-reduction potential of Bi is E ° = 0.3172 V. Therefore, Bi is a precious metal rather than Sn, and Bi is more easily eluted than Sn in the plating solution. For this reason, when the anode material is immersed in the Sn—Bi plating solution, Bi is likely to precipitate. Actually, since a pH adjusting agent such as methanesulfonic acid is used, the precipitation of Bi is suppressed. However, if the precipitation amount of Sn from the anode material is small, Bi is easily substituted on the surface of the anode material.
On the other hand, when the anode material comprising the fine particles of the present invention is used, the Sn component is always uniformly eluted from the fine particles on the surface of the anode material, so that the anode surface is covered with bismuth oxide and Sn is partially eluted. There is no such thing.

本発明に用いる陽極板材料は、その内部組織が均一で、且つ微細なことが特徴である。陽極材料の組織が荒い箇所があると、陽極材料からの金属イオンの溶出が組織の荒い箇所をさけて、比較的組織の細かい箇所から溶出しやすい。そのために、陽極材料表面からの溶出の速度が遅い組織の荒い箇所は、Biの置換を受けやすく、陽極材料全体が不均一な溶出状態となって「しゃぶり糟」と呼ばれるスラッジが発生しやすくなる。
本発明の陽極板材料は、その内部組織が均一で、且つ微細であるので、陽極材料全体から均一に金属イオンが溶出するので、Biの置換が起こり難い。そのために、従来の鉛フリー陽極材料のように部分的に溶出することもないので、「しゃぶり糟」と呼ばれるスラッジが発生し難い。
The anode plate material used in the present invention is characterized by a uniform and fine internal structure. If there is a portion with a rough structure of the anode material, the elution of metal ions from the anode material tends to elute from a portion with a relatively fine structure, avoiding a portion with a rough structure. For this reason, the rough part of the structure where the elution rate from the anode material surface is slow is likely to be replaced with Bi, and the entire anode material is in an uneven elution state, and sludge called “sucking candy” is likely to occur. .
Since the internal structure of the anode plate material of the present invention is uniform and fine, metal ions are eluted uniformly from the entire anode material, so that Bi substitution hardly occurs. For this reason, it does not partially elute unlike conventional lead-free anode materials, and sludge called “sucking candy” is unlikely to occur.

この事を図で示したのが図1である。めっき装置において、電気を通電すると陽極から陰極に電気は流れるが、電気の流れとは反対に電子は陰極から陽極に流れる。したがって、陽極では溶出したSnが電子を受け取りSn2+の錫イオンとなる。同様に陽極から溶出したBiも電子を受け取りBi3+のビスマスイオンとなる。ところが、2価のSnの標準酸化還元電位は、E°= ?0.1375 Vであり、Biの標準酸化還元電位は、E°= 0.3172 Vであるので、標準酸化還元電位の高いBiの方がめっき液中で電子を失い、陽極材料表面に析出しやすい。本発明では、図1に示すように陽極材料の粒子が微細で、粒子径が一定なので、陽極材料表面に置換するBiの量よりも、陽極材料全体から析出するSnの量が多いためBiの置換が起こり難い。それに対して従来の陽極材料は、粒子の大きさや陽極材料の組織の均一性に留意していなかったので、陽極材料表面から溶出するSnは組織が細かいところは溶出しやすいが、組織が粗いと溶出するSnの量よりBiの置換量の方が多くなるため陽極材料表面にBiが析出して、ドロス状のスラッジとなる。   This is illustrated in FIG. In the plating apparatus, when electricity is passed, electricity flows from the anode to the cathode, but electrons flow from the cathode to the anode as opposed to the flow of electricity. Therefore, at the anode, the eluted Sn receives electrons and becomes Sn2 + tin ions. Similarly, Bi eluted from the anode also receives electrons and becomes Bi3 + bismuth ions. However, since the standard oxidation-reduction potential of divalent Sn is E ° = -0.1375 V and the standard oxidation-reduction potential of Bi is E ° = 0.3172 V, Bi having a higher standard oxidation-reduction potential is plated. Electrons are lost in the liquid and easily deposited on the surface of the anode material. In the present invention, as shown in FIG. 1, since the anode material particles are fine and the particle diameter is constant, the amount of Sn deposited from the entire anode material is larger than the amount of Bi substituted on the anode material surface. Replacement is unlikely to occur. In contrast, conventional anode materials did not pay attention to the size of the particles and the uniformity of the anode material structure, so Sn that elutes from the anode material surface tends to elute where the structure is fine. Since the amount of substitution of Bi is larger than the amount of Sn that elutes, Bi precipitates on the surface of the anode material to form dross-like sludge.

