JP2011052249A - Die material - Google Patents

Die material Download PDF

Info

Publication number
JP2011052249A
JP2011052249A JP2009200234A JP2009200234A JP2011052249A JP 2011052249 A JP2011052249 A JP 2011052249A JP 2009200234 A JP2009200234 A JP 2009200234A JP 2009200234 A JP2009200234 A JP 2009200234A JP 2011052249 A JP2011052249 A JP 2011052249A
Authority
JP
Japan
Prior art keywords
powder
vol
skd11
mixed
mwcnt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009200234A
Other languages
Japanese (ja)
Other versions
JP5509409B2 (en
Inventor
Noboru Nakayama
昇 中山
Shinya Tokutake
伸也 徳竹
Toru Matsuura
松浦  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Sanko Co Ltd
Original Assignee
Shinshu University NUC
Sanko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC, Sanko Co Ltd filed Critical Shinshu University NUC
Priority to JP2009200234A priority Critical patent/JP5509409B2/en
Publication of JP2011052249A publication Critical patent/JP2011052249A/en
Application granted granted Critical
Publication of JP5509409B2 publication Critical patent/JP5509409B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make a die material itself into a material having satisfactory lubricating properties. <P>SOLUTION: The die material is obtained by solidifying a tool steel powder mixed with a carbon powder material by 1 to 10 vol.%, in which Vickers hardness is 800 to 1,100, and in the case of a friction test where an electrogalvanized steel is used as a mating material, a load stress is 0.4 MPa; a sliding velocity is 30 mm/min and a sliding distance is 12 mm; its friction coefficient is 0.1 to 0.l5. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、金型に用いられる金型材料として、ドライ加工を好適に行いうる炭素と工具鋼の複合材料、および他の物質と工具鋼との複合材料に関する。   The present invention relates to a composite material of carbon and tool steel that can be suitably subjected to dry processing, and a composite material of another substance and tool steel as a mold material used for a mold.

現在、金型を用いた金属の塑性加工の際には、焼付、摩耗等を防止するため金型表面に潤滑剤を塗布又は噴霧する必要がある。
しかし、塑性加工後、加工対象品から潤滑剤を洗い落とす必要があるので、手間がかかるという課題があったり、環境面からしても潤滑剤を使用することは好ましくない。
このため、金型を用いた塑性加工時に潤滑剤を使用しないドライ加工が望まれている。
Currently, when plastic processing of metal using a mold, it is necessary to apply or spray a lubricant on the mold surface in order to prevent seizure, wear, and the like.
However, since it is necessary to wash off the lubricant from the product to be processed after plastic working, there is a problem that it takes time, and it is not preferable to use the lubricant from the environmental viewpoint.
For this reason, dry processing which does not use a lubricant during plastic processing using a mold is desired.

そこで、特許文献1に示すように、潤滑剤を用いないドライ加工を行いうるものとして、金型表面にDLC(ダイヤモンドライクカーボン)等のカーボン製の被覆を蒸着し、潤滑特性を向上させた金型を用いることが考えられている。   Therefore, as shown in Patent Document 1, a gold coating having improved lubrication characteristics by vapor-depositing a coating made of carbon such as DLC (diamond-like carbon) on the surface of the mold as a material capable of performing dry processing without using a lubricant. It is considered to use a mold.

特開2005−213613号公報JP 2005-213613 A

上述した特許文献1のように、DLC等のカーボン製被覆を金型に施したとしても、被覆の金型に対する密着性が悪く、長期の使用に耐えられないという課題がある。
また金型表面にカーボン製被覆を施すための装置が高価であるという課題もある。
Even if carbon coating such as DLC is applied to the mold as in Patent Document 1 described above, there is a problem that the adhesion of the coating to the mold is poor and it cannot withstand long-term use.
There is also a problem that an apparatus for applying a carbon coating on the mold surface is expensive.

そこで、本発明は上記課題を解決すべくなされ、金型表面に潤滑特性の良い被覆を施すのではなく、金型材料自体を潤滑特性の良い材料とすることを目的とする。   Therefore, the present invention has been made to solve the above-described problems, and it is an object of the present invention to make the mold material itself a material having good lubrication characteristics, instead of coating the mold surface with good lubrication characteristics.

本発明は上記目的を達成するため次の構成を備える。
すなわち、本発明にかかる金型材料によれば、炭素粉末が1〜10vol%混入された工具鋼粉末が固化されてなる金型材料であって、ビッカース硬さが800〜1100であり、相手材を電気亜鉛めっき鋼とし、負荷応力0.4MPa、すべり速度30mm/min、すべり距離12mmとした摩擦試験の場合における摩擦係数が0.1〜0.15であることを特徴としている。
この構成を採用することによって、従来の金型材料と比較して硬度が高く、また摩擦係数が低い金型材料であるので、ドライ加工に適した金型材料として用いることができる。
In order to achieve the above object, the present invention comprises the following arrangement.
That is, according to the mold material according to the present invention, it is a mold material obtained by solidifying a tool steel powder mixed with 1 to 10% by volume of carbon powder, having a Vickers hardness of 800 to 1100, and a counterpart material. Is a galvanized steel, and has a friction coefficient of 0.1 to 0.15 in a friction test with a load stress of 0.4 MPa, a sliding speed of 30 mm / min, and a sliding distance of 12 mm.
By adopting this configuration, it is a mold material having a higher hardness and a lower coefficient of friction than conventional mold materials, so that it can be used as a mold material suitable for dry processing.

また、炭素粉末が5vol%混入されており、ビッカース硬さが1100であり、前記摩擦試験の場合における摩擦係数が0.1であることを特徴としてもよい。   Further, 5 vol% of carbon powder is mixed, the Vickers hardness is 1100, and the friction coefficient in the case of the friction test may be 0.1.

なお、前記炭素粉末は、CNTであることを特徴としてもよい。   The carbon powder may be CNT.

