JP2011052248A - Method for manufacturing round bar of large diameter - Google Patents

Method for manufacturing round bar of large diameter Download PDF

Info

Publication number
JP2011052248A
JP2011052248A JP2009200128A JP2009200128A JP2011052248A JP 2011052248 A JP2011052248 A JP 2011052248A JP 2009200128 A JP2009200128 A JP 2009200128A JP 2009200128 A JP2009200128 A JP 2009200128A JP 2011052248 A JP2011052248 A JP 2011052248A
Authority
JP
Japan
Prior art keywords
rolling
finish rolling
round bar
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009200128A
Other languages
Japanese (ja)
Other versions
JP5614013B2 (en
Inventor
Keiichi Azuma
敬一 東
Takaya Ogawa
孝也 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009200128A priority Critical patent/JP5614013B2/en
Publication of JP2011052248A publication Critical patent/JP2011052248A/en
Application granted granted Critical
Publication of JP5614013B2 publication Critical patent/JP5614013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a round bar of a large diameter having excellent toughness as rolled without performing any heat treatment. <P>SOLUTION: A steel material having a composition consisting of, by mass, 0.35-0.60% C, 0.1-0.4% Si, 0.5-1.0% Mn, ≤0.20% Cr, ≤0.1% Al, and the balance Fe with inevitable impurities is heated at the heating temperature in a range of 900 to 1,200°C, and subjected to rough rolling, and naturally cooled to the predetermined temperature, and then, subjected to the finish rolling. The finish rolling is performed in the temperature range of 850-650°C with the reduction rate of area being ≥30% which is defined as reduction rate of area (%)=ä(sectional area before starting finish rolling)-(sectional area after completing finish rolling)}/(sectional area before finish rolling)×100. The steel material is naturally cooled after the finish rolling. In addition to the composition, one or two kinds selected among ≤0.25% Cu and ≤0.25% Ni may be contained. Thus, a round bar of a large diameter with both the strength and the toughness can be obtained. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、太径丸棒の製造方法に係り、とくに熱処理を施すことなく、太径丸棒の靭性を向上させる方法に関する。なお、ここでいう「太径丸棒」とは、直径:90〜250mmφ程度の大きさの丸棒をいうものとする。   The present invention relates to a method for manufacturing a large-diameter round bar, and particularly to a method for improving the toughness of a large-diameter round bar without performing heat treatment. The “large diameter round bar” here refers to a round bar having a diameter of about 90 to 250 mmφ.

近年、機械、設備の大型化にともない、使用する鋼材も極厚のものが要望されている。例えば、丸棒であれば、90mmφ以上の太径のものが要求され、しかも、そのような太径であっても、優れた靭性を具備していることが必須の要件となっている。このため、そのような太径丸棒とするために、圧延材に、さらに焼準処理、あるいは焼入れ焼戻処理等の熱処理を施していた。しかし、熱処理を施すことは、製造工程が複雑となるうえ、製造コストの高騰を招くという問題があった。   In recent years, with the increase in size of machines and equipment, steel materials to be used are required to be extremely thick. For example, a round bar is required to have a large diameter of 90 mmφ or more, and even with such a large diameter, it is an essential requirement to have excellent toughness. For this reason, in order to obtain such a large-diameter round bar, the rolled material is further subjected to a heat treatment such as a normalizing treatment or a quenching and tempering treatment. However, the heat treatment has a problem that the manufacturing process becomes complicated and the manufacturing cost increases.

このような問題に対し、例えば、特許文献1には、太径非調質棒鋼の製造方法が記載されている。特許文献1に記載された技術は、C:0.30〜0.60%、Si:1.8%以下、Mn:0.60〜2.0%、Cr:0.50%以下、V:0.03〜0.20%、solAl:0.020〜0.060%、N:0.008〜0.020%を含む鋼塊または連鋳片を1100〜1200℃に加熱し炉冷した後1000〜1050℃で抽出し、750〜1000℃の温度域で分塊圧延により30%以上の加工量を加え、分塊圧延の最終仕上圧延温度が750〜900℃となるように圧延を行う、太径非調質棒鋼の製造方法である。特許文献1に記載された技術によれば、非調質状態で、TS:70kg/mm(690MPa)以上で、2mmUノッチ試験片を用いた試験温度:20℃での衝撃値20が4kgm/cm(39J)以上の、高強度、高靭性を有する太径丸棒が得られるとしている。 For such a problem, for example, Patent Document 1 describes a method for manufacturing a large-diameter non-heat treated steel bar. The technology described in Patent Document 1 includes C: 0.30 to 0.60%, Si: 1.8% or less, Mn: 0.60 to 2.0%, Cr: 0.50% or less, V: 0.03 to 0.20%, solAl: 0.020 to 0.060%, N: A steel ingot or continuous cast slab containing 0.008 to 0.020% is heated to 1100 to 1200 ° C, cooled in a furnace, extracted at 1000 to 1050 ° C, and 30% or more by split rolling in a temperature range of 750 to 1000 ° C. This is a method for producing a large-diameter non-tempered steel bar, in which a rolling amount is added and rolling is performed so that the final finish rolling temperature of the partial rolling is 750 to 900 ° C. According to the technique described in Patent Document 1, TS: 70 kg / mm 2 (690 MPa) or more in a non-tempered state, test temperature using 2 mm U notch test piece: impact value U E 20 at 20 ° C. It is said that a large-diameter round bar having high strength and high toughness of 4 kgm / cm 2 (39 J) or more can be obtained.

また、特許文献2には、インゴットまたは連続鋳造ブルームを加熱して分塊圧延したのち、再加熱することなく、中間圧延及び仕上圧延を含む熱間圧延を行うにあたり、熱間圧延前あるいは熱間圧延の途中で、全長に亘り鍛造を行うことを特徴とする棒鋼の製造方法が記載されている。特許文献2に記載された技術によれば、ロール圧延の圧延比が小さくても内部品質の良好な棒鋼が得られるとしている。   Further, in Patent Document 2, after ingot or continuous casting bloom is heated and divided and rolled, hot rolling including intermediate rolling and finish rolling is performed without reheating, before hot rolling or hot rolling. A method for manufacturing a steel bar is described, characterized by performing forging over the entire length in the middle of rolling. According to the technique described in Patent Document 2, a steel bar having good internal quality can be obtained even if the rolling ratio of roll rolling is small.

また、特許文献3には、丸棒鋼の製造方法が記載されている。特許文献3に記載された技術は、鋳片を分塊圧延したのち、鍛造プレス成形にて断面丸形状の製品形状に成形する丸棒鋼の製造方法である。特許文献3に記載された技術によれば、連続鋳造による大型鋳片を用いた場合であっても、内部品質が良好な製品を得ることができるとしている。   Patent Document 3 describes a method for producing a round bar steel. The technique described in Patent Document 3 is a method of manufacturing a round bar steel in which a slab is subjected to ingot rolling and then formed into a product shape having a round cross section by forging press molding. According to the technique described in Patent Document 3, a product with good internal quality can be obtained even when a large slab by continuous casting is used.

特開昭59−170222号公報JP 59-170222 特開昭61−67501号公報JP 61-67501 A 特開平9−271884号公報Japanese Patent Laid-Open No. 9-271884

しかしながら、特許文献1に記載された技術では、Siや、Mnの多量含有を必要とし、しかもCr、V等の合金元素を含有させた鋼素材を使用するため、材料コストが高騰するうえ、加熱後の炉冷を必要とし、生産性の低下が懸念されるという問題がある。また、特許文献2,3に記載された技術は、いずれも熱間圧延等の工程の途中で鍛造加工を付加する必要があり、製造工程が複雑となるうえ、鍛造加工のための大型設備を必要とするなどの問題があった。   However, the technique described in Patent Document 1 requires a large amount of Si or Mn, and uses a steel material containing an alloy element such as Cr or V, so that the material cost increases and heating is performed. There is a problem that a subsequent furnace cooling is required, and there is a concern about a decrease in productivity. In addition, the techniques described in Patent Documents 2 and 3 both require forging during the process of hot rolling, which complicates the manufacturing process, and provides large equipment for forging. There was a problem such as need.

本発明は、上記した従来技術の問題を解決し、熱処理を施すことなく、圧延ままで、引張強さTS:600MPa以上で、かつ靭性に優れた太径丸棒を、安価に製造できる、太径丸棒の製造方法を提供することを目的とする。   The present invention solves the above-mentioned problems of the prior art, and can produce a large-diameter round bar with tensile strength TS: 600 MPa or more and excellent toughness at low cost without being subjected to heat treatment. It aims at providing the manufacturing method of a diameter round bar.

従来、太径丸棒の製造に当たっては、1回の加熱で圧延し、圧延後に、均一性を確保するために、焼準処理を施して、製品としていた。しかし、焼準処理は、あくまで、組織の均一化を目的としており、顕著な靭性の向上は期待できない。そこで、本発明者らは、上記した目的を達成するために、圧延のまま状態の太径丸棒の靭性向上策について鋭意研究した。その結果、本発明者らは、図1に示すように、仕上圧延を入側温度が850℃以下の温度範囲となる比較的低温での圧延とすることにより、圧延のまま状態でも太径丸棒の靭性が顕著に向上することを知見した。   Conventionally, when manufacturing a large-diameter round bar, it is rolled by one heating, and after rolling, in order to ensure uniformity, a normalizing treatment is performed to obtain a product. However, the normalization treatment is only for the purpose of homogenizing the structure, and a remarkable improvement in toughness cannot be expected. In order to achieve the above-described object, the present inventors diligently studied measures for improving the toughness of a large-diameter round bar in a rolled state. As a result, as shown in FIG. 1, the present inventors set the finish rolling as a rolling at a relatively low temperature in which the inlet side temperature is 850 ° C. or lower, so that a large-diameter round It has been found that the toughness of the rod is significantly improved.