本発明のその内部組織が均一で、且つ微細な陽極材料は、鍛造によって製造させることが特徴である。鍛造とは、金属加工の塑性加工法の一種で、古くから刀工が日本刀など刃物や火縄銃の銃身の製造技法として用いており、金属をハンマー等で叩いて圧力を加える事で、金属内部の空隙をつぶし、結晶を微細化し、結晶の方向を整えて強度を高めると共に目的の形状に成形することが特徴である。
本発明では、円柱状のビレットとして成形したはんだ合金を金型で圧力を加えて、塑性流動させて成形することによって鍛造している。従来の陽極材料の製造方法は、結晶の微細化を考慮していないので、安価で製造可能な鋳造で製造させており、鍛造で製造させているものは販売されていなかった。本発明の鍛造による陽極材料の製造方法は、鍛流線 が連続するために組織が緻密になり、鋳造に比べて空洞ができにくいので、溶融特性に優れた陽極材料をつくることができる。
The anode material having a uniform and fine internal structure according to the present invention is characterized by being manufactured by forging. Forging is a kind of plastic working method of metal processing, which has long been used by swordsmiths as a manufacturing technique for blades such as Japanese swords and barrels of horror guns. It is characterized by crushing voids, miniaturizing crystals, adjusting the direction of crystals to increase strength, and forming into a desired shape.
In the present invention, the solder alloy formed as a cylindrical billet is forged by applying pressure with a mold and plastically flowing it. Since the conventional anode material manufacturing method does not consider the refinement of crystals, the anode material is manufactured by casting that can be manufactured at low cost, and those manufactured by forging have not been sold. In the method for producing an anode material by forging according to the present invention, since the streamline is continuous, the structure becomes dense, and it is difficult to form a cavity as compared with casting, so that an anode material having excellent melting characteristics can be produced.

本発明の陽極材料を用いることで、陽極材料表面の微細粒子から常時、均一にSn成分が溶出するので、陽極表面が酸化ビスマスで覆われてSnが部分的に溶出するようなことは無く、陽極材料表面のBiの置換が起こり難くなる。そのために、従来不可能であったSn-Bi系の陽極材料を用いたSn-Bi鉛フリーはんだめっきが可能となった。
また、陽極材料の内部構造が微細であるため、従来の鉛フリー陽極材料のように部分的に溶出することもないので、「しゃぶり糟」と呼ばれるスラッジの発生が少ない、優れた特徴の陽極材料である。
By using the anode material of the present invention, the Sn component is constantly and uniformly eluted from the fine particles on the surface of the anode material, so that the anode surface is covered with bismuth oxide and Sn is not partially eluted. Bi substitution on the anode material surface is less likely to occur. Therefore, Sn-Bi lead-free solder plating using Sn-Bi anode material, which was impossible before, has become possible.
Also, because the internal structure of the anode material is fine, it does not partially elute unlike conventional lead-free anode materials. It is.

図1は本発明の陽極材料と従来の陽極材料が何故Biの置換量が違うかを示した模式図である。FIG. 1 is a schematic diagram showing why the substitution amount of Bi differs between the anode material of the present invention and the conventional anode material. 図2は本発明の陽極材料の内部組織図である。組織が微細なことが解る。FIG. 2 is an internal structure diagram of the anode material of the present invention. It can be seen that the tissue is fine. 図3は比較例の従来の陽極材料の内部組織図である。組織が粗いことが解る。FIG. 3 is an internal structure diagram of a conventional anode material of a comparative example. You can see that the organization is rough. 図4は本発明の陽極材料を用いてめっきした後のスラッジである。FIG. 4 shows the sludge after plating using the anode material of the present invention. 図5は比較例の従来の陽極材料を用いてめっきした後のスラッジである。FIG. 5 shows the sludge after plating using the conventional anode material of the comparative example.