本発明にかかる金型材料によれば、二硫化モリブデン粉末が1〜15vol%混入された工具鋼粉末が固化されてなる金型材料であって、ビッカース硬さが800〜1000であり、相手材をSUS304ボールとし、負荷応力0.98N、すべり速度30mm/min、すべり距離1mmとした摩擦試験の場合における摩擦係数が0.1〜0.15であることを特徴としている。
この構成を採用することによって、従来の金型材料と比較して硬度が高く、また摩擦係数が低い金型材料であるので、ドライ加工に適した金型材料として用いることができる。
The mold material according to the present invention is a mold material obtained by solidifying a tool steel powder mixed with 1 to 15 vol% of molybdenum disulfide powder, having a Vickers hardness of 800 to 1000, and a counterpart material. Is a SUS304 ball, and the friction coefficient in the case of a friction test with a load stress of 0.98 N, a sliding speed of 30 mm / min, and a sliding distance of 1 mm is 0.1 to 0.15.
By adopting this configuration, it is a mold material having a higher hardness and a lower coefficient of friction than conventional mold materials, so that it can be used as a mold material suitable for dry processing.

また、二硫化モリブデン粉末が10vol%混入されており、ビッカース硬さが900であり、前記摩擦試験の場合における摩擦係数が0.1であることを特徴としてもよい。   Further, 10 vol% of molybdenum disulfide powder is mixed, the Vickers hardness is 900, and the friction coefficient in the case of the friction test may be 0.1.

本発明によれば、潤滑特性の良好な金型材料を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the mold material with a favorable lubrication characteristic can be provided.

SKD11粉末のSEM写真である。It is a SEM photograph of SKD11 powder. 多層カーボンナノチューブ(MWCNT)のSEM写真である。It is a SEM photograph of a multi-walled carbon nanotube (MWCNT). SKD11に対して、MWCNTを1vol%混入させた場合のSEM写真である。It is a SEM photograph at the time of mixing 1 vol% of MWCNT with respect to SKD11. SKD11に対して、MWCNTを3vol%混入させた場合のSEM写真である。It is a SEM photograph at the time of mixing 3vol% of MWCNT with respect to SKD11. SKD11に対して、MWCNTを5vol%混入させた場合のSEM写真である。It is a SEM photograph at the time of mixing 5 vol% of MWCNT with respect to SKD11. 常温圧縮回転剪断方法で用いる固化成形装置の構成を示す側面図である。It is a side view which shows the structure of the solidification shaping | molding apparatus used with the normal temperature compression rotation shear method. 図6の固化成形装置の撹拌工具の構成を示す側面図である。It is a side view which shows the structure of the stirring tool of the solidification shaping | molding apparatus of FIG. ビッカース硬さ試験において撹拌工具の中心からの位置とビッカース硬さの値との関係を、SKD11に対してMWCNTの混入率を変化させた場合について測定したグラフである。It is the graph which measured the relationship between the position from the center of a stirring tool, and the value of Vickers hardness in the case of changing the mixing rate of MWCNT with respect to SKD11 in a Vickers hardness test. 摩擦試験の試験方法を示す概略説明図である。It is a schematic explanatory drawing which shows the test method of a friction test. 図9に示した摩擦試験において、SKD11に対してMWCNTの混入率と摩擦係数との関係を示すグラフである。FIG. 10 is a graph showing the relationship between the mixing rate of MWCNT and the coefficient of friction with respect to SKD11 in the friction test shown in FIG. 9. SKD11粉末のSEM写真である。It is a SEM photograph of SKD11 powder. 二硫化モリブデン(MoS)粉末のSEM写真である。Molybdenum disulfide (MoS 2) is a SEM photograph of the powder. SKD11に対して、MoSを5vol%混入させた場合のSEM写真である。Against SKD11, a SEM photograph in the case of is mixed MoS 2 5 vol%. 常温圧縮回転剪断方法で用いる固化成形装置の構成を示す側面図である。It is a side view which shows the structure of the solidification shaping | molding apparatus used with the normal temperature compression rotation shear method. 図14の固化成形装置の撹拌工具の構成を示す側面図である。It is a side view which shows the structure of the stirring tool of the solidification shaping | molding apparatus of FIG. ビッカース硬さ試験において撹拌工具の中心からの位置とビッカース硬さの値との関係を、SKD11に対してMoSの混入率を変化させた場合について測定したグラフである。The relationship between the position and the Vickers hardness value from the center of the stirring tool in the Vickers hardness test is a graph illustrating the case of changing the mixing ratio of MoS 2 with respect to SKD11. 摩擦試験の試験方法を示す概略説明図である。It is a schematic explanatory drawing which shows the test method of a friction test. 図17に示した摩擦試験において、SKD11に対してMoSの混入率と摩擦係数との関係を示すグラフである。A friction test shown in FIG. 17 is a graph showing the relationship between the mixing ratio and the friction coefficient of MoS 2 with respect to SKD11.

(第1の実施形態)
以下、本発明に係る金型材料の実施の形態を添付図面に基づいて詳細に説明する。
本実施形態の金型材料は、工具鋼の粉末に炭素粉末を混入し、混入後に固化させてなるものである。本実施形態の工具鋼としてはSKD11を採用し、炭素粉末としては多層カーボンナノチューブ(MWCNT:登録商標名VGCF)を採用した。
(First embodiment)
Embodiments of a mold material according to the present invention will be described below in detail with reference to the accompanying drawings.
The mold material of the present embodiment is obtained by mixing carbon powder into tool steel powder and solidifying it after mixing. SKD11 was adopted as the tool steel of this embodiment, and multi-walled carbon nanotubes (MWCNT: registered trade name VGCF) were adopted as the carbon powder.

(SKD粉末)
SKD11のSEM(scanning electron microscope)写真を図1に示す。
SKD11は、工具鋼のうち合金工具鋼に分類され、鋼に炭素およびクロムを添加し、さらにタングステン、モリブデン等を添加した金型用の材料である。
本実施形態で用いるSKD11の粉末は、平均粒径が9.91μmである。
(SKD powder)
A SEM (scanning electron microscope) photograph of SKD11 is shown in FIG.
SKD11 is classified as an alloy tool steel among tool steels, and is a material for a mold obtained by adding carbon and chromium to steel and further adding tungsten, molybdenum and the like.
The powder of SKD11 used in this embodiment has an average particle size of 9.91 μm.

