JP2011050948A - Method and apparatus for purifying contaminated soil or groundwater - Google Patents

Method and apparatus for purifying contaminated soil or groundwater Download PDF

Info

Publication number
JP2011050948A
JP2011050948A JP2010171161A JP2010171161A JP2011050948A JP 2011050948 A JP2011050948 A JP 2011050948A JP 2010171161 A JP2010171161 A JP 2010171161A JP 2010171161 A JP2010171161 A JP 2010171161A JP 2011050948 A JP2011050948 A JP 2011050948A
Authority
JP
Japan
Prior art keywords
contaminated soil
liquid
groundwater
soil
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010171161A
Other languages
Japanese (ja)
Other versions
JP5737551B2 (en
Inventor
Haruo Fujishiro
春雄 藤城
Yukari Inada
ゆかり 稲田
Kazuhiko Shidara
和彦 設樂
Yoji Aoki
陽士 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2010171161A priority Critical patent/JP5737551B2/en
Publication of JP2011050948A publication Critical patent/JP2011050948A/en
Application granted granted Critical
Publication of JP5737551B2 publication Critical patent/JP5737551B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Activated Sludge Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for purifying contaminated soil or groundwater which can increase a diffusion area of a fine bubble-containing liquid injected into soil contaminated with volatile organic compounds, such as benzene, and can promote the activation of microorganisms. <P>SOLUTION: A biosparging method using a fine bubble-containing liquid-containing water for purifying the volatile organic compounds in situ includes a process for forming a tubular injection well 12 in the contaminated soil 6, a process for supplying the fine bubble-containing liquid W to a wide area in the contaminated soil 6, and a process for sending air A into the contaminated soil 6 through the injection well 12 by an air sparging method. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ベンゼン等の揮発性有機化合物(VOC)で汚染された汚染土壌または地下水の浄化方法および装置に関するものである。   The present invention relates to a purification method and apparatus for contaminated soil or groundwater contaminated with volatile organic compounds (VOC) such as benzene.

従来、ベンゼンやトリクロロエチレンのような揮発性有機化合物で汚染された土壌や地下水を浄化する方法として、汚染土壌や地下水中に空気を送り込んで汚染物質の気化を促進し、ガス化した汚染物質を回収するエアースパージング法が知られている(例えば、特許文献1参照)。エアースパージング法とは、空気を送り込むことで揮発性物質を液相から気相に転移させ、不飽和層に移った揮発性物質のガスをブロワーで吸引することによって浄化する技術である。一方、酸素が充分に供給された場合には、土壌中に生息する好気性微生物が活性化されて汚染物質の分解が促進されることも期待できる。   Conventionally, as a method of purifying soil and groundwater contaminated with volatile organic compounds such as benzene and trichlorethylene, air is sent to the contaminated soil and groundwater to promote the vaporization of the pollutant and collect the gasified pollutant. An air sparging method is known (for example, see Patent Document 1). The air sparging method is a technique in which volatile substances are transferred from a liquid phase to a gas phase by sending air, and the volatile substance gas transferred to the unsaturated layer is purified by sucking with a blower. On the other hand, when oxygen is sufficiently supplied, it can be expected that aerobic microorganisms living in the soil are activated and the decomposition of the pollutants is promoted.

特許文献1の浄化方法は、塩素化エチレン等の揮発性有機塩素化合物により汚染された地下水を含む地盤内にスパージング井戸を設け、このスパージング井戸の下端から気体と栄養源(有機物材料)を含有する液体とを地盤に向けて注入することで、スパージングによる汚染物質ガスの除去および回収、酸素と栄養源の供給による微生物処理、揚水井戸による汚染地下水の揚水処理などで、汚染地下水を浄化する方法である。   The purification method of Patent Document 1 includes a sparging well in the ground containing groundwater contaminated with a volatile organic chlorine compound such as chlorinated ethylene, and contains a gas and a nutrient source (organic material) from the lower end of the sparging well. By injecting liquid toward the ground, it is possible to purify contaminated groundwater by removing and collecting pollutant gases by sparging, microbial treatment by supplying oxygen and nutrients, pumping treatment of contaminated groundwater by pumping wells, etc. is there.

一方、微生物の作用により油を分解する油汚染土壌浄化方法が知られている(例えば、特許文献2参照)。特許文献2の浄化システムは、栄養源(分解促進物質)と微細気泡含有水とを各々注入井戸に入れて土壌の浄化を行うものである。ここで、栄養源(分解促進物質)は注入井戸の上部から供給し、微細気泡含有水は注入井戸の下部から供給することが示されている。   On the other hand, an oil-contaminated soil purification method that decomposes oil by the action of microorganisms is known (see, for example, Patent Document 2). The purification system of Patent Document 2 purifies soil by putting nutrient sources (decomposition promoting substances) and fine bubble-containing water into injection wells, respectively. Here, it is shown that the nutrient source (degradation promoting substance) is supplied from the upper part of the injection well, and the water containing fine bubbles is supplied from the lower part of the injection well.

特開2009−45558号公報JP 2009-45558 A 特開2009−6304号公報JP 2009-6304 A

上記の従来の特許文献1等の汚染土壌または地下水の浄化方法では、汚染土壌中に注入された気体は上方へ向かい易く、水平方向に拡散しにくい。この場合、図5に示すように、スパージング井戸2の下端4周囲の地下水で飽和された土壌6の水平領域に、汚染物質が気化あるいは分解されずに残存する部分Pができるおそれがある。   In the conventional contaminated soil or groundwater purification method described in Patent Document 1 and the like described above, the gas injected into the contaminated soil is easy to move upward and hardly diffuses in the horizontal direction. In this case, as shown in FIG. 5, there is a possibility that a part P where the contaminants remain without being vaporized or decomposed may be formed in the horizontal region of the soil 6 saturated with the groundwater around the lower end 4 of the sparging well 2.

本発明は、ベンゼン等の揮発性有機化合物で汚染された土壌に注入される微細気泡液の拡散範囲を拡げることができ、しかも微生物の活性化を促進させることができる汚染土壌または地下水の浄化方法および装置を提供することを目的とする。   The present invention is a method for purifying contaminated soil or groundwater that can expand the diffusion range of fine bubble liquid injected into soil contaminated with volatile organic compounds such as benzene and promote the activation of microorganisms. And an object to provide an apparatus.

土壌浄化が行われる土壌中において汚染物質が気化あるいは分解されずに残存する部分が生じないようにするという目的を達成するために、本発明の請求項1に係る汚染土壌または地下水の浄化方法は、揮発性有機化合物を原位置で浄化する微細気泡液含有水によるバイオスパージング法であり、汚染土壌に管状の注入井戸を形成する工程と、前記微細気泡を含む液体を前記汚染土壌中の広範囲に供給する工程と、エアースパージング法によって空気を前記汚染土壌中に前記注入井戸を介して送り込む工程とを含むことを特徴とする。   In order to achieve the object of preventing a portion where the pollutant remains without being vaporized or decomposed in the soil subjected to the soil purification, the method for purifying the contaminated soil or groundwater according to claim 1 of the present invention is provided. A biosparging method using water containing fine bubble liquid to purify volatile organic compounds in situ, forming a tubular injection well in the contaminated soil, and spreading the liquid containing the fine bubbles over a wide area in the contaminated soil And a step of feeding air into the contaminated soil through the injection well by an air sparging method.