本発明の陽極材料は、その材料表面の結晶粒子大きさだけでなく材料内部組成も結晶粒子の大きさが、20〜200μmの微細粒という、ほぼ結晶粒子大きさが揃っていることが特徴である。陽極材料は、めっき槽内で使用されることによって材料表面からSnやBiがSn2+イオンやBi3+イオンとなって溶出していき、陽極材料はその表面から消費されて、だんだんと小さくなる。従来の陽極材料のように陽極材料内部の結晶粒子大きさが揃っていないと、Snが溶出していく中で陽極材料表面が溶け出して陽極材料内部の結晶粒子が表面に析出する。SnやBiの溶出は、陽極材料表面の結晶粒子が粗いものが含まれるとその部分を避けて溶出するため局部的な溶解が起きる。そのために溶解しない部分が所謂「しゃぶり糟」と呼ばれるスラッジとなってしまう。
本発明では、その材料表面の粒子大きさだけでなく材料内部組成も粒子の大きさが揃っているため、めっき槽で使用していく中で陽極材料表面に粗い粒子が現れてBiの置換が発生することもなく、「しゃぶり糟」と呼ばれるスラッジの発生が少ない。
The anode material of the present invention is characterized not only by the crystal particle size on the surface of the material but also by the internal composition of the material, and the crystal particle size is almost the same as fine particles having a crystal particle size of 20 to 200 μm. is there. As the anode material is used in the plating tank, Sn and Bi are eluted from the material surface as Sn2 + ions and Bi3 + ions, and the anode material is consumed from the surface and becomes gradually smaller. If the size of the crystal particles inside the anode material is not uniform as in the conventional anode material, the surface of the anode material is dissolved while Sn is eluted, and the crystal particles inside the anode material are deposited on the surface. In the dissolution of Sn and Bi, when the crystal grains on the surface of the anode material are coarse, they are dissolved while avoiding the portion, and local dissolution occurs. For this reason, the portion that does not dissolve becomes so-called “sucking candy” sludge.
In the present invention, not only the particle size on the surface of the material but also the internal composition of the material has the same particle size, so that rough particles appear on the surface of the anode material during use in the plating tank, and Bi is replaced. There is little generation of sludge called "sucking rice cake" without generating.

本発明の材料内部組成も結晶粒子の大きさが、20〜200μmであり、200μmより粗いと前述のように不均一な溶解が発生してスラッジが増加する。結晶粒子の大きさが、20μmより細かいとめっき液中で粒子表面の酸化が発生しやすいという問題が発生して、陽極材料の溶解性が悪くなる。本発明の材料内部組成も結晶粒子の大きさは、20〜200μmである。好ましくは、50〜100μmの範囲であり、最も好ましいのは、80μm近傍である。   The material internal composition of the present invention also has a crystal grain size of 20 to 200 μm, and if it is coarser than 200 μm, non-uniform dissolution occurs as described above and sludge increases. If the size of the crystal particles is smaller than 20 μm, there arises a problem that the surface of the particles is likely to be oxidized in the plating solution, and the solubility of the anode material is deteriorated. In the internal composition of the material of the present invention, the size of the crystal grains is 20 to 200 μm. Preferably, it is the range of 50-100 micrometers, and the most preferable is 80 micrometers vicinity.