(MWCNT粉末)
MWCNTのSEM写真を図2に示す。
MWCNTは、複数の筒状の炭素分子が入れ子状に形成されたものであり、気相成長により作成される炭素繊維である。
(MWCNT powder)
An SEM photograph of MWCNT is shown in FIG.
MWCNT is a carbon fiber that is formed by nesting a plurality of cylindrical carbon molecules, and is produced by vapor phase growth.

(粉末の混入)
SKD11粉末とMWCNT粉末との混入について説明する。
SKD11粉末とMWCNT粉末を3軸方向加振型ボールミル((株)トポロジックシステム社製TKMAC−1200L)にかけ混入した。
このボールミルによる混入では、まず、混入対象原料であるSKD11粉末とMWCNT粉末をSKD製等の容器に装填し、直径5mmのSUJ2製のボール350個を上記容器に装填した。そして両粉末とボールとを容器に装填した後、容器内部を不活性ガス(例えばArガス)で満たして密閉した。密閉後、容器を3軸方向に加振させて、ボールを強制的に揺動・衝突させることにより、SKD11粉末とMWCNT粉末を撹拌・混入して複合化させることができた。
なお、ボールミルの振動数は800rpm、処理時間は3時間とした。
(Mixing of powder)
The mixing of SKD11 powder and MWCNT powder will be described.
The SKD11 powder and the MWCNT powder were mixed by applying to a triaxial vibration type ball mill (TKMAC-1200L manufactured by Topological System Co., Ltd.).
In mixing by this ball mill, first, SKD11 powder and MWCNT powder as mixing target raw materials were loaded in a container made of SKD or the like, and 350 SUJ2 balls having a diameter of 5 mm were loaded in the container. Then, after charging both the powder and the ball into the container, the inside of the container was filled with an inert gas (for example, Ar gas) and sealed. After sealing, the SKD11 powder and the MWCNT powder could be agitated and mixed to form a composite by vibrating the container in three axial directions and forcibly swinging and colliding the ball.
The vibration frequency of the ball mill was 800 rpm and the treatment time was 3 hours.

SKD11に対して、MWCNTを1vol%混入させた場合のSEM写真を図3に示し、MWCNTを3vol%混入させた場合のSEM写真を図4に示し、MWCNTを5vol%混入させた場合のSEM写真を図5に示す。
これらSEM写真を見ると、SKD11粉末とMWCNT粉末とをボールミルにより混入させることにより、SKD11粉末とMWCNT粉末とが複合化したことがわかる。
FIG. 3 shows an SEM photograph when 1 vol% of MWCNT is mixed into SKD11, FIG. 4 shows an SEM photograph when 3 vol% of MWCNT is mixed, and an SEM photograph when 5 vol% of MWCNT is mixed. Is shown in FIG.
From these SEM photographs, it can be seen that the SKD11 powder and the MWCNT powder were combined by mixing the SKD11 powder and the MWCNT powder with a ball mill.

(複合化した粉末の固化)
次に、上述したSKD11粉末とMWCNT粉末とを混入して複合化させた粉末(以下、混入粉末と称する場合がある)を、固化成形する方法を説明する。
混入粉末の固化成形は、常温圧縮回転剪断方法によって行うことができる。常温圧縮回転剪断方法とは、金属の粉末を容器内に充填した後、棒状の撹拌工具を用いて圧縮しつつ撹拌することで、金属の粉末を摩擦により接合する方法である。この方法では、常温で且つ短時間で金属の粉末を固化させることができる。
(Solidification of composite powder)
Next, a method for solidifying and molding a powder obtained by mixing the above-described SKD11 powder and MWCNT powder (hereinafter sometimes referred to as mixed powder) will be described.
Solidification molding of the mixed powder can be performed by a room temperature compression rotary shearing method. The room temperature compression rotational shearing method is a method in which metal powder is joined by friction by filling a metal powder into a container and stirring while compressing it using a bar-like stirring tool. In this method, the metal powder can be solidified at room temperature in a short time.

常温圧縮回転剪断方法を実行する固化成形装置を図6に示す。
固化成形装置30は、固化対象の金属粉末を充填するための充填室31が構成されるダイス32と、ダイス32の穴33の下方から充填室31へ向けて突出して充填室31の底面を構成する下パンチ34とを備えている。
ダイス32の穴33の上方からは下面に押圧撹拌部35を有する棒状の撹拌工具36が、充填室31内に進入して配置される。
FIG. 6 shows a solidification molding apparatus that executes the room temperature compression rotary shearing method.
The solidification molding apparatus 30 constitutes a die 32 in which a filling chamber 31 for filling metal powder to be solidified is formed, and a bottom surface of the filling chamber 31 that protrudes from below the hole 33 of the die 32 toward the filling chamber 31. And a lower punch 34.
From above the hole 33 of the die 32, a rod-like stirring tool 36 having a pressing stirring portion 35 on the lower surface enters the filling chamber 31 and is disposed.

図7に撹拌工具の全体構成を示す。
撹拌工具36は、ダイス32の穴33内に隙間無く挿入できるような棒状である。撹拌工具36の上端部は、上下方向に移動可能であり、且つ軸線方向に回転可能となるよう、駆動装置(図示せず)に接続されている。
撹拌工具36の押圧撹拌部35は、充填室31内の金属粉末を押圧し、先端に設けられた雄ねじ部38によって撹拌する。雄ねじ部38は、撹拌工具36の径(ダイス32の穴33)よりも小径に形成されており、充填室31内に充填された金属粉末内で回転し、金属粉末を撹拌・せん断する機能を有する。
なお、撹拌工具の押圧撹拌部としては、雄ねじ部によって撹拌・剪断することには限定されず、単に外周方向に沿った溝が形成されているだけであってもよい。
FIG. 7 shows the overall configuration of the stirring tool.
The stirring tool 36 has a rod shape that can be inserted into the hole 33 of the die 32 without a gap. The upper end portion of the stirring tool 36 is connected to a driving device (not shown) so as to be movable in the vertical direction and to be rotatable in the axial direction.
The pressing and agitating unit 35 of the agitating tool 36 presses the metal powder in the filling chamber 31 and agitates it by a male screw portion 38 provided at the tip. The male screw portion 38 is formed to have a smaller diameter than the diameter of the stirring tool 36 (the hole 33 of the die 32), and has a function of rotating and stirring and shearing the metal powder in the metal powder filled in the filling chamber 31. Have.
In addition, as a press stirring part of a stirring tool, it is not limited to stirring and shearing by an external thread part, The groove | channel along the outer peripheral direction may only be formed.

