JP2011050451A - Walking rehabilitation apparatus - Google Patents

Walking rehabilitation apparatus Download PDF

Info

Publication number
JP2011050451A
JP2011050451A JP2009200101A JP2009200101A JP2011050451A JP 2011050451 A JP2011050451 A JP 2011050451A JP 2009200101 A JP2009200101 A JP 2009200101A JP 2009200101 A JP2009200101 A JP 2009200101A JP 2011050451 A JP2011050451 A JP 2011050451A
Authority
JP
Japan
Prior art keywords
walking
data
user
state
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009200101A
Other languages
Japanese (ja)
Other versions
JP5493121B2 (en
Inventor
Masakatsu Fujie
正克 藤江
Takeshi Ando
健 安藤
Eiichi Oki
英一 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Original Assignee
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University filed Critical Waseda University
Priority to JP2009200101A priority Critical patent/JP5493121B2/en
Publication of JP2011050451A publication Critical patent/JP2011050451A/en
Application granted granted Critical
Publication of JP5493121B2 publication Critical patent/JP5493121B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Rehabilitation Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To allow a user to measure walking data on the walking state when the user undergoes walking training without wearing any special measuring device while strengthening the muscles in the legs of the user. <P>SOLUTION: The walking rehabilitation apparatus 10 includes a treadmill 11, a detecting means 36 for detecting the state of motion of the treadmill 11, and a walking data measuring means 41 for measuring walking data representing the walking state of the user P who walks on the treadmill 11. The treadmill 11 includes a pair of left and right walking surfaces F and F on which the user's legs are respectively placed, and left and right motors 33 and 34 which activate the walking surfaces F and F independently. The detecting means 36 is configured to detect values of currents running in the motors 33 and 34 every prescribed time. The walking data measuring means 41 measures walking data by determining whether the user is in a standing state or in a swing state from the current value whenever the current value is detected by the detecting means 36. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、歩行リハビリ装置に係り、更に詳しくは、片麻痺患者等を対象に、左右非対称な歩行状態を改善するリハビリテーションを効果的に行うための歩行リハビリ装置に関する。   The present invention relates to a walking rehabilitation device, and more particularly to a walking rehabilitation device for effectively performing rehabilitation for improving a left-right asymmetric walking state for a hemiplegic patient or the like.

歩行機能の維持又は回復を目的として訓練者が利用する歩行訓練装置が知られている(特許文献1参照)。この歩行訓練装置は、左右一方の脚に歩行機能障害がある片麻痺患者等にも利用可能になっており、モータによって回転可能な左右2つのベルトと、複数の動作モードに基づき、各ベルトの動作を独立に制御する制御装置とを備えている。前記動作モードは、左右の各ベルトそれぞれについて任意に選択可能となっており、訓練者の症状に合わせた歩行訓練が可能になっている。ここで、前記動作モードとしては、入力手段から入力された速度目標でベルトを動作させる速度制御モードがあり、特許文献1には、左右両方のベルトについて前記速度制御モードを選択し、歩行機能障害のない健側の脚が載るベルトの速度よりも、歩行機能障害のある患側の脚が載るベルトの速度を遅くする使用態様が例示されている。   2. Description of the Related Art A walking training device used by a trainer for the purpose of maintaining or restoring walking function is known (see Patent Document 1). This gait training device can also be used for hemiplegic patients with impaired walking function on one of the left and right legs. Based on a plurality of operation modes, And a control device for independently controlling the operation. The operation mode can be arbitrarily selected for each of the left and right belts, and walking training in accordance with the symptoms of the trainee is possible. Here, as the operation mode, there is a speed control mode in which the belt is operated with a speed target input from the input means. In Patent Document 1, the speed control mode is selected for both the left and right belts, and the walking function is impaired. There is exemplified a usage mode in which the speed of the belt on which the affected leg having the gait function disorder is made slower than the speed of the belt on which the healthy leg without the lip is placed.

特開平10−243979号公報Japanese Patent Laid-Open No. 10-243979

しかしながら、前記歩行訓練装置にあっては、訓練者が動くベルトの上を歩行することにより脚力を回復させることが狙いであって、前記片麻痺患者等が使用した際、歩行の左右非対称性の改善に有用となる訓練時の歩行状態に関するデータを測定することはできない。つまり、片麻痺患者は、歩行時において、患側の脚の方が健側の脚よりも接地時間が短いため、患側の脚が健側に比べて接地時間がどの程度短いかを正確に把握し、患側の脚の接地時間が健側と同一になるように意識しながら訓練することが重要である。従って、前記歩行訓練装置を使って片麻痺患者等のリハビリテーションを効果的に行うには、訓練者の左右両側の歩行状態を表すデータ、すなわち、脚が接地した状態を表す立脚相及び脚が離地した状態を表す遊脚相の経時的な変化に関するデータを測定し、これら各脚の歩行状態を対比する必要がある。そこで、訓練者が前記歩行訓練装置を使って歩行訓練を行う際に、訓練者の足元に装着されたスイッチや床反力計等の測定機器を併用することにより、歩行訓練中の訓練者の前記歩行データを測定することも可能である。ところが、この場合、訓練者は、測定機器を装着しなければならず、装着に手間が掛かる他、訓練者は自然の歩行と異なる歩行になる可能性があり、また、訓練者は、測定機器の操作方法の習得が必要となり、更に、歩行者を指導する付添者は、測定結果の解析に手間がかかるという問題がある。また、前記歩行訓練装置にあっては、歩行の左右非対称性を改善する目的で、自動的に左右各ベルトの速度を自動調整する機能を備えていない。   However, in the gait training device, the aim is to restore the leg strength by walking on a moving belt by a trainee. It is not possible to measure data related to walking conditions during training that are useful for improvement. In other words, hemiplegic patients have an accurate grasp of how short the contact time of the affected leg is compared to the healthy leg when walking because the affected leg has a shorter contact time than the healthy leg. It is important to train with the awareness that the contact time of the affected leg is the same as that of the healthy side. Therefore, in order to effectively rehabilitate a hemiplegic patient or the like using the gait training device, the data indicating the training state of the left and right sides of the trainee, that is, the stance phase and the leg indicating the state where the leg is grounded are separated. It is necessary to measure data relating to the change over time of the free leg phase representing the ground state and to compare the walking state of each leg. Therefore, when a trainee performs walking training using the walking training device, by using a measuring device such as a switch or a floor reaction force meter attached to the trainer's feet, It is also possible to measure the walking data. However, in this case, the trainer must wear the measuring device, which takes time and effort, and the trainer may take a different walk from natural walking. In addition, there is a problem that an attendant who teaches pedestrians takes time to analyze measurement results. The walking training apparatus does not have a function of automatically adjusting the speeds of the left and right belts for the purpose of improving left-right asymmetry of walking.

本発明は、以上のような課題に着目して案出されたものであり、その目的は、使用者の脚力を向上させながら、使用者が特別な測定機器を装着しなくても、使用者の歩行訓練時の歩行状態に関する歩行データを測定することができ、歩行の左右非対称性の改善に有用となる歩行リハビリ装置を提供することにある。   The present invention has been devised by paying attention to the problems as described above, and its purpose is to improve the user's leg strength while the user does not wear a special measuring device. It is an object of the present invention to provide a walking rehabilitation device that can measure walking data related to a walking state during walking training and is useful for improving left-right asymmetry of walking.

(1)前記目的を達成するため、本発明は、設置場所での使用者の歩行を可能に動作するトレッドミルと、当該トレッドミルの動作状態を検出する検出手段と、当該検出手段による検出に基づき、前記トレッドミルを使って歩行する前記使用者の歩行状態を表す歩行データを測定する歩行データ測定手段とを備え、
前記トレッドミルは、前記使用者の脚が片方ずつそれぞれ載り、後方に向かって動作可能な左右一対の歩行面と、当該各歩行面をそれぞれ独立して動作させる左右両側の駆動装置とを備え、
前記検出手段は、前記各駆動装置それぞれについて、当該各駆動装置の駆動状態を表し、前記各駆動装置に作用する負荷の大きさに応じて変化する駆動データを所定時間毎に検出可能に設けられ、
前記歩行データ測定手段では、前記駆動データの検出毎に、当該駆動データから立脚状態か遊脚状態かを判定することで、前記歩行者の立脚期及び遊脚期の経時的な変化を表す歩行データを測定する、という構成を採っている。
(1) In order to achieve the above object, the present invention provides a treadmill that operates so that a user can walk at an installation location, a detection unit that detects an operating state of the treadmill, and detection by the detection unit. Based on walking data measuring means for measuring walking data representing the walking state of the user walking using the treadmill,
The treadmill includes a pair of left and right walking surfaces on which the user's legs are placed one by one and operable toward the rear, and left and right drive devices that operate the respective walking surfaces independently,
The detection means is provided for each of the drive devices so as to indicate a drive state of the drive device and to detect drive data that changes in accordance with the magnitude of the load acting on the drive devices at predetermined time intervals. ,
In the walking data measuring means, each time the driving data is detected, it is determined whether it is a standing state or a free leg state from the driving data, thereby representing a gait representing a temporal change in the stance phase and the free leg phase of the pedestrian. It is configured to measure data.

(2)また、前記歩行データ測定手段で立脚状態か遊脚状態かを判定するための前記駆動データの閾値を算出する閾値算出手段を更に備え、
前記閾値算出手段では、前記使用者の脚が前記歩行面に載らない無負荷状態のときに、当該歩行面を複数の速度で動作させた際、各速度それぞれについて前記検出手段で得られた複数の前記駆動データから、前記歩行面の速度に対する前記閾値の関数を導出し、当該関数から使用時における前記歩行面の速度に対応する閾値を決定する、という構成を併せて採用することができる。
(2) The apparatus further comprises threshold value calculation means for calculating a threshold value of the drive data for determining whether the walking data measurement means is in a standing state or a free leg state,
In the threshold calculation means, when the user's leg is in an unloaded state where the user's leg is not placed on the walking surface, the plurality of speeds obtained by the detection means for each speed when the walking surface is operated at a plurality of speeds. It is also possible to employ a configuration in which a function of the threshold value with respect to the speed of the walking surface is derived from the driving data, and a threshold value corresponding to the speed of the walking surface at the time of use is determined from the function.

(3)更に、前記検出手段からの検出値に基づいて前記各駆動装置の駆動を制御する駆動制御手段と、前記歩行データ測定手段で測定した左右それぞれの前記歩行データの対比に基づき、前記各歩行面に速度差が生じるように前記駆動制御手段に指令する速度調整指令手段とを備える、という構成を採ることが好ましい。   (3) Further, based on the comparison between the left and right walking data measured by the walking data measuring means and the driving control means for controlling the driving of each driving device based on the detection value from the detecting means, It is preferable to employ a configuration including speed adjustment commanding means for commanding the drive control means so that a speed difference is generated on the walking surface.

(4)ここで、前記速度調整指令手段では、左右の前記各歩行データの相違に応じて、歩行機能障害が生じている左右何れか一方の患側の脚が載る前記歩行面の減速量を決定し、当該減速量を前記駆動制御手段に指令する、という構成にすると良い。   (4) Here, the speed adjustment command means determines the amount of deceleration of the walking surface on which the left or right affected leg on which a gait dysfunction occurs is placed according to the difference between the left and right walking data. The deceleration amount is preferably instructed to the drive control means.

前記(1)の構成によれば、使用者が特別な測定機器を装着しなくても、歩行訓練を行いながら、使用者の歩行訓練時の歩行状態を表す歩行データを手間無く測定することができる。   According to the configuration of (1), it is possible to easily measure walking data representing a walking state at the time of walking training of the user while performing walking training even if the user does not wear a special measuring device. it can.

前記(2)のように構成することで、温度等の環境変化や経時的な劣化等によって、トレッドミルの機械要素や構成部材の状態が変化した場合でも、毎回の使用前、或いは、定期的に閾値算出手段で歩行面の速度と閾値との関係を求めることにより、トレッドミルの前記状態の変化に拘らず、立脚状態か遊脚状態かを正確に判定することができる。   With the configuration as described in (2) above, even when the mechanical elements and components of the treadmill change due to environmental changes such as temperature and deterioration over time, etc., before each use or periodically In addition, by obtaining the relationship between the speed of the walking surface and the threshold value by the threshold value calculating means, it is possible to accurately determine whether the stance is the standing leg or the swinging leg regardless of the change in the state of the treadmill.

前記(3)、(4)の構成によれば、使用者の症状に合わせて、左右の歩行面に適切な速度差を設けることができ、より効果的な使用者のリハビリテーションが期待できる。   According to the configurations of (3) and (4), an appropriate speed difference can be provided between the left and right walking surfaces according to the user's symptoms, and more effective rehabilitation of the user can be expected.

本実施形態に係る歩行リハビリ装置の概略斜視図。1 is a schematic perspective view of a walking rehabilitation device according to an embodiment. 図1のA−A線に沿う概略断面図。The schematic sectional drawing which follows the AA line of FIG. 前記歩行リハビリ装置の構成を概略的に示したブロック図。The block diagram which showed schematically the structure of the said walk rehabilitation apparatus. 測定される歩行状態を説明するためのグラフ。The graph for demonstrating the walking state measured.

以下、本発明の実施形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1には、本実施形態に係る歩行リハビリ装置の概略斜視図が示されており、図2には、図1のA−A線に沿う概略断面図が示されている。これらの図において、歩行リハビリ装置10は、片麻痺患者等の使用者Pが載ってその場で歩行可能に動作するトレッドミル11と、医師や理学療法士等の付添者Sが各種の条件や指令を入力するための入力手段13と、トレッドミル11の動作制御を行うとともに、トレッドミル11の動作状態から使用者の歩行状態に関する歩行データを測定し、当該歩行データに基づき所定の情報処理を行う制御測定処理装置14と、使用者Pの前方に配置されるとともに、制御測定処理装置14で作成された歩行状態に関する各種情報を表示するモニタ16とを備えて構成されている。   FIG. 1 is a schematic perspective view of the walking rehabilitation apparatus according to the present embodiment, and FIG. 2 is a schematic cross-sectional view taken along line AA of FIG. In these drawings, the walking rehabilitation device 10 includes a treadmill 11 on which a user P such as a hemiplegic patient is placed and operates so as to be able to walk on the spot, and an attendant S such as a doctor or a physical therapist. The input means 13 for inputting the command and the operation control of the treadmill 11 are performed, the walking data related to the user's walking state is measured from the operating state of the treadmill 11, and predetermined information processing is performed based on the walking data. The control measurement processing device 14 to be performed and the monitor 16 that is arranged in front of the user P and displays various information related to the walking state created by the control measurement processing device 14 are configured.

前記トレッドミル11は、前後方向に延びる左右一対のサイドフレーム18,19と、これらサイドフレーム18,19の間で前後方向に延びるセンターフレーム20と、左側のサイドフレーム18とセンターフレーム20の前後両側で回転可能に支持される丸棒状の左側シャフト22,23と、右側のサイドフレーム19とセンターフレーム20の前後両側で回転可能に支持される丸棒状の右側シャフト25,26と、左側のシャフト22,23に掛け回される左側の平ベルト30と、右側のシャフト25,26に掛け回される右側の平ベルト31と、各平ベルト30,31の内側に配置されて当該平ベルト30,31を支持するプレート32(図2参照)と、前側に位置する左右それぞれのシャフト22,25に連なって、当該各シャフト22,25を回転させる左右両側の駆動装置としてのモータ33,34とを備えている。なお、トレッドミル11の周囲には、使用者Pが歩行する際に使用者Pが把持可能な平行棒Hが配置されている。   The treadmill 11 includes a pair of left and right side frames 18, 19 extending in the front-rear direction, a center frame 20 extending in the front-rear direction between the side frames 18, 19, and the left side frame 18 and both front and rear sides of the center frame 20. Round bar-like left shafts 22, 23 that are rotatably supported at the right side, round bar-like right shafts 25, 26 that are rotatably supported at both the front and rear sides of the right side frame 19 and the center frame 20, and the left side shaft 22. , 23, the left flat belt 30 hung around the right shaft 25, 26, the right flat belt 31 hung around the right shaft 25, 26, and the flat belts 30, 31 disposed inside the flat belts 30, 31 respectively. The plate 32 (see FIG. 2) for supporting the shaft and the left and right shafts 22 and 25 are connected to the respective shafts. And a motor 33 as the left and right sides of the drive for rotating the 22 and 25. A parallel bar H that can be gripped by the user P when the user P walks is disposed around the treadmill 11.

前記左側の平ベルト30は、その上面が使用者Pの左脚が載る歩行面Fとなっている一方、右側の平ベルト31は、その上面が使用者Pの右脚が載る歩行面Fとなっている。また、各平ベルト30,31は、特に限定されるものではないが、大人の一般的な歩幅よりも広い長さに設定され、当該大人の片足幅よりも広い幅に設定されている。また、各平ベルト30,31は、各モータ33,34が駆動すると回転し、これによって、各歩行面F,Fは、後方に向かってスライド動作する。   The upper surface of the left flat belt 30 is a walking surface F on which the left leg of the user P is placed, while the upper surface of the right flat belt 31 is a walking surface F on which the right leg of the user P is placed. It has become. The flat belts 30 and 31 are not particularly limited, but are set to a length wider than the general stride of an adult and wider than the width of one leg of the adult. Further, the flat belts 30 and 31 rotate when the motors 33 and 34 are driven, whereby the walking surfaces F and F slide in the backward direction.

前記各モータ33,34は、付添者Sによる入力手段13の入力による速度指令等に基づき、制御測定処理装置14で駆動制御される。また、各モータ33,34には、それらの回転数に応じて電気信号を発するタコジェネレータ(図示省略)が付設されている。当該タコジェネレータからの電気信号、及びモータ33,34の回転時に流れる電流は、制御測定処理装置14に伝送されるようになっている。なお、シャフト22,25を前述のように回転できる限りにおいて、駆動装置として他のアクチュエータを採用することもできる。   The motors 33 and 34 are driven and controlled by the control measurement processing device 14 based on a speed command or the like by an input of the input means 13 by the attendant S. Each motor 33, 34 is provided with a tachometer generator (not shown) that generates an electrical signal in accordance with the number of rotations thereof. The electric signal from the tachometer generator and the current that flows when the motors 33 and 34 are rotated are transmitted to the control measurement processing device 14. As long as the shafts 22 and 25 can be rotated as described above, other actuators can be employed as the driving device.

前記入力手段13は、特に限定されるものではないが、キーボードやスイッチ類等によって構成されており、付添者Sの手入力により、制御測定処理装置14に対して後述する各種の指令を行えるようになっている。   Although the input means 13 is not particularly limited, the input means 13 is configured by a keyboard, switches, and the like, and can perform various commands to be described later to the control measurement processing device 14 by manual input of the attendant S. It has become.

前記制御測定処理装置14は、ハードウェア及びソフトウェアによって構成されており、CPU等の演算処理装置、メモリやハードディスク等の記憶装置、及びこれら各装置を以下の各手段として機能させるプログラムモジュール等から成り立っている。   The control measurement processing device 14 is configured by hardware and software, and includes an arithmetic processing device such as a CPU, a storage device such as a memory and a hard disk, and a program module that causes these devices to function as the following units. ing.

具体的に、前記制御測定処理装置14は、図3に示されるように、トレッドミル11の動作状態を検出する検出手段36と、各モータ33,34の駆動を制御する駆動制御手段37と、検出手段36からの検出値に基づいて使用者Pの両脚の歩行状態に関するデータを測定する歩行データ測定手段41と、歩行データ測定手段41で立脚状態か遊脚状態かを判定するための閾値を算出する閾値算出手段42と、歩行データ測定手段41で測定した歩行データから、モニタ16に提示する情報を作成する提示情報作成手段43と、歩行データ測定手段41で測定した歩行データに基づき、歩行面Fの速度調整を行うように駆動制御手段37に指令する速度調整指令手段45とを備えている。   Specifically, as shown in FIG. 3, the control measurement processing device 14 includes a detection unit 36 that detects an operation state of the treadmill 11, a drive control unit 37 that controls driving of the motors 33 and 34, and A walking data measuring unit 41 that measures data related to the walking state of both legs of the user P based on a detection value from the detecting unit 36, and a threshold value for determining whether the walking data measuring unit 41 is in a standing state or a free leg state. Based on the walking threshold measured by the walking data measuring means 41, the presentation information creating means 43 for creating information to be presented on the monitor 16 from the walking data measured by the walking data measuring means 41, and the walking data measured by the walking data measuring means 41. And a speed adjustment command means 45 for commanding the drive control means 37 to adjust the speed of the surface F.

前記検出手段36は、左右両側のモータ33,34の駆動状態を検出するようになっており、具体的に、各モータ33,34に設けられた前記タコジェネレータ(図示省略)からの電気信号により各モータ33,34の回転数を測定する回転数測定部50と、各モータ33,34を流れる電流値を測定する電流測定部51とにより構成される。この検出手段36では、所定の時間毎(例えば、0.01秒毎)に、各モータ33,34の回転数と電流値がそれぞれ測定されるようになっている。また、回転数測定部50では、各モータ33,34の回転数を測定することで、当該回転数から左右の各歩行面F,Fの速度が特定されることになる。また、電流測定部51で測定される電流値は、後述するように、駆動装置に作用する負荷の大きさに応じて変化する駆動データとなる。この駆動データは、採用するアクチュエータによって異なる。   The detection means 36 is adapted to detect the driving states of the left and right motors 33, 34. Specifically, the detection means 36 is based on electric signals from the tachometer (not shown) provided in each motor 33, 34. A rotation speed measurement unit 50 that measures the rotation speeds of the motors 33 and 34 and a current measurement unit 51 that measures a current value flowing through the motors 33 and 34 are configured. In this detection means 36, the rotation speed and current value of each motor 33, 34 are measured every predetermined time (for example, every 0.01 seconds). Moreover, in the rotation speed measurement part 50, the speed of each of the left and right walking surfaces F and F is specified from the rotation speed by measuring the rotation speeds of the motors 33 and 34. In addition, the current value measured by the current measuring unit 51 becomes drive data that changes according to the size of the load acting on the drive device, as will be described later. This drive data differs depending on the actuator used.

前記駆動制御手段37では、入力手段13での速度入力と前記速度調整指令手段45からの指令に基づいて、以下のように各モータ33,34の駆動が制御されるようになっている。先ず、付添者Sから、左右両側の歩行面F,Fの目標速度が入力手段13で入力されると、その目標速度で歩行面F,Fが動作するように、各モータ33,34に電圧が印加される。この際、逐次、各モータ33,34の回転数が前記回転数測定部50で測定されており、当該回転数がフィードバックされながら、電圧の印加が適正に行われる。換言すれば、前記目標速度を維持するために、各モータ33,34の回転数が目標速度に対応する一定値に維持される。具体的には、歩行面Fに作用する外力の大きさが変わり、モータ33,34にかかる負荷の大きさが変化したときに、モータ33,34に印加される電圧の大きさがそのままであると、各モータ33,34の回転数が変化してしまい、目標速度を維持できなくなる。そのため、駆動制御手段37では、回転数測定部50で測定された実際の回転数に基づき、モータ33,34に印加する電圧を増減し、目標速度に対応する回転数に維持するようになっている。   The drive control means 37 controls the driving of the motors 33 and 34 as follows based on the speed input from the input means 13 and the command from the speed adjustment command means 45. First, when the target speed of the walking surfaces F and F on the left and right sides is input from the attendant S by the input means 13, the voltages are applied to the motors 33 and 34 so that the walking surfaces F and F operate at the target speed. Is applied. At this time, the rotational speeds of the motors 33 and 34 are sequentially measured by the rotational speed measuring unit 50, and voltage is appropriately applied while the rotational speeds are fed back. In other words, in order to maintain the target speed, the rotation speeds of the motors 33 and 34 are maintained at a constant value corresponding to the target speed. Specifically, when the magnitude of the external force acting on the walking surface F changes and the magnitude of the load applied to the motors 33 and 34 changes, the magnitude of the voltage applied to the motors 33 and 34 remains unchanged. Then, the rotational speeds of the motors 33 and 34 change, and the target speed cannot be maintained. Therefore, the drive control means 37 increases or decreases the voltage applied to the motors 33 and 34 based on the actual number of revolutions measured by the revolution number measuring unit 50, and maintains the number of revolutions corresponding to the target speed. Yes.

また、前記駆動制御手段37では、後述するように速度調整指令手段45からの指令を受けると、当該指令に基づいて目標速度を補正し、前述のフィードバック制御によってモータ33,34への印加電圧を増減させ、補正された目標速度で歩行面Fを動作させるようにモータ33,34の駆動を制御する。   Further, when the drive control means 37 receives a command from the speed adjustment command means 45 as will be described later, the target speed is corrected based on the command, and the voltage applied to the motors 33 and 34 is adjusted by the feedback control described above. The driving of the motors 33 and 34 is controlled so that the walking surface F is operated at the corrected target speed.

前記歩行データ測定手段41では、入力手段13から入力された目標速度で動作する歩行面F,F上を使用者Pが歩行しているときに、使用者Pの左右両脚それぞれについて、所定時間毎に立脚状態か遊脚状態かが判定され、図4中太実線で示される歩行データ、すなわち、歩行面Fに脚が接地した状態を表す立脚相、及び歩行面Fから脚が離れた状態を表す遊脚相と経過時間との関係を表す歩行相が測定される。なお、図4は、何れか一方の脚のみについてのグラフである。   In the walking data measuring means 41, when the user P is walking on the walking surfaces F and F that operate at the target speed input from the input means 13, the left and right legs of the user P are each set at predetermined time intervals. 4 shows the walking data indicated by the thick solid line in FIG. 4, that is, the stance phase indicating the state where the leg is in contact with the walking surface F, and the state where the leg is separated from the walking surface F. The gait phase representing the relationship between the swing phase represented and the elapsed time is measured. FIG. 4 is a graph for only one of the legs.

具体的に、使用者Pが歩行面F,Fの歩行を開始した後、各モータ33,34それぞれについて、以下の処理が行われる。先ず、図4中細実線で示されるように、電流測定部51で所定の時間毎に電流値が測定され、当該各電流値は、測定開始時からの経過時間に対応して記憶される。そして、記憶された各電流値について、使用者Pの脚が歩行面Fに載っていない無負荷時の電流値となる閾値(図4中一点鎖線)を超えているか否かが判定される。このとき、電流値が閾値を超えている場合には、使用者の脚が歩行面Fに載っていてモータ33,34に負荷がかかり、歩行面Fの速度を目標速度に維持するために、前記無負荷時よりも大きな電流がモータ33,34に流れているとして、立脚状態と判定される。一方、電流値が閾値以下である場合には、使用者Pの脚が歩行面F上に載っていない無負荷時に相当するとして、遊脚状態と判断される。なお、図4に示されるように、電流値が閾値を僅かに下回る場合があるが、これは、測定誤差等の影響を考慮して閾値が高めに設定されていることによる。以上により、左右両側の脚それぞれについて、図4中太実線で示されるパルス状の歩行相が測定される。なお、当該歩行相における谷の部分は、歩行面Fに脚が接地している期間である立脚期を表す一方、同山の部分は、歩行面Fから脚が離れている期間である遊脚期を表している。   Specifically, after the user P starts walking on the walking surfaces F and F, the following processing is performed for each of the motors 33 and 34. First, as indicated by a thin solid line in FIG. 4, a current value is measured at a predetermined time by the current measuring unit 51, and each current value is stored in correspondence with an elapsed time from the start of measurement. Then, for each stored current value, it is determined whether or not the user's P leg exceeds a threshold value (dashed line in FIG. 4) that is a current value when no load is placed on the walking surface F. At this time, if the current value exceeds the threshold value, the user's leg is placed on the walking surface F, the motors 33 and 34 are loaded, and the speed of the walking surface F is maintained at the target speed. Assuming that a larger current flows through the motors 33 and 34 than when no load is applied, it is determined that the vehicle is in the standing state. On the other hand, when the current value is less than or equal to the threshold value, it is determined that the leg of the user P is in a free leg state, corresponding to a no-load time when the leg is not on the walking surface F. As shown in FIG. 4, the current value may be slightly lower than the threshold value. This is because the threshold value is set higher in consideration of the influence of measurement error and the like. As described above, the pulsed gait phase indicated by the thick solid line in FIG. 4 is measured for each of the left and right legs. The valley portion in the walking phase represents a stance phase in which the legs are in contact with the walking surface F, while the mountain portion is a free leg in which the legs are away from the walking surface F. Represents the period.

前記閾値は、前述した通り、使用者Pの脚が歩行面Fに載っていない無負荷時にモータ33,34に流れる電流値であり、歩行面Fの速度に応じて変化する。従って、歩行データ測定手段41では、次で説明するように、入力手段13で入力された目標速度に基づいて閾値算出手段42で特定される閾値が用いられる。   As described above, the threshold value is a current value that flows through the motors 33 and 34 when no load is applied when the leg of the user P is not on the walking surface F, and changes according to the speed of the walking surface F. Therefore, the walking data measuring unit 41 uses the threshold value specified by the threshold value calculating unit 42 based on the target speed input by the input unit 13 as described below.

前記閾値算出手段42では、使用者Pの脚が歩行面Fに載っていない無負荷状態で歩行面F,Fが空回転しているときに、入力手段13での入力に基づく指令によって、歩行面Fの速度に対する閾値の関係が、左右各歩行面F,Fそれぞれについて以下のように求められる。すなわち、入力手段13で閾値算出するための閾値算出モードが選択されると、左右の各歩行面F,Fが、ある速度範囲内(例えば、0km/h〜3km/h)において、一定時間毎に、一定間隔(例えば、0.25km/h)で増速するように、前記駆動制御手段37に指令され、モータ33,34の駆動が制御される。このとき、閾値算出手段42では、電流測定部51で測定されたモータ33,34の電流値が各歩行面F,Fの速度毎に集計される。ここでの集計は、同一速度のときに測定された複数の電流値から、平均μと標準偏差σが求められ、μ+3σで求められる値が当該速度における電流値として一つ特定される。その後、各歩行面F,Fの速度毎に一つずつ特定された電流値から、二次式の最小二乗法による近似手法を用い、歩行面Fの速度と前記無負荷時の電流値となる閾値との関係を表す関数が導出される。なお、ここでの近似手法は、二次式の最小二乗法に限らず、速度と電流値の関係を直線或いは曲線で近似できる限り、種々の手法を採用することができる。このように、閾値算出手段42では、左右両側の各歩行面F,Fでそれぞれ導出された前記関数が記憶される。そして、歩行データ測定手段41で歩行データを測定する際に、使用者Pが歩行訓練する際に予め指定される前記目標速度が、左右両側の前記各関数に代入されることで、前記閾値が左右それぞれ特定され、当該閾値が歩行データ測定手段41での立脚遊脚判定に用いられる。   In the threshold value calculation means 42, when the walking surfaces F and F are idling while the leg of the user P is not placed on the walking surface F, the walking is performed by a command based on the input from the input means 13. The relationship of the threshold value with respect to the speed of the surface F is obtained for each of the left and right walking surfaces F and F as follows. That is, when the threshold value calculation mode for calculating the threshold value is selected by the input means 13, the left and right walking surfaces F and F are set at regular intervals within a certain speed range (for example, 0 km / h to 3 km / h). In addition, the drive control means 37 is commanded to increase the speed at a constant interval (for example, 0.25 km / h), and the drive of the motors 33 and 34 is controlled. At this time, in the threshold value calculation means 42, the current values of the motors 33 and 34 measured by the current measuring unit 51 are totaled for each speed of the walking surfaces F and F. In this aggregation, an average μ and a standard deviation σ are obtained from a plurality of current values measured at the same speed, and one value obtained by μ + 3σ is specified as a current value at the speed. Thereafter, from the current value specified for each speed of each walking surface F, F, an approximation method by a quadratic least square method is used to obtain the speed of the walking surface F and the current value at the time of no load. A function representing the relationship with the threshold is derived. Note that the approximation method here is not limited to the quadratic least square method, and various methods can be adopted as long as the relationship between the speed and the current value can be approximated by a straight line or a curve. As described above, the threshold value calculation means 42 stores the functions derived from the walking surfaces F and F on the left and right sides. Then, when the walking data is measured by the walking data measuring means 41, the target speed specified in advance when the user P performs walking training is substituted into the functions on the left and right sides, so that the threshold value is The left and right are specified, and the threshold value is used for the standing leg swing leg determination in the walking data measuring means 41.

前記提示情報作成手段43では、歩行データ測定手段41で測定された使用者Pの左右両脚の各歩行データに基づき、使用者Pの歩行状態を表す各種情報が作成され、当該各種情報がグラフ、アイコン、文字等を使ってモニタ16に提示されるようになっている。ここで、前記各種情報は、特に限定されるものではないが、入力手段13による付添者Sの選択指令によって、モニタ16で選択的に表示される。すなわち、図4の太実線で示されるような歩行相のグラフが左右両脚それぞれ作成され、モニタ16に並列的に表示される。また、1歩行周期中の立脚期の時間や1歩行周期中の遊脚期の時間が左右両脚それぞれについて経時的に積算され、モニタ16に提示される。更に、左右各脚の歩行データを対比することにより、片脚のみが立脚期となっている単脚支持期の時間が左右両脚それぞれについて集計され、モニタ16に提示される。また、左右各脚の歩行データを対比することにより、両脚共に立脚期となっている両脚支持期の時間が集計され、モニタ16に提示される。更に、左右各脚の歩行データから左右対称性の評価指標が求められ、モニタ16に提示される。この評価指標としては、例えば、左右各脚の立脚期の時間比、着地タイミング指標、離地タイミング指標がある。   In the presentation information creation means 43, various information representing the walking state of the user P is created based on the walking data of the left and right legs of the user P measured by the walking data measurement means 41, and the various information is represented by a graph, It is presented on the monitor 16 using icons, characters and the like. Here, the various types of information are not particularly limited, but are selectively displayed on the monitor 16 in accordance with the selection command of the attendant S by the input means 13. That is, a graph of the gait phase as shown by the thick solid line in FIG. 4 is created for each of the left and right legs and displayed on the monitor 16 in parallel. Further, the time of the stance phase in one walking cycle and the time of the swing leg phase in one walking cycle are integrated over time for each of the left and right legs and presented on the monitor 16. Furthermore, by comparing the walking data of the left and right legs, the time of the single leg support period in which only one leg is in the stance phase is totaled for both the left and right legs and presented on the monitor 16. Further, by comparing the walking data of the left and right legs, the time of both leg support periods in which both legs are in the stance phase are totaled and presented on the monitor 16. Further, a left-right symmetry evaluation index is obtained from the left and right leg walking data and presented on the monitor 16. As this evaluation index, there are, for example, the time ratio of the stance phase of the left and right legs, the landing timing index, and the takeoff timing index.

前記着地タイミング指標は、脚の接地タイミングが左右対称である場合を0%とし、着地タイミングのずれをパーセンテージで表す指標である。この指標Aは、
A=((tLk−tRk)/P)−0.5)×100 (1)
で求められる。
ここで、tLk、tRkは、それぞれ左右各脚の第kサイクル目における着地の際の時間(例えば、図4中、時間t、t、t等)である。また、Pは、歩行機能障害を有する左右何れか一方の患側の脚の第kサイクルと第k−1サイクル目の接地時間差であり、図4で説明すると、時間tからtまでを第kサイクルとしたときに、時間tからtまでの経過時間である。なお、使用者Pの左右のどちらの脚が患側であるかは、付添者S等によって予め入力手段13に入力されるが、歩行データ測定手段41で求めた左右各脚の歩行データを対比し、全体的に立脚期の時間の短い方を自動的に患側と判定することも可能である。
The landing timing index is an index that represents 0% when the ground contact timing of the legs is bilaterally symmetrical and represents the deviation of the landing timing as a percentage. This indicator A is
A = ((t Lk −t Rk ) / P k ) −0.5) × 100 (1)
Is required.
Here, t Lk and t Rk are the landing times (for example, times t 1 , t 3 , t 5, etc. in FIG. 4) at the k-th cycle of the left and right legs, respectively. P k is the difference between the contact time of the k-th cycle and the (k−1) -th cycle of either the left or right affected leg having a gait dysfunction. FIG. 4 illustrates the time from t 3 to t 5 . This is the elapsed time from time t 3 to t 5 when the k-th cycle is set. Note that which of the left and right legs of the user P is the affected side is input to the input means 13 in advance by the attendant S or the like, but the walking data of the left and right legs obtained by the walking data measuring means 41 is compared. It is also possible to automatically determine the shorter side of the stance phase as the affected side automatically.

前記離地タイミング指標は、前記(1)式において、tLk、tRkを、それぞれ左右の脚の第kサイクル目における離地の際の時間(例えば、図4中、時間t、t、t等)として求められ、離地タイミングのずれをパーセンテージで表す指標である。 The take-off timing index is t Lk , t Rk in the equation (1), respectively, the time at the time of take-off at the k-th cycle of the left and right legs (for example, time t 2 , t 4 in FIG. 4). , T 6, etc.), and is an index representing the deviation in takeoff timing as a percentage.

前記速度調整指令手段45では、歩行機能障害のある左右何れか一方の患側の脚と、歩行機能障害のない左右何れか他方の健側の脚との間での立脚期の時間差が所定のタイミングで算出され、当該時間差に応じて予め設定されたゲインを乗じることで、患側の脚が載る歩行面Fの減速量が求められ、当該減速量で歩行面Fが減速するように前記駆動制御手段37に指令される。前記ゲインは、各時間差と歩行面Fの速度とをパラメータとした関数になっている。なお、減速量を求める上での患側と健側の時間差としては、その他、遊脚期の時間差や前記単脚支持期の時間差としても良く、また、これら各時間差を入力手段13で任意に選択できるようにしても良い。   In the speed adjustment command means 45, the time difference in the stance phase between the left or right affected leg with a gait impairment and the right or left healthy leg with no gait impairment is a predetermined timing. The drive control means calculates the deceleration amount of the walking surface F on which the affected leg rests by multiplying by a gain set in advance according to the time difference, and the walking surface F decelerates by the deceleration amount. 37. The gain is a function using each time difference and the speed of the walking surface F as parameters. The time difference between the affected side and the healthy side in determining the deceleration amount may be the time difference in the swing leg period or the time difference in the single leg support period, and these time differences are arbitrarily selected by the input means 13. You may be able to do it.

また、前記速度調整指令手段45では、前記減速量を次のようにして求めることも可能である。すなわち、この場合は、立脚期における患側と健側の時間差と、遊脚期における患側と健側の時間差と、前記単脚支持期における患側と健側の時間差とがそれぞれ算出され、各時間差に対し、重み付けをしたゲインを乗じた上で、それぞれ加算して総合指標が求められ、当該総合指標の大きさから予め記憶された減速量が抽出され、若しくは、前記総合指標に所定のゲインを乗じることで減速量が求められる。   Further, the speed adjustment command means 45 can obtain the deceleration amount as follows. That is, in this case, the time difference between the affected side and the healthy side in the stance phase, the time difference between the affected side and the healthy side in the swing phase, and the time difference between the affected side and the healthy side in the single leg support phase are calculated, and each time difference is calculated. On the other hand, the weighted gains are multiplied and added together to obtain a total index, and a pre-stored deceleration amount is extracted from the size of the total index, or the total index is multiplied by a predetermined gain. Thus, the deceleration amount is obtained.

更に、前記速度調整指令手段45では、使用者Pが歩行訓練する過程で、前述した各時間差が生じる限り、患側の歩行面Fの速度が徐々に減速するように、減速量を経時的に変化させる指令を駆動制御手段37に対して行っても良い。   Furthermore, the speed adjustment command means 45 changes the deceleration amount with time so that the speed of the walking surface F on the affected side is gradually reduced as long as the above-described time differences occur in the process of the user P training. The command to be performed may be issued to the drive control means 37.

また、前記速度指令調整手段45では、所定の情報を予めデータベース化し、当該データベースに基づいて、患側と健側との歩行面F,Fの所望の速度差が決定され、当該速度差から前記減速量を求めることもできる。例えば、前記データベースとして、左右両脚の各歩行データの相違を患者の状態に対応させたデータと、患者の状態毎に特定される左右の歩行面F,Fの所望速度差とが予め記憶されているとする。そして、前記データベースにより、歩行データ測定手段41で求めた使用者Pの左右両脚の各歩行データから患者の状態が特定された上で、当該状態に対応する速度差が決定され、健側の歩行面Fの速度を変えずに、患側の歩行面Fの減速量が求められる。   Further, the speed command adjusting means 45 creates a database of predetermined information in advance, determines a desired speed difference between the walking surfaces F and F between the affected side and the healthy side based on the database, and determines the deceleration from the speed difference. The amount can also be determined. For example, as the database, data in which the difference between the walking data of the left and right legs is associated with the patient's state, and the desired speed difference between the left and right walking surfaces F and F specified for each patient state are stored in advance. Suppose that Then, the patient's state is specified from the walking data of the left and right legs of the user P obtained by the walking data measuring means 41 by the database, and the speed difference corresponding to the state is determined, and the walking on the healthy side is determined. Without changing the speed of the surface F, the amount of deceleration of the affected walking surface F is obtained.

次に、本実施形態の歩行リハビリ装置10の使用手順及び作用につき説明する。   Next, the usage procedure and operation of the walking rehabilitation device 10 of this embodiment will be described.

使用者Pの使用前に、付添者S等が前記閾値算出モードを選択すると、前記閾値算出手段42で、歩行面Fの速度と無負荷時の電流値となる閾値との関係を表す関数が左右各歩行面F,Fそれぞれについて求められ、装置内に記憶される。なお、閾値算出手段42での関数の算出は、必ずしも使用者Pの使用前に行う必要はなく、一定期間毎に定期的に行っても良い。   If the attendant S or the like selects the threshold value calculation mode before the user P uses the function, the threshold value calculation means 42 represents a function that represents the relationship between the speed of the walking surface F and the threshold value that is the current value when there is no load. It is obtained for each of the left and right walking surfaces F, F and stored in the apparatus. It should be noted that the calculation of the function by the threshold value calculation means 42 is not necessarily performed before the use of the user P, and may be performed periodically at regular intervals.

その後、前記関数が求められた状態で、使用者Pが歩行面F,Fに載り、付添者Sが訓練モードを選択して任意の目標速度を入力手段13から入力すると、当該目標速度で左右両側の歩行面F,Fが動作し、使用者Pが歩行を開始する。すると、電流測定部51により、左右両側の各モータ33,34を流れる電流値が所定時間毎にそれぞれ測定され、歩行データ測定手段41では、電流値が測定される度に、測定された電流値と前記閾値が対比され、立脚状態か遊脚状態かが判定される。その結果、立脚相及び遊脚相の経時的な変化を表す歩行データが測定される。そして、提示情報作成手段43では、歩行データ測定手段41で測定された歩行データに基づき、使用者Pの歩行状態に関する各種情報が作成され、歩行の左右非対称性を把握できるようにモニタ16に表示される。同時に、速度調整指令手段45では、前記歩行データに基づき、患側の歩行面Fの減速量が求められ、駆動制御手段37では、当該減速量で減速した速度で患側の歩行面Fが動作するように、モータ33,34の駆動が制御される。   Thereafter, when the user P is placed on the walking surfaces F and F in the state where the function is obtained, and the attendant S selects the training mode and inputs an arbitrary target speed from the input means 13, the left and right at the target speed. The walking surfaces F and F on both sides operate, and the user P starts walking. Then, the current measurement unit 51 measures current values flowing through the left and right motors 33 and 34 every predetermined time, and the walking data measurement means 41 measures the current value every time the current value is measured. And the threshold value are compared with each other to determine whether the vehicle is in the standing or swinging state. As a result, gait data representing changes over time in the stance phase and the swing phase is measured. Then, the presentation information creating means 43 creates various information related to the walking state of the user P based on the walking data measured by the walking data measuring means 41 and displays it on the monitor 16 so that the left-right asymmetry of the walking can be grasped. Is done. At the same time, the speed adjustment command means 45 obtains the deceleration amount of the affected walking surface F based on the walking data, and the drive control means 37 operates the affected walking surface F at a speed reduced by the deceleration amount. In addition, the drive of the motors 33 and 34 is controlled.

従って、このような実施形態によれば、自己の歩行データに基づき、患側の歩行面Fが健側よりも遅くなるように自動設定することができ、簡単な操作で、使用者Pは、左右の各歩行面F,Fに速度差のある状態で歩行訓練を行うことができるという効果を得る。   Therefore, according to such an embodiment, it is possible to automatically set the walking surface F on the affected side to be slower than the healthy side based on the own walking data, and the user P can change the left and right by a simple operation. The walking training F can be performed in a state where there is a speed difference between the walking surfaces F and F.

なお、前記実施形態では、閾値算出手段42で歩行面Fの速度と閾値の関係を任意のタイミングで求めることが可能になっているが、閾値算出手段42を設けずに、前記速度と閾値の関係を一定として予め記憶しておくことも可能である。但し、例えば、平ベルト30,31の張力の経時的な変化、装置周囲の温度変化、或いは、平ベルト30,31とその接触部分との摩擦係数の経時的な変化等、トレッドミル11の動作性能を変化させるような要因が発生する場合がある。このような場合に、前記実施形態のように閾値算出手段42を設けると、その都度、使用者Pが歩行面Fに載っていない無負荷時の電流値である閾値を正確に求めることができ、歩行データを測定する際の立脚遊脚判定をより正確に行うことができる。   In the embodiment, the threshold calculation means 42 can determine the relationship between the speed of the walking surface F and the threshold at an arbitrary timing. However, without providing the threshold calculation means 42, It is also possible to store the relationship in advance as a constant. However, for example, the operation of the treadmill 11 such as a change in the tension of the flat belts 30 and 31 with time, a change in temperature around the apparatus, or a change in friction coefficient between the flat belts 30 and 31 and the contact portion with time. Factors that change performance may occur. In such a case, when the threshold value calculation means 42 is provided as in the above embodiment, the threshold value that is the current value at the time of no load when the user P is not placed on the walking surface F can be accurately obtained. In addition, it is possible to perform the standing leg swing leg determination more accurately when measuring the walking data.

また、前記速度調整指令手段45を省略することもできる。この場合は、付添者Sがモニタ16で使用者Pの左右の歩行状態の差を確認し、入力手段13で患側の歩行面Fの速度を任意の速度に減速するように指令することもできる。このように付添者Sが手入力で左右速度差指令を行うマニュアルモードと、速度調整指令手段45により自動で左右速度差指令を行うオートモードとを任意に選択できるようにしても良い。   Further, the speed adjustment command means 45 can be omitted. In this case, the attendant S can confirm the difference between the left and right walking states of the user P on the monitor 16 and can instruct the input means 13 to reduce the speed of the affected walking surface F to an arbitrary speed. . Thus, the manual mode in which the attendant S manually inputs the left-right speed difference command and the auto mode in which the speed adjustment command means 45 automatically issues the left-right speed difference command may be arbitrarily selected.

その他、本発明における装置各部の構成は図示構成例に限定されるものではなく、実質的に同様の作用を奏する限りにおいて、種々の変更が可能である。   In addition, the configuration of each part of the apparatus in the present invention is not limited to the illustrated configuration example, and various modifications are possible as long as substantially the same operation is achieved.

10 歩行リハビリ装置
11 トレッドミル
33 モータ(駆動装置)
34 モータ(駆動装置)
36 検出手段
37 駆動制御手段
41 歩行データ測定手段
42 閾値算出手段
45 速度調整指令手段
F 歩行面
P 使用者
10 walking rehabilitation device 11 treadmill 33 motor (drive device)
34 Motor (drive device)
36 Detection means 37 Drive control means 41 Walking data measurement means 42 Threshold calculation means 45 Speed adjustment command means F Walking surface P User

Claims (4)

設置場所での使用者の歩行を可能に動作するトレッドミルと、当該トレッドミルの動作状態を検出する検出手段と、当該検出手段による検出に基づき、前記トレッドミルを使って歩行する前記使用者の歩行状態を表す歩行データを測定する歩行データ測定手段とを備え、
前記トレッドミルは、前記使用者の脚が片方ずつそれぞれ載り、後方に向かって動作可能な左右一対の歩行面と、当該各歩行面をそれぞれ独立して動作させる左右両側の駆動装置とを備え、
前記検出手段は、前記各駆動装置それぞれについて、当該各駆動装置の駆動状態を表し、前記各駆動装置に作用する負荷の大きさに応じて変化する駆動データを所定時間毎に検出可能に設けられ、
前記歩行データ測定手段では、前記駆動データの検出毎に、当該駆動データから立脚状態か遊脚状態かを判定することで、前記歩行者の立脚期及び遊脚期の経時的な変化を表す歩行データを測定することを特徴とする歩行リハビリ装置。
A treadmill that operates to allow the user to walk at the installation location, a detection unit that detects an operating state of the treadmill, and a user's walking that uses the treadmill based on detection by the detection unit. Walking data measuring means for measuring walking data representing a walking state,
The treadmill includes a pair of left and right walking surfaces on which the user's legs are placed one by one and operable toward the rear, and left and right drive devices that operate the respective walking surfaces independently,
The detection means is provided for each of the drive devices so as to indicate a drive state of the drive device and to detect drive data that changes in accordance with the magnitude of the load acting on the drive devices at predetermined time intervals. ,
In the walking data measuring means, each time the driving data is detected, it is determined whether it is a standing state or a free leg state from the driving data, thereby representing a gait representing a temporal change in the stance phase and the free leg phase of the pedestrian. A walking rehabilitation device characterized by measuring data.
前記歩行データ測定手段で立脚状態か遊脚状態かを判定するための前記駆動データの閾値を算出する閾値算出手段を更に備え、
前記閾値算出手段では、前記使用者の脚が前記歩行面に載らない無負荷状態のときに、当該歩行面を複数の速度で動作させた際、各速度それぞれについて前記検出手段で得られた複数の前記駆動データから、前記歩行面の速度に対する前記閾値の関数を導出し、当該関数から使用時における前記歩行面の速度に対応する閾値を決定することを特徴とする請求項1記載の歩行リハビリ装置。
A threshold value calculating means for calculating a threshold value of the drive data for determining whether the walking data measuring means is in a standing state or a free leg state;
In the threshold calculation means, when the user's leg is in an unloaded state where the user's leg is not placed on the walking surface, the plurality of speeds obtained by the detection means for each speed when the walking surface is operated at a plurality of speeds. 2. The walking rehabilitation according to claim 1, wherein a function of the threshold for the speed of the walking surface is derived from the driving data, and a threshold corresponding to the speed of the walking surface at the time of use is determined from the function. apparatus.
前記検出手段からの検出値に基づいて前記各駆動装置の駆動を制御する駆動制御手段と、前記歩行データ測定手段で測定した左右それぞれの前記歩行データの対比に基づき、前記各歩行面に速度差が生じるように前記駆動制御手段に指令する速度調整指令手段とを備えたことを特徴とする請求項1又は2記載の歩行リハビリ装置。   Based on the comparison between the left and right walking data measured by the walking data measuring means and the driving control means for controlling the driving of each driving device based on the detection value from the detecting means, the speed difference between the walking surfaces. The walking rehabilitation device according to claim 1, further comprising a speed adjustment command unit that commands the drive control unit to cause occurrence of a problem. 前記速度調整指令手段では、左右の前記各歩行データの相違に応じて、歩行機能障害が生じている左右何れか一方の患側の脚が載る前記歩行面の減速量を決定し、当該減速量を前記駆動制御手段に指令することを特徴とする請求項3記載の歩行リハビリ装置。   The speed adjustment command means determines a deceleration amount of the walking surface on which the left or right affected leg on which a gait dysfunction occurs according to a difference between the left and right walking data, and determines the deceleration amount. The walking rehabilitation device according to claim 3, wherein the driving control means is commanded.
JP2009200101A 2009-08-31 2009-08-31 Walking rehabilitation device Expired - Fee Related JP5493121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009200101A JP5493121B2 (en) 2009-08-31 2009-08-31 Walking rehabilitation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009200101A JP5493121B2 (en) 2009-08-31 2009-08-31 Walking rehabilitation device

Publications (2)

Publication Number Publication Date
JP2011050451A true JP2011050451A (en) 2011-03-17
JP5493121B2 JP5493121B2 (en) 2014-05-14

Family

ID=43940110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009200101A Expired - Fee Related JP5493121B2 (en) 2009-08-31 2009-08-31 Walking rehabilitation device

Country Status (1)

Country Link
JP (1) JP5493121B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101259039B1 (en) 2011-11-18 2013-04-29 이호재 Walking information analyzing treadmill and analyzing method thererof
JP2014233578A (en) * 2013-06-05 2014-12-15 トヨタ自動車株式会社 Treadmill
EP3031500A1 (en) 2014-12-09 2016-06-15 Toyota Jidosha Kabushiki Kaisha Walking training system
JP2017035220A (en) * 2015-08-07 2017-02-16 トヨタ自動車株式会社 Walking training device and walking training method thereof
JP2017158689A (en) * 2016-03-08 2017-09-14 トヨタ自動車株式会社 Gait training system
IT201700091682A1 (en) * 2017-08-08 2019-02-08 Technogym Spa Method for determining the steps of a user's run on a rotating belt and a rotating belt implementing this method
KR20190053455A (en) * 2017-11-10 2019-05-20 인하대학교 산학협력단 A measuring equipment and measuring method for imbalance of walking
KR102023976B1 (en) * 2018-03-15 2019-09-24 (주)카이로스 treadmill
KR20200120426A (en) * 2019-04-12 2020-10-21 조현상 Analyzing apparatus based on power consumption information of treadmill
US10874576B2 (en) 2015-08-17 2020-12-29 Toyota Jidosha Kabushiki Kaisha Gait state determination apparatus, gait state determination method, and walking training apparatus
WO2022097543A1 (en) * 2020-11-09 2022-05-12 国立研究開発法人産業技術総合研究所 Exercise assistance device and exercise assistance method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002345994A (en) * 2001-05-30 2002-12-03 Hitachi Ltd Treadmill
JP2007203754A (en) * 2006-01-30 2007-08-16 Univ Waseda Movement supporting apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002345994A (en) * 2001-05-30 2002-12-03 Hitachi Ltd Treadmill
JP2007203754A (en) * 2006-01-30 2007-08-16 Univ Waseda Movement supporting apparatus

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101259039B1 (en) 2011-11-18 2013-04-29 이호재 Walking information analyzing treadmill and analyzing method thererof
JP2014233578A (en) * 2013-06-05 2014-12-15 トヨタ自動車株式会社 Treadmill
EP3031500A1 (en) 2014-12-09 2016-06-15 Toyota Jidosha Kabushiki Kaisha Walking training system
US9782659B2 (en) 2014-12-09 2017-10-10 Toyota Jidosha Kabushiki Kaisha Walking training system
JP2017035220A (en) * 2015-08-07 2017-02-16 トヨタ自動車株式会社 Walking training device and walking training method thereof
CN106420255A (en) * 2015-08-07 2017-02-22 丰田自动车株式会社 Walking training apparatus and walking training method therefor
US10874576B2 (en) 2015-08-17 2020-12-29 Toyota Jidosha Kabushiki Kaisha Gait state determination apparatus, gait state determination method, and walking training apparatus
JP2017158689A (en) * 2016-03-08 2017-09-14 トヨタ自動車株式会社 Gait training system
WO2019030687A1 (en) * 2017-08-08 2019-02-14 Technogym S.P.A. Method for determining running phases of a user on a treadmill and treadmill implementing such method
IT201700091682A1 (en) * 2017-08-08 2019-02-08 Technogym Spa Method for determining the steps of a user's run on a rotating belt and a rotating belt implementing this method
US11484754B2 (en) 2017-08-08 2022-11-01 Technogym S.P.A. Method for determining running phases of a user on a treadmill and treadmill implementing such method
KR20190053455A (en) * 2017-11-10 2019-05-20 인하대학교 산학협력단 A measuring equipment and measuring method for imbalance of walking
KR102062786B1 (en) * 2017-11-10 2020-02-11 인하대학교 산학협력단 A measuring equipment and measuring method for imbalance of walking
KR102023976B1 (en) * 2018-03-15 2019-09-24 (주)카이로스 treadmill
KR20200120426A (en) * 2019-04-12 2020-10-21 조현상 Analyzing apparatus based on power consumption information of treadmill
WO2020209595A3 (en) * 2019-04-12 2020-11-26 Cho Hyun Sang Analysis device based on power consumption information about treadmill
KR102231213B1 (en) * 2019-04-12 2021-03-23 조현상 Analyzing apparatus based on power consumption information of treadmill
US20220163575A1 (en) * 2019-04-12 2022-05-26 Hyun Sang Cho Analysis device based on power consumption information about treadmill
WO2022097543A1 (en) * 2020-11-09 2022-05-12 国立研究開発法人産業技術総合研究所 Exercise assistance device and exercise assistance method

Also Published As

Publication number Publication date
JP5493121B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5493121B2 (en) Walking rehabilitation device
TWI750675B (en) Rowing exercise machines having a configurable rowing feel
JP6184349B2 (en) Control device and control method for exercise therapy apparatus
US8574131B2 (en) Sensing applications for exercise machines
TW201521831A (en) Training apparatus
WO2020026440A1 (en) Exercise therapy device
US11711035B2 (en) Exercise machine with a variable load provided by an electric motor
JP2002508280A (en) Control for drive units supported by muscle and engine power
GB2596690A (en) Torque overdrive stair climber
KR102014113B1 (en) Saddle Movable Indoor Bicycle Exercise Device
JP2004173862A (en) Cycle type ergometer
CN111840898B (en) Manpower running machine capable of setting movement speed
KR20040067524A (en) The Automatic Speed-Regulating Treadmill
JP6926914B2 (en) Walking training system and its control method
JP2016073525A (en) Dynamic balance ability evaluation device and walking training system using the same
KR101738019B1 (en) Apparatus for exercising in the interior of a car
US11406871B2 (en) Ergometer
CN104258541B (en) For the automatic speed governing device of treadmill
JPH1176453A (en) Stride and number-of-steps detecting device and safety device for running machine
JP2716085B2 (en) Posture stability evaluation device
KR20150138089A (en) Electric bicycle
JP3475445B2 (en) Exercise load device
CN107866029B (en) Physical training equipment and speed adjusting method thereof
JP2006320612A (en) Training machine system
TWI295930B (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140206

R150 Certificate of patent or registration of utility model

Ref document number: 5493121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees