JP2011054795A - 発光装置およびその製造方法 - Google Patents

発光装置およびその製造方法 Download PDF

Info

Publication number
JP2011054795A
JP2011054795A JP2009202961A JP2009202961A JP2011054795A JP 2011054795 A JP2011054795 A JP 2011054795A JP 2009202961 A JP2009202961 A JP 2009202961A JP 2009202961 A JP2009202961 A JP 2009202961A JP 2011054795 A JP2011054795 A JP 2011054795A
Authority
JP
Japan
Prior art keywords
light
light emitting
color conversion
emitting device
conversion member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009202961A
Other languages
English (en)
Other versions
JP5368913B2 (ja
Inventor
Yasuyuki Miyake
康之 三宅
Yasuyuki Kawakami
康之 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2009202961A priority Critical patent/JP5368913B2/ja
Publication of JP2011054795A publication Critical patent/JP2011054795A/ja
Application granted granted Critical
Publication of JP5368913B2 publication Critical patent/JP5368913B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

【課題】LED上面に発光セラミックスを配置した発光装置であって、発光色度の角度依存性の小さい装置を提供する。
【解決手段】発光素子230の上面に搭載された色変換部材210は、主平面方向の大きさが発光素子230の上面の大きさよりも小さい。色変換部材210の外周端面には、光拡散部材240が接合され、光拡散部材240は、発光素子230上面の発光領域の色変換部材210が配置されていない領域を覆っている。これにより、色変換部材内部を導波し、端面から出射される蛍光成分の多い光は、光拡散部材において、発光素子から直接入射する励起光と混合され、励起光成分を増加する。よって、上面方向から出射される光との発光色度の差を低減することができる。
【選択図】図1

Description

本発明は、発光素子(LED)の出射光を色変換部材により色変換する発光装置に関し、特に、発光セラミックスを用いる発光装置に関する。
窒化物半導体の発光ダイオード(LED)と、樹脂部材に蛍光体粉末を分散させた蛍光体層を組み合わせた発光装置は、インジケータやバックライトの光源として広く普及している。さらに近年では高出力化が進んでおり、一般照明や自動車のヘッドランプの光源としての採用も始まっている。
今後もLEDの高出力化は望まれているが、そのためには解決すべき課題が存在する。その課題の一つとして、蛍光体の温度が上昇すると発光強度が低下する現象である温度消光がある。LEDの出力を高めるためには、駆動電流を増加させる必要があるが、駆動電流の増加にともないLED内で多量の熱が発生するため、蛍光体が加熱され、蛍光体の発光強度が低下し、結果的にLEDの高出力化ができないという問題が発生する。
これを解決するために、特許文献1では、蛍光体粉末を分散した樹脂に代えて、蛍光体の多結晶からなる発光セラミックスを配置する発光装置が提案されている。発光セラミックスは、蛍光体粉末よりも温度感受性の低いことが知られている。特許文献2および3には、発光セラミックスの製造方法が開示されている。
特開2006−5367号公報 特開平5−294722号公報 特許第3906352号公報
しかしながら、特許文献1に記載のように、蛍光体粉末を分散した樹脂層に代えて発光セラミックスを用いる場合、発光セラミックスの内部を光が伝搬するために、端面から蛍光成分が多く出射され、正面と端面とで発光色度が異なる。このため、発光装置として発光色度の角度依存性が生じてしまうという問題がある。
より具体的に説明すると、発光セラミックスは、内部に樹脂などの結合部材を含まない多結晶であり、粒界においても屈折率はほぼ連続している。また、発光セラミックスの屈折率は、一般的に空気やLED構成部材の屈折率よりも高い。このため、LEDチップの上面に発光セラミックスの薄板を配置すると、LEDから発光セラミックスの内部に入射した励起光の一部が発光セラミックスの上面と下面で多重反射され、発光セラミックス内部を導波する。導波した光は、発光セラミックスの端面から放射される。端面から放射される光は、上面から放射される光に比べ発光セラミックス内の光路長が長いため、蛍光成分が多くなる。これにより、発光装置の上面方向から観測した発光色と、斜め方向から観測した発光色度が大きく異なり、発光装置を光源として使用する場合に問題となる。
本発明の目的は、LED上面に発光セラミックスを配置した発光装置であって、発光色度の角度依存性の小さい装置を提供することにある。
上記目的を達成するために、本発明では、以下のような発光装置が提供される。すなわち、発光素子と、発光素子の上面に搭載され、発光素子の発光色を変換する色変換部材とを有する発光装置であって、色変換部材は、前記発光素子よりも屈折率が大きい平板状の部材からなり、主平面方向の大きさが発光素子の上面の大きさよりも小さい。色変換部材の外周端面には、光拡散部材が接合され、光拡散部材は、発光素子上面の発光領域の色変換部材が配置されていない領域を覆っている。これにより、色変換部材内部を導波し、端面から出射される蛍光成分の多い光は、光拡散部材に入射し、発光素子から光拡散部材の下面に直接入射する励起光と光拡散部材の内部において混合される。発光セラミックスの端面方向から出射される光の励起光成分を増加させることができ、上面方向から出射される光との発光色度の差を低減することができる。
変換部材は、結晶体からなることが好ましい。例えば、色変換部材は、発光素子の出射する光を励起光として蛍光を発する蛍光体の結晶体からなる構成とする。
光拡散部材は、例えば、発光素子の発する光および前記色変換部材で変換後の光に対して透明な樹脂に、粒子を分散させた構成とする。粒子の粒径は、500nm以上10μm以下であることが好ましい。
もしくは、光拡散部材は、色変換部材の結晶体とは異なる結晶構造の不純物相を含む結晶体からなる構成とすることも可能である。
例えば、色変換部材の結晶体は、結晶構造に発光中心イオンを含み、光拡散部材の結晶体は、発光中心イオンを含まない構成とする。
本発明の別の態様によれば、以下のような発光装置の製造方法が提供される。すなわち、発光素子と、発光素子の上面に搭載された色変換部材と、色変換部材の外周端面に接合された光拡散部材とを有する発光装置の製造方法であって、色変換部材として、蛍光体の結晶体からなる光透過性セラミックスを用意し、光拡散部材として、蛍光体と同じ結晶構造の結晶体に、光散乱性を生じさせる不純物相が含まれた材料からなる光拡散性セラミックスを用意し、光透過性セラミックスの外周端面に、光拡散性セラミックスを接触させた状態で焼成することにより、両者を接合する方法である。
本発明によれば、色変換部材内部を導波し、端面から出射される蛍光成分の多い光が、光拡散部材に入射し、光拡散部材の下面に発光素子から直接入射する励起光と光拡散部材の内部において混合されるため、色変換部材の端面方向から出射される光の励起光成分を増加させることができる。これにより、発光色度の角度依存性の小さく、大出力化が可能な発光装置を提供することができる。
本実施形態の発光装置の断面図。 本実施形態の発光装置の上面図。 本実施形態の発光装置の拡散体部材の角部を曲面とした構造を示す上面図。 本実施形態の発光装置で用いることができるLEDチップの断面図。 本実施形態の発光装置で用いることができるLEDチップの断面図。 比較例の発光装置の断面図。
本発明の一実施形態について説明する。
本発明の発光装置は、内部に樹脂などの結合部材を含まない結晶体の蛍光体である発光セラミックスを色変換部材としてもちいる。発光セラミックスは、薄板状にし、LEDチップの上面(発光面)に搭載する。このとき、発光セラミックスの大きさは、LEDチップの上面よりも小さくし、LEDチップの上面における周縁部には発光セラミックスを配置しない。発光セラミックスの端面(外側面)からLEDチップの上面周縁部を覆うように、光拡散体を配置する。これにより、発光セラミックスの端面から出射された蛍光は、光拡散体内部に入射し、LEDチップの上面周縁部から光拡散体に入射した励起光と混合および拡散されて出射されるように構成する。
本実施形態の発光装置の構成を図1および図2を用いて説明する。図1および図2は、発光装置の断面図および上面図である。基板220上にLEDチップ230が固定され、LEDチップ230の上面には発光セラミックス210が搭載されている。LEDチップ230は、実質的にチップ上面からのみ光を放射するものを用いる。
発光セラミックス210は薄板状であり、主平面方向のサイズは、LEDチップ230の上面よりも小さく、LEDチップ230の中央に配置されている。このため、LEDチップ230の上面の周縁部には、発光セラミックス210が配置されていない領域が存在する。
LEDチップ230の上面周縁部には、環状の拡散体部材240が配置されている。環状の拡散体部材240の内周面は、発光セラミックス210の外周端面と接合されている。拡散体部材240の厚みは、発光セラミックス210の厚みと同一もしくはそれ以上であることが望ましい。拡散体240の外側面の位置は、図1のようにLEDチップ230の外側面の位置と一致しているか、もしくは、拡散体240の外側面の方がLEDチップ230の外側面よりも外側に張り出していることが望ましい。
このような構造とすることで、LEDチップ230の上面から出射された光は、発光セラミックス210と拡散体部材240に入射する。発光セラミックス210は、LEDチップ230の光の一部を吸収して励起され、蛍光を発する。発光セラミックス210の上面からは、LEDチップ230から出射され発光セラミックス210を透過した光と、発光セラミックス210が発した蛍光との混合光が出射される。LEDチップ230の出射光の一部は、発光セラミックス210の上面と下面で多重反射されることにより、発光セラミックス210の内部を伝搬しながら発光セラミックス210を励起するため、発光セラミックス210の主平面の法線方向に透過する励起光と比較して発光セラミックス210内部を通過する光路長が長く、蛍光を多く生じさせる。このため、発光セラミックス210の端面210aから出射される光は、上面よりも蛍光成分が多く、蛍光体セラミックス210の上面からの出射光とは色度が異なる。本実施形態の構成では、拡散体部材240において、発光セラミックスの端面からの出射光にLEDチップ230からの励起光を混合し、色度を調整する。
すなわち、発光セラミックス210の端面210aから出射される光(蛍光成分および励起光成分)は、発光セラミックス210aの端面に接している拡散体部材240の内側面から入射し、内部で散乱される。一方、拡散体部材240の下面からは、LEDチップ230の上面からの光が直接入射し、発光セラミックス210の端面210aからの光と混合される。これにより、発光セラミックス210の端面から出射された光に励起光が混合され、色度が調整される。拡散体部材240の内部で混合および散乱された蛍光と励起光は、拡散体の上面および外側面から出射される。これにより、拡散体部材240の外側面から蛍光成分と励起光成分との割合が調整された光が出射されるため、発光セラミックス210の上面から出射光との色度差が小さく、色度の角度依存性を低減することができる。
拡散体部材の光拡散特性および幅、発光セラミックス210の厚みや発光中心イオンの濃度を制御することにより、発光セミックスと拡散体の発光色度を同じにすることが可能であり、温度消光を生じにくい発光セラミックスを用いて色変換を行う発光装置でありながら、発光色度の角度依存性を小さくできる。
発光セラミックス210は、樹脂などの結合部材を5wt%以下と実質的に含まないセラミックスの結晶体からなり、形状は、所定の厚さの薄板状である。発光セラミックス210の結晶体は、一般的には粒界が存在する多結晶体であるが、多結晶体に限らず、全体が単結晶であってもよい。例えば、YAG(Y2Al5O12)に代表されるガーネット構造を持つ蛍光体、シリケート蛍光体、アルミネート蛍光体、スカンジネート蛍光体、サイアロンに代表される酸窒化物蛍光体、ニトリドシリコンナイトライドやニトリドアルミシリコンナイトライドに代表される窒化物蛍光体、ハロシリケート蛍光体、ハロボレート蛍光体、硫化物蛍光体等のうちから選択した1種類の蛍光体の多結晶体や単結晶体、もしくは2種類以上の蛍光体の混合物の多結晶体を用いることができる。特に、所定の不純物(発光中心イオン:例えばCe)がドープされたYAG蛍光体は、高い発光効率を有し、青色光によって励起され黄色蛍光を発する。このため、青色励起光と黄色蛍光との混合光により白色光を得られるため実用上有利である。
また、透光性の高い発光セラミックスである場合には、発光セラミックス内での光の損失避けることができ、発光装置の高輝度化を達成可能であるため望ましい。ただし、このことは、発光セラミックスに空孔や不純物相を導入することによって適当な光拡散特性を付与することを妨げるものではない。
さらに、光取り出し効率の向上や任意の配光特性を持たせるために発光セラミックスの表面に成型研磨、エッチング等により所定の微細構造を設けたものを用いることも可能である。
拡散体部材240としては、光拡散樹脂もしくは光拡散セラミックスを用いることが可能である。
光拡散樹脂としては、例えば、樹脂中に拡散材を混合したものを用いる。拡散材により前方散乱を後方散乱よりも多く生じさせる構成である場合、拡散体部材240から効率よく光を取り出すことが出来るため好ましい。
樹脂は、シリコーン系、エポキシ系、シリコンエポキシ系、フッ素系等を用いることができるが、特にシリコーン樹脂が好適である。拡散材としては、酸化アルミニウム、二酸化チタン、酸化ジルコウム、酸化マグネシウム等の無機材料の微粒子やフィラーを用いることが好ましい。
拡散材としては、粒径が10nm以上20μm以下のものが好ましい。特に、500nm以上10μm以下の粒径の場合、前方散乱が多く生じるため好ましい。これは励起光や蛍光が可視光である場合、拡散材の粒径が500nm以上であればMie散乱のうちの前方散乱の成分が多くなり、10μmより大きくなると粒子による光の反射や屈折により相対的に前方散乱の成分が小さくなる性質があるためである。
樹脂と拡散材の混合割合は、所定の割合に設定することができる。未硬化の樹脂と拡散材を混合してペーストにする工程には、例えば、回転脱泡装置を用いることができる。拡散度合いや成形のし易さを考慮すると、30〜70wt%の拡散材を含む光拡散樹脂を用いることが望ましい。さらに拡散材とは別にペーストの粘度を調整するために粒径10nm以下のヒュームドシリカ等の増粘材を混合することも可能である。
拡散体部材240としては、光拡散セラミックスを用いることも可能である。光拡散セラミックスとは、拡散特性を有するセラミックスであり、例えば、発光セラミックスと同じ結晶構造を持つセラミックスで、かつ発光中心イオンを含まず、結晶構造のなる不純物相を含むセラミックスを用いることが可能である。不純物相が光散乱性を生じさせるため、同じ結晶構造をもつセラミックスであっても拡散特性を有する。
また、拡散体部材240の形状としては、図3のように角部が所定の曲率半径の曲面形状であることが好ましい。角部を曲面形状にすることにより、拡散体部材240の外側面と発光セラミックス210の端面との距離を角部においてもほぼ一定に保つことできるため、外周方向における発光色度の分布を低減することができる。ただし、拡散体部材240の角部を曲面形状にした場合であっても、LEDチップ230の上面が拡散体部材240の外側に露出しないように構成することが望ましい。LEDチップ230の出射光が拡散体部材240の外側から直接出射されるのを防止するためである。このため例えば、拡散体部材240のLEDチップ230の外側面よりも外側に張り出すように形成するか、もしくは、拡散体部材240の外側に位置するLEDチップ230の上面領域に遮光部材を搭載することが可能である。
また、図1に示した構造では、発光セラミックス210の上面に拡散体部材240は形成されていないが、本発明は、発光セラミックス210の上面を拡散体部材240が覆っている構造とすることも可能である。
LEDチップ230としては、例えば、発光波長が可視光領域にあるものを用いる。具体的には窒化ガリウム系化合物半導体、酸化亜鉛系化合物半導体、セレン化亜鉛系化合物半導体などが挙げられる。特に、白色光を発する発光装置の場合には、発光波長が440〜470nmの青色光範囲にあるLEDチップが好適である。
LEDチップ230の構造は、励起光を発光セラミックス210および拡散体部材240に効率よく入射させるため、実質的にチップ上面のみから光を取り出すことの出来るチップ構造であることが望ましい。
このようなチップ構造例として、図4や図5のような構造のLEDチップを用いることができる。図4のLEDチップは、基板230側から順に積層された、p型電極層340、p型半導体層330、活性層320、n型半導体層310を有し、p型半導体層330および活性層320の一部を切り欠き、n型電極350を配置したフリップチップである。図5のLEDチップは、基板230側から順に積層された、支持基板460、p型電極層450、p型半導体層440、活性層430、n型半導体層420を有し、n型半導体層420上の一部にn型電極410が配置された構造である。
図4および図5のLEDチップはエピタキシャル層310〜330、420〜440の成長後に成長基板を除去しているため厚みが数μmと薄い。さらに活性層の下に反射面となる電極340,450を配置し、チップ上面に位置するn型半導体層310、420には光取り出し構造を設けている。このため実質的にチップ上面のみから光を取り出すことが可能である。
次に、本実施形態の発光装置の製造方法について説明する。
まず、発光セラミックスを製造する。発光セラミックスはすでに広く知られている透光性セラミックスの製造方法を用いて製造することが可能である。透光性セラミックスの製造方法は、例えば上述した特許文献2および3に記載されている。
一例として、CeがドープされたYAG:Ce多結晶からなる発光セラミックスを製造する場合について説明する。出発原料の混合工程、成形工程、焼成工程、加工工程を経て製造する。
出発原料には、酸化イットリウムや酸化セリウムやアルミナ等YAG:Ce蛍光体の構成元素の酸化物や、焼成後に酸化物となる炭酸塩、硝酸塩、硫酸塩等を用いる。出発原料の粒径は、サブミクロンサイズのものが望ましい。これらの原料を化学量論比となるように秤量する。このとき焼結後のセラミックスの透過率向上を目的として、カルシウムやシリコンなどの化合物を添加することも可能である。
秤量した原料は、水もしくは有機溶剤を用い湿式ボールミルにより十分に分散、混合を行う。次に、混合物を所定の形状に成形する。成形方法としては、一軸加圧法、冷間静水圧法、スリップキャスティング法や射出成形法等を用いることができる。得られた成形体を1600〜1800℃で焼成する。これにより、透光性のYAGセラミックスを得ることがきる。最後にセラミックスを所望の大きさに切断し、研磨することでYAGの発光セラミックスを得る。一例としては、厚さ数十〜数百μmの発光セラミックス210に加工する。主平面方向の大きさは、LEDチップ230の上面よりも小さい形状に加工する。
得られた発光セラミックス210の端面210aに拡散体部材240を接合する。まず、拡散体部材240として光拡散樹脂を使用する場合について説明する。光拡散樹脂製の拡散体部材240を形成する場合には、発光セラミックス210の端面210a上に未硬化の光拡散樹脂材料(ペースト)を成形する工程と、光拡散樹脂材料を加熱により硬化させる工程を行う。これにより、光拡散樹脂からなる拡散体部材240が所定形状に成形されるとともに、発光セラミックス210の端面210aに接合される。
光拡散樹脂材料(ペースト)は、未硬化の所定の樹脂と、所定の粒径および量の拡散材とを用意し、これらを混合したペーストを用意する。ペーストを発光セラミックス210の周囲に所定の拡散体部材240の形状に成形する。ペーストを拡散体部材240の形状に成形する方法としては、印刷法や型枠法等を用いることができる。印刷法の場合には、まず発光セラミックス210を適当な基板に固定し、その周囲に開口部をもつマスクをかける。マスクの上にペーストを配置し、スキージで印刷することにより発光セラミックス210の周囲にペーストを充填することによりペーストを成形する。次にマスクを外した後、所定の硬化方法、例えば加熱硬化工程を実施し、ペーストを硬化させる。
型枠法の場合は、発光セラミックス周囲に金属やゴムの型枠を設け、そこにペーストを注入することによりペーストを成形する。次に型枠をはずさないまま、所定の硬化方法、例えば加熱により硬化させる。硬化後に型枠をはずす。なお、先に型枠を用意し、そこに樹脂と拡散材からなるペーストを満たし、後から発光セラミックス210を型枠の中に入れ、硬化させる工程とすることも可能である。
また、本発明は、発光セラミックス210の上面を拡散体部材240が覆っている構造としてもよい。このような構造のものも、印刷法や型枠法で形成することが可能である。
つぎに、拡散体部材240として光拡散セラミックスを用いる場合の製造方法を説明する。一例として、発光セラミックス210をYAGセラミックスを用いる場合について説明する。この場合、光拡散セラミックスは、発光中心イオンを含まず、YAGの化学量論比からモル比で数ppm〜数%ずらした組成で材料仕込み、後は発光セラミックスと同じ手順で作製することが可能である。YAGの化学量論比からわずかにずらした組成にすることでセラミックス中にYAGとは屈折率のことなる不純物相が出現するため、そのセラミックスは拡散特性を生じ、光拡散セラミックスが得られる。
得られた光拡散セラミックスを拡散体部材240の形状に加工する。発光セラミックス210と光拡散セラミックスからなる拡散体部材240の接着面(端面210a)を十分に研磨した後、両者を接触させ、そのまま再度1600〜1800℃で焼成する。これにより、発光セラミックス210と光拡散セラミックスからなる拡散体部材240とを接合すことが可能である。
次に、予め配線パターンが形成された基板220を用意し、別途製造しておいたLEDチップ230を基板220上にボンディングする。LEDチップ230の電極を基板220上の配線と接続する。上述した工程で製造した拡散体部材240付きの発光セラミックス210を、LEDチップ230の上面に搭載し、接合する。拡散体部材240付き発光セラミックス210は、LEDチップ230と直接接合するのが望ましい。接合には接着剤や樹脂、低融点ガラス等を用いることができる。以上により、本実施形態の発光装置が完成する。
本実施形態の発光装置は、高出力が要求されるLED発光装置全般に用いることができ、特にヘッドランプ用光源、ならびに、照明用光源として適している。
なお、上述の実施形態では、色変換部材として蛍光体の多結晶体である発光セラミックスを用いる例について説明したが、色変換部材の内部を光が導波する現象は、蛍光体の多結晶体に限らず、屈折率が、LEDチップ230の少なくとも最上層および空気よりも大きい平板状の部材、例えば屈折率1.5以上の平板状の部材を用いる場合に生じる。特に、透明性が高く、屈折率が内部でほぼ連続した多結晶体や単結晶体において生じる。よって、本願発明の構成は、色変換部材として蛍光体の発光セラミックスを用いる場合に限定されるものではなく、内部を光が導波する他の色変換部材、例えば高調波を用いる色変換部材(SHG素子等)に適用することも可能である。
また、上述の実施形態では色変換部材(発光セラミックス210)、光拡散部材240共に、結晶体を用いる場合、すなわち、光拡散部材240として光拡散セラミックスを用いる場合、発光セミックス210と同じの結晶構造を有する場合について説明したが、これに限らず発光セラミックス210とは別の結晶構造を有するものでもかまわない。ただし、発光セラミックス210と光拡散部材240とが同一の結晶構造である場合には、接合が容易であるため好ましい。発光セラミックス210と光拡散部材240とが別の結晶構造の場合、熱膨張による割れや、界面に欠陥が生じる可能性があるため、それを生じさせないような接合方法を工夫することが好ましい。
以下、本発明の実施例を説明する。
(実施例1)
図1および図2の構造の発光装置を以下のように製造した。
神島化学工業製のセリウム濃度0.5mo1%のYAGセラミックスを、一辺の長さ0.8mm、厚さ0.1mmに成形し、発光セラミックス210を得た。これをアルミの基板の上に固定した。次にYAGセラミックス周囲に幅1.0mmの開口が形成された厚み0.1mmのメタルマスクで覆い、粒径600nmの酸化チタン粒子を60wt%含むシリコーン樹脂のペーストで印刷法により開口を充填し、拡散体部材240の形状に成形した。
マスクをはずした後に150℃で2時間加熱しペーストを硬化させた。これにより、端面210aに幅0.1mm、厚み0.1mmの拡散体部材240が接合された発光セラミックス210を作製した。
次に、所定の配線パターンが形成されたアルミナ基板220を用意した。アルミナ基板220の上には、上面の一辺が1.0mm角のLEDチップ210が金ボールバンプにより予めボンディングされている。
LEDチップ210の上面に、拡散体部材240付き発光セラミックス210をシリコーン樹脂で接着し、150℃で2時間加熱硬化させた。これにより、図1の構造の発光装置を得た。
得られた発光装置の発光色度の角度依存性を評価した。評価方法は、発光装置のLEDチップ230を発光させ、拡散体部材240付き発光セラミックス210の直上方向(法線方向)と、直上方向から45度傾けた方向から発光色度を測定した。測定には、Radiant Imagmg社製の測定器ProMetricを用いた。評価にはCIE1931のxy空間の値を使用した。測定した結果を下記表1に示す。なお測定時のLEDの駆動電流は700mAであった。
(実施例2)
酸化チタン粒子を30wt%含むシリコーン樹脂のペーストを使用して拡散体部材240を形成した。それ以外は、実施例1と同じ材料および工程で発光装置を製造し、評価を行った。測定結果を表1に示す。
(実施例3)
拡散体部材2の幅を0.05mmとした。それ以外は実施例1と同じ材料及び工程で発光装置を製造し、評価を行った。測定結果を表1に示す。
(比較例)
図6に示すように、拡散体部材を備えずLEDチップ230の上面全体に発光セラミックス210を搭載した。それ以外は実施例1と同じ材料および工程で発光装置を製造し、評価を行った。測定結果を表1に示す。
Figure 2011054795
(評価)
表1の結果の通り、実施例1〜3の発光装置の色度差は、比較例の色度差よりも小さく、拡散体部材240を配置することによって発光色度の角度依存性を小さくできることが確認できた。
220…基板、210…発光セラミックス、230…LEDチップ、240…拡散体部材、310…n型半導体層、320…活性層、330…p型半導体層、340…p型電極層、350…n型電極、410…n型電極、420…n型半導体層、430…活性層、440…p型半導体層、450…p型電極、460…支持基板。

Claims (9)

  1. 発光素子と、該発光素子の上面に搭載され、前記発光素子の発光色を変換する色変換部材とを有し、
    前記色変換部材は、前記発光素子よりも屈折率が大きい平板状の部材からなり、主平面方向の大きさが発光素子の上面の大きさよりも小さく、
    前記色変換部材の外周端面には、光拡散部材が接合され、当該光拡散部材は、前記発光素子上面の発光領域の前記色変換部材が配置されていない領域を覆っていることを特徴とする発光装置。
  2. 請求項1に記載の発光装置において、前記色変換部材の屈折率は、1.5以上であることを特徴とする発光装置。
  3. 請求項1または2に記載の発光装置において、前記色変換部材は、結晶体からなることを特徴とする発光装置。
  4. 請求項1ないし3のいずれか1項に記載の発光装置において、前記色変換部材は、前記発光素子の出射する光を励起光として蛍光を発する蛍光体の結晶体からなることを特徴とする発光装置。
  5. 請求項1ないし4のいずれか1項に記載の発光装置において、前記光拡散部材は、前記発光素子の発する光および前記色変換部材で変換後の光に対して透明な樹脂に、粒子を分散させたものであることを特徴とする発光装置。
  6. 請求項5に記載の発光装置において、前記粒子の粒径は、500nm以上10μm以下であることを特徴とする発光装置。
  7. 請求項1ないし4のいずれか1項に記載の発光装置において、前記光拡散部材は、前記色変換部材の結晶体とは異なる結晶構造の不純物相を含む結晶体からなることを特徴とする発光装置。
  8. 請求項7に記載の発光装置において、前記色変換部材の結晶体は、前記結晶構造に発光中心イオンを含み、前記光拡散部材の結晶体は、発光中心イオンを含まないことを特徴とする発光装置。
  9. 発光素子と、該発光素子の上面に搭載された色変換部材と、該色変換部材の外周端面に接合された光拡散部材とを有する発光装置の製造方法であって、
    前記色変換部材として、蛍光体の結晶体からなる光透過性セラミックスを用意し、前記光拡散部材として、前記蛍光体と同じ結晶構造の結晶体に、光散乱性を生じさせる不純物相が含まれた材料からなる光拡散性セラミックスを用意し、
    前記光透過性セラミックスの外周端面に、前記光拡散性セラミックスを接触させた状態で焼成することにより、両者を接合することを特徴とする発光装置の製造方法。
JP2009202961A 2009-09-02 2009-09-02 発光装置およびその製造方法 Active JP5368913B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009202961A JP5368913B2 (ja) 2009-09-02 2009-09-02 発光装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009202961A JP5368913B2 (ja) 2009-09-02 2009-09-02 発光装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2011054795A true JP2011054795A (ja) 2011-03-17
JP5368913B2 JP5368913B2 (ja) 2013-12-18

Family

ID=43943508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009202961A Active JP5368913B2 (ja) 2009-09-02 2009-09-02 発光装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP5368913B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197309A (ja) * 2012-03-19 2013-09-30 Toshiba Corp 発光装置
JP2015023291A (ja) * 2013-07-22 2015-02-02 中国科学院福建物質構造研究所Fujian Institute Of Research On The Structure Of Matter, Chinese Academyof Sciences GaN系LEDエピタキシャル構造およびその製造方法
US9825001B2 (en) 2014-09-30 2017-11-21 Nichia Corporation Light emitting device with light transmissive member and method for manufacturing thereof
JP2018029179A (ja) * 2016-08-17 2018-02-22 晶元光電股▲ふん▼有限公司Epistar Corporation 発光装置及びその製造方法
US10400993B2 (en) 2016-02-24 2019-09-03 Nichia Corporation Method of manufacturing fluorescent-material-containing member
CN113979739A (zh) * 2021-10-27 2022-01-28 中国科学院上海硅酸盐研究所 复合荧光陶瓷、制备方法及发光器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005112208A1 (ja) * 2004-05-17 2005-11-24 Akio Ikesue 複合レーザー素子及びその素子を用いたレーザー発振器
JP2006005367A (ja) * 2004-06-03 2006-01-05 Lumileds Lighting Us Llc 発光デバイスのための発光セラミック
JP2009506157A (ja) * 2005-08-24 2009-02-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 発光材料
JP2009038348A (ja) * 2007-07-12 2009-02-19 Koito Mfg Co Ltd 発光装置
JP2009524914A (ja) * 2006-01-24 2009-07-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 発光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005112208A1 (ja) * 2004-05-17 2005-11-24 Akio Ikesue 複合レーザー素子及びその素子を用いたレーザー発振器
JP2006005367A (ja) * 2004-06-03 2006-01-05 Lumileds Lighting Us Llc 発光デバイスのための発光セラミック
JP2009506157A (ja) * 2005-08-24 2009-02-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 発光材料
JP2009524914A (ja) * 2006-01-24 2009-07-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 発光装置
JP2009038348A (ja) * 2007-07-12 2009-02-19 Koito Mfg Co Ltd 発光装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197309A (ja) * 2012-03-19 2013-09-30 Toshiba Corp 発光装置
US9076937B2 (en) 2012-03-19 2015-07-07 Kabushiki Kaisha Toshiba Light emitting device and method for manufacturing the same
JP2015023291A (ja) * 2013-07-22 2015-02-02 中国科学院福建物質構造研究所Fujian Institute Of Research On The Structure Of Matter, Chinese Academyof Sciences GaN系LEDエピタキシャル構造およびその製造方法
US9825001B2 (en) 2014-09-30 2017-11-21 Nichia Corporation Light emitting device with light transmissive member and method for manufacturing thereof
US10290607B2 (en) 2014-09-30 2019-05-14 Nichia Corporation Method for manufacturing light emitting device including light emitting element and color conversion material layer
US10636764B2 (en) 2014-09-30 2020-04-28 Nichia Corporation Light emitting device
US10400993B2 (en) 2016-02-24 2019-09-03 Nichia Corporation Method of manufacturing fluorescent-material-containing member
JP2018029179A (ja) * 2016-08-17 2018-02-22 晶元光電股▲ふん▼有限公司Epistar Corporation 発光装置及びその製造方法
KR20200067972A (ko) * 2016-08-17 2020-06-15 에피스타 코포레이션 발광장치 및 그 제조방법
KR102453677B1 (ko) 2016-08-17 2022-10-11 에피스타 코포레이션 발광장치 및 그 제조방법
CN113979739A (zh) * 2021-10-27 2022-01-28 中国科学院上海硅酸盐研究所 复合荧光陶瓷、制备方法及发光器件

Also Published As

Publication number Publication date
JP5368913B2 (ja) 2013-12-18

Similar Documents

Publication Publication Date Title
CN109860381B (zh) 发光装置及其制造方法
US11189759B2 (en) Light source device and light emitting device
JP5397944B2 (ja) 蛍光体含有複合シート
JP5650885B2 (ja) 波長変換焼結体及びこれを用いた発光装置、並びに波長変換焼結体の製造方法
US9276180B2 (en) Method for manufacturing light emitting device and light emitting device
JP5389029B2 (ja) 反射型波長変換層を含む光源
RU2457582C2 (ru) Светоизлучающее устройство, включающее в себя люминесцентную керамику и светорассеивающий материал (варианты)
US7361938B2 (en) Luminescent ceramic for a light emitting device
US10274140B1 (en) Method for manufacturing light emitting device
JP5368913B2 (ja) 発光装置およびその製造方法
JP6702280B2 (ja) 発光装置、被覆部材の製造方法及び発光装置の製造方法
WO2014171277A1 (ja) 発光装置
JP5709463B2 (ja) 光源装置および照明装置
JP2012243624A (ja) 光源装置および照明装置
EP2332188A1 (en) Led with controlled angular non-uniformity
WO2013148271A1 (en) Wavelength -converting structure for a light source
JP2012243618A (ja) 光源装置および照明装置
CN105431953B (zh) 基于固态荧光材料的嵌入式白光led封装结构及其制作方法
Wang et al. Phosphor glass-coated sapphire with moth-eye microstructures for ultraviolet-excited white light-emitting diodes
JP2013138216A (ja) 発光装置
JP2013171844A (ja) 光源装置および照明装置
JP6928244B2 (ja) 発光装置
JP2008198702A (ja) 色変換発光素子とその製造方法
JP2008513992A (ja) 発光装置
JP2014022435A (ja) 発光装置及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130913

R150 Certificate of patent or registration of utility model

Ref document number: 5368913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250