本発明の陽極材料の製造方法として、直径15mmの球状の陽極材料を30個作製して、陽極材料の最大、最小、平均粒度を調べた。
1.インゴットの作製工程
はんだ浴中にSn−2質量%Bi組成のはんだ合金を投入し、約400〜800℃に加熱して各材料を溶解した後に重量2,000Kgのインゴットを作製する。
2.ビュレットの作製工程
作製したインゴットをビュレット作製用の炉に溶かして、直径150mmで長さ50mmのビュレットを作製する
3.ダイス加工工程
作製した直径150mmで長さ50mmのビュレットを押し出し機に挿入して押し出しを行い、加熱しながらダイスを通過させて、ダイス加工品を作製する。
4.仕上げ工程
ダイス加工品をプレス機で専用金型を用いてプレスして、直径15mmの球状の陽極材料を完成する。
As a method for producing an anode material of the present invention, 30 spherical anode materials having a diameter of 15 mm were produced, and the maximum, minimum, and average particle sizes of the anode material were examined.
1. Ingot Production Step A solder alloy having a Sn-2 mass% Bi composition is put into a solder bath, heated to about 400 to 800 ° C. to dissolve each material, and an ingot having a weight of 2,000 kg is produced.
2. 2. Buret production process The produced ingot is melted in a buret production furnace to produce a burette having a diameter of 150 mm and a length of 50 mm. Die processing step A burette having a diameter of 150 mm and a length of 50 mm is inserted into an extruder to perform extrusion, and the die is passed while being heated to manufacture a die processed product.
4). Finishing process The die-processed product is pressed with a dedicated die using a press machine to complete a spherical anode material having a diameter of 15 mm.

次に、比較例の陽極材料の製造方法として、はんだ浴中にSn−2質量%Bi組成のはんだ合金を投入して、約400〜800℃に加熱して各材料を溶解した後に、鋳造の型に溶解したはんだを流し込んで、直径15mmの球状の陽極材料を製造した。
本発明の実施例および比較例として作製した30個の陽極材料の最大、最小、平均粒度を表1に示す。本発明の陽極材料は、鍛造で製造されるので、粒子が細かく、粒子が均一なことが解る。
Next, as a method for producing the anode material of the comparative example, a solder alloy having a Sn-2 mass% Bi composition was put into a solder bath, heated to about 400 to 800 ° C., and each material was dissolved. The molten anode was poured into the mold to produce a spherical anode material having a diameter of 15 mm.
Table 1 shows the maximum, minimum, and average particle sizes of 30 anode materials prepared as examples and comparative examples of the present invention. Since the anode material of the present invention is manufactured by forging, it can be seen that the particles are fine and the particles are uniform.

実施例1で作製した直径15mmの球状の陽極材料と市販されている鋳造で作られた直径15mmの球状の陽極材料との金属濃度変化を測定して、製造工程による違いを比較する。
1.金属濃度変化実験方法
本発明の鍛造のSn - 2Bi陽極材料と鋳造 Sn - 2Bi陽極材料をそれぞれ、メタンスルフォン酸ベースのめっき液を使用して、1.44〜2A/dm2のめっき条件でめっきを行い、1時間毎にめっき液を分析して陽極材料の溶解性、液中Bi濃度の比較を行う。
金属濃度変化実験方法で測定したSnとBiの金属イオン濃度を表1に示す。
本発明の鍛造の陽極材料と鋳造の陽極材料を比較すると、Bi3+のイオン濃度はさほど差は発生しないが、Sn2+イオン濃度では本発明の鍛造の陽極材料と市販されている鋳造の陽極材料では大きな差が発生して、本発明の鍛造の陽極材料の方がSn2+イオン濃度が高いことが解る。
The metal concentration change between the spherical anode material with a diameter of 15 mm produced in Example 1 and the spherical anode material with a diameter of 15 mm made by a commercially available casting is measured, and the difference depending on the manufacturing process is compared.
1. Metal concentration change experiment method The forged Sn-2Bi anode material and the cast Sn-2Bi anode material of the present invention are each plated using a plating solution based on methanesulfonic acid under a plating condition of 1.44 to 2 A / dm2. The plating solution is analyzed every hour to compare the solubility of the anode material and the Bi concentration in the solution.
Table 1 shows Sn and Bi metal ion concentrations measured by the metal concentration change experiment method.
When the forged anode material of the present invention is compared with the cast anode material, the ion concentration of Bi3 + does not significantly differ, but the Sn2 + ion concentration is large between the forged anode material of the present invention and the commercially available cast anode material. A difference occurs, and it can be seen that the forged anode material of the present invention has a higher Sn2 + ion concentration.

2.スラッジ発生量試験
本発明の鍛造のSn - 2Bi陽極材料と鋳造 Sn - 2Bi陽極材料をそれぞれメタンスルフォン酸ベースのめっき液にセットして、1.44〜2A/dm2のめっき条件でめっきを行い、3.6時間後の陽極材料の性状および発生したスラッジの量を比較する。
結果を表1に示す。
2. Sludge generation amount test The forged Sn-2Bi anode material and the cast Sn-2Bi anode material of the present invention are set in a plating solution based on methane sulfonic acid, and plating is performed under a plating condition of 1.44 to 2 A / dm2. Compare the properties of the anode material and the amount of sludge generated after 3.6 hours.
The results are shown in Table 1.

本発明の内部組織を有する陽極材料は、Sn-Bi鉛フリーめっきだけでなく、Sn-Ag鉛フリーはんだめっきやSn-Cu鉛フリーはんだめっき、Snめっきの陽極材料としても有効である。Sn-Ag鉛フリーはんだめっきやSn-Cu鉛フリーはんだめっきでは、AgやCuは更に貴な金属であり、Sn表面に置換し易い。そのために本発明の微細な陽極材料を用いる事により陽極材料表面からの不均一な溶出が少なくなり、陽極材料表面の粗い部分がAgやCuで置換することが減少して、同じく「しゃぶり糟」と呼ばれるスラッジが発生が発生し難い。
また、本発明の内部構造を有するSnの陽極材料も陽極材料表面からの不均一な溶出が少なくなり、同じく「しゃぶり糟」と呼ばれるスラッジが発生が少なくなる。
The anode material having the internal structure of the present invention is effective not only as Sn—Bi lead-free plating but also as an anode material for Sn—Ag lead-free solder plating, Sn—Cu lead-free solder plating, and Sn plating. In Sn-Ag lead-free solder plating and Sn-Cu lead-free solder plating, Ag and Cu are more precious metals and can be easily replaced on the Sn surface. Therefore, by using the fine anode material of the present invention, non-uniform elution from the anode material surface is reduced, and the substitution of the rough portion of the anode material surface with Ag or Cu is reduced. It is hard to generate sludge called.
In addition, the Sn anode material having the internal structure of the present invention also has less uneven elution from the surface of the anode material, and the generation of sludge called “sucking habit” is also reduced.

Claims (5)

はんだめっきに用いる陽極板材料において、該材料のはんだ粒子径が20〜200μmの微細粒子からなることを特徴とする陽極板材料。 An anode plate material used for solder plating, wherein the material comprises fine particles having a solder particle diameter of 20 to 200 μm. 前記陽極材料は、Sn−0.5〜5質量%Biのはんだ組成であることを特徴とする請求項1に記載の陽極板材料。 2. The anode plate material according to claim 1, wherein the anode material has a solder composition of Sn-0.5 to 5 mass% Bi. 前記陽極材料は、該材料表面のはんだ粒子径が20〜200μmの微細粒子からなることを特徴とする請求項1または2に記載の陽極板材料。 3. The anode plate material according to claim 1, wherein the anode material is made of fine particles having a solder particle diameter of 20 to 200 μm on the surface of the material. 前記陽極材料は、球状の陽極材料であり、球の中心を含む断面のはんだ粒子径が20〜200μmの微細粒子からなることを特徴とする請求項1ないし3に記載の陽極板材料。 4. The anode plate material according to claim 1, wherein the anode material is a spherical anode material, and is composed of fine particles having a solder particle diameter of 20 to 200 μm in a cross section including the center of the sphere. 円柱状のビレットとして成形したはんだ合金を金型で圧力を加える鍛造によって製造した陽極材料の製造方法。 A method for producing an anode material produced by forging a solder alloy formed as a cylindrical billet by applying pressure with a mold.
JP2009211159A 2009-09-12 2009-09-12 Anode for lead-free plating Active JP5700366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009211159A JP5700366B2 (en) 2009-09-12 2009-09-12 Anode for lead-free plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009211159A JP5700366B2 (en) 2009-09-12 2009-09-12 Anode for lead-free plating

Publications (2)

Publication Number Publication Date
JP2011058076A true JP2011058076A (en) 2011-03-24
JP5700366B2 JP5700366B2 (en) 2015-04-15

Family

ID=43946022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009211159A Active JP5700366B2 (en) 2009-09-12 2009-09-12 Anode for lead-free plating

Country Status (1)

Country Link
JP (1) JP5700366B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180092999A (en) 2015-12-11 2018-08-20 히타치 긴조쿠 가부시키가이샤 Electrode device and method of manufacturing metal foil using the same
JP2020037738A (en) * 2018-07-25 2020-03-12 ザ・ボーイング・カンパニーThe Boeing Company Composition and method for electrodepositing tin-bismuth alloy on metal substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983796A (en) * 1982-11-01 1984-05-15 Takeo Meguro Plating electrolytic nickel anode and manufacture thereof
JPH0250999A (en) * 1988-08-11 1990-02-20 Nippon Steel Corp Electrode for electroplating and manufacture thereof
JP2001011687A (en) * 1999-06-30 2001-01-16 Ne Chemcat Corp Tin-bismuth alloy electroplating bath and plating method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983796A (en) * 1982-11-01 1984-05-15 Takeo Meguro Plating electrolytic nickel anode and manufacture thereof
JPH0250999A (en) * 1988-08-11 1990-02-20 Nippon Steel Corp Electrode for electroplating and manufacture thereof
JP2001011687A (en) * 1999-06-30 2001-01-16 Ne Chemcat Corp Tin-bismuth alloy electroplating bath and plating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180092999A (en) 2015-12-11 2018-08-20 히타치 긴조쿠 가부시키가이샤 Electrode device and method of manufacturing metal foil using the same
JP2020037738A (en) * 2018-07-25 2020-03-12 ザ・ボーイング・カンパニーThe Boeing Company Composition and method for electrodepositing tin-bismuth alloy on metal substrate

Also Published As

Publication number Publication date
JP5700366B2 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
EP1889683B1 (en) Lead-free solder paste
KR101660201B1 (en) Electrolytic copper foil and method for producing same
US10384314B2 (en) Metal particle and method for producing the same, covered metal particle, and metal powder
DE60300675T2 (en) The use of solder on nickel-plated electroless surfaces
JP5700366B2 (en) Anode for lead-free plating
CN101927410B (en) Sn-Ag-Zn-Bi-Cr lead-free solder
CN101988165B (en) High-temperature oxidation resistant lead-free tin-coated alloy
EP1707302B1 (en) Pb-free solder alloy compositions comprising essentially tin (Sn), silver (Ag), copper (Cu), and phosphorus (P)
EP1647352A1 (en) Solder material
JP2007046087A (en) Metallic ball
CN107511603A (en) A kind of compound welding powder of core shell structure bimetallic and preparation method thereof
Huang et al. Research on Bi contents addition into Sn–Cu-based lead-free solder alloy
Bukat et al. SAC solder paste with carbon nanotubes. Part II: carbon nanotubes’ effect on solder joints’ mechanical properties and microstructure
JP2017188488A (en) Solder bump producing method, and dispersion plating liquid
JP2021142548A (en) Solder, method for producing solder and soldering component
JP2016068123A (en) Au-Sn-Ag-BASED SOLDER ALLOY, SEALED OR JOINED ELECTRONIC EQUIPMENT USING THE SAME AND ELECTRONIC DEVICE MOUNTING THE ELECTRONIC EQUIPMENT
CN107075667A (en) Copper alloy target
Hua et al. Electrochemical migration and rapid whisker growth of Zn and Bi dopings in Sn-3.0 Ag-0.5 Cu solder in 3wt.% NaCl solution
Azlina et al. Comparison between SAC405 lead-free solders and EN (P) EPIG and EN (B) EPIG surface finishes
CN102554508A (en) Silver solder suitable for brazing of lead-free free cutting copper alloy
EP3954794A1 (en) Method for manufacturing solder product, solder, soldered component, solder product, printed wiring board, printed circuit board, wire, soldered product, flexible printed board, electronic component, method for manufacturing tin molded article, method for manufacturing tin intermediate product, tin molded article, tin intermediate product, and conductive member
KR101931520B1 (en) Concentrating method of precious metal by adjusting the composition of an collecting alloy
Chen et al. Interfacial reactions in the Pb-free composite solders with indium layers
EP3479950A1 (en) Solder alloy and resin flux cored solder
KR100560708B1 (en) A method for soldering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150209

R150 Certificate of patent or registration of utility model

Ref document number: 5700366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250