また、本発明の請求項2に係る汚染土壌または地下水の浄化方法は、上述した請求項1において、前記液体に含まれる微細気泡は、ミリバブルおよび直径50μm以下のマイクロバブルや直径1μm以下のナノバブルであることを特徴とする。   Further, in the method for purifying contaminated soil or groundwater according to claim 2 of the present invention, in the above-mentioned claim 1, the fine bubbles contained in the liquid are millibubbles, microbubbles having a diameter of 50 μm or less, and nanobubbles having a diameter of 1 μm or less. It is characterized by being.

また、本発明の請求項3に係る汚染土壌または地下水の浄化方法は、上述した請求項1または2において、前記液体は、前記汚染土壌中に生息している微生物による前記揮発性有機化合物の分解を促進させる栄養源(分解促進物質)を含む液体であることを特徴とする。   The method for purifying contaminated soil or groundwater according to claim 3 of the present invention is the method according to claim 1 or 2, wherein the liquid is decomposed by microorganisms living in the contaminated soil. It is characterized by being a liquid containing a nutrient source (degradation promoting substance) that promotes the process.

また、本発明の請求項4に係る汚染土壌または地下水の浄化方法は、上述した請求項1〜3のいずれか一つにおいて、ガスを利用して前記微細気泡を製造する際に、前記微細気泡の製造に利用されなかった未利用ガスの回収および再利用を行うことを特徴とする。   Moreover, in the purification method of the contaminated soil or groundwater which concerns on Claim 4 of this invention, when manufacturing the said fine bubble in any one of Claims 1-3 mentioned above using gas, the said fine bubble It is characterized by collecting and reusing unused gas that has not been used in the production of the above.

また、本発明の請求項5に係る汚染土壌または地下水の浄化方法は、上述した請求項1〜4のいずれか一つにおいて、注入口の深度位置が異なる前記注入井戸を前記汚染土壌に複数形成したことを特徴とする。   In addition, the method for purifying contaminated soil or groundwater according to claim 5 of the present invention is the method according to any one of claims 1 to 4, wherein a plurality of injection wells having different depth positions of injection ports are formed in the contaminated soil. It is characterized by that.

また、本発明の請求項6に係る汚染土壌または地下水の浄化装置は、揮発性有機化合物を原位置で浄化する微細気泡液含有水によるバイオスパージング法であり、汚染土壌に設けた管状の注入井戸と、微細気泡を含む液体を生成する微細気泡液生成手段と、前記微細気泡液生成手段で生成した微細気泡を含む液体を前記汚染土壌中に送り込む液体供給手段と、エアースパージング法によって空気を前記汚染土壌中に前記注入井戸を介して送り込む手段とを備えることを特徴とする。   Further, the contaminated soil or groundwater purification apparatus according to claim 6 of the present invention is a biosparging method using fine bubble liquid-containing water for purifying volatile organic compounds in situ, and a tubular injection well provided in the contaminated soil A fine bubble liquid generating means for generating a liquid containing fine bubbles, a liquid supply means for feeding the liquid containing the fine bubbles generated by the fine bubble liquid generating means into the contaminated soil, and the air by the air sparging method. And means for feeding into the contaminated soil through the injection well.

また、本発明の請求項7に係る汚染土壌または地下水の浄化装置は、上述した請求項6において、ガスを利用して前記微細気泡を製造する際に、前記微細気泡の製造に利用されなかった未利用ガスの回収および再利用を行うガス回収機構をさらに備えることを特徴とする。   In addition, the contaminated soil or groundwater purification apparatus according to claim 7 of the present invention is not used for producing the fine bubbles in the above-described claim 6 when producing the fine bubbles using gas. A gas recovery mechanism for recovering and reusing unused gas is further provided.

また、本発明の請求項8に係る汚染土壌または地下水の浄化装置は、上述した請求項6または7において、注入口の深度位置が異なる前記注入井戸を前記汚染土壌に複数設けたことを特徴とする。   Further, the contaminated soil or groundwater purification apparatus according to claim 8 of the present invention is characterized in that, in the above-described claim 6 or 7, a plurality of the injection wells having different inlet depth positions are provided in the contaminated soil. To do.

本発明によれば、揮発性有機化合物を原位置で浄化する微細気泡液含有水によるバイオスパージング法であり、汚染土壌に管状の注入井戸を形成する工程と、前記微細気泡を含む液体を前記汚染土壌中の広範囲に供給する工程と、エアースパージング法によって空気を前記汚染土壌中に前記注入井戸を介して送り込む工程とを含んでいる。微細気泡を含む液体を注入し、併せてエアースパージング法によって空気を汚染土壌中に注入できるので、土壌に注入される液体と空気の拡散範囲を広範囲に拡げることができる。   According to the present invention, there is a biosparging method using fine bubble liquid-containing water that purifies volatile organic compounds in situ, the step of forming a tubular injection well in contaminated soil, and the contamination of the liquid containing the fine bubbles A step of supplying a wide range in the soil, and a step of feeding air into the contaminated soil through the injection well by an air sparging method. Since liquid containing fine bubbles can be injected and air can be injected into the contaminated soil by the air sparging method, the diffusion range of the liquid and air injected into the soil can be widened.

また、汚染土壌中に微細気泡を含む液体と空気とを併せて注入することで、地下水中の溶存酸素量が増大するため、土壌中に生息する好気性微生物の活性化を促進させることができる。したがって、ベンゼン等の揮発性有機化合物で汚染された広範囲の汚染土壌または地下水を効率的に浄化することができる。   Moreover, since the amount of dissolved oxygen in the groundwater increases by injecting a liquid containing fine bubbles and air together in the contaminated soil, activation of aerobic microorganisms that inhabit the soil can be promoted. . Accordingly, a wide range of contaminated soil or groundwater contaminated with volatile organic compounds such as benzene can be efficiently purified.

図1は、本発明に係る汚染土壌または地下水の浄化装置の実施例1を示す側断面図である。FIG. 1 is a side sectional view showing Example 1 of a purification apparatus for contaminated soil or groundwater according to the present invention. 図2は、本発明に用いる微細気泡の径と数の関係の一例を示す図である。FIG. 2 is a diagram showing an example of the relationship between the diameter and number of fine bubbles used in the present invention. 図3は、微細気泡を用いた場合の浄化状況を示す図である。FIG. 3 is a diagram showing the purification status when fine bubbles are used. 図4は、微細気泡を用いない場合の浄化状況を示す図である。FIG. 4 is a diagram showing a purification state when fine bubbles are not used. 図5は、従来の汚染土壌または地下水の浄化状況の概念図である。FIG. 5 is a conceptual diagram of the conventional state of purification of contaminated soil or groundwater. 図6は、本発明に係る汚染土壌または地下水の浄化装置の実施例2を示す斜視図である。FIG. 6 is a perspective view showing Example 2 of the purification apparatus for contaminated soil or groundwater according to the present invention. 図7は、従来の汚染土壌または地下水の浄化装置を示す斜視図である。FIG. 7 is a perspective view showing a conventional contaminated soil or groundwater purification device. 図8は、本発明に係る汚染土壌または地下水の浄化装置の実施例3を示す側断面図である。FIG. 8: is a sectional side view which shows Example 3 of the purification apparatus of the contaminated soil or groundwater which concerns on this invention. 図9は、従来の汚染土壌または地下水の浄化装置を示す側断面図である。FIG. 9 is a side sectional view showing a conventional contaminated soil or groundwater purification device.

以下に、本発明に係る汚染土壌または地下水の浄化方法および装置の実施の形態(実施例1〜3)を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Hereinafter, embodiments (Examples 1 to 3) of a purification method and apparatus for contaminated soil or groundwater according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

[実施例1]
図1に示すように、本発明の実施例1に係る汚染土壌または地下水の浄化装置(以下、単に「浄化装置」という。)100は、汚染地下水を含む土壌6に設けた管状の注入井戸12と、注入井戸12を介して土壌6に微細気泡含有水を供給する液体供給装置18と、空気Aを供給する気体供給装置14とを備え、汚染土壌6または地下水中のベンゼンや油等の揮発性有機化合物を微細気泡液含有水によるバイオスパージング法によって原位置で浄化するものである。
[Example 1]
As shown in FIG. 1, a contaminated soil or groundwater purification apparatus 100 (hereinafter simply referred to as “purification apparatus”) 100 according to Embodiment 1 of the present invention is a tubular injection well 12 provided in soil 6 containing contaminated groundwater. And a liquid supply device 18 that supplies water containing fine bubbles to the soil 6 through the injection well 12 and a gas supply device 14 that supplies air A, and volatilizes benzene, oil, etc. in the contaminated soil 6 or groundwater. The organic compound is purified in situ by a biosparging method using water containing fine bubble liquid.

この浄化装置100は、微細気泡を含む液体W(微細気泡含有液体)を生成する微細気泡液生成装置16(微細気泡液生成手段)と、液体Wを注入井戸12を介して土壌6に供給する液体供給装置18(液体供給手段)とを備える。   This purification device 100 supplies a fine bubble liquid generation device 16 (fine bubble liquid generation means) that generates a liquid W (fine bubble-containing liquid) containing fine bubbles, and supplies the liquid W to the soil 6 through the injection well 12. A liquid supply device 18 (liquid supply means).

注入井戸12は、汚染土壌6または地下水の浄化に必要な液体Wと空気Aの供給が可能な内径を有し、その下端近傍に開口部を有する管状体で構成してある。この開口部には、通気および通水が可能なスクリーン20が設けてあり、注入井戸12内への土砂の侵入を防ぐ一方、注入井戸12から土壌6への液体Wおよび空気Aの供給を可能としている。また、注入井戸12の上端には、液体供給装置18の送液パイプ24と、気体供給装置14の送気パイプ22とが接続してある。なお、注入井戸12は鋼管に限るものではなく、液体Wと空気Aを汚染土壌6中に供給可能な管状体であれば他の材質で構成しても構わない。   The injection well 12 has an inner diameter capable of supplying the liquid W and the air A necessary for the purification of the contaminated soil 6 or the groundwater, and is constituted by a tubular body having an opening near the lower end thereof. The opening 20 is provided with a screen 20 that allows ventilation and water flow, and prevents intrusion of earth and sand into the injection well 12 while allowing supply of liquid W and air A from the injection well 12 to the soil 6. It is said. In addition, a liquid supply pipe 24 of the liquid supply device 18 and an air supply pipe 22 of the gas supply device 14 are connected to the upper end of the injection well 12. The injection well 12 is not limited to a steel pipe, and may be made of other materials as long as it is a tubular body that can supply the liquid W and air A into the contaminated soil 6.

液体供給装置18は、微細気泡液生成装置16で生成され、微細気泡含有栄養剤貯蔵タンク42に設置してある微細気泡吐出ノズル43から放出された微細気泡を含有する液体Wを送液パイプ24に送り出す送液ポンプ36と、制御部37とからなる。送液パイプ24の所定の位置には、供給する液体Wの量を調整するためのバルブ38、液量センサ40が設けてある。   The liquid supply device 18 feeds the liquid W containing the fine bubbles generated from the fine bubble discharge nozzle 43 which is generated by the fine bubble liquid generation device 16 and is installed in the fine bubble-containing nutrient solution storage tank 42. It consists of a liquid feed pump 36 for feeding out to the air and a control unit 37. A valve 38 for adjusting the amount of liquid W to be supplied and a liquid amount sensor 40 are provided at predetermined positions of the liquid feeding pipe 24.

気体供給装置14は、空気Aを注入井戸12を介して汚染土壌6中に供給するためのものであり、地表8上に配置してある。この気体供給装置14は、空気Aを送気パイプ22に圧送するコンプレッサ28からなる。送気パイプ22の所定の位置には、供給する空気Aの量を調整するためのバルブ30、流量センサ32、圧力センサ34が設けてある。   The gas supply device 14 is for supplying air A into the contaminated soil 6 through the injection well 12, and is disposed on the ground surface 8. The gas supply device 14 includes a compressor 28 that pumps the air A to the air supply pipe 22. A valve 30, a flow sensor 32, and a pressure sensor 34 for adjusting the amount of air A to be supplied are provided at predetermined positions of the air supply pipe 22.

制御部37は、送液ポンプ36からの液体Wの供給が開始される供給開始タイミングを供給直前に検知し、検知した供給開始タイミングに応じて気体供給装置14からの空気Aの圧送を開始する駆動タイミングを制御するためのものである。制御部37は、コンプレッサ28の動作や、バルブ30の開閉動作も制御可能としてある。   The control unit 37 detects the supply start timing at which the supply of the liquid W from the liquid feed pump 36 is started immediately before supply, and starts the pressure feeding of the air A from the gas supply device 14 according to the detected supply start timing. This is for controlling the drive timing. The controller 37 can also control the operation of the compressor 28 and the opening / closing operation of the valve 30.

微細気泡液生成装置16は、微細気泡としてのミリバブルおよびマイクロバブルやナノバブルを含む液体W(微細気泡含有液体)を生成するためのものであり、地表8上に配置してある。ここで、本発明に用いる液体Wに含まれる微細気泡は、ミリバブルおよび直径50μm以下のマイクロバブルや直径1μm以下のナノバブルである。例えば、図2に示すように、直径50μm以下のマイクロバブルまたはミリバブルを含む。微細気泡の原料としては、空気や酸素、オゾン等を用いることができる。また、液体の原料としては、水道水や地下水等を用いることができる。   The fine bubble liquid generator 16 is for generating a liquid W (microbubble-containing liquid) including millibubbles, microbubbles, and nanobubbles as fine bubbles, and is disposed on the ground surface 8. Here, the fine bubbles contained in the liquid W used in the present invention are millibubbles, microbubbles having a diameter of 50 μm or less, and nanobubbles having a diameter of 1 μm or less. For example, as shown in FIG. 2, microbubbles or millibubbles having a diameter of 50 μm or less are included. Air, oxygen, ozone or the like can be used as the raw material for the fine bubbles. Moreover, tap water, groundwater, etc. can be used as a liquid raw material.

直径50μm以下の微細気泡の特徴としては、通常の気泡(数mm〜50μm程度)に比べて(1)水中での上昇速度が遅い、(2)気泡内の圧力が高い、(3)気液面積が大きい、(4)気泡表面が負に帯電していることなどが知られている(参考文献「微細気泡の最新技術、高橋他、エヌ・ティー・エス、2006年」参照)。特に、微細気泡は、水中で縮小して最終的には消滅したり、長期間にわたって水中に存在するという特徴がある。これに対し、通常の気泡は、水中を上昇して水面で破裂するという特徴がある。   The characteristics of fine bubbles having a diameter of 50 μm or less are (1) the rising speed in water is slower than normal bubbles (several mm to 50 μm), (2) the pressure inside the bubbles is high, (3) gas-liquid It is known that the area is large and (4) the bubble surface is negatively charged (see the reference "the latest technology of fine bubbles, Takahashi et al., NTS, 2006"). In particular, the fine bubbles are characterized by shrinking in water and eventually disappearing or existing in water for a long time. In contrast, normal bubbles are characterized by rising in water and bursting at the surface of the water.

また、微細気泡の数や粒径分布などは製造原理によって異なっており、代表的な製造原理としては、(1)加圧溶解方式、(2)旋回方式、(3)スタティックミキサー方式などがある(参考文献「マイクロバブル発生法と工業装置への適用、寺坂、環境浄化技術、vol.6(11)、pp.13−17、2007年」参照)。   The number of fine bubbles and the particle size distribution differ depending on the manufacturing principle. Typical manufacturing principles include (1) pressure dissolution method, (2) swirl method, and (3) static mixer method. (See reference "Microbubble generation method and application to industrial equipment, Terasaka, environmental purification technology, vol. 6 (11), pp. 13-17, 2007").

上記構成の動作および作用について説明する。
送液ポンプ36を駆動すると、微細気泡含有栄養剤貯蔵タンク42の微細気泡吐出ノズル43から吐出されたマイクロバブルおよびミリバブルからなる微細気泡を含む液体Wが、送液パイプ24を介して注入井戸12に送り出される。液体Wの供給を開始する供給開始タイミングは、供給直前に制御部37に検知され、制御部37は、液体Wを汚染土壌6中に送り込む際に同時に送ることができるようになっており、空気Aを汚染土壌6中に圧送するようにコンプレッサ28の駆動タイミングを制御する。
The operation and action of the above configuration will be described.
When the liquid feed pump 36 is driven, the liquid W containing the fine bubbles composed of microbubbles and millibubbles discharged from the fine bubble discharge nozzle 43 of the fine bubble-containing nutrient solution storage tank 42 is injected via the liquid supply pipe 24 into the injection well 12. Sent out. The supply start timing for starting the supply of the liquid W is detected by the control unit 37 immediately before the supply, and the control unit 37 can send the liquid W simultaneously into the contaminated soil 6, and the air The drive timing of the compressor 28 is controlled so that A is pumped into the contaminated soil 6.

コンプレッサ28が駆動されると、空気Aが送気パイプ22を介して注入井戸12に送り込まれる。こうして、注入井戸12に同時に送り込まれた液体Wと空気Aは、下端のスクリーン20から汚染土壌6中に注入される。   When the compressor 28 is driven, the air A is sent into the injection well 12 through the air supply pipe 22. Thus, the liquid W and air A simultaneously fed into the injection well 12 are injected into the contaminated soil 6 from the screen 20 at the lower end.

このように、エアースパージング法で微細気泡を含む液体Wを汚染土壌6中に送り込む際に同時に空気Aを注入することにより、汚染土壌6に注入される空気Aや微細気泡に含まれる酸素の到達する距離(注入井戸12を中心とする水平方向の影響半径)を拡げることができる。このため、図5に示すように、従来のエアースパージング法では困難であったスパージング井戸2の下端4周囲の土壌6の水平領域に汚染物質が気化あるいは分解されずに残存する部分Pができるのを防ぐことができる。   In this way, when the liquid A containing fine bubbles is sent into the contaminated soil 6 by the air sparging method, the air A and the oxygen contained in the fine bubbles reach by simultaneously injecting the air A. (The radius of influence in the horizontal direction around the injection well 12) can be increased. For this reason, as shown in FIG. 5, the part P which a contaminant does not vaporize or decompose | disassemble in the horizontal area | region of the soil 6 surrounding the lower end 4 of the sparging well 2 which was difficult with the conventional air sparging method is made. Can be prevented.

微細気泡は水中に溶け易く、あるいは長期間保持され易いため、地下水中の溶存酸素量が増加し、土壌中の好気性微生物の活性化を促進することができる。したがって、ベンゼン等の揮発性有機化合物で汚染された広範囲の汚染土壌または地下水を、従来のエアースパージング法のみを適用した場合よりも短期間で効率的に浄化することができる。   Since the fine bubbles are easily dissolved in water or are easily retained for a long period of time, the amount of dissolved oxygen in the groundwater is increased, and activation of aerobic microorganisms in the soil can be promoted. Therefore, a wide range of contaminated soil or groundwater contaminated with volatile organic compounds such as benzene can be efficiently purified in a shorter period of time than when only the conventional air sparging method is applied.

図3は、微細気泡を用いた場合の土壌中の浄化状況の概念図を示したものである。図3に示すように、シルト層と飽和層と不飽和層からなる土壌に設けた注入井戸12に微細気泡を含む液体Wを注入すると、微細気泡を含む液体W(栄養剤)の土壌への供給エリアは広くなるので、広範囲の好気性微生物の活性化が早期に促進される。これにより、短期間で確実な浄化が可能となる。しかも、この浄化効果は土壌中で長期間維持される。   FIG. 3 shows a conceptual diagram of the state of purification in soil when fine bubbles are used. As shown in FIG. 3, when the liquid W containing fine bubbles is injected into the injection well 12 provided in the soil composed of the silt layer, the saturated layer, and the unsaturated layer, the liquid W (nutrient) containing fine bubbles is applied to the soil. Since the supply area becomes large, activation of a wide range of aerobic microorganisms is promoted early. As a result, reliable purification is possible in a short period of time. Moreover, this purification effect is maintained for a long time in the soil.

これに対し、微細気泡を用いない従来の浄化方法の場合には、図4に示すように、空気の土壌への供給エリアが狭くなるので好気性微生物の活性化の範囲が狭まるとともに、浄化効率は微細気泡を用いる本発明に比べて劣る。空気を常時供給する手間や汚染物質を抽出したガス回収設備等も必要となるので、これによるコストアップを招くというデメリットもある。   On the other hand, in the case of the conventional purification method that does not use fine bubbles, as shown in FIG. 4, the area for supplying aerobic microorganisms is narrowed because the area for supplying air to the soil is narrowed, and the purification efficiency is reduced. Is inferior to the present invention using fine bubbles. There is also a demerit that the cost is increased due to the need to constantly supply air and gas recovery equipment that extracts pollutants.

なお、上記の実施の形態において、注入井戸12の深度は、確実に汚染土壌6または汚染地下水への液体Wと空気Aの供給ができる深さであれば限定されるものではない。さらに、注入井戸12の本数は、1本に限定されるものではなく、注入井戸12からの空気Aおよび液体Wの到達距離(エアースパージングの影響範囲)、浄化対象の範囲、空気Aおよび液体Wの注入量や注入圧力等に応じて適宜設定することができる。   In the above-described embodiment, the depth of the injection well 12 is not limited as long as the liquid W and the air A can be reliably supplied to the contaminated soil 6 or the contaminated groundwater. Further, the number of the injection wells 12 is not limited to one, but the reach distance of the air A and the liquid W from the injection well 12 (range of influence of air sparging), the range to be purified, the air A and the liquid W It can be set as appropriate according to the injection amount, injection pressure, and the like.

[実施例2]
次に、実施例2について説明する。
上述したように、本発明の実施例1は、微細気泡含有水を土壌中に注入することで好気性微生物の活性化させ、ベンゼンや油等の揮発性有機化合物を分解するものである。微細気泡の原料として空気を用いる場合には、図7に示すような装置構成を用いることができる。
[Example 2]
Next, Example 2 will be described.
As described above, Example 1 of the present invention activates aerobic microorganisms by injecting water containing fine bubbles into soil and decomposes volatile organic compounds such as benzene and oil. When air is used as a raw material for fine bubbles, an apparatus configuration as shown in FIG. 7 can be used.

図7の装置は、微細気泡含有水貯蔵タンク42aと、貯留用水槽50と、栄養剤貯留槽60と、空気貯蔵タンク62とを備える。貯留用水槽50からの水は、ポンプ48を介して微細気泡含有水貯蔵タンク42aに送られる。空気貯蔵タンク62からの空気は、バルブ64cおよび微細気泡液生成装置16を介して、経路52から微細気泡含有水貯蔵タンク42a内の微細気泡吐出ノズル43に送られる。微細気泡含有水貯蔵タンク42aの微細気泡含有水には栄養剤貯留槽60からの栄養剤がバルブ64aまたは64bを介して混合され、送液ポンプ36および送液パイプ24によって図示しない注入井戸に送られる。なお、微細気泡液生成装置16は経路54およびバルブ64eを介して貯留用水槽50からの水の供給を受けるようになっている。   The apparatus of FIG. 7 includes a microbubble-containing water storage tank 42 a, a storage water tank 50, a nutrient solution storage tank 60, and an air storage tank 62. Water from the storage tank 50 is sent to the fine bubble-containing water storage tank 42 a via the pump 48. The air from the air storage tank 62 is sent from the path 52 to the fine bubble discharge nozzle 43 in the fine bubble-containing water storage tank 42a via the valve 64c and the fine bubble liquid generator 16. The nutrient solution from the nutrient solution storage tank 60 is mixed with the minute bubble-containing water in the minute bubble-containing water storage tank 42a via the valve 64a or 64b, and is sent to an injection well (not shown) by the liquid feed pump 36 and the liquid feed pipe 24. It is done. In addition, the fine bubble liquid production | generation apparatus 16 receives supply of the water from the storage tank 50 through the path | route 54 and the valve | bulb 64e.

この図7の装置構成において、溶存酸素濃度を高めるために、空気の代わりに純酸素などの比較的高価な特殊ガスを使用することもできるが、この場合には、特殊ガスの使用効率を高めることが好ましい。   In the apparatus configuration shown in FIG. 7, a relatively expensive special gas such as pure oxygen can be used instead of air in order to increase the dissolved oxygen concentration. In this case, the use efficiency of the special gas is increased. It is preferable.

そこで、本発明の実施例2に係る汚染土壌または地下水の浄化装置200は、高価な特殊ガスの使用効率を高めるために、特殊ガスを装置内で循環させる構成としてある。すなわち、図6に示すように、この浄化装置200は、微細気泡含有水貯蔵タンク42aと、貯留用水槽50と、栄養剤貯留槽60と、特殊ガス貯蔵タンク46と、ガス回収機構44とを備える。図7の装置構成との差異点は、ガス回収機構44を備える点と、空気貯蔵タンク62の代わりに特殊ガス貯蔵タンク46を備える点である。ガス回収機構44は、蓋58と、バルブ64dを有する循環用の経路56とからなる。   Therefore, the contaminated soil or groundwater purification apparatus 200 according to the second embodiment of the present invention is configured to circulate the special gas in the apparatus in order to increase the use efficiency of the expensive special gas. That is, as shown in FIG. 6, the purification device 200 includes a microbubble-containing water storage tank 42 a, a storage water tank 50, a nutrient solution storage tank 60, a special gas storage tank 46, and a gas recovery mechanism 44. Prepare. The difference from the apparatus configuration of FIG. 7 is that a gas recovery mechanism 44 is provided and a special gas storage tank 46 is provided instead of the air storage tank 62. The gas recovery mechanism 44 includes a lid 58 and a circulation path 56 having a valve 64d.

図6に示すように、貯留用水槽50からの水は、ポンプ48を介して微細気泡含有水貯蔵タンク42aに送られる。特殊ガス貯蔵タンク46からの特殊ガスは、バルブ64cおよび微細気泡液生成装置16を介して、経路52から微細気泡含有水貯蔵タンク42a内の微細気泡吐出ノズル43に送られる。細気泡含有水貯蔵タンク42aの微細気泡含有水には栄養剤貯留槽60からの栄養剤がバルブ64aまたは64bを介して混合され、送液ポンプ36および送液パイプ24によって図示しない注入井戸に送られる。なお、微細気泡液生成装置16は経路54およびバルブ64eを介して貯留用水槽50からの水の供給を受けるようになっている。   As shown in FIG. 6, the water from the storage tank 50 is sent to the fine bubble-containing water storage tank 42 a via the pump 48. The special gas from the special gas storage tank 46 is sent from the path 52 to the fine bubble discharge nozzle 43 in the fine bubble-containing water storage tank 42a via the valve 64c and the fine bubble liquid generator 16. The nutrient solution from the nutrient solution storage tank 60 is mixed with the fine bubble-containing water in the fine bubble-containing water storage tank 42a via the valve 64a or 64b, and is sent to the injection well (not shown) by the liquid feed pump 36 and the liquid feed pipe 24. It is done. In addition, the fine bubble liquid production | generation apparatus 16 receives supply of the water from the storage tank 50 through the path | route 54 and the valve | bulb 64e.

蓋58は、微細気泡含有水貯蔵タンク42a内の特殊ガスの揮散を防止するためものであり、タンク42aの上部に被せてある。循環用の経路56は、この蓋58を貫通して微細気泡含有水貯蔵タンク42a内部に連通している。微細気泡の製造に利用されずに微細気泡含有水貯蔵タンク42a内で揮散した未利用のガスは、経路56を通じて回収され、微細気泡液生成装置16の入り口側に戻された後、経路52で微細気泡吐出ノズル43に送られて微細気泡の製造のために再利用される。   The lid 58 is for preventing volatilization of the special gas in the fine bubble-containing water storage tank 42a, and covers the upper part of the tank 42a. The circulation path 56 passes through the lid 58 and communicates with the fine bubble-containing water storage tank 42a. Unused gas volatilized in the microbubble-containing water storage tank 42a without being used for the production of microbubbles is recovered through the path 56 and returned to the inlet side of the microbubble liquid generator 16, and then in the path 52. It is sent to the fine bubble discharge nozzle 43 and reused for producing fine bubbles.

本実施例2によれば、特殊ガスを微細気泡の製造原料として利用する場合に、製造に利用されずに揮散した未利用のガスを蓋58と経路56とからなるガス回収機構44で回収し再利用するので、特殊ガスの使用効率が高められる。このため、高価な特殊ガスからなる微細気泡を比較的低コストで製造することができる。   According to the second embodiment, when the special gas is used as the raw material for producing fine bubbles, the unused gas that has been volatilized without being used for production is recovered by the gas recovery mechanism 44 including the lid 58 and the path 56. Since it is reused, the use efficiency of special gas is increased. For this reason, the fine bubble which consists of expensive special gas can be manufactured at comparatively low cost.

[実施例3]
次に、実施例3について説明する。
従来は、図9に示すように、栄養剤貯留槽60および微細気泡含有栄養剤貯蔵タンク42からの微細気泡含有水を、注入井戸12の外周に設けたスクリーン20を介して土壌6に注入していた。この場合、注入する深度の幅が大きいほど土壌中へ注入する液体が水平・垂直方向に均等に行き渡らないことが懸念される。
[Example 3]
Next, Example 3 will be described.
Conventionally, as shown in FIG. 9, fine bubble-containing water from the nutrient solution storage tank 60 and the fine bubble-containing nutrient solution storage tank 42 is injected into the soil 6 through the screen 20 provided on the outer periphery of the injection well 12. It was. In this case, there is a concern that the liquid to be injected into the soil does not spread evenly in the horizontal and vertical directions as the depth of the injection depth increases.

そこで、本発明の実施例3に係る汚染土壌または地下水の浄化装置300では、図8に示すように、下部に注入口66を有する注入井戸12を、注入口66の深度を変えて複数(図では3本)配置している。各注入口66毎の注入量や注入圧力は図示しない制御装置により変更可能としてある。このため、この各注入量や圧力を適宜調整すれば、微細気泡含有水を各注入口66を介して土壌6中に均等に行き渡らせることができる。微細気泡を土壌中に均等に拡散させることにより、好気性微生物による酸素消費が促進され、周辺土壌の効率的な浄化が可能となる。   Therefore, in the contaminated soil or groundwater purification apparatus 300 according to the third embodiment of the present invention, as shown in FIG. 8, a plurality of injection wells 12 having the inlet 66 at the lower portion are changed (see FIG. 8). Then there are three). The injection amount and injection pressure for each injection port 66 can be changed by a control device (not shown). For this reason, if each injection amount and pressure are appropriately adjusted, the water containing fine bubbles can be evenly distributed in the soil 6 through the injection ports 66. By evenly diffusing the fine bubbles in the soil, oxygen consumption by the aerobic microorganism is promoted, and the surrounding soil can be efficiently purified.

なお、注入井戸12の数を増減することによって、浄化対象深度の幅の大小に対応することができる。例えば、浄化対象深度の幅が大きい場合には注入井戸12の数を増やして対応すればよい。   In addition, it can respond to the size of the width | variety of the purification | cleaning object depth by increasing / decreasing the number of the injection wells 12. FIG. For example, when the width of the purification target depth is large, the number of injection wells 12 may be increased.

以上説明したように、本発明によれば、揮発性有機化合物を原位置で浄化する微細気泡液含有水によるバイオスパージング法であり、汚染土壌に管状の注入井戸を形成する工程と、前記微細気泡を含む液体を前記汚染土壌中の広範囲に供給する工程と、エアースパージング法によって空気を前記汚染土壌中に前記注入井戸を介して送り込む工程とを含んでいる。微細気泡を含む液体を注入し、併せてエアースパージング法によって空気を汚染土壌中に注入できるので、土壌に注入される液体と空気の拡散範囲を広範囲に拡げることができる。   As described above, according to the present invention, a biosparging method using fine bubble liquid-containing water that purifies volatile organic compounds in situ, the step of forming a tubular injection well in contaminated soil, and the fine bubbles And a step of supplying air to the contaminated soil through an injection well by an air sparging method. Since liquid containing fine bubbles can be injected and air can be injected into the contaminated soil by the air sparging method, the diffusion range of the liquid and air injected into the soil can be widened.

また、汚染土壌中に微細気泡を注入することで、土壌間隙水中の溶存酸素量が増大し、原位置の微生物の活性化を促進させる。このため、土壌に注入される気体の影響範囲を拡げることができ、しかも原位置に生息する好気性微生物の活性化を促進させることができる。したがって、ベンゼン等の揮発性有機化合物で汚染された広範囲の汚染土壌または地下水を効率的に浄化することができる。   Moreover, by injecting fine bubbles into the contaminated soil, the amount of dissolved oxygen in the soil interstitial water increases, and the activation of in situ microorganisms is promoted. For this reason, the influence range of the gas inject | poured into soil can be expanded, and also the activation of the aerobic microbe which inhabits in situ can be promoted. Accordingly, a wide range of contaminated soil or groundwater contaminated with volatile organic compounds such as benzene can be efficiently purified.

以上のように、本発明に係る汚染土壌または地下水の浄化方法および装置は、汚染土壌や地下水を原位置で浄化する場合に有用であり、特に、ベンゼン等の揮発性有機化合物で汚染された土壌や地下水を原位置で好気的に浄化処理する微細気泡含有水によるエアースパージング法に適している。   As described above, the method and apparatus for purifying contaminated soil or groundwater according to the present invention is useful when purifying contaminated soil or groundwater in situ, and in particular, soil contaminated with volatile organic compounds such as benzene. It is suitable for the air sparging method using fine bubble-containing water that aerobically purifies the groundwater and groundwater.

2 スパージング井戸
6 土壌
8 地表
12 注入井戸
14 気体供給装置
16 微細気泡液生成装置(微細気泡液生成手段)
18 液体供給装置(液体供給手段)
20 スクリーン
22 送気パイプ
24 送液パイプ
28 コンプレッサ
30 バルブ
32 流量センサ
34 圧力センサ
36 送液ポンプ
37 制御部
38 バルブ
40 液量センサ
42 微細気泡含有栄養剤貯蔵タンク
43 微細気泡吐出ノズル
44 ガス回収機構
66 注入口
100 汚染土壌または地下水の浄化装置(実施例1)
200 汚染土壌または地下水の浄化装置(実施例2)
300 汚染土壌または地下水の浄化装置(実施例3)
W 液体
A 空気
2 Sparging well 6 Soil 8 Surface 12 Injection well 14 Gas supply device 16 Fine bubble liquid generator (fine bubble liquid generator)
18 Liquid supply device (liquid supply means)
DESCRIPTION OF SYMBOLS 20 Screen 22 Air supply pipe 24 Liquid supply pipe 28 Compressor 30 Valve 32 Flow rate sensor 34 Pressure sensor 36 Liquid supply pump 37 Control part 38 Valve 40 Liquid quantity sensor 42 Fine bubble containing nutrient storage tank 43 Fine bubble discharge nozzle 44 Gas recovery mechanism 66 Inlet 100 Purification equipment for contaminated soil or groundwater (Example 1)
200 Contaminated soil or groundwater purification equipment (Example 2)
300 Purification equipment for contaminated soil or groundwater (Example 3)
W Liquid A Air

Claims (8)

揮発性有機化合物を原位置で浄化する微細気泡液含有水によるバイオスパージング法であり、
汚染土壌に管状の注入井戸を形成する工程と、
前記微細気泡を含む液体を前記汚染土壌中の広範囲に供給する工程と、
エアースパージング法によって空気を前記汚染土壌中に前記注入井戸を介して送り込む工程とを含むことを特徴とする汚染土壌または地下水の浄化方法。
It is a biosparging method with fine bubble liquid-containing water that purifies volatile organic compounds in situ,
Forming a tubular injection well in the contaminated soil;
Supplying a liquid containing the fine bubbles to a wide area in the contaminated soil;
A method for purifying contaminated soil or groundwater, comprising a step of sending air into the contaminated soil through the injection well by an air sparging method.
前記液体に含まれる微細気泡は、ミリバブルおよび直径50μm以下のマイクロバブルや直径1μm以下のナノバブルであることを特徴とする請求項1に記載の汚染土壌または地下水の浄化方法。   The method for purifying contaminated soil or groundwater according to claim 1, wherein the fine bubbles contained in the liquid are millibubbles, microbubbles having a diameter of 50 μm or less, and nanobubbles having a diameter of 1 μm or less. 前記液体は、前記汚染土壌中に生息している微生物による前記揮発性有機化合物の分解を促進させる栄養源(分解促進物質)を含む液体であることを特徴とする請求項1または2に記載の汚染土壌または地下水の浄化方法。   The said liquid is a liquid containing the nutrient source (degradation promoting substance) which accelerates | stimulates decomposition | disassembly of the said volatile organic compound by the microorganisms which inhabit the said contaminated soil. Methods for purifying contaminated soil or groundwater. ガスを利用して前記微細気泡を製造する際に、前記微細気泡の製造に利用されなかった未利用ガスの回収および再利用を行うことを特徴とする請求項1〜3のいずれか一つに記載の汚染土壌または地下水の浄化方法。   When producing the said microbubble using gas, the collection | recovery and reuse of the unused gas which was not utilized for manufacture of the said microbubble are performed. The contaminated soil or groundwater purification method described. 注入口の深度位置が異なる前記注入井戸を前記汚染土壌に複数形成したことを特徴とする請求項1〜4のいずれか一つに記載の汚染土壌または地下水の浄化方法。   The method for purifying contaminated soil or groundwater according to any one of claims 1 to 4, wherein a plurality of the injection wells having different depth positions of the inlet are formed in the contaminated soil. 揮発性有機化合物を原位置で浄化する微細気泡液含有水によるバイオスパージング法であり、
汚染土壌に設けた管状の注入井戸と、微細気泡を含む液体を生成する微細気泡液生成手段と、前記微細気泡液生成手段で生成した微細気泡を含む液体を前記汚染土壌中に送り込む液体供給手段と、エアースパージング法によって空気を前記汚染土壌中に前記注入井戸を介して送り込む手段とを備えることを特徴とする汚染土壌または地下水の浄化装置。
It is a biosparging method with fine bubble liquid-containing water that purifies volatile organic compounds in situ,
Tubular injection well provided in the contaminated soil, fine bubble liquid generating means for generating liquid containing fine bubbles, and liquid supply means for feeding the liquid containing fine bubbles generated by the fine bubble liquid generating means into the contaminated soil And a device for purifying contaminated soil or groundwater, characterized by comprising means for sending air into the contaminated soil through the injection well by an air sparging method.
ガスを利用して前記微細気泡を製造する際に、前記微細気泡の製造に利用されなかった未利用ガスの回収および再利用を行うガス回収機構をさらに備えることを特徴とする請求項6に記載の汚染土壌または地下水の浄化装置。   The gas recovery mechanism according to claim 6, further comprising a gas recovery mechanism that recovers and reuses unused gas that has not been used for manufacturing the microbubbles when the gas is used to manufacture the microbubbles. Purification equipment for contaminated soil or groundwater. 注入口の深度位置が異なる前記注入井戸を前記汚染土壌に複数設けたことを特徴とする請求項6または7に記載の汚染土壌または地下水の浄化装置。   The apparatus for purifying contaminated soil or groundwater according to claim 6 or 7, wherein a plurality of the injection wells having different depth positions of the inlet are provided in the contaminated soil.
JP2010171161A 2009-08-07 2010-07-29 Method and apparatus for purifying contaminated soil or groundwater Active JP5737551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010171161A JP5737551B2 (en) 2009-08-07 2010-07-29 Method and apparatus for purifying contaminated soil or groundwater

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009185158 2009-08-07
JP2009185158 2009-08-07
JP2010171161A JP5737551B2 (en) 2009-08-07 2010-07-29 Method and apparatus for purifying contaminated soil or groundwater

Publications (2)

Publication Number Publication Date
JP2011050948A true JP2011050948A (en) 2011-03-17
JP5737551B2 JP5737551B2 (en) 2015-06-17

Family

ID=43940536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010171161A Active JP5737551B2 (en) 2009-08-07 2010-07-29 Method and apparatus for purifying contaminated soil or groundwater

Country Status (1)

Country Link
JP (1) JP5737551B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102921720A (en) * 2012-11-15 2013-02-13 华北电力大学 Single-well dual-irrigation biologically-enhanced spraying soil remediation device and method thereof
JP2013055936A (en) * 2011-08-18 2013-03-28 Ihi Corp Apparatus and method for producing dairy product
CN103145232A (en) * 2012-02-21 2013-06-12 清华大学 Method and system using micro-nanometer bubbles to repair underground water in in-situ mode
JP5569618B1 (en) * 2013-04-12 2014-08-13 強化土株式会社 In-situ purification method by multi-point injection
JP2014221969A (en) * 2013-05-13 2014-11-27 鹿島建設株式会社 Soil desaturation system and soil improvement method
KR20210046260A (en) * 2019-10-18 2021-04-28 고려대학교 세종산학협력단 Method for promoting natural attenuation of polluted underground water

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276841A (en) * 1996-04-12 1997-10-28 Canon Inc Method and apparatus for purifying contaminated soil
US6083407A (en) * 1995-05-05 2000-07-04 Kerfoot; William B. Microporous diffusion apparatus
US6210955B1 (en) * 1994-10-05 2001-04-03 Gas Research Institute Foam transport process for in-situ remediation of contaminated soils
JP2001129530A (en) * 1999-11-09 2001-05-15 Ohbayashi Corp Method for cleaning contaminated ground and cleaning device
JP2001347255A (en) * 2000-06-12 2001-12-18 Shinichi Ueda Method for decontaminating soil and groundwater
US20030029792A1 (en) * 2001-05-18 2003-02-13 Kerfoot William B. Environmental remediation method and apparatus
JP2003213664A (en) * 2002-01-23 2003-07-30 Yamashin Kogyo Kk Chemical injection method, chemical injection device and soil purification method
JP2005131533A (en) * 2003-10-30 2005-05-26 Toho Gas Co Ltd In situ decontamination system of contaminated ground water
JP2005230667A (en) * 2004-02-19 2005-09-02 Nishimatsu Constr Co Ltd Method for cleaning soil
JP2007514534A (en) * 2003-12-19 2007-06-07 テレコ How to remove pollutants from contaminated soil
JP2007268401A (en) * 2006-03-31 2007-10-18 Kurita Water Ind Ltd In-situ cleaning method and in-situ cleaning system of contaminated soil and/or ground water
JP2009006304A (en) * 2007-06-29 2009-01-15 Kokusai Kogyo Co Ltd Cleaning system and cleaning method for oil contaminated soil
JP2010012399A (en) * 2008-07-03 2010-01-21 Hitachi Ltd Liquid treatment apparatus
JP2010171161A (en) * 2009-01-22 2010-08-05 Tdk Corp Coil component
JP2010188220A (en) * 2009-02-16 2010-09-02 Kajima Road Co Ltd Contaminated soil cleaning method

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210955B1 (en) * 1994-10-05 2001-04-03 Gas Research Institute Foam transport process for in-situ remediation of contaminated soils
US6083407A (en) * 1995-05-05 2000-07-04 Kerfoot; William B. Microporous diffusion apparatus
JPH09276841A (en) * 1996-04-12 1997-10-28 Canon Inc Method and apparatus for purifying contaminated soil
JP2001129530A (en) * 1999-11-09 2001-05-15 Ohbayashi Corp Method for cleaning contaminated ground and cleaning device
JP2001347255A (en) * 2000-06-12 2001-12-18 Shinichi Ueda Method for decontaminating soil and groundwater
US20030029792A1 (en) * 2001-05-18 2003-02-13 Kerfoot William B. Environmental remediation method and apparatus
JP2003213664A (en) * 2002-01-23 2003-07-30 Yamashin Kogyo Kk Chemical injection method, chemical injection device and soil purification method
JP2005131533A (en) * 2003-10-30 2005-05-26 Toho Gas Co Ltd In situ decontamination system of contaminated ground water
JP2007514534A (en) * 2003-12-19 2007-06-07 テレコ How to remove pollutants from contaminated soil
JP2005230667A (en) * 2004-02-19 2005-09-02 Nishimatsu Constr Co Ltd Method for cleaning soil
JP2007268401A (en) * 2006-03-31 2007-10-18 Kurita Water Ind Ltd In-situ cleaning method and in-situ cleaning system of contaminated soil and/or ground water
JP2009006304A (en) * 2007-06-29 2009-01-15 Kokusai Kogyo Co Ltd Cleaning system and cleaning method for oil contaminated soil
JP2010012399A (en) * 2008-07-03 2010-01-21 Hitachi Ltd Liquid treatment apparatus
JP2010171161A (en) * 2009-01-22 2010-08-05 Tdk Corp Coil component
JP2010188220A (en) * 2009-02-16 2010-09-02 Kajima Road Co Ltd Contaminated soil cleaning method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055936A (en) * 2011-08-18 2013-03-28 Ihi Corp Apparatus and method for producing dairy product
CN103145232A (en) * 2012-02-21 2013-06-12 清华大学 Method and system using micro-nanometer bubbles to repair underground water in in-situ mode
CN102921720A (en) * 2012-11-15 2013-02-13 华北电力大学 Single-well dual-irrigation biologically-enhanced spraying soil remediation device and method thereof
CN102921720B (en) * 2012-11-15 2014-02-26 华北电力大学 Single-well dual-irrigation biologically-enhanced spraying soil remediation device and method thereof
JP5569618B1 (en) * 2013-04-12 2014-08-13 強化土株式会社 In-situ purification method by multi-point injection
JP2014205112A (en) * 2013-04-12 2014-10-30 強化土株式会社 Original-position decontamination method by multi-point injection
JP2014221969A (en) * 2013-05-13 2014-11-27 鹿島建設株式会社 Soil desaturation system and soil improvement method
KR20210046260A (en) * 2019-10-18 2021-04-28 고려대학교 세종산학협력단 Method for promoting natural attenuation of polluted underground water
KR102374094B1 (en) * 2019-10-18 2022-03-15 고려대학교 세종산학협력단 Method for promoting natural attenuation of polluted underground water

Also Published As

Publication number Publication date
JP5737551B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5737551B2 (en) Method and apparatus for purifying contaminated soil or groundwater
US7131638B2 (en) Deep well sparging
JP4756651B2 (en) Purification system and method for oil-contaminated soil
JP5205010B2 (en) In-situ purification method for contaminated groundwater
JP2013017937A (en) Purifying method for contaminated soil
JP2010075887A (en) Cleaning method of contaminated soil and groundwater
KR100477765B1 (en) Double-structural well for remediation of contaminated soil and groundwater
JP3711819B2 (en) Method and device for purifying contaminated ground and waste landfill
JP4375592B2 (en) Soil and groundwater purification methods
JP2005279548A (en) Method for purifying contaminated soil
JP3646589B2 (en) Purification method for contaminated ground
JP2009279489A (en) Method of purifying contaminated soil and/or ground water
JP2012035181A (en) In situ purification method of contaminated soil and groundwater
JP3930785B2 (en) Contaminated strata purification method and polluted strata purification system used therefor
JP6910738B2 (en) Purification device and purification method
JP3646590B2 (en) Organic waste treatment system
JP2001129530A (en) Method for cleaning contaminated ground and cleaning device
JP4292921B2 (en) Purification method and system for hardly air permeable and contaminated soil
JP2009006270A (en) Method and apparatus for decontaminating soil
JP2015160175A (en) Purification processing method of original position of contaminated soil and contaminated groundwater
JP2006075681A (en) Contaminated soil cleaning system and contaminated soil cleaning method
JP2005074297A (en) Cleaning method for hardly-gas/water-permeable contaminated soil and system
JP2011167596A (en) Method of cleaning underground oil-contaminated area
JP5148365B2 (en) Method for purifying contaminated soil and groundwater
JP2000176487A (en) Method of remediation of contaminated groundwater and contaminated bed and remediation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150127

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150408

R150 Certificate of patent or registration of utility model

Ref document number: 5737551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150