図1は、仕上圧延温度(仕上圧延の入側温度)を種々変更して仕上圧延を行い、種々の直径の丸棒を製造し、得られた丸棒について、圧延のまま状態でのシャルピー衝撃試験の衝撃値uE20を調査し、uE20と仕上圧延入側温度との関係を示したグラフである。図1からは、仕上圧延入側温度を850℃以下とすることにより、製造される丸棒の靭性が向上する傾向となることがわかる。図1は、丸棒サイズが、直径105 mmφ〜250mmφまでのサイズの丸棒の結果を含んでおり、丸棒サイズに関係なく、仕上圧延入側温度を850℃以下とすることが重要であることが言える。 FIG. 1 shows that various finishing roll temperatures (finishing entrance temperature) are used for finish rolling to produce round bars with various diameters, and the resulting round bars are subjected to Charpy impact in the as-rolled state. the impact value uE 20 tests to investigate a graph showing the relationship between the rolling entry side temperature finishing and uE 20. 1 that the toughness of the round bar to be manufactured tends to be improved by setting the finish rolling entry side temperature to 850 ° C. or less. FIG. 1 includes the results of round bars having a diameter of 105 mmφ to 250 mmφ, and it is important that the finishing rolling entry temperature is 850 ° C. or lower regardless of the round bar size. I can say that.

そしてさらに検討を加えた結果、仕上圧延を、上記したような比較的低温での圧延とするためには、熱間圧延のための鋼素材の加熱温度を比較的低めとし、粗圧延終了後仕上圧延開始までに、被圧延材の表面温度が所定範囲の仕上圧延入側温度に達するまで、空冷することが、太径丸棒の材質均一性(長手方向や断面内の均一性)から、好ましいという知見を得た。   And as a result of further investigation, in order to make the finish rolling at a relatively low temperature as described above, the heating temperature of the steel material for hot rolling is made relatively low, and the finish after finishing the rough rolling is finished. It is preferable from the material uniformity (longitudinal direction and uniformity in the cross section) of the large-diameter round bar until the surface temperature of the material to be rolled reaches the finish rolling entry temperature in a predetermined range before rolling. I got the knowledge.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。
すなわち、本発明の要旨は、次のとおりである。
(1)質量%で、C:0.35〜0.60%、Si:0.1〜0.4%、Mn:0.5〜1.0%、Cr:0.20%以下、Al:0.1%以下を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材を加熱し、熱間圧延して太径丸棒とするにあたり、前記加熱が、加熱温度を900〜1200℃の範囲の温度とする加熱であり、前記熱間圧延が、粗圧延と仕上圧延とからなる圧延であり、前記粗圧延の終了後、前記仕上圧延の開始までを空冷し、該仕上圧延が850〜650℃の温度範囲で、次(1)式
減面率(%)={(仕上圧延開始前の断面積)−(仕上圧延終了後の断面積)}/(仕上圧延前の断面積)×100
で定義される減面率を30%以上とする圧延であり、該仕上圧延後空冷することを特徴とする、靭性に優れた太径丸棒の製造方法。
The present invention has been completed based on the above findings and further studies.
That is, the gist of the present invention is as follows.
(1) In mass%, C: 0.35 to 0.60%, Si: 0.1 to 0.4%, Mn: 0.5 to 1.0%, Cr: 0.20% or less, Al: 0.1% or less, and the balance consisting of Fe and inevitable impurities When heating a steel material having a composition and hot rolling to obtain a large-diameter round bar, the heating is heating to a heating temperature in the range of 900 to 1200 ° C., and the hot rolling is rough. It is rolling which consists of rolling and finish rolling, air cooling is carried out after completion | finish of the said rough rolling to the start of the said finish rolling, and this finish rolling is a temperature range of 850-650 degreeC, following (1) Formula
Area reduction ratio (%) = {(cross-sectional area before finishing rolling) − (cross-sectional area after finishing rolling)} / (cross-sectional area before finishing rolling) × 100
A method for producing a large-diameter round bar excellent in toughness, characterized in that the reduction in area is defined as 30% or more and is air-cooled after the finish rolling.

(2)(1)において、前記組成に加えてさらに、質量%で、Cu:0.25%以下、Ni:0.25%以下のうちから選ばれた1種または2種を含有する組成であることを特徴とする太径丸棒の製造方法。   (2) In (1), in addition to the above composition, the composition further contains one or two kinds selected from Cu: 0.25% or less and Ni: 0.25% or less by mass%. A manufacturing method of a large-diameter round bar.

本発明によれば、熱処理を施すことなく、圧延のまま状態で、靭性に優れた太径丸棒を容易にかつ安価に製造でき、産業上格段の効果を奏する。   According to the present invention, a large-diameter round bar excellent in toughness can be easily and inexpensively manufactured in a rolled state without being subjected to heat treatment.

試験温度:20℃における衝撃値uE20と仕上圧延入側温度との関係を示すグラフである。Test temperature: It is a graph which shows the relationship between the impact value uE20 in 20 degreeC, and finish rolling entrance temperature. 本発明の製造工程を模式的に示す説明図である。It is explanatory drawing which shows the manufacturing process of this invention typically.

本発明で使用する鋼素材は、C:0.35〜0.60%、Si:0.1〜0.4%、Mn:0.5〜1.0%、Cr:0.20%以下、Al:0.1%以下を含み、あるいはさらに、Cu:0.25%以下、Ni:0.25%以下のうちから選ばれた1種または2種を含有し、残部Feおよび不可避的不純物からなる組成の鋼素材とする。
まず、本発明で使用する鋼素材の組成限定理由について説明する。以下、とくに断わらない限り質量%は単に%と記す。
The steel material used in the present invention includes C: 0.35-0.60%, Si: 0.1-0.4%, Mn: 0.5-1.0%, Cr: 0.20% or less, Al: 0.1% or less, or, further, Cu: 0.25 % Or less, Ni: One or two selected from 0.25% or less, and a steel material having a composition comprising the balance Fe and inevitable impurities.
First, the reasons for limiting the composition of the steel material used in the present invention will be described. Hereinafter, unless otherwise specified, mass% is simply referred to as%.

C:0.35〜0.60%
Cは、丸棒の強度を増加する作用を有する元素であり、太径丸棒の所定の強度を確保するために0.35%以上の含有を必要とする。一方、0.60%を超える含有は、靭性の低下が著しくなる。このため、Cは0.35〜0.60%の範囲に限定した。なお、好ましくは0.40〜0.50%である。
C: 0.35-0.60%
C is an element having an effect of increasing the strength of the round bar, and needs to be contained in an amount of 0.35% or more in order to ensure a predetermined strength of the large-diameter round bar. On the other hand, when the content exceeds 0.60%, the toughness is significantly lowered. For this reason, C was limited to the range of 0.35 to 0.60%. In addition, Preferably it is 0.40 to 0.50%.

Si:0.1〜0.4%
Siは、脱酸剤として作用するとともに、固溶して強度を増加する作用を有する元素である。このような効果は0.1%以上の含有で顕著となるが、0.4%を超える含有は、伸びの著しい低下の原因となる。このため、Siは0.1〜0.4%の範囲に限定した。
Mn:0.5〜1.0%
Mnは、固溶して丸棒の強度を増加する元素であり、太径丸棒の所定の強度を確保するために0.5%以上の含有を必要とする。一方、1.0%を超える含有は、強度が高くなりすぎて、靭性の低下が著しくなるとともに、偏析等を助長する。このため、Mnは0.5〜1.0%の範囲に限定した。なお、好ましくは0.6〜0.9%である。
Si: 0.1-0.4%
Si is an element that acts as a deoxidizer and has a function of increasing the strength by solid solution. Such an effect becomes remarkable when the content is 0.1% or more. However, when the content exceeds 0.4%, the elongation is significantly reduced. For this reason, Si was limited to the range of 0.1 to 0.4%.
Mn: 0.5-1.0%
Mn is an element that dissolves to increase the strength of the round bar and needs to be contained in an amount of 0.5% or more in order to ensure the predetermined strength of the large-diameter round bar. On the other hand, if the content exceeds 1.0%, the strength becomes too high, the toughness is significantly lowered, and segregation is promoted. For this reason, Mn was limited to the range of 0.5 to 1.0%. In addition, Preferably it is 0.6 to 0.9%.

Cr:0.20%以下
Crは、焼入れ性の増加を介し、丸棒の強度増加に寄与する元素である。このような効果を得るためには0.01%以上含有することが望ましいが、0.20%を超える含有は、靭性を低下させる。このため、Crは0.20%以下に限定した。
Al:0.1%以下
Alは、脱酸剤として作用するとともに、Nと結合してAlNを形成しオーステナイト粒の粗大化を防止し、靭性を向上させる作用を有する元素である。このような効果を得るためには、0.005%以上含有することが望ましいが、0.1%を超える含有は、製造コストの高騰を招く。このため、Alは0.1%以下に限定した。なお、好ましくは0.005〜0.06%である。
Cr: 0.20% or less
Cr is an element that contributes to increasing the strength of the round bar through an increase in hardenability. In order to acquire such an effect, it is desirable to contain 0.01% or more, but inclusion exceeding 0.20% reduces toughness. For this reason, Cr was limited to 0.20% or less.
Al: 0.1% or less
Al is an element that acts as a deoxidizing agent and has an action of combining with N to form AlN to prevent coarsening of austenite grains and improve toughness. In order to acquire such an effect, it is desirable to contain 0.005% or more, but the content exceeding 0.1% causes a rise in manufacturing cost. For this reason, Al was limited to 0.1% or less. In addition, Preferably it is 0.005-0.06%.

上記した成分が基本成分であるが、さらに選択元素として、必要に応じて、Cu、Niのうちの1種または2種を含有してもよい。
Cu:0.25%以下、Ni:0.25%以下のうちから選ばれた1種または2種
Cu、Niはいずれも、固溶して強度向上に寄与する元素であり、必要に応じて選択して含有できる。
Although the above-described components are basic components, one or two of Cu and Ni may be further contained as optional elements as required.
One or two selected from Cu: 0.25% or less, Ni: 0.25% or less
Cu and Ni are both elements that contribute to improving the strength by solid solution, and can be selected and contained as necessary.

Cuは、強度増加に加えて、耐食性を向上させる元素である。このような効果は得るためには、0.1%以上含有することが望ましいが、0.25%を超える含有は、熱間加工性を低下させる。このため、含有する場合には、Cuは0.25%以下に限定することが好ましい。
Niは、Cuと同様に強度増加に寄与するとともに、靭性の向上に寄与する元素である。このような効果は、0.1%以上含有することが望ましいが、0.25%を超えて含有すると、材料コストの高騰を招く。このため、含有する場合には、Niは0.25%以下に限定することが好ましい。
Cu is an element that improves corrosion resistance in addition to increasing strength. In order to acquire such an effect, it is desirable to contain 0.1% or more, but inclusion exceeding 0.25% reduces hot workability. For this reason, when it contains, it is preferable to limit Cu to 0.25% or less.
Ni is an element that contributes to an increase in strength and toughness as well as Cu. Such effects are desirably contained in an amount of 0.1% or more. However, if the content exceeds 0.25%, the material cost increases. For this reason, when it contains, it is preferable to limit Ni to 0.25% or less.

残部は、Feおよび不可避的不純物である。
本発明では、上記した組成を有する鋼素材を加熱し、熱間圧延を施して、太径の丸棒とする。
本発明では、鋼素材の製造方法については、とくに限定しないが、上記した組成の溶鋼を、転炉等の常用の溶製方法で溶製し、連続鋳造法等の常用の鋳造方法でブルーム等の鋼素材とすることが好ましい。なお、鋼素材の均一性の観点からは、鋳造方法は連続鋳造法を適用することが好ましい。
The balance is Fe and inevitable impurities.
In the present invention, a steel material having the above composition is heated and hot-rolled to obtain a large-diameter round bar.
In the present invention, the manufacturing method of the steel material is not particularly limited, but the molten steel having the above-described composition is melted by a conventional melting method such as a converter, and blooms by a conventional casting method such as a continuous casting method. It is preferable to use a steel material. From the viewpoint of the uniformity of the steel material, it is preferable to apply a continuous casting method as the casting method.

上記した組成の鋼素材は、まず熱間圧延のための加熱を施される。加熱温度は900〜1200℃の範囲の温度とする。加熱温度が900℃未満では、鋼素材の変形抵抗が高く、圧延時の圧延機への負荷が過大となり、圧延が困難となる場合がある。一方、加熱温度が1200℃を超えると、オーステナイト粒の粗大化が顕著になる。このため、加熱温度は900〜1200℃の範囲の温度に限定した。なお、好ましくは900〜1100℃である。   The steel material having the above composition is first heated for hot rolling. The heating temperature is in the range of 900 to 1200 ° C. When the heating temperature is less than 900 ° C., the deformation resistance of the steel material is high, the load on the rolling mill during rolling is excessive, and rolling may be difficult. On the other hand, when the heating temperature exceeds 1200 ° C., coarsening of austenite grains becomes remarkable. For this reason, the heating temperature was limited to a temperature in the range of 900 to 1200 ° C. In addition, Preferably it is 900-1100 degreeC.

加熱された鋼素材は、ついで、加熱炉から抽出され、熱間圧延を施される。なお、抽出温度は、熱間圧延が可能であればできるだけ低温とすることが靭性向上の観点からは、望ましい。本発明では抽出温度は、好ましくは900〜1100℃である。
熱間圧延は、粗圧延と仕上圧延とからなる。加熱された鋼素材は、粗圧延され、所定形状の粗圧延材(仕上圧延素材)とされる。本発明では、粗圧延の条件は限定する必要はなく、所望の寸法形状が確保できれば、いかなる条件でも適用できる。
The heated steel material is then extracted from the heating furnace and hot rolled. The extraction temperature is preferably as low as possible if hot rolling is possible from the viewpoint of improving toughness. In the present invention, the extraction temperature is preferably 900 to 1100 ° C.
Hot rolling consists of rough rolling and finish rolling. The heated steel material is roughly rolled to obtain a roughly rolled material (finished rolled material) having a predetermined shape. In the present invention, the conditions for rough rolling need not be limited, and any conditions can be applied as long as a desired dimension and shape can be secured.

本発明では、粗圧延材(仕上圧延素材)は、粗圧延終了後、表面の温度が所定の仕上圧延温度範囲になるまで滞留され、空冷される。粗圧延材の、表面温度が所定の仕上圧延温度範囲に低下したのち、すなわち、仕上圧延は、粗圧延材(仕上圧延素材)の温度(表面温度)が所定の仕上圧延温度範囲内の温度になったのちに開始する。
本発明では、所定の仕上圧延温度範囲を850〜650℃の範囲とする。仕上圧延は、粗圧延材(仕上圧延素材)に、複数回(パス)の圧延(圧下)を繰返して施し、所望の寸法(直径)の丸棒とする。上記した仕上圧延温度範囲での圧延であれば、各パスでの圧下によりオーステナイト(γ)粒が伸長し、さらに伸長したγが再結晶して微細なγ粒となる。このような圧下による結晶粒の微細化を各パスごとに繰り返して、結晶粒の微細化が進行する。この結晶粒の微細化により、靭性が向上する。なお、所定の仕上圧延温度範囲とは、仕上圧延の入側温度および出側温度がいずれも上記した温度範囲となることを意味する。
In the present invention, the rough rolled material (finish rolled material) is retained and air-cooled after the rough rolling is completed until the surface temperature reaches a predetermined finish rolling temperature range. After the surface temperature of the rough rolled material has fallen to a predetermined finish rolling temperature range, that is, finish rolling is performed so that the temperature (surface temperature) of the rough rolled material (finish rolled material) is within a predetermined finish rolling temperature range. It starts after becoming.
In the present invention, the predetermined finish rolling temperature range is set to a range of 850 to 650 ° C. In the finish rolling, a rough rolled material (finished rolled material) is repeatedly rolled (reduced) a plurality of times (pass) to obtain a round bar having a desired dimension (diameter). If rolling is performed in the above-described finish rolling temperature range, austenite (γ) grains are elongated by reduction in each pass, and the elongated γ is recrystallized to become fine γ grains. Such refinement of crystal grains by reduction is repeated for each pass, and the refinement of crystal grains proceeds. This refinement of crystal grains improves toughness. The predetermined finish rolling temperature range means that both the entry side temperature and the exit side temperature of finish rolling fall within the above-described temperature range.

仕上圧延の入側温度および出側温度が650℃未満では、圧延温度が低くなりすぎて圧延機の負荷が大きくなりすぎる。一方、850℃を超えると、粒の微細化の程度が少なく、靭性の向上効果が顕著でなくなる。なお、結晶粒の粗大化を防止する観点から、好ましくは830℃以下である。
また、上記した結晶粒の微細化を促進させるためには、仕上圧延での減面率(圧下)を30%以上とする。ここで、減面率は、次(1)式
減面率(%)={(仕上圧延開始前の断面積)−(仕上圧延終了後の断面積)}/(仕上圧延前の断面積)×100
で定義される。
If the inlet side temperature and the outlet side temperature of finish rolling are less than 650 ° C., the rolling temperature becomes too low and the load on the rolling mill becomes too high. On the other hand, if it exceeds 850 ° C., the degree of grain refinement is small, and the effect of improving toughness is not significant. In addition, from the viewpoint of preventing coarsening of crystal grains, the temperature is preferably 830 ° C. or lower.
Further, in order to promote the above-described refinement of crystal grains, the area reduction ratio (reduction) in finish rolling is set to 30% or more. Here, the area reduction rate is expressed by the following equation (1)
Area reduction ratio (%) = {(cross-sectional area before finishing rolling) − (cross-sectional area after finishing rolling)} / (cross-sectional area before finishing rolling) × 100
Defined by

仕上圧延での減面率が30%未満では、所望の結晶粒微細化の促進が得られない。なお、減面率の上限は、圧延設備の能力に依存して決定されるが、圧延機への負荷という観点から80%以下程度とすることが好ましい。好ましくは、30〜80%である。
仕上圧延終了後、得られた丸棒は空冷される。これにより、全体に均質な特性を有する太径丸棒となる。
If the area reduction ratio in finish rolling is less than 30%, the desired crystal grain refinement cannot be promoted. The upper limit of the area reduction rate is determined depending on the capability of the rolling equipment, but is preferably about 80% or less from the viewpoint of the load on the rolling mill. Preferably, it is 30 to 80%.
After finishing rolling, the obtained round bar is air-cooled. Thereby, it becomes a large-diameter round bar having homogeneous characteristics as a whole.

なお、本発明について丸棒を例に説明してきたが、断面が四角等の角状の棒状材についても、同様の効果があることはいうまでもない。
次に、本発明を実施例に基づきさらに詳細に説明する。
Although the present invention has been described by taking a round bar as an example, it goes without saying that the same effect can be obtained with a square bar having a square cross section.
Next, the present invention will be described in more detail based on examples.

表1に示す組成の溶鋼を溶製し、連続鋳造法で表2に示すサイズの鋼素材(ブルーム)とした。鋼素材を加熱炉2に装入し加熱したのち、表2に示す温度で抽出し、粗圧延機4で粗圧延し、さらに仕上圧延機群6で仕上圧延を施し、表2に示す大きさの丸棒とした。なお、抽出温度、仕上圧延の入側温度および出側温度は、図2に示すように、加熱炉の出側、仕上圧延機群の入側、出側にそれぞれ設置された温度計3、5、7で表面の温度を測定した。また、仕上圧延による圧下量は、次(1)式
減面率(%)={(仕上圧延開始前の断面積)−(仕上圧延終了後の断面積)}/(仕上圧延前の断面積)×100 ‥‥(1)
で定義される減面率で表した。
Molten steel having the composition shown in Table 1 was melted to obtain a steel material (bloom) having a size shown in Table 2 by a continuous casting method. After the steel material is charged into the heating furnace 2 and heated, the steel material is extracted at the temperature shown in Table 2, roughly rolled by the roughing mill 4, and then finish-rolled by the finishing mill group 6, and the size shown in Table 2 is obtained. A round bar. In addition, as shown in FIG. 2, the extraction temperature, finish rolling entry side temperature, and exit side temperature are thermometers 3, 5 installed on the exit side of the heating furnace, the entrance side, and the exit side of the finish rolling mill group, respectively. 7, the surface temperature was measured. Moreover, the amount of reduction by finish rolling is the following (1) formula
Area reduction ratio (%) = {(cross-sectional area before finishing rolling) − (cross-sectional area after finishing rolling)} / (cross-sectional area before finishing rolling) × 100 (1)
Expressed by the area reduction rate defined in.

得られた丸棒の1/4Dから、JIS Z 2201の規定に準拠してJIS4号引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、引張特性(降伏点YP、引張強さTS、伸びEL)を求めた。
また、得られた丸棒の1/4Dから、JIS Z 2242の規定に準拠して、2mmUノッチ試験片を採取し、試験温度:20℃でシャルピー衝撃試験を実施し、衝撃値20を求めた。なお、衝撃試験片を各丸棒で各6本ずつ採取し、衝撃試験を実施した。そして、最高値、最低値および平均値を求めた。
From 1 / 4D of the obtained round bar, a JIS No. 4 tensile test piece was collected in accordance with JIS Z 2201, and a tensile test was conducted in accordance with JIS Z 2241. Tensile properties (yield point YP , Tensile strength TS, elongation EL).
In addition, from 1 / 4D of the obtained round bar, a 2 mm U notch test piece was sampled in accordance with JIS Z 2242, a Charpy impact test was conducted at a test temperature of 20 ° C., and an impact value U E 20 was obtained. Asked. In addition, 6 impact test pieces were collected with each round bar, and an impact test was performed. Then, the maximum value, the minimum value, and the average value were obtained.

得られた結果を表2に示す。  The obtained results are shown in Table 2.

Figure 2011052248
Figure 2011052248

Figure 2011052248
Figure 2011052248

本発明例はいずれも、TS:600N/mm以上の高強度を有し、かつ優れた靭性とを兼備した太径丸棒(製品)となっている。一方、本発明の範囲を外れる比較例は、衝撃値20の最低値が、本発明例に比べ低い値を示している。また、同一の鋼で同一製品サイズで比較して、本発明例は比較例に比べ、衝撃値のばらつき(最高値−最低値)が小さくなっている。 Each of the examples of the present invention is a large-diameter round bar (product) having high strength of TS: 600 N / mm 2 or more and excellent toughness. On the other hand, in the comparative example that is out of the range of the present invention, the minimum value of the impact value U E 20 is lower than that of the present invention example. Moreover, compared with the same steel and the same product size, the example of the present invention has less variation in impact value (maximum value-minimum value) than the comparative example.

1 鋼素材
2 加熱炉
3 温度計
4 粗圧延機
5 温度計
6 仕上圧延機群
7 温度計
1 Steel material 2 Heating furnace 3 Thermometer 4 Coarse rolling mill 5 Thermometer 6 Finish rolling mill group 7 Thermometer

Claims (2)

質量%で、
C:0.35〜0.60%、 Si:0.1〜0.4%、
Mn:0.5〜1.0%、 Cr:0.20%以下、
Al:0.1%以下
を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材を加熱し、熱間圧延して太径丸棒とするにあたり、
前記加熱が、加熱温度を900〜1200℃の範囲の温度とする加熱であり、
前記熱間圧延が、粗圧延と仕上圧延とからなる圧延であり、前記粗圧延終了後、前記仕上圧延の開始までを空冷し、該仕上圧延が850〜650℃の温度範囲で、下記(1)式で定義される減面率を30%以上とする圧延であり、該仕上圧延後空冷することを特徴とする、靭性に優れた太径丸棒の製造方法。

減面率(%)={(仕上圧延前の断面積)−(仕上圧延終了後の断面積)}/(仕上圧延前の断面積)×100
% By mass
C: 0.35-0.60%, Si: 0.1-0.4%,
Mn: 0.5 to 1.0%, Cr: 0.20% or less,
Al: In the case of heating a steel material having a composition including 0.1% or less and the balance Fe and inevitable impurities, and hot rolling to obtain a large-diameter round bar,
The heating is heating with a heating temperature in the range of 900-1200 ° C;
The hot rolling is rolling consisting of rough rolling and finish rolling. After the rough rolling, the hot rolling is air-cooled until the start of the finish rolling, and the finish rolling is performed at a temperature range of 850 to 650 ° C. A method for producing a large-diameter round bar excellent in toughness, characterized in that the reduction in area defined by the formula is 30% or more, and air cooling is performed after the finish rolling.
Record
Area reduction ratio (%) = {(cross-sectional area before finish rolling) − (cross-sectional area after finish rolling)} / (cross-sectional area before finish rolling) × 100
前記組成に加えてさらに、質量%で、Cu:0.25%以下、Ni:0.25%以下のうちから選ばれた1種または2種を含有する組成であることを特徴とする請求項1に記載の太径丸棒の製造方法。   2. The composition according to claim 1, wherein the composition further contains one or two kinds selected from Cu: 0.25% or less and Ni: 0.25% or less by mass% in addition to the composition. Manufacturing method of large diameter round bar.
JP2009200128A 2009-08-31 2009-08-31 Manufacturing method of large diameter round bar Active JP5614013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009200128A JP5614013B2 (en) 2009-08-31 2009-08-31 Manufacturing method of large diameter round bar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009200128A JP5614013B2 (en) 2009-08-31 2009-08-31 Manufacturing method of large diameter round bar

Publications (2)

Publication Number Publication Date
JP2011052248A true JP2011052248A (en) 2011-03-17
JP5614013B2 JP5614013B2 (en) 2014-10-29

Family

ID=43941548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009200128A Active JP5614013B2 (en) 2009-08-31 2009-08-31 Manufacturing method of large diameter round bar

Country Status (1)

Country Link
JP (1) JP5614013B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114602994A (en) * 2020-12-09 2022-06-10 上海新闵重型锻造有限公司 Preparation method of cold-work hardening stainless steel bar

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176031A (en) * 1987-12-28 1989-07-12 Kawasaki Steel Corp Manufacture of non-heattreated steel for hot forging
JPH09122726A (en) * 1995-10-31 1997-05-13 Sumitomo Metal Ind Ltd Steel hot-rolling method
JP2005281837A (en) * 2004-03-31 2005-10-13 Kobe Steel Ltd High strength/high toughness non-heattreated steel
JP2007144445A (en) * 2005-11-25 2007-06-14 Sumitomo Metal Ind Ltd Method for manufacturing structural steel material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176031A (en) * 1987-12-28 1989-07-12 Kawasaki Steel Corp Manufacture of non-heattreated steel for hot forging
JPH09122726A (en) * 1995-10-31 1997-05-13 Sumitomo Metal Ind Ltd Steel hot-rolling method
JP2005281837A (en) * 2004-03-31 2005-10-13 Kobe Steel Ltd High strength/high toughness non-heattreated steel
JP2007144445A (en) * 2005-11-25 2007-06-14 Sumitomo Metal Ind Ltd Method for manufacturing structural steel material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114602994A (en) * 2020-12-09 2022-06-10 上海新闵重型锻造有限公司 Preparation method of cold-work hardening stainless steel bar
CN114602994B (en) * 2020-12-09 2024-05-31 上海新闵新能源科技股份有限公司 Preparation method of cold-work hardened stainless steel bar

Also Published As

Publication number Publication date
JP5614013B2 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
KR101599163B1 (en) Wire material for non-refined machine component steel wire for non-refined machine component non-refined machine component and method for manufacturing wire material for non-refined machine component steel wire for non-refined machine component and non-refined machine component
JP6388091B1 (en) Hot-rolled steel sheet for low yield ratio square steel pipe and method for producing the same, low yield ratio square steel pipe and method for producing the same
JP6107437B2 (en) Manufacturing method of low-alloy high-strength seamless steel pipe for oil wells with excellent resistance to sulfide stress corrosion cracking
JP6197850B2 (en) Method for producing duplex stainless steel seamless pipe
JP6497450B2 (en) Rolled bar wire for cold forging tempered products
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
JP6226086B2 (en) Rolled steel bar or wire rod for cold forging parts
JP6226085B2 (en) Rolled steel bar or wire rod for cold forging parts
JP6819198B2 (en) Rolled bar for cold forged tempered products
KR101449111B1 (en) Steel wire rod having excellent strength and ductility and method for manufacturing the same
WO2019103120A1 (en) Hot-rolled steel sheet and manufacturing method therefor
JP3598868B2 (en) Manufacturing method of hot rolled wire rod
JP4299744B2 (en) Hot rolled wire rod for cold forging and method for producing the same
JP5266804B2 (en) Method for producing rolled non-heat treated steel
WO2020090149A1 (en) Steel for bolts, and method for manufacturing same
JP3999457B2 (en) Wire rod and steel bar excellent in cold workability and manufacturing method thereof
JP5614013B2 (en) Manufacturing method of large diameter round bar
JP3765277B2 (en) Method for producing martensitic stainless steel piece and steel pipe
JP6341181B2 (en) Method for producing duplex stainless steel seamless pipe
JP6263924B2 (en) Manufacturing method of wire for cold forging
JP3680764B2 (en) Method for producing martensitic stainless steel pipe
JP6724720B2 (en) High-strength steel sheet manufacturing method
JP5747250B2 (en) High-strength steel material excellent in strength, ductility and impact energy absorption ability, and method for producing the same
JP2016108628A (en) Production method of two-phase stainless steel material
JP4114522B2 (en) Ultra-high strength cold-rolled steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130617

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140825

R150 Certificate of patent or registration of utility model

Ref document number: 5614013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250