なお、下パンチ34には、金属粉末に対する押圧力を測定するための押圧力測定手段として、ストレインゲージ40が設けられている。
ダイス32には、温度センサ42が設けられており、この温度センサ42によって固化成形中の金属粉末の温度を測定することができる。なお、温度センサ42の先端部が金属粉末の充填された充填室31内に突出しないよう、温度センサ42の挿入穴43は、充填室31までは貫通しないように形成されている。
The lower punch 34 is provided with a strain gauge 40 as a pressing force measuring means for measuring the pressing force against the metal powder.
The die 32 is provided with a temperature sensor 42, and the temperature sensor 42 can measure the temperature of the metal powder being solidified. The insertion hole 43 of the temperature sensor 42 is formed so as not to penetrate to the filling chamber 31 so that the tip of the temperature sensor 42 does not protrude into the filling chamber 31 filled with metal powder.

本実施形態の混入粉末を固化成形させる場合の固化成形装置30の動作条件は以下のとおりである。
撹拌工具36の材質はSKD7、撹拌工具36の負荷荷重は5kN、撹拌工具36の回転数は1800rpm、成形時間は15sである。また、固化成形時の雰囲気は大気であり、温度は室温である。
The operating conditions of the solidification molding apparatus 30 when the mixed powder of this embodiment is solidified and molded are as follows.
The material of the stirring tool 36 is SKD7, the load of the stirring tool 36 is 5 kN, the rotational speed of the stirring tool 36 is 1800 rpm, and the molding time is 15 s. The atmosphere during solidification molding is air, and the temperature is room temperature.

(成形固化された金属材料の性質)
上述した条件で固化成形装置30を動作させ、混入粉末を固化成形した金型材料の硬さをビッカース硬さ試験で測定した。測定結果を図8に示す。
試験は、撹拌工具36の中心から径方向に1.5mm、2.0mm、2.5mm、3.0mmの位置で成形された金型材料において、SKD11粉末に対してMWCNTの混入率が0vol%のもの、SKD11粉末に対してMWCNTの混入率が1vol%のもの、SKD11粉末に対してMWCNTの混入率が3vol%のもの、SKD11粉末に対してMWCNTの混入率が5vol%のものについて測定した。
(Properties of molded and solidified metal materials)
The solidification molding apparatus 30 was operated under the above-described conditions, and the hardness of the mold material obtained by solidifying and molding the mixed powder was measured by the Vickers hardness test. The measurement results are shown in FIG.
In the test, in the mold material molded at a position of 1.5 mm, 2.0 mm, 2.5 mm, and 3.0 mm in the radial direction from the center of the stirring tool 36, the mixing rate of MWCNT is 0 vol% with respect to the SKD11 powder. , MWCNT mixing rate of 1 vol% with respect to SKD11 powder, MWCNT mixing rate of 3 vol% with respect to SKD11 powder, and MWCNT mixing rate of 5 vol% with respect to SKD11 powder .

測定の結果、MWCNTをまったく混入させていないSKD11だけの場合にはビッカース硬さが700(HV)程度であるのに対し、MWCNTの混入率が1vol%および3vol%のものは、800〜900(HV)であることが判明した。また、MWCNTの混入率が5vol%のものは、最も硬く、ビッカース硬さが900〜1100(HV)であることが判明した。   As a result of the measurement, in the case of only SKD11 in which MWCNT is not mixed at all, the Vickers hardness is about 700 (HV), whereas the MWCNT mixing rate is 1 vol% and 3 vol% is 800 to 900 ( HV). Further, it was found that the MWCNT mixing rate of 5 vol% was the hardest and the Vickers hardness was 900 to 1100 (HV).

なお、図8では、MWCNTの混入率が5vol%の場合までしか示していないが、実際にMWCNTを10vol%まで混入させた場合についてビッカース硬さを測定したところ、900〜1000(HV)程度であることがわかっている。   In addition, in FIG. 8, although only the case where the mixing rate of MWCNT is 5 vol% is shown, when Vickers hardness is measured about the case where MWCNT is actually mixed up to 10 vol%, it is about 900-1000 (HV). I know that there is.

次に、上述した条件で固化成形装置30を動作させて、混入粉末を固化成形した金型材料の摩擦係数を、以下に説明する摩擦試験により測定した。測定方法の概略図を図9に示す。
摩擦試験では、成形された金型材料を一辺1.5mmの立方体に加工し、これをピンとした。摩擦対象となる材料は、SECC(電気亜鉛めっき鋼)製の板状体である。
SECCの板状体に対して、ピンを負荷荷重0.4MPaで接触させ、すべり速度30mm/min、すべり距離12mmで摩擦試験を行った。
Next, the solidification molding apparatus 30 was operated under the above-described conditions, and the friction coefficient of the mold material obtained by solidification molding of the mixed powder was measured by a friction test described below. A schematic diagram of the measurement method is shown in FIG.
In the friction test, the molded mold material was processed into a cube having a side of 1.5 mm, and this was used as a pin. The material to be rubbed is a plate made of SECC (electrogalvanized steel).
A pin was brought into contact with the SECC plate at a load of 0.4 MPa, and a friction test was performed at a sliding speed of 30 mm / min and a sliding distance of 12 mm.

測定の結果、図10に示すように、MWCNTをまったく混入させていないSKD11だけの場合には摩擦係数が約0.2であるのに対し、MWCNTの混入率が1vol%および3vol%の場合は摩擦係数が約0.15であることが判明した。また、MWCNTの混入率が5vol%のものは、最も摩擦係数が小さく、摩擦係数が約0.13であることが判明した。   As a result of the measurement, as shown in FIG. 10, in the case of only SKD11 in which MWCNT is not mixed at all, the friction coefficient is about 0.2, whereas in the case where the mixing ratio of MWCNT is 1 vol% and 3 vol%, The coefficient of friction was found to be about 0.15. It was also found that the MWCNT mixing rate of 5 vol% had the smallest friction coefficient and the friction coefficient was about 0.13.

なお、図10では、MWCNTの混入率が5vol%の場合までしか示していないが、実際にMWCNTを10vol%まで混入させたものについて、上述した摩擦試験の場合における摩擦係数を測定したところ、0.13程度であることがわかっている。   In FIG. 10, only the case where the mixing ratio of MWCNT is 5 vol% is shown. However, when the friction coefficient in the above-described friction test was measured for the case where MWCNT was actually mixed up to 10 vol%, it was 0. It is known to be about .13.

このように、SKD11に対してのMWCNTの混入率を5%程度とすることで、SKD11単体の金型材料と比較して約35%硬度が増加した。さらに、SKD11に対してのMWCNTの混入率を5%程度とすることで、SKD11単体の金型材料と比較して約32%摩擦係数が低下した。   Thus, by setting the mixing ratio of MWCNT to SKD11 to about 5%, the hardness increased by about 35% compared to the mold material of SKD11 alone. Further, by setting the mixing ratio of MWCNT with respect to SKD11 to about 5%, the friction coefficient was reduced by about 32% compared to the mold material of SKD11 alone.

なお、本実施形態では、炭素粉末の例としてMWCNTについて説明してきたが炭素粉末としてはMWCNTに限定されるものではない。   In the present embodiment, MWCNT has been described as an example of carbon powder, but the carbon powder is not limited to MWCNT.

(第2の実施形態)
以下、本発明に係る金型材料の第2の実施の形態を添付図面に基づいて詳細に説明する。
本実施形態の金型材料は、工具鋼の粉末に二硫化モリブデン(MoS)を混入し、混入後に固化させてなるものである。本実施形態の工具鋼としてはSKD11を採用した。
(Second Embodiment)
Hereinafter, a second embodiment of the mold material according to the present invention will be described in detail with reference to the accompanying drawings.
The mold material of the present embodiment is obtained by mixing molybdenum disulfide (MoS 2 ) into tool steel powder and solidifying it after mixing. SKD11 was employed as the tool steel of this embodiment.

(SKD粉末)
SKD11のSEM(scanning electron microscope)写真を図11に示す。
SKD11は、工具鋼のうち合金工具鋼に分類され、鋼に炭素およびクロムを添加し、さらにタングステン、モリブデン等を添加した金型用の材料である。
本実施形態で用いるSKD11の粉末は、平均粒径が9.91μmである。
(SKD powder)
An SEM (scanning electron microscope) photograph of SKD11 is shown in FIG.
SKD11 is classified as an alloy tool steel among tool steels, and is a material for a mold obtained by adding carbon and chromium to steel and further adding tungsten, molybdenum and the like.
The powder of SKD11 used in this embodiment has an average particle size of 9.91 μm.

(MoS粉末)
MoSのSEM写真を図12に示す。
本実施形態で使用されるMoSの粉末は、純度98.2%以上、平均粒径が30μmである。
(MoS 2 powder)
An SEM photograph of MoS 2 is shown in FIG.
The MoS 2 powder used in the present embodiment has a purity of 98.2% or more and an average particle size of 30 μm.

(粉末の混入)
SKD11粉末とMoS粉末との混入について説明する。
SKD11粉末とMoS粉末を3軸方向加振型ボールミル((株)トポロジックシステム社製TKMAC−1200L)にかけ混入した。
このボールミルによる混入では、まず、混入対象原料であるSKD11粉末とMoS粉末をSKD製等の容器に装填し、直径5mmのSUJ2製のボール350個を上記容器に装填した。そして両粉末とボールとを容器に装填した後、容器内部を不活性ガス(例えばArガス)で満たして密閉した。密閉後、容器を3軸方向に加振させて、ボールを強制的に揺動・衝突させることにより、SKD11粉末とMoS粉末を撹拌・混入して複合化させることができた。
なお、ボールミルの振動数は800rpm、処理時間は3時間とした。
(Mixing of powder)
The mixing of SKD11 powder and MoS 2 powder will be described.
SKD11 powder and MoS 2 powder were mixed by applying to a triaxial vibration type ball mill (TKMAC-1200L, manufactured by Topological System Co., Ltd.).
This contamination by a ball mill, first, loaded with SKD11 powder and MoS 2 powder is mixed target material in a container SKD steel such as 350 cells balls SUJ2 steel having a diameter of 5mm were loaded into the container. Then, after charging both the powder and the ball into the container, the inside of the container was filled with an inert gas (for example, Ar gas) and sealed. After sealing, the container was vibrated in three axial directions, and the balls were forcibly swung and collided to agitate and mix the SKD11 powder and the MoS 2 powder.
The vibration frequency of the ball mill was 800 rpm and the treatment time was 3 hours.

SKD11に対して、MoSを5vol%混入させた場合のSEM写真を図13に示す。
このSEM写真を見ると、SKD11粉末とMoS粉末とをボールミルにより混入させることにより、SKD11粉末とMoS粉末とが複合化したことがわかる。
FIG. 13 shows an SEM photograph in which 5 vol% of MoS 2 is mixed with SKD11.
Looking at this SEM photograph, by mixing in a ball mill and SKD11 powder and MoS 2 powder, it can be seen that the SKD11 powder and MoS 2 powder complexed.

(複合化した粉末の固化)
次に、上述したSKD11粉末とMoS粉末とを混入して複合化させた粉末(以下、混入粉末と称する場合がある)を、固化成形する方法を説明する。
混入粉末の固化成形は、常温圧縮回転剪断方法によって行うことができる。常温圧縮回転剪断方法とは、金属の粉末を容器内に充填した後、棒状の撹拌工具を用いて圧縮しつつ撹拌することで、金属の粉末を摩擦により接合する方法である。この方法では、常温で且つ短時間で金属粉末を固化させることができる。
(Solidification of composite powder)
Next, a method for solidifying and molding the above-mentioned powder in which the SKD11 powder and the MoS 2 powder are mixed and mixed (hereinafter sometimes referred to as mixed powder) will be described.
Solidification molding of the mixed powder can be performed by a room temperature compression rotary shearing method. The room temperature compression rotational shearing method is a method in which metal powder is joined by friction by filling a metal powder into a container and stirring while compressing it using a bar-like stirring tool. In this method, the metal powder can be solidified at room temperature in a short time.

常温圧縮回転剪断方法を実行する固化成形装置を図14に示す。
固化成形装置30は、固化対象の金属粉末を充填するための充填室31が構成されるダイス32と、ダイス32の穴33の下方から充填室31へ向けて突出して充填室31の底面を構成する下パンチ34と、を備えている。
ダイス32の穴33の上方からは下面に押圧撹拌部35を有する棒状の撹拌工具36が、充填室31内に進入して配置される。
FIG. 14 shows a solidification molding apparatus that executes the room temperature compression rotary shearing method.
The solidification molding apparatus 30 constitutes a die 32 in which a filling chamber 31 for filling metal powder to be solidified is formed, and a bottom surface of the filling chamber 31 that protrudes from below the hole 33 of the die 32 toward the filling chamber 31. And a lower punch 34.
From above the hole 33 of the die 32, a rod-like stirring tool 36 having a pressing stirring portion 35 on the lower surface enters the filling chamber 31 and is disposed.

図15に撹拌工具の全体構成を示す。
撹拌工具36は、ダイス32の穴33内に隙間無く挿入できるような棒状である。撹拌工具36の上端部は、上下方向に移動可能であり、且つ軸線方向に回転可能となるよう、駆動装置(図示せず)に接続されている。
撹拌工具36の押圧撹拌部35は、充填室31内の金属粉末を押圧し、先端に設けられた雄ねじ部38によって撹拌する。雄ねじ部38は、撹拌工具36の径(ダイス32の穴33)よりも小径に形成されており、充填室31内に充填された金属粉末内で回転し、金属粉末を撹拌・せん断する機能を有する。
なお、撹拌工具の押圧撹拌部としては、雄ねじ部によって撹拌・剪断することには限定されず、単に外周方向に沿った溝が形成されているだけであってもよい。
FIG. 15 shows the overall configuration of the stirring tool.
The stirring tool 36 has a rod shape that can be inserted into the hole 33 of the die 32 without a gap. The upper end portion of the stirring tool 36 is connected to a driving device (not shown) so as to be movable in the vertical direction and to be rotatable in the axial direction.
The pressing and agitating unit 35 of the agitating tool 36 presses the metal powder in the filling chamber 31 and agitates it by a male screw portion 38 provided at the tip. The male screw portion 38 is formed to have a smaller diameter than the diameter of the stirring tool 36 (the hole 33 of the die 32), and has a function of rotating and stirring and shearing the metal powder in the metal powder filled in the filling chamber 31. Have.
In addition, as a press stirring part of a stirring tool, it is not limited to stirring and shearing by an external thread part, The groove | channel along the outer peripheral direction may only be formed.

また、下パンチ34には、金属粉末に対する押圧力を測定するための押圧力測定手段として、ストレインゲージ40が設けられている。
ダイス32には、温度センサ42が設けられており、この温度センサ42によって固化成形中の金属粉末の温度を測定することができる。なお、温度センサ42の先端部が金属粉末の充填された充填室31内に突出しないよう、温度センサ42の挿入穴43は、充填室31までは貫通しないように形成されている。
The lower punch 34 is provided with a strain gauge 40 as a pressing force measuring means for measuring the pressing force against the metal powder.
The die 32 is provided with a temperature sensor 42, and the temperature sensor 42 can measure the temperature of the metal powder being solidified. The insertion hole 43 of the temperature sensor 42 is formed so as not to penetrate to the filling chamber 31 so that the tip of the temperature sensor 42 does not protrude into the filling chamber 31 filled with metal powder.

本実施形態の混入粉末を固化成形させる場合の固化成形装置30の動作条件は以下のとおりである。
撹拌工具36の材質はSKD11、撹拌工具36の負荷荷重は5kN、撹拌工具36の回転数は1800rpm、成形時間は15sである。また、固化成形時の雰囲気は大気であり、温度は室温である。
The operating conditions of the solidification molding apparatus 30 when the mixed powder of this embodiment is solidified and molded are as follows.
The material of the stirring tool 36 is SKD11, the load of the stirring tool 36 is 5 kN, the rotational speed of the stirring tool 36 is 1800 rpm, and the molding time is 15 s. The atmosphere during solidification molding is air, and the temperature is room temperature.

(成形固化された金属材料の性質)
上述した条件で固化成形装置30を動作させて、混入粉末を固化成形した金型材料の硬さをビッカース硬さ試験で測定した。測定結果を図16に示す。
試験は、撹拌工具36の中心から径方向に2.5mm、3.0mm、3.5mm、の位置で成形された金型材料において、SKD11粉末に対してMoSの混入率が1vol%のもの、SKD11粉末に対してMoSの混入率が5vol%のもの、SKD11粉末に対してMoSの混入率が10vol%のもの、SKD11粉末に対してMoSの混入率が15vol%のもの、SKD11粉末に対してMoSの混入率が20vol%のものについて測定した。
(Properties of molded and solidified metal materials)
The solidification molding apparatus 30 was operated under the conditions described above, and the hardness of the mold material obtained by solidification molding of the mixed powder was measured by the Vickers hardness test. The measurement results are shown in FIG.
In the test, in the mold material molded at a position of 2.5 mm, 3.0 mm, 3.5 mm in the radial direction from the center of the stirring tool 36, the mixing rate of MoS 2 is 1 vol% with respect to the SKD11 powder. , MoS 2 mixing rate of 5 vol% with respect to SKD11 powder, MoS 2 mixing rate of 10 vol% with respect to SKD11 powder, MoS 2 mixing rate of 15 vol% with respect to SKD11 powder, SKD11 mixing ratio of MoS 2 was measured for those of 20 vol% relative to the powder.

測定の結果、MoSの混入率が1vol%の場合にはビッカース硬さが600〜700(HV)程度であり、MoSの混入率が5vol%の場合にはビッカース硬さが1000(HV)程度であり、MoSの混入率が10vol%の場合にはビッカース硬さが800〜900(HV)程度であり、MoSの混入率が15vol%の場合にはビッカース硬さが900(HV)程度であり、MoSの混入率が20vol%の場合にはビッカース硬さが700〜800(HV)程度であることが判明した。このように、MoSの混入率が1〜20vol%の場合、混入率が5vol%のときに最も硬く、ビッカース硬さが1100(HV)程度である。 As a result of the measurement, when the mixing ratio of MoS 2 is 1 vol% is Vickers hardness 600 to 700 (HV) about, Vickers hardness when mixing ratio of MoS 2 is 5 vol% is 1000 (HV) When the mixing rate of MoS 2 is 10 vol%, the Vickers hardness is about 800 to 900 (HV), and when the mixing rate of MoS 2 is 15 vol%, the Vickers hardness is 900 (HV). It was found that the Vickers hardness was about 700 to 800 (HV) when the mixing rate of MoS 2 was 20 vol%. Thus, when the mixing rate of MoS 2 is 1 to 20 vol%, it is the hardest when the mixing rate is 5 vol%, and the Vickers hardness is about 1100 (HV).

次に、上述した条件で固化成形装置30を動作させて、混入粉末を固化成形した金型材料の摩擦係数を以下に説明する摩擦試験により測定した。測定方法の概略図を図17に示す。
摩擦試験では、成形された金型材料を板状体に加工し、摩擦対象となる材料を直径4mmの球状(ボール状)のSUS304とした。
成形された金型材料の板状体に対して、SUS304ボールを負荷荷重0.98Nで接触させ、すべり速度30mm/min、すべり距離1mmで摩擦試験を行った。
Next, the solidification molding apparatus 30 was operated under the above-described conditions, and the friction coefficient of the mold material obtained by solidification molding of the mixed powder was measured by a friction test described below. A schematic diagram of the measurement method is shown in FIG.
In the friction test, the molded mold material was processed into a plate-like body, and the material to be rubbed was a spherical (ball-shaped) SUS304 having a diameter of 4 mm.
A SUS304 ball was brought into contact with the plate-shaped body of the molded mold material at a load of 0.98 N, and a friction test was performed at a sliding speed of 30 mm / min and a sliding distance of 1 mm.

測定の結果、図18に示すように、MoSの混入率が1vol%および5vol%の場合は摩擦係数が約0.13であり、MoSの混入率が10vol%の場合は摩擦係数が約0.10であり、MoSの混入率が15vol%の場合は摩擦係数が約0.11であり、MoSの混入率が20vol%の場合は摩擦係数が約0.26であることが判明した。 As a result of the measurement, as shown in FIG. 18, when the mixing rate of MoS 2 is 1 vol% and 5 vol%, the friction coefficient is about 0.13, and when the mixing rate of MoS 2 is 10 vol%, the friction coefficient is about When the mixing ratio of MoS 2 is 15 vol%, the friction coefficient is about 0.11, and when the mixing ratio of MoS 2 is 20 vol%, the friction coefficient is about 0.26. did.

このように、SKD11に対してMoSを1〜20vol%混入させた場合、混入率が5vol%のときに、SKD11単体の金型材料と比較して最も硬度が増加した。さらに、SKD11に対してMoSを1〜20vol%混入させた場合、混入率が10vol%のときに、SKD単体の金型材料と比較して最も摩擦係数が低下した。 Thus, when 1-20 vol% of MoS 2 was mixed with SKD11, the hardness increased most as compared with the mold material of SKD11 alone when the mixing rate was 5 vol%. Furthermore, when 1 to 20 vol% of MoS 2 was mixed with SKD11, the friction coefficient was the lowest as compared with the mold material of SKD alone when the mixing rate was 10 vol%.

以上、本発明につき好適な実施形態を挙げて種々説明したが、本発明はこの実施形態に限定されるものではなく、発明の精神を逸脱しない範囲内で多くの改変を施し得るのはもちろんである。   The present invention has been described above with reference to preferred embodiments. However, the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the invention. is there.

30 固化成形装置
31 充填室
32 ダイス
33 穴
34 下パンチ
35 押圧撹拌部
36 撹拌工具
38 雄ねじ部
40 ストレインゲージ
42 温度センサ
43 挿入穴
DESCRIPTION OF SYMBOLS 30 Solidification molding apparatus 31 Filling chamber 32 Dies 33 Hole 34 Lower punch 35 Press stirring part 36 Stirring tool 38 Male thread part 40 Strain gauge 42 Temperature sensor 43 Insertion hole

Claims (5)

炭素粉末が1〜10vol%混入された工具鋼粉末が固化されてなる金型材料であって、
ビッカース硬さが800〜1100であり、
前記金型材料を一辺が1.5mmの立方体とし、相手材を電気亜鉛めっき鋼とし、負荷応力0.4MPa、すべり速度30mm/min、すべり距離12mmとした摩擦試験における場合の摩擦係数が0.1〜0.15であることを特徴とする金型材料。
A tool material obtained by solidifying a tool steel powder mixed with 1 to 10% by volume of carbon powder,
Vickers hardness is 800-1100,
The mold material is a cube having a side of 1.5 mm, the mating material is electrogalvanized steel, the load stress is 0.4 MPa, the sliding speed is 30 mm / min, and the friction coefficient in the friction test is 12 mm. Mold material characterized by being 1 to 0.15.
炭素粉末が5vol%混入されており、
ビッカース硬さが1100であり、
前記摩擦試験における場合の摩擦係数が0.1であることを特徴とする請求項1記載の金型材料。
5 vol% of carbon powder is mixed,
Vickers hardness is 1100,
The mold material according to claim 1, wherein a friction coefficient in the friction test is 0.1.
前記炭素粉末は、CNTであることを特徴とする請求項1または請求項2記載の金型材料。   The mold material according to claim 1, wherein the carbon powder is CNT. 二硫化モリブデン粉末が1〜15vol%混入された工具鋼粉末が固化されてなる金型材料であって、
ビッカース硬さが800〜1000であり、
相手材をSUS304ボールとし、負荷応力0.98N、すべり速度30mm/min、すべり距離1mmとした摩擦試験における場合の摩擦係数が0.1〜0.15であることを特徴とする金型材料。
A tool material obtained by solidifying a tool steel powder mixed with 1 to 15 vol% of molybdenum disulfide powder,
Vickers hardness is 800-1000,
A die material having a friction coefficient of 0.1 to 0.15 in a friction test in which a mating material is SUS304 ball, a load stress is 0.98 N, a sliding speed is 30 mm / min, and a sliding distance is 1 mm.
二硫化モリブデン粉末が10vol%混入されており、
ビッカース硬さが900であり、
前記摩擦試験における場合の摩擦係数が0.1であることを特徴とする請求項4記載の金型材料。
10 vol% of molybdenum disulfide powder is mixed,
Vickers hardness is 900,
5. The mold material according to claim 4, wherein a friction coefficient in the friction test is 0.1.
JP2009200234A 2009-08-31 2009-08-31 Mold material Expired - Fee Related JP5509409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009200234A JP5509409B2 (en) 2009-08-31 2009-08-31 Mold material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009200234A JP5509409B2 (en) 2009-08-31 2009-08-31 Mold material

Publications (2)

Publication Number Publication Date
JP2011052249A true JP2011052249A (en) 2011-03-17
JP5509409B2 JP5509409B2 (en) 2014-06-04

Family

ID=43941549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009200234A Expired - Fee Related JP5509409B2 (en) 2009-08-31 2009-08-31 Mold material

Country Status (1)

Country Link
JP (1) JP5509409B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282743A (en) * 2016-08-09 2017-01-04 天津大学 ODS doped carbon nanometer pipe induced martensite phase transformation, the method improving intensity hardness

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164053A (en) * 1979-06-08 1980-12-20 Hitachi Ltd Production of iron-based sintered material
JPH08176698A (en) * 1994-12-28 1996-07-09 Toyota Motor Corp Self-lubricating composite powder alloy
JP2001032001A (en) * 1999-07-19 2001-02-06 Daido Steel Co Ltd Self-lubricating metal and its production
WO2005040068A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Method for producing carbon nanotube-dispersed composite material
JP2005207482A (en) * 2004-01-22 2005-08-04 Teikoku Electric Mfg Co Ltd Sliding member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164053A (en) * 1979-06-08 1980-12-20 Hitachi Ltd Production of iron-based sintered material
JPH08176698A (en) * 1994-12-28 1996-07-09 Toyota Motor Corp Self-lubricating composite powder alloy
JP2001032001A (en) * 1999-07-19 2001-02-06 Daido Steel Co Ltd Self-lubricating metal and its production
WO2005040068A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Method for producing carbon nanotube-dispersed composite material
JP2005207482A (en) * 2004-01-22 2005-08-04 Teikoku Electric Mfg Co Ltd Sliding member

Also Published As

Publication number Publication date
JP5509409B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
Awotunde et al. Influence of sintering methods on the mechanical properties of aluminium nanocomposites reinforced with carbonaceous compounds: A review
US20120018547A1 (en) Ball milling process for preparing hard alloy mixture
JP2006328500A (en) Method for manufacturing carbon nano-composite metal material, and carbon nano-composite metal material
US20190032714A1 (en) Sintered bearing
Nie et al. Particle defects and related properties of metallic powders produced by plasma rotating electrode process
Borkar et al. Strength versus ductility in carbon nanotube reinforced nickel matrix nanocomposites
JP5509409B2 (en) Mold material
Wan et al. Strengthening efficiency competition between carbon nanotubes (CNTs) and in-situ Al4C3 nanorods in CNTs/Al composites influenced by alumina characteristics
JP2005082832A (en) Method of mixing powder
JP5289990B2 (en) Method for modifying the surface of a round shaft and reformer used therefor
JP2007302997A (en) Method of producing metallic material, and metallic material
KR20190012036A (en) Method for preparing CNT-coated copper particle using stirred ball mill
CN106255563B (en) Mixed powder for powder metallurgy
JP2009184849A (en) Carbon nanotube molded article
JPH0488137A (en) Wear resistant and seizing resistant copper alloy matrix composite
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
JP4387343B2 (en) Solidified molding method and joining method of fine powder substance
CN105861961A (en) Carbon nanotube reinforced aluminum alloy and preparation method thereof
JP2008248253A (en) Lubricating agent for lubrication of mold and method for manufacturing high density shaped article of iron-based powder
JP2010107291A (en) Probe manufacturing method
JP5893331B2 (en) Method for producing Ni-based corrosion-resistant wear-resistant alloy
JP4176353B2 (en) Crystal surface solidification molding method by compression shear and crystal surface coating method by compression shear
Ayodele et al. Planetary ball milling of MWCNTs reinforced NiAl composites
Nakayama et al. Consolidation of Ti Powder by a Compression Rotation Shearing System at Room Temperature-Effect of Pivot Rotation Speed on Consolidation
JP2016056445A (en) Mixed powder for powder metallurgy, sintered metal component using the same, and method for producing the mixed powder for powder metallurgy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120717

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140224

R150 Certificate of patent or registration of utility model

Ref document number: 5509409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees