JP2011049111A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2011049111A
JP2011049111A JP2009198567A JP2009198567A JP2011049111A JP 2011049111 A JP2011049111 A JP 2011049111A JP 2009198567 A JP2009198567 A JP 2009198567A JP 2009198567 A JP2009198567 A JP 2009198567A JP 2011049111 A JP2011049111 A JP 2011049111A
Authority
JP
Japan
Prior art keywords
bis
substituents
aqueous electrolyte
chemical formula
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009198567A
Other languages
Japanese (ja)
Other versions
JP5023120B2 (en
Inventor
Yuki Watanabe
佑樹 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009198567A priority Critical patent/JP5023120B2/en
Priority to CN201010267955.5A priority patent/CN102005607B/en
Priority to US12/869,938 priority patent/US8361653B2/en
Publication of JP2011049111A publication Critical patent/JP2011049111A/en
Application granted granted Critical
Publication of JP5023120B2 publication Critical patent/JP5023120B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide in a simple method a nonaqueous electrolyte battery having a function of suppressing for a long period an adverse effect of acid such as hydrogen fluoride generated in hydrolysis or the like of lithium salt. <P>SOLUTION: The nonaqueous electrolyte battery includes an anode having a carbon material capable of doping/undoping lithium as an anode active material, a cathode having a composite oxide between lithium and a transition metal as a cathode active material, and a nonaqueous electrolyte solution. The nonaqueous electrolyte solution contains at least one diamine compounds as expressed in a prescribed formula in a range of 0.001 wt.% or more and 5 wt.% or less. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、非水電解質電池に関する。更に詳しくは、本発明は、リチウムを正負極間でやり取りするリチウムイオン電池として使用可能な非水電解質電池に関する。   The present invention relates to a non-aqueous electrolyte battery. More specifically, the present invention relates to a non-aqueous electrolyte battery that can be used as a lithium ion battery that exchanges lithium between positive and negative electrodes.

近年、軽量で高いエネルギー密度を有し、自己放電も少ないという優れた特性を有することから、非水電解質電池の研究・開発が盛んに行われている。
特に、化学的及び物理的に予め負極活物質又は正極活物質にドープしたリチウムイオンが脱ドープとドープを繰り返すことにより、充放電反応が進行するリチウムイオン二次電池は、他の非水電解質電池である鉛電池やニッケルカドミウム電池と比較して、大きなエネルギー密度が得られる。そのため、リチウムイオン二次電池は、携帯電話のようなポータブル電子機器に搭載される電源としての需要を伸ばしている。そして、ポータブル電子機器の更なる小型化及び軽量化に伴って、電源である非水電解質電池にも更なる小型化及び高エネルギー密度化が求められている。
In recent years, research and development of nonaqueous electrolyte batteries have been actively conducted because of their excellent characteristics of being lightweight, having a high energy density, and having little self-discharge.
In particular, a lithium ion secondary battery in which a charge / discharge reaction proceeds by repeating de-doping and doping chemically and physically preliminarily doped with a negative electrode active material or a positive electrode active material is another non-aqueous electrolyte battery. Compared to lead batteries and nickel cadmium batteries, a large energy density can be obtained. Therefore, the demand for lithium ion secondary batteries is increasing as a power source installed in portable electronic devices such as mobile phones. As portable electronic devices are further reduced in size and weight, non-aqueous electrolyte batteries that are power sources are also required to be further reduced in size and energy density.

また、地球温暖化の原因と言われている二酸化炭素の分散型排出源である自動車から排出される二酸化炭素を削減するためにハイブリッド自動車や電気自動車を実用化することが望まれている。この実用化は、重量エネルギー密度及び体積エネルギー密度の高いリチウムイオン二次電池の開発が鍵となっている。更に、持続可能な社会を成立させるには、供給エネルギーに占める自然エネルギーの使用割合を高めることが不可欠であり、自然エネルギーの供給源の一つとして太陽電池が一般に普及してきている。ここで、太陽電池で発電した電気を保存する部材としても、エネルギー密度、容量の点からリチウムイオン二次電池が有力な部材として考えられている。このようにリチウムイオン二次電池は様々な分野の発展に影響を与える。   In addition, it is desired to put hybrid cars and electric cars into practical use in order to reduce carbon dioxide emitted from automobiles, which are the distributed emission source of carbon dioxide, which is said to cause global warming. The key to this practical use is the development of a lithium ion secondary battery having a high weight energy density and volume energy density. Furthermore, in order to establish a sustainable society, it is indispensable to increase the use ratio of natural energy in the supplied energy, and solar cells are generally spread as one of the sources of natural energy. Here, as a member for storing electricity generated by the solar cell, a lithium ion secondary battery is considered as an effective member in terms of energy density and capacity. Thus, the lithium ion secondary battery affects the development of various fields.

ところで、一般的にリチウムイオン二次電池は、負極、正極、セパレータ、電解質又は電解液、それらを収めるための電池容器で構成される。リチウムイオン二次電池に使用する電解液としては、炭酸エチレン、炭酸プロピレン、炭酸ジエチル等の炭酸エステル系非水溶媒に、電解質塩としてLiPF6、LiBF4、LiCF3SO3、LiN(CF3SO22、LiN(C25SO22、LiN(CF3SO2)(C49SO2)、LiC(CF3SO23、LiC(C25SO23、LiAsF6、LiClO4、Li210Cl10、Li212Cl12等及びそれらの混合物を溶解させたものが例示される。 Incidentally, a lithium ion secondary battery is generally composed of a negative electrode, a positive electrode, a separator, an electrolyte or an electrolytic solution, and a battery container for housing them. As an electrolytic solution used for the lithium ion secondary battery, carbonate ester-based nonaqueous solvents such as ethylene carbonate, propylene carbonate, and diethyl carbonate are used, and electrolyte salts such as LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12, and the like and mixtures thereof are exemplified.

しかし、従来の電解質塩を溶解させた電解液では、優れた導電率を持ちつつ、サイクル特性及び保存安定性を同時に満足させることができなかった。サイクル特性や保存安定性等の電池性能を悪化させる原因としては、電解液中のリチウム塩の熱分解又は加水分解により生成するフッ化リチウムLiFやフッ化水素HFが考えられる。そのため、長期に渡ってフッ化水素の影響を充分に抑える技術が求められていた。   However, an electrolytic solution in which a conventional electrolyte salt is dissolved cannot satisfy cycle characteristics and storage stability at the same time while having excellent conductivity. As a cause of deteriorating battery performance such as cycle characteristics and storage stability, lithium fluoride LiF and hydrogen fluoride HF generated by thermal decomposition or hydrolysis of a lithium salt in the electrolytic solution can be considered. Therefore, a technique for sufficiently suppressing the influence of hydrogen fluoride over a long period of time has been demanded.

このような求めに対して、特表2001−506052号公報(特許文献1)においては、電池内に発生する酸を中和することで、酸による分解反応を抑える技術が提案されている。具体的には、金属含有塩基、炭酸塩、金属酸化物、水酸化物、アミン、有機塩基等の塩基性化合物を電解液に含有させる技術が記載されている。   In response to such a demand, Japanese Patent Publication No. 2001-506052 (Patent Document 1) proposes a technique for suppressing a decomposition reaction by an acid by neutralizing an acid generated in the battery. Specifically, a technique is described in which a basic compound such as a metal-containing base, carbonate, metal oxide, hydroxide, amine, or organic base is contained in the electrolytic solution.

特表2001−506052号公報JP-T-2001-506052

ところで、比較的高い導電率を示し、電位的に安定であるLiPF6が溶解されている電解液は優れた電解液であると言えるものの、この電解液は熱的安定性、サイクル特性及び保存特性に劣るといった問題があった。これは、電解液中のLiPF6が熱分解することと、加水分解により生成するフッ化リチウム(LiF)やフッ化水素(HF)が電池性能に悪影響を与えることに起因すると考えられる。非水であるはずの電解液中に微量の水分が不可避的に混入していたり、あるいは他の電池材料に水分が吸着していたり、あるいは電池製造環境中の水分を吸着したりすると、以下の反応式(1)に示すような加水分解反応が起こり、フッ化水素が発生する。
LiPF6+H2O → 2HF+LiF+POF3 …(1)
また、電池製造時に発見できない程度のピンホールが電池容器に存在する場合や、電池製造時の封止が不充分であった場合、長期保存や長期使用において電池容器内に水分が徐々に浸入し、LiPF6を加水分解させる可能性がある。このようにして発生するフッ化水素は電池を構成する材料を劣化させ、電池性能を劣化させる問題がある。例えば、構成材料が劣化した結果、内部抵抗が悪化することに伴い充放電効率が低下する。
By the way, although it can be said that the electrolytic solution in which LiPF 6 that is relatively high in electrical conductivity and stable in potential is dissolved is an excellent electrolytic solution, this electrolytic solution has thermal stability, cycle characteristics and storage characteristics. There was a problem of being inferior. This is considered to be due to the fact that LiPF 6 in the electrolytic solution is thermally decomposed and that lithium fluoride (LiF) and hydrogen fluoride (HF) generated by hydrolysis adversely affect the battery performance. If a minute amount of moisture is inevitably mixed in the electrolyte solution that should be non-aqueous, or if moisture is adsorbed by other battery materials, or if moisture in the battery manufacturing environment is adsorbed, Hydrolysis as shown in the reaction formula (1) occurs, and hydrogen fluoride is generated.
LiPF 6 + H 2 O → 2HF + LiF + POF 3 (1)
In addition, if there are pinholes in the battery container that cannot be found at the time of battery manufacture, or if the sealing at the time of battery manufacture is insufficient, moisture will gradually enter the battery container during long-term storage or long-term use. LiPF 6 may be hydrolyzed. The hydrogen fluoride generated in this way has a problem of deteriorating the material constituting the battery and degrading the battery performance. For example, as a result of the deterioration of the constituent materials, the charge / discharge efficiency decreases as internal resistance deteriorates.

しかし、特許文献1に記載の方法では、電池の充放電を行うと、電極表面での酸化還元反応に伴う塩基性化合物の分解や、正極での塩基性化合物からの電子の引き抜きにより、酸を中和する効果を長期的に得ることが困難であった。加えて、塩基性化合物の分解により生じた分解物が充放電効率を大きく低下させるという課題もあった。
以上から本発明は、リチウム塩の加水分解によって発生したフッ化水素等の酸の悪影響を長期間抑制する機能を有した非水電解質電池を、簡便な方法で提供することを課題とする。
However, in the method described in Patent Document 1, when the battery is charged / discharged, the acid is removed by decomposition of the basic compound accompanying the oxidation-reduction reaction on the electrode surface or extraction of electrons from the basic compound at the positive electrode. It was difficult to obtain the effect of neutralization in the long term. In addition, the decomposition product produced by the decomposition of the basic compound has a problem that the charge / discharge efficiency is greatly reduced.
In view of the above, an object of the present invention is to provide a nonaqueous electrolyte battery having a function of suppressing the adverse effect of an acid such as hydrogen fluoride generated by hydrolysis of a lithium salt for a long period of time by a simple method.

かくして本発明によれば、リチウムをドープ・脱ドープ可能な炭素材料を負極活物質として有する負極と、リチウムと遷移金属との複合酸化物を正極活物質として有する正極と、非水電解液とを備え、
前記非水電解液が、化学式(1)
Thus, according to the present invention, a negative electrode having a carbon material that can be doped and dedoped with lithium as a negative electrode active material, a positive electrode having a composite oxide of lithium and a transition metal as a positive electrode active material, and a non-aqueous electrolyte Prepared,
The non-aqueous electrolyte has the chemical formula (1)

Figure 2011049111
Figure 2011049111

及び、化学式(2) And chemical formula (2)

Figure 2011049111
Figure 2011049111

(式(1)及び(2)中、Eは−CH2−,−CH=CH−,−O−,−S−,−Se−のいずれかであり、置換基R1乃至R4は、Cn2n+1で表される炭素数4乃至8(n=4〜8)の直鎖アルキル基又は炭素数3乃至8(n=3〜8)の分岐状アルキル基であり、置換基R5は、水素原子又はメトキシ基である)
で表されるジアミン化合物を少なくとも1種、0.001wt%以上、5wt%以下の範囲で含有していることを特徴とする非水電解質電池が提供される。
(In the formulas (1) and (2), E is any of —CH 2 —, —CH═CH—, —O—, —S—, —Se—, and the substituents R 1 to R 4 are A linear alkyl group having 4 to 8 carbon atoms (n = 4 to 8) or a branched alkyl group having 3 to 8 carbon atoms (n = 3 to 8) represented by C n H 2n + 1 , and a substituent R 5 is a hydrogen atom or a methoxy group)
A non-aqueous electrolyte battery comprising at least one diamine compound represented by the formula: 0.001 wt% or more and 5 wt% or less is provided.

本発明の非水電解質電池は、リチウムをドープ・脱ドープ可能な炭素材料を負極活物質として有する負極と、リチウムと遷移金属との複合酸化物を正極活物質として有する正極と、非水電解液とを備えている。使用される非水電解液は、特定の化学式(1)及び/又は(2)で表されるジアミン化合物を少なくとも1種、0.001wt%以上、5wt%以下の範囲で含有している。
上記特定の構造のジアミン化合物は、酸を強く捕捉する性質を有している。そのため、非水電解液中でフッ化水素のような酸を捕捉できる。このように酸による悪影響を抑制できる結果、電池設計を変更せずに充放電特性を低下させることなく、保存安定性を向上させることが可能となる。また、酸と反応する塩基性部位が置換基によって覆われているために、電極表面上での塩基性物質の分解反応を抑制できる。そのため、長期に渡って酸の影響を抑制できる。従って、本発明によれば、酸の悪影響を長期間抑制する機能を有する非水電解質電池を提供することが可能である。
The non-aqueous electrolyte battery of the present invention includes a negative electrode having a carbon material capable of doping and dedoping lithium as a negative electrode active material, a positive electrode having a composite oxide of lithium and a transition metal as a positive electrode active material, and a non-aqueous electrolyte. And. The non-aqueous electrolyte used contains at least one diamine compound represented by the specific chemical formula (1) and / or (2) in a range of 0.001 wt% to 5 wt%.
The diamine compound having the specific structure has a property of strongly capturing an acid. Therefore, an acid such as hydrogen fluoride can be captured in the non-aqueous electrolyte. Thus, as a result of suppressing the adverse effect due to the acid, it is possible to improve the storage stability without changing the battery design and without deteriorating the charge / discharge characteristics. Moreover, since the basic site | part which reacts with an acid is covered with the substituent, the decomposition reaction of the basic substance on the electrode surface can be suppressed. Therefore, the influence of an acid can be suppressed over a long period of time. Therefore, according to the present invention, it is possible to provide a nonaqueous electrolyte battery having a function of suppressing the adverse effects of acids for a long period of time.

また、非水電解液が、ジアミン化合物を2種以上含み、2種以上のジアミン化合物の含有量の合計が、0.001wt%以上、5wt%以下の範囲であれば、より酸の悪影響を抑制できる。その結果、更にサイクル特性及び保存安定性に優れた非水電解質電池を提供できる。   In addition, if the non-aqueous electrolyte contains two or more diamine compounds and the total content of the two or more diamine compounds is in the range of 0.001 wt% or more and 5 wt% or less, the adverse effect of the acid is further suppressed. it can. As a result, it is possible to provide a nonaqueous electrolyte battery that is further excellent in cycle characteristics and storage stability.

更に、非水電解液が、化学式(1)で表されるジアミン化合物から2種以上、化学式(2)で表されるジアミン化合物から2種以上、又は化学式(1)で表されるジアミン化合物と化学式(2)で表されるジアミン化合物とをそれぞれ1種類以上含むことにより、より酸の悪影響を抑制できる。加えて、捕捉速度の異なるジアミン化合物を組み合わせることで、長期に渡って酸の悪影響を抑制できる。その結果、更にサイクル特性及び保存安定性に優れた非水電解質電池を提供できる。   Furthermore, the non-aqueous electrolyte is a diamine compound represented by a chemical formula (1) or two or more diamine compounds represented by a chemical formula (2), or a diamine compound represented by a chemical formula (1) By including at least one diamine compound represented by the chemical formula (2), the adverse effect of the acid can be further suppressed. In addition, by combining diamine compounds with different capture rates, the adverse effects of acids can be suppressed over a long period of time. As a result, it is possible to provide a nonaqueous electrolyte battery that is further excellent in cycle characteristics and storage stability.

また更に、非水電解液が、全て同一の置換基R1乃至R4を有する化学式(1)及び化学式(2)で表されるジアミン化合物を少なくとも1種含有していれば、より酸の悪影響を抑制できる。その結果、更にサイクル特性及び保存安定性に優れた非水電解質電池を提供できる。
更にまた、非水電解液が、化学式(1)及び化学式(2)で表されるジアミン化合物を少なくとも1種、0.001wt%以上、2wt%以下の範囲で含有していれば、より酸の悪影響を抑制できる。その結果、更にサイクル特性及び保存安定性に優れた非水電解質電池を提供できる。
非水電解液が、LiPF6を含有することで、酸の悪影響を抑制しつつ、高い導電性を実現できる。
Furthermore, if the nonaqueous electrolytic solution contains at least one diamine compound represented by the chemical formula (1) and the chemical formula (2) all having the same substituents R 1 to R 4 , the adverse effect of the acid is further increased. Can be suppressed. As a result, it is possible to provide a nonaqueous electrolyte battery that is further excellent in cycle characteristics and storage stability.
Furthermore, if the non-aqueous electrolyte contains at least one diamine compound represented by the chemical formula (1) and the chemical formula (2) in a range of 0.001 wt% or more and 2 wt% or less, more acid. Adverse effects can be suppressed. As a result, it is possible to provide a nonaqueous electrolyte battery that is further excellent in cycle characteristics and storage stability.
When the non-aqueous electrolyte contains LiPF 6 , high conductivity can be realized while suppressing the adverse effect of the acid.

以下、本発明にかかる非水電解質電池を具体的に説明する。
本発明の非水電解質電池は、リチウムをドープ・脱ドープ可能な炭素材料を負極活物質として有する負極と、リチウムと遷移金属との複合酸化物を正極活物質として有する正極と、非水電解液とを備えている。
Hereinafter, the nonaqueous electrolyte battery according to the present invention will be specifically described.
The non-aqueous electrolyte battery of the present invention includes a negative electrode having a carbon material capable of doping and dedoping lithium as a negative electrode active material, a positive electrode having a composite oxide of lithium and a transition metal as a positive electrode active material, and a non-aqueous electrolyte. And.

(非水電解液)
非水電解液は、電解質塩が非水溶媒に溶解されてなる電解液である。
非水溶媒としては、従来公知のものをいずれも用いることが可能である。具体的な非水溶媒として、炭酸プロピレン、炭酸エチレン等の環状炭酸エステルや、炭酸ジエチルのような鎖状炭酸エステル、プロピオン酸メチルや酪酸メチル等のカルボン酸エステル、γ−ブチロラクトン、スルホラン、2−メチルテトラヒドロフラン、ジメトキシエタン等のエーテル類等が挙げられる。特に、酸化安定性を考慮すると、非水溶媒として炭酸エステルを用いることが好ましい。これらの非水溶媒は、単独で用いることも可能であるし、複数種を混合して用いることも可能である。
(Nonaqueous electrolyte)
The nonaqueous electrolytic solution is an electrolytic solution in which an electrolyte salt is dissolved in a nonaqueous solvent.
Any conventionally known non-aqueous solvent can be used. Specific non-aqueous solvents include cyclic carbonates such as propylene carbonate and ethylene carbonate, chain carbonates such as diethyl carbonate, carboxylic acid esters such as methyl propionate and methyl butyrate, γ-butyrolactone, sulfolane, 2- And ethers such as methyltetrahydrofuran and dimethoxyethane. In particular, in view of oxidation stability, it is preferable to use a carbonate ester as the non-aqueous solvent. These non-aqueous solvents can be used alone or in combination of two or more.

電解質塩としては、従来公知のものを用いることが可能である。具体的な電解質塩として、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO22、LiN(C25SO22、LiN(CF3SO2)(C49SO2)、LiC(CF3SO23、LiC(C25SO23、LiAsF6、LiClO4、Li210Cl10、Li212Cl12等が挙げられる。これらの電解質塩は、単独で用いることも可能であるし、複数種を混合して用いることも可能である。電解質塩としては、非水溶媒への溶解性が高く、高い導電率が得られる観点から、LiPF6を用いることが好ましい。 As the electrolyte salt, a conventionally known one can be used. Specific electrolyte salts include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3, LiAsF 6, LiClO 4, Li 2 B 10 Cl 10, Li 2 B 12 Cl 12 and the like. These electrolyte salts can be used alone or in combination of a plurality of types. As the electrolyte salt, LiPF 6 is preferably used from the viewpoint of high solubility in a non-aqueous solvent and high electrical conductivity.

非水電解液中の電解質塩の濃度は、いずれの電解質塩を用いた場合でも、0.2mol/l〜2.0mol/lの範囲、あるいは、0.2mol/kg〜2.0mol/kgの範囲とすることが好ましい。濃度が、0.2mol/l、あるいは、0.2mol/kgより小さい場合、電解液中のリチウムイオン濃度が低いため、高レートの充放電反応を行う際に電池性能を充分に発揮できないことがある。2.0mol/l、あるいは、2.0mol/kgより大きい場合、電解液の粘度上昇に伴うリチウムイオンの移動抵抗増大に由来する電池性能の低下が顕著となることがある。より好ましい濃度は、0.5mol/l〜1.5mol/lの範囲、あるいは、0.5mol/kg〜1.5mol/kgの範囲である。   The concentration of the electrolyte salt in the non-aqueous electrolyte is 0.2 mol / l to 2.0 mol / l, or 0.2 mol / kg to 2.0 mol / kg, regardless of which electrolyte salt is used. It is preferable to be in the range. When the concentration is less than 0.2 mol / l or 0.2 mol / kg, the lithium ion concentration in the electrolyte solution is low, so that the battery performance cannot be sufficiently exhibited when performing a high rate charge / discharge reaction. is there. If it is greater than 2.0 mol / l or 2.0 mol / kg, the battery performance may be significantly reduced due to an increase in lithium ion migration resistance accompanying an increase in the electrolyte viscosity. A more preferable concentration is in the range of 0.5 mol / l to 1.5 mol / l, or in the range of 0.5 mol / kg to 1.5 mol / kg.

非水電解液中には、
化学式(1)
In non-aqueous electrolyte,
Chemical formula (1)

Figure 2011049111
Figure 2011049111

及び、化学式(2) And chemical formula (2)

Figure 2011049111
Figure 2011049111

で表されるジアミン化合物が少なくとも1種、0.001wt%以上、5wt%以下の範囲で含まれている。
非水電解液は、上述のジアミン化合物を溶解していることで、酸を強く捕捉できる。そのため、電解質塩(リチウム塩)の加水分解等によって発生したフッ化水素の悪影響を抑制する機能を有することとなる。また、酸と反応する塩基性部位が置換基によって覆われているために、電極表面上での塩基性物質の分解反応を抑えることが可能となり、長期に渡って酸の悪影響を抑制できる。
特に、化学式(1)や(2)は、同一分子内に塩基性部位を2つ有しているため、高い酸捕捉能を実現できる。
Is contained in the range of 0.001 wt% or more and 5 wt% or less.
The non-aqueous electrolyte can strongly capture the acid by dissolving the above-mentioned diamine compound. Therefore, it has a function of suppressing the adverse effect of hydrogen fluoride generated by hydrolysis of the electrolyte salt (lithium salt). Moreover, since the basic site | part which reacts with an acid is covered with the substituent, it becomes possible to suppress the decomposition reaction of the basic substance on the electrode surface, and the adverse effect of the acid can be suppressed over a long period of time.
In particular, since the chemical formulas (1) and (2) have two basic sites in the same molecule, high acid scavenging ability can be realized.

塩基性部位を覆う置換基R1乃至R4としては、炭素数4乃至8(n=4〜8)の直鎖アルキル基や、炭素数3乃至8の分岐状アルキル基等が挙げられる。具体的には、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、tert−ペンチル基、ネオペンチル基、n−ヘキシル基、イソヘキシル基、n−ヘプチル基、イソヘプチル基、n−オクチル基、イソオクチル基等が挙げられる。なお、以下の説明において、「n−」は省略している。
置換基R5及びR6としては、同一又は異なって、水素原子及びメトキシ基(OMe)である。
二価の基Eとしては、−CH2−,−CH=CH−,−O−,−S−,−Se−のいずれかである。
Examples of the substituents R 1 to R 4 covering the basic site include linear alkyl groups having 4 to 8 carbon atoms (n = 4 to 8), branched alkyl groups having 3 to 8 carbon atoms, and the like. Specifically, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, tert-pentyl group, neopentyl group, n-hexyl group, isohexyl group, Examples include n-heptyl group, isoheptyl group, n-octyl group, isooctyl group and the like. In the following description, “n−” is omitted.
The substituents R 5 and R 6 are the same or different and are a hydrogen atom and a methoxy group (OMe).
The divalent group E is any one of —CH 2 —, —CH═CH—, —O—, —S—, and —Se—.

具体的には、化学式(1)で表される構造の化合物として、置換基R1乃至R4が全てC49、R5がHである1,8−ビス(ジブチルアミノ)ナフタレンや、置換基R1乃至R4が全てC511、R5がHである1,8−ビス(ジペンチルアミノ)ナフタレンや、置換基R1乃至R4が全てC613、R5がHである1,8−ビス(ジヘキシルアミノ)ナフタレンや、置換基R1乃至R4が全てC715、R5がHである1,8−ビス(ジへプチルアミノ)ナフタレンや、置換基R1乃至R4が全てC817、R5がHである1,8−ビス(ジオクチルアミノ)ナフタレンや、置換基R1乃至R4が全てイソプロピル基、R5がHである1,8‐ビス(ジイソプロピルアミノ)ナフタレンや、置換基R1乃至R4が全てターシャリーブチル基、R5がHである1,8−ビス(ジターシャリーブチルアミノ)ナフタレンや、置換基R1乃至R4が全てC49、R5がOMeである1,8−ビス(ジブチルアミノ)−2,7−ジメトキシナフタレンや、置換基R1乃至R4が全てC511、R5がOMeである1,8−ビス(ジペンチルアミノ)−2,7−ジメトキシナフタレンや、置換基R1乃至R4が全てC613、R5がOMeである1,8−ビス(ジヘキシルアミノ)−2,7−ジメトキシナフタレンや、置換基R1乃至R4が全てC715、R5がOMeである1,8−ビス(ジヘプチルアミノ)−2,7−ジメトキシナフタレンや、置換基R1乃至R4が全てC817、R5がOMeである1,8−ビス(ジオクチルアミノ)−2,7−ジメトキシナフタレンや、置換基R1乃至R4が全てイソプロピル基、R5がOMeである1,8−ビス(ジイソプロピルアミノ)−2,7−ジメトキナフタレンや、置換基R1乃至R4が全てターシャリーブチル基、R5がOMeである1,8−ビス(ジターシャリーブチルアミノ)−2,7−ジメトキナフタレン等が挙げられる。 Specifically, as a compound having a structure represented by the chemical formula (1), 1,8-bis (dibutylamino) naphthalene in which substituents R 1 to R 4 are all C 4 H 9 and R 5 is H, 1,8-bis (dipentylamino) naphthalene in which substituents R 1 to R 4 are all C 5 H 11 and R 5 is H, and substituents R 1 to R 4 are all C 6 H 13 and R 5 is H 1,8-bis (dihexylamino) naphthalene, 1,8-bis (diheptylamino) naphthalene in which R 1 to R 4 are all C 7 H 15 and R 5 is H, substituent R 1,8-bis (dioctylamino) naphthalene in which 1 to R 4 are all C 8 H 17 and R 5 is H, and the substituents R 1 to R 4 are all isopropyl and R 5 is 1,8 -Bis (diisopropylamino) naphthalene, the substituents R 1 to R 4 are all tertiary butyl groups, and R 5 is 1,8-bis (ditertiarybutylamino) naphthalene which is H, and 1,8-bis (dibutylamino) -2,7 where all the substituents R 1 to R 4 are C 4 H 9 and R 5 is OMe. -Dimethoxynaphthalene, 1,8-bis (dipentylamino) -2,7-dimethoxynaphthalene, wherein the substituents R 1 to R 4 are all C 5 H 11 and R 5 is OMe, and the substituents R 1 to R 4 Are all C 6 H 13 and R 5 is OMe, 1,8-bis (dihexylamino) -2,7-dimethoxynaphthalene, and the substituents R 1 to R 4 are all C 7 H 15 and R 5 is OMe. 1,8-bis (diheptylamino) -2,7-dimethoxynaphthalene, or 1,8-bis (dioctylamino)-, where the substituents R 1 to R 4 are all C 8 H 17 and R 5 is OMe. and 2,7-dimethoxynaphthalene, the substituents R 1 to R 4 are all Isopropyl, R 5 is a OMe 1,8-or bis (diisopropylamino) -2,7-di methoxide naphthalene, all the substituents R 1 to R 4 tertiary butyl group, R 5 is OMe 1, Examples include 8-bis (ditertiary butylamino) -2,7-dimethoxyquinaphthalene.

化学式(2)中のEが−CH2−であり、置換基R1乃至R4が全てC49である4,5−ビス(ジブチルアミノ)フルオレンや、置換基R1乃至R4が全てC511である4,5−ビス(ジペンチルアミノ)フルオレンや、置換基R1乃至R4が全てC613である4,5−ビス(ジヘキシルアミノ)フルオレンや、置換基R1乃至R4が全てC715である4,5−ビス(ジヘプチルアミノ)フルオレンや、置換基R1乃至R4が全てC817である4,5−ビス(ジオクチルアミノ)フルオレンや、置換基R1乃至R4が全てイソプロピル基である4,5−ビス(ジイソプロピルアミノ)フルオレンや、置換基R1乃至R4が全てターシャリーブチル基である4,5−ビス(ジターシャリーブチルアミノ)フルオレン等が挙げられる。 4,5-bis (dibutylamino) fluorene in which E in the chemical formula (2) is —CH 2 — and all the substituents R 1 to R 4 are C 4 H 9 , and the substituents R 1 to R 4 are 4,5-bis (dipentylamino) fluorene, which is all C 5 H 11 , 4,5-bis (dihexylamino) fluorene, in which all the substituents R 1 to R 4 are C 6 H 13 , and the substituent R 1 Or 4,5-bis (diheptylamino) fluorene in which all R 4 are C 7 H 15 , 4,5-bis (dioctylamino) fluorene in which all the substituents R 1 to R 4 are C 8 H 17 , , all the substituents R 1 to R 4 is an isopropyl group 4,5-bis or (diisopropylamino) fluorene, all the substituents R 1 to R 4 is a tertiary butyl group 4,5-bis (di-tert-butyl Amino) fluorene and the like.

また、化学式(2)中のEが−CH=CH−であり、置換基R1乃至R4が全てC49である4,5−ビス(ジブチルアミノ)フェナントレンや、置換基R1乃至R4が全てC511である4,5−ビス(ジペンチルアミノ)フェナントレンや、置換基R1乃至R4が全てC613である4,5−ビス(ジヘキシルアミノ)フェナントレンや、置換基R1乃至R4が全てC715である4,5−ビス(ジヘプチルアミノ)フェナントレンや、置換基R1乃至R4が全てC817である4,5−ビス(ジオクチルアミノ)フェナントレンや、置換基R1乃至R4が全てイソプロピル基である4,5−ビス(ジイソプロピルアミノ)フェナントレンや、置換基R1乃至R4が全てターシャリーブチル基である4,5−ビス(ジターシャリーブチルアミノ)フェナントレン等が挙げられる。 In addition, 4,5-bis (dibutylamino) phenanthrene in which E in the chemical formula (2) is —CH═CH—, and all of the substituents R 1 to R 4 are C 4 H 9 , and the substituents R 1 to R 4 4,5-bis (dipentylamino) phenanthrene in which R 4 is all C 5 H 11 , 4,5-bis (dihexylamino) phenanthrene in which all substituents R 1 to R 4 are C 6 H 13 , substituted 4,5-bis (diheptylamino) phenanthrene in which the groups R 1 to R 4 are all C 7 H 15 and 4,5-bis (dioctylamino) in which the substituents R 1 to R 4 are all C 8 H 17 ) Phenanthrene, 4,5-bis (diisopropylamino) phenanthrene in which all the substituents R 1 to R 4 are isopropyl groups, and 4,5-bis (wherein the substituents R 1 to R 4 are all tertiary butyl groups) Ditertiary butylamino) Phenanthrene, and the like.

また、化学式(2)中のEが−O−であり、置換基R1乃至R4が全てC49である1,9−ビス(ジブチルアミノ)ジベンゾフランや、置換基R1乃至R4が全てC511である1,9−ビス(ジペンチルアミノ)ジベンゾフランや、置換基R1乃至R4が全てC613である1,9−ビス(ジヘキシルアミノ)ジベンゾフランや、置換基R1乃至R4が全てC715である1,9−ビス(ジヘプチルアミノ)ジベンゾフランや、置換基R1乃至R4が全てC817である1,9−ビス(ジオクチルアミノ)ジベンゾフランや、置換基R1乃至R4が全てイソプロピル基である1,9−ビス(ジイソプロピルアミノ)ジベンゾフランや、置換基R1乃至R4が全てターシャリーブチル基である1,9−ビス(ジターシャリーブチルアミノ)ジベンゾフラン等が挙げられる。 In addition, 1,9-bis (dibutylamino) dibenzofuran in which E in the chemical formula (2) is —O— and all the substituents R 1 to R 4 are C 4 H 9 , and substituents R 1 to R 4 are used. 1,9-bis (dipentylamino) dibenzofuran in which all are C 5 H 11 , 1,9-bis (dihexylamino) dibenzofuran in which all of substituents R 1 to R 4 are C 6 H 13 , substituent R 1,9-bis (diheptylamino) dibenzofuran in which 1 to R 4 are all C 7 H 15 and 1,9-bis (dioctylamino) dibenzofuran in which all of the substituents R 1 to R 4 are C 8 H 17 Or 1,9-bis (diisopropylamino) dibenzofuran in which all the substituents R 1 to R 4 are isopropyl groups, and 1,9-bis (ditertiary) in which all the substituents R 1 to R 4 are tertiary butyl groups. Butylamino) dibenzo Run, and the like.

また、化学式(2)中のEが−S−であり、置換基R1乃至R4が全てC49である1,9−ビス(ジブチルアミノ)ジベンゾチオフェンや、置換基R1乃至R4が全てC511である1,9−ビス(ジペンチルアミノ)ジベンゾチオフェンや、置換基R1乃至R4が全てC613である1,9−ビス(ジヘキシルアミノ)ジベンゾチオフェンや、置換基R1乃至R4が全てC715である1,9−ビス(ジヘプチルアミノ)ジベンゾチオフェンや、置換基R1乃至R4が全てC817である1,9−ビス(ジオクチルアミノ)ジベンゾチオフェンや、置換基R1乃至R4が全てイソプロピル基である1,9−ビス(ジイソプロピルアミノ)ジベンゾチオフェンや、置換基R1乃至R4が全てターシャリーブチル基である1,9−ビス(ジターシャリーブチルアミノ)ジベンゾチオフェン等が挙げられる。 In addition, 1,9-bis (dibutylamino) dibenzothiophene in which E in chemical formula (2) is —S— and all the substituents R 1 to R 4 are C 4 H 9 , and substituents R 1 to R 1,9-bis (dipentylamino) dibenzothiophene in which all 4 are C 5 H 11 , 1,9-bis (dihexylamino) dibenzothiophene in which all the substituents R 1 to R 4 are C 6 H 13 , 1,9-bis (diheptylamino) dibenzothiophene in which all the substituents R 1 to R 4 are C 7 H 15 , and 1,9-bis (in which all the substituents R 1 to R 4 are C 8 H 17 Dioctylamino) dibenzothiophene, 1,9-bis (diisopropylamino) dibenzothiophene in which substituents R 1 to R 4 are all isopropyl groups, and 1,9-bis (diisopropylamino) dibenzothiophene in which substituents R 1 to R 4 are all tertiary butyl groups 9-Bis (Jitter Shari Butylamino) dibenzothiophene and the like.

また、化学式(2)中のEが−Se−であり、置換基R1乃至R4が全てC49である1,9−ビス(ジブチルアミノ)ジベンゾセレノフェンや、置換基R1乃至R4が全てC511である1,9−ビス(ジペンチルアミノ)ジベンゾセレノフェンや、置換基R1乃至R4が全てC613である1,9−ビス(ジヘキシルアミノ)ジベンゾセレノフェンや、置換基R1乃至R4が全てC715である1,9−ビス(ジヘプチルアミノ)ジベンゾセレノフェンや、置換基R1乃至R4が全てC817である1,9−ビス(ジオクチルアミノ)ジベンゾセレノフェンや、置換基R1乃至R4が全てイソプロピル基である1,9−ビス(ジイソプロピルアミノ)ジベンゾセレノフェンや、置換基R1乃至R4が全てターシャリーブチル基である1,9−ビス(ジターシャリーブチルアミノ)ジベンゾセレノフェン等が挙げられる。 In addition, 1,9-bis (dibutylamino) dibenzoselenophene in which E in the chemical formula (2) is -Se- and all the substituents R 1 to R 4 are C 4 H 9 , and the substituents R 1 to R 4 1,9-bis (dipentylamino) dibenzoselenophene in which R 4 is all C 5 H 11 and 1,9-bis (dihexylamino) dibenzoseleno in which all the substituents R 1 to R 4 are C 6 H 13 Phen, 1,9-bis (diheptylamino) dibenzoselenophene in which all of the substituents R 1 to R 4 are C 7 H 15 , and 1, 1 in which all of the substituents R 1 to R 4 are C 8 H 17 9-bis (dioctylamino) dibenzoselenophene, 1,9-bis (diisopropylamino) dibenzoselenophene in which all the substituents R 1 to R 4 are isopropyl groups, and all substituents R 1 to R 4 are tertiary. 1,9-bis, which is a butyl group Ditertiary butylamino) dibenzoselenophene the like.

これらの化合物は単独で使用してもよいし、2種類以上含有していてもよい。例えば、化合物によって酸捕捉能が異なるため、捕捉速度が速い化合物と長期的に強く捕捉する化合物を含有させた場合、長期に渡って酸の悪影響を抑制することが可能となる。そのような抑制が可能な組み合わせとして、例えば、
(a)化学式(1)中、置換基R1乃至R4が全てC49、R5がHである1,8−ビス(ジブチルアミノ)ナフタレンと、化学式(1)中、置換基R1乃至R4が全てC49、R5がOMeである1,8−ビス(ジブチルアミノ)−2,7−ジメトキシナフタレンの組み合わせや、
(b)化学式(1)中、置換基R1乃至R4が全てC49、R5がHである1,8−ビス(ジブチルアミノ)ナフタレンと、化学式(1)中、置換基R1乃至R4が全てターシャリーブチル基、R5がHである1,8−ビス(ジターシャリーブチルアミノ)ナフタレン
の組み合わせが挙げられる。
なお、これらの化合物の塩基性部位が置換基によって覆われているかどうかは、従来公知文献のX線結晶構造解析結果や、分子軌道計算を用いて構造を確認できる。
These compounds may be used alone or in combination of two or more. For example, since the acid scavenging ability varies depending on the compound, when a compound having a fast capturing speed and a compound that captures strongly in the long term are contained, the adverse effect of the acid can be suppressed for a long time. As a combination capable of such suppression, for example,
(A) 1,8-bis (dibutylamino) naphthalene in which the substituents R 1 to R 4 are all C 4 H 9 and R 5 is H in the chemical formula (1), and the substituent R in the chemical formula (1) A combination of 1,8-bis (dibutylamino) -2,7-dimethoxynaphthalene in which 1 to R 4 are all C 4 H 9 and R 5 is OMe,
(B) 1,8-bis (dibutylamino) naphthalene in which the substituents R 1 to R 4 are all C 4 H 9 and R 5 is H in the chemical formula (1), and the substituent R in the chemical formula (1). A combination of 1,8-bis (ditertiarybutylamino) naphthalene in which 1 to R 4 are all tertiary butyl groups and R 5 is H can be mentioned.
Whether or not the basic site of these compounds is covered with a substituent can be confirmed by using the results of X-ray crystal structure analysis and molecular orbital calculation of conventionally known documents.

非水電解液は、上述のジアミン化合物を、0.001wt%以上、5wt%以下の範囲で含有していることが好ましい。含有量がこの範囲内であれば、非水電解液中の酸の悪影響を抑制することが可能となる。含有量が、0.001wt%未満であると、酸の悪影響を抑制する効果が十分に現れないことがある。一方、含有量が、5wt%を超える場合、非水電解液の粘性が増加し、充放電特性が低下することがある。より好ましい含有量は、0.001wt%以上、2wt%以下の範囲である。
非水電解液は、高分子マトリックスに含浸させてゲル電解質として使用してもよい。電解質塩以外にも、無機及び有機の固体電解質を用いることも可能である。
The nonaqueous electrolytic solution preferably contains the above-described diamine compound in a range of 0.001 wt% to 5 wt%. If the content is within this range, it is possible to suppress the adverse effect of the acid in the non-aqueous electrolyte. If the content is less than 0.001 wt%, the effect of suppressing the adverse effect of the acid may not be sufficiently exhibited. On the other hand, when the content exceeds 5 wt%, the viscosity of the nonaqueous electrolytic solution may increase, and the charge / discharge characteristics may deteriorate. A more preferable content is in the range of 0.001 wt% or more and 2 wt% or less.
The nonaqueous electrolytic solution may be used as a gel electrolyte by impregnating a polymer matrix. In addition to the electrolyte salt, inorganic and organic solid electrolytes can also be used.

(負極)
負極は、リチウムをドープ・脱ドープ可能な炭素材料を負極活物質として有しさえすれば、特に限定されない。例えば、負極は、負極活物質に導電材及び結着材を混合し、必要に応じ適当な溶媒を加えて、ペースト状の負極合材としたものを、銅等の金属箔製の集電体表面に塗布、乾燥し、その後プレスによって活物質密度を高めることによって形成できる。
(Negative electrode)
The negative electrode is not particularly limited as long as it has a carbon material that can be doped / undoped with lithium as a negative electrode active material. For example, a negative electrode is made by mixing a conductive material and a binder with a negative electrode active material, and adding a suitable solvent as necessary to obtain a paste-like negative electrode mixture, which is made of a metal foil such as copper. It can be formed by applying to the surface, drying, and then increasing the active material density by pressing.

上記負極活物質は、充電時にリチウムイオンを吸蔵し、かつ放電時には放出する性質を有している。具体的な負極活物質としては、リチウム金属、グラファイト又は非晶質炭素等の炭素材料等、ポリアセチレン、ポリピロール等のポリマー等が挙げられる。その中でも特に炭素材料を用いることが好ましい。炭素材料は、比表面積を大きくでき、リチウムの吸蔵、放出速度が速いため、大電流での充放電特性、出力・回生密度が良好となる。特に、結晶性の高い天然黒鉛や人造黒鉛等を用いることにより、負極のリチウムイオン受け渡し効率を向上できる。   The negative electrode active material has a property of occluding lithium ions during charging and releasing during discharging. Specific examples of the negative electrode active material include lithium metal, carbon materials such as graphite or amorphous carbon, polymers such as polyacetylene and polypyrrole, and the like. Among these, it is particularly preferable to use a carbon material. Since the carbon material can increase the specific surface area and has a high lithium storage / release rate, the charge / discharge characteristics and output / regeneration density at a large current are good. In particular, the use of highly crystalline natural graphite or artificial graphite can improve the lithium ion delivery efficiency of the negative electrode.

導電材としては、カーボンブラックやアセチレンブラック、黒鉛等の公知の導電材が挙げられる。結着材としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂等の公知の結着材が挙げられる。また、負極合剤には公知の添加剤を用いることが可能である。なお、導電材、結着剤及び添加剤は、必須の成分ではない。   Examples of the conductive material include known conductive materials such as carbon black, acetylene black, and graphite. Examples of the binder include known binders such as fluorine-containing resins such as polytetrafluoroethylene, polyvinylidene fluoride, and fluorine rubber, and thermoplastic resins such as polypropylene and polyethylene. Moreover, a well-known additive can be used for a negative mix. Note that the conductive material, the binder, and the additive are not essential components.

(正極)
正極は、リチウムと遷移金属との複合酸化物を正極活物質として有しさえすれば、特に限定されない。例えば、正極は、正極活物質に導電材及び結着材を混合し、必要に応じ適当な溶媒を加えて、ペースト状の正極合剤としたものを、アルミニウム等の金属箔製の集電体表面に塗布、乾燥し、その後プレスによって活物質密度を高めることによって形成できる。
(Positive electrode)
The positive electrode is not particularly limited as long as it has a composite oxide of lithium and a transition metal as a positive electrode active material. For example, a positive electrode is made by mixing a conductive material and a binder with a positive electrode active material and adding a suitable solvent as necessary to obtain a paste-like positive electrode mixture, which is made of a metal foil such as aluminum. It can be formed by applying to the surface, drying, and then increasing the active material density by pressing.

正極活物質には、LixMO2(式中、Mは一種以上の遷移金属を表し、xは電池の充放電状態によって異なり、通常0.05≦x≦1.10である。)やLiFePO4を主体とするリチウム複合酸化物等を用いることが可能である。このリチウム複合酸化物を構成する遷移金属Mとして、Co、Ni、Mn等を用いることが好ましい。具体的なリチウム複合酸化物としては、LiCoO2、LiNiO2、LixNiyCo1-y2(式中、x及びyは電池の充放電状態によって異なり、通常0<x<1、0.7<y<1.02である。)、LiMn24、Al、Cr等の金属置換マンガン酸リチウム、リン酸鉄リチウム等が挙げられる。これらリチウム複合酸化物は、その電気抵抗が低く、リチウムイオンの拡散性能に優れ、高電圧を発生でき、高い充放電効率と良好な充放電サイクル特性とが得られるため、正極活物質に好ましい材料である。正極活物質として用いる場合には、これらのリチウム複合酸化物を複数種混合して用いることも可能である。
導電材及び結着材としては、負極同様、公知の導電材及び結着材等を用いることが可能である。また、正極合剤には、従来公知の添加剤等を用いることも可能である。
Examples of the positive electrode active material include Li x MO 2 (wherein M represents one or more transition metals, x varies depending on the charge / discharge state of the battery, and is generally 0.05 ≦ x ≦ 1.10.) Or LiFePO 4. Lithium composite oxide mainly composed of 4 can be used. As the transition metal M constituting this lithium composite oxide, it is preferable to use Co, Ni, Mn or the like. Specific lithium composite oxides include LiCoO 2 , LiNiO 2 , Li x Ni y Co 1-y O 2 (where x and y vary depending on the charge / discharge state of the battery, and generally 0 <x <1, 0 .7 <y <1.02), LiMn 2 O 4 , metal-substituted lithium manganate such as Al, Cr, lithium iron phosphate, and the like. These lithium composite oxides have a low electrical resistance, are excellent in lithium ion diffusion performance, can generate high voltages, and have high charge / discharge efficiency and good charge / discharge cycle characteristics. It is. When used as a positive electrode active material, a mixture of a plurality of these lithium composite oxides can be used.
As the conductive material and the binder, it is possible to use known conductive materials and binders as well as the negative electrode. Moreover, a conventionally well-known additive etc. can also be used for a positive electrode mixture.

(セパレータ)
必要に応じてセパレータを使用してもよい。セパレータは、負極と正極との間に配され、負極と正極との物理的接触による短絡を防止する。このセパレータとしては、不織布やポリエチレン、ポリプロピレン等のポリオレフィン微多孔膜等が用いられる。
(Separator)
A separator may be used as necessary. The separator is disposed between the negative electrode and the positive electrode, and prevents a short circuit due to physical contact between the negative electrode and the positive electrode. As this separator, a nonwoven fabric, a polyolefin microporous film such as polyethylene, polypropylene, or the like is used.

(非水電解質電池の組立)
非水電解質電池の組立には、公知の方法を利用できる。例えば、ラミネート型の非水電解質電池は、次のようにして作製できる。まず、負極と、正極を所定の寸法に切断し、負極と正極の間にセパレータを設置する。セパレータの設置法としては、正極をセパレータで包む方法がある。この作業を繰り返し、所望の枚数を積層させ、積層体の負極と正極がずれないように固定する。積層体以外に、負極シート、セパレータ及び正極シートを巻回することで巻層体としてもよい。
(Assembly of non-aqueous electrolyte battery)
A known method can be used for assembling the nonaqueous electrolyte battery. For example, a laminate-type nonaqueous electrolyte battery can be manufactured as follows. First, the negative electrode and the positive electrode are cut into predetermined dimensions, and a separator is placed between the negative electrode and the positive electrode. As a method of installing the separator, there is a method of wrapping the positive electrode with the separator. This operation is repeated, a desired number of sheets are laminated, and fixed so that the negative electrode and the positive electrode of the laminate do not shift. In addition to the laminate, a negative electrode sheet, a separator, and a positive electrode sheet may be wound to form a wound layer body.

次に、積層体又は巻層体の負極の集電をとるために、例えばニッケルからなるタブの一端を負極の負極集電体に圧着又は接合させる。また、積層体又は巻層体の正極の集電を取るために、例えばアルミとニッケルからなるタブの一端を正極の正極集電体に圧着又は接合させる。積層体又は巻層体に形成したタブの他端が、ラミネートフィルムの外部に出るように配置した状態でラミネートフィルムに積層体又は巻層体を納め、電解液注液孔以外を封止する。このような構造とすることで集電体タブと外部電極との間の導通を持たせる。このようにして作製したラミネート型の電池容器の中に非水電解液を所定量注入し、最後に電解液注液孔を封止することで、非水電解質電池を作製できる。   Next, in order to collect current from the negative electrode of the laminate or the wound layer, one end of a tab made of nickel, for example, is pressure-bonded or joined to the negative electrode current collector of the negative electrode. In addition, in order to collect current from the positive electrode of the laminate or wound layer, one end of a tab made of, for example, aluminum and nickel is pressure-bonded or joined to the positive electrode current collector of the positive electrode. The laminated body or the wound layer body is placed in the laminate film in a state where the other end of the tab formed on the laminated body or the wound layer body is disposed so as to come out of the laminated film, and the portions other than the electrolyte solution injection hole are sealed. With such a structure, conduction between the current collector tab and the external electrode is provided. A non-aqueous electrolyte battery can be produced by injecting a predetermined amount of a non-aqueous electrolyte into the laminate-type battery container thus produced, and finally sealing the electrolyte injection hole.

なお、上述の説明はラミネート型の非水電解質電池についての説明であるが、本発明は、円筒型、直方体型、コイン型、カード型等、いかなる形状の非水電解質電池についても適用することが可能である。
また、本発明は、一次電池についても二次電池についても適用することが可能である。
Although the above description is for a laminate type nonaqueous electrolyte battery, the present invention can be applied to any shape of nonaqueous electrolyte battery such as a cylindrical type, a rectangular parallelepiped type, a coin type, a card type, or the like. Is possible.
The present invention can be applied to both primary batteries and secondary batteries.

以下、実施例に基づいて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例で使用した試薬等は、特に断りのない限りキシダ化学社製のリチウムバッテリーグレード試薬を用いた。
なお、本実施例で用いた化学式(1)と(2)で表される化合物は、特に断りのない限り既知文献(例えば、Russian Chemical Reviews 67(1) 1(1998))に記載の合成法及び同定法を参考にして合成し、同定を行った。
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to a following example. The reagents used in the examples were lithium battery grade reagents manufactured by Kishida Chemical Co. unless otherwise specified.
Note that the compounds represented by the chemical formulas (1) and (2) used in this example are synthesizing methods described in known literature (for example, Russian Chemical Reviews 67 (1) 1 (1998)) unless otherwise specified. And identification with reference to the identification method.

<実施例1>
炭酸エチレン50容量%と炭酸ジエチル50容量%との混合溶媒中に、電解質塩としてLiPF6を1.0mol/lとなるように溶解した。更に、化学式(1)の置換基R1乃至R4が全てC49、R5がHである1,8−ビス(ジブチルアミノ)ナフタレンを、0.01wt%となるように上記の混合溶媒中に含有させて、非水電解液を得た。
なお、非水電解液注入前の電池容器は以下の構成を有している。
<Example 1>
LiPF 6 as an electrolyte salt was dissolved in a mixed solvent of 50% by volume of ethylene carbonate and 50% by volume of diethyl carbonate so as to be 1.0 mol / l. Further, 1,8-bis (dibutylamino) naphthalene in which all of the substituents R 1 to R 4 in the chemical formula (1) are C 4 H 9 and R 5 is H is mixed to the above amount so as to be 0.01 wt%. It was made to contain in a solvent and the nonaqueous electrolyte solution was obtained.
In addition, the battery container before nonaqueous electrolyte injection has the following configuration.

正極合剤は、活物質のLiFePO490重量部と、導電材のアセチレンブラック5重量部と、結着剤のポリフッ化ビニリデン5重量部とを混合し、N−メチル−2−ピロリドンを適宜加えて分散させ調製した。この正極合剤を厚さ20μmのアルミニウム集電体に均一に塗布、乾燥させた後、ロールプレスで圧縮し、所望の大きさに切断することにより正極板を作製した。 For the positive electrode mixture, 90 parts by weight of LiFePO 4 as an active material, 5 parts by weight of acetylene black as a conductive material, and 5 parts by weight of polyvinylidene fluoride as a binder are mixed, and N-methyl-2-pyrrolidone is appropriately added. And dispersed to prepare. This positive electrode mixture was uniformly applied to an aluminum current collector with a thickness of 20 μm and dried, then compressed with a roll press, and cut into a desired size to produce a positive electrode plate.

負極合剤は、中国産天然黒鉛90重量部と、ポリフッ化ビニリデン10重量部とを混合し、N−メチル−2−ピロリドンを適宜加えて分散させ調製した。この負極合剤を厚さ16μmの銅集電体に均一に塗布、乾燥させた後、ロールプレスで圧縮し、所望の大きさに切断することにより負極板を作製した。
セパレータには、厚さ25ミクロンの微多孔性ポリエチレンフィルムを用いた。
The negative electrode mixture was prepared by mixing 90 parts by weight of Chinese natural graphite and 10 parts by weight of polyvinylidene fluoride, and adding and dispersing N-methyl-2-pyrrolidone as appropriate. This negative electrode mixture was uniformly applied to a 16 μm thick copper current collector, dried, then compressed with a roll press, and cut into a desired size to produce a negative electrode plate.
For the separator, a microporous polyethylene film having a thickness of 25 microns was used.

次に、前記正極板を前記セパレータで包み、前記負極板と交互に積層させ、正極のアルミニウム集電体には、アルミとニッケルからなるリードタブを溶接し、負極の銅集電体には、ニッケルからなるリードタブを溶接して、正極と負極およびセパレータからなる積層体を作製した。
次に、前記積層体のリードタブがラミネートフィルムの外部に出るように配置し、積層体がラミネートによって包まれるように、ラミネートフィルムの電解液注液孔以外の外周部を熱溶着させた。この後、前記非水電解液を電池容器内部に注液し、電解液注液孔を封止することで非水電解質電池を作製した。
Next, the positive electrode plate is wrapped with the separator, and alternately laminated with the negative electrode plate, a lead tab made of aluminum and nickel is welded to the positive electrode aluminum current collector, and the negative electrode copper current collector is welded to nickel. The lead tab which consists of was welded, and the laminated body which consists of a positive electrode, a negative electrode, and a separator was produced.
Next, it arrange | positioned so that the lead tab of the said laminated body might come out of the laminate film, and the outer peripheral part other than the electrolyte solution injection hole of a laminate film was heat-welded so that a laminated body might be wrapped with a laminate. Thereafter, the nonaqueous electrolyte solution was injected into the battery container, and the electrolyte solution injection hole was sealed to prepare a nonaqueous electrolyte battery.

<実施例2>
非水電解液中の1,8−ビス(ジブチルアミノ)ナフタレンの替わりに、化学式(2)中、Eが−CH2−であり、置換基R1乃至R4が全てC49である4,5−ビス(ジブチルアミノ)フルオレンを用いたこと以外は、実施例1と同様にして非水電解質電池を作製した。
<Example 2>
Instead of 1,8-bis (dibutylamino) naphthalene in the non-aqueous electrolyte, E is —CH 2 — in the chemical formula (2), and the substituents R 1 to R 4 are all C 4 H 9 . A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that 4,5-bis (dibutylamino) fluorene was used.

<実施例3>
非水電解液中の1,8−ビス(ジブチルアミノ)ナフタレンの含有比率を0.005wt%とし、更に、化学式(2)中、Eが−CH2−であり、置換基R1乃至R4が全てC49である4,5−ビス(ジブチルアミノ)フルオレンを含有比率0.005wt%で含有させた非水電解液を用いたこと以外は、実施例1と同様にして非水電解質電池を作製した。
<Example 3>
The content ratio of 1,8-bis (dibutylamino) naphthalene in the nonaqueous electrolytic solution is 0.005 wt%. Furthermore, in chemical formula (2), E is —CH 2 —, and substituents R 1 to R 4 Is a nonaqueous electrolyte in the same manner as in Example 1 except that a nonaqueous electrolyte solution containing 4,5-bis (dibutylamino) fluorene in which the content ratio is all C 4 H 9 is 0.005 wt% is used. A battery was produced.

<実施例4>
非水電解液中の1,8−ビス(ジブチルアミノ)ナフタレンの含有比率を0.005wt%とし、更に、化学式(1)中、置換基R1乃至R4が全てC49、R5がOMeである1,8−ビス(ジブチルアミノ)−2,7−ジメトキシナフタレンを含有比率0.005wt%で含有させた非水電解液を用いたこと以外は、実施例1と同様にして非水電解質電池を作製した。
<Example 4>
The content ratio of 1,8-bis (dibutylamino) naphthalene in the nonaqueous electrolytic solution is 0.005 wt%. Further, in the chemical formula (1), the substituents R 1 to R 4 are all C 4 H 9 , R 5. In the same manner as in Example 1, except that a nonaqueous electrolytic solution containing 1,8-bis (dibutylamino) -2,7-dimethoxynaphthalene having a content ratio of 0.005 wt%, which is OMe, was used. A water electrolyte battery was prepared.

<実施例5>
非水電解液中の1,8−ビス(ジブチルアミノ)ナフタレンの替わりに、化学式(2)中、Eが−CH2−であり、置換基R1乃至R4が全てC49である4,5−ビス(ジブチルアミノ)フルオレンを含有比率0.005wt%で、化学式(2)中、Eが−S−であり、置換基R1乃至R4が全てC49である1,9−ビス(ジブチルアミノ)ジベンゾチオフェンを含有比率0.005wt%で含有させた非水電解液を用いたこと以外は、実施例1と同様にして非水電解質電池を作製した。
<Example 5>
Instead of 1,8-bis (dibutylamino) naphthalene in the non-aqueous electrolyte, E is —CH 2 — in the chemical formula (2), and the substituents R 1 to R 4 are all C 4 H 9 . 1,5-bis (dibutylamino) fluorene in a content ratio of 0.005 wt%, in formula (2), E is —S—, and substituents R 1 to R 4 are all C 4 H 9 A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that a nonaqueous electrolyte solution containing 9-bis (dibutylamino) dibenzothiophene at a content ratio of 0.005 wt% was used.

<実施例6>
非水電解液中の1,8−ビス(ジブチルアミノ)ナフタレンの替わりに、化学式(1)の置換基R1乃至R4が全てC817、R5がHである1,8−ビス(ジオクチルアミノ)ナフタレンを用いたこと以外は、実施例1と同様にして非水電解質電池を作製した。
<Example 6>
In place of 1,8-bis (dibutylamino) naphthalene in the non-aqueous electrolyte, 1,8-bis in which all the substituents R 1 to R 4 in formula (1) are C 8 H 17 and R 5 is H A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that (dioctylamino) naphthalene was used.

<実施例7>
非水電解液中の1,8−ビス(ジブチルアミノ)ナフタレンの含有比率を、0.001wt%となるようにしたこと以外は、実施例1と同様にして非水電解質電池を作製した。
<実施例8>
非水電解液中の1,8−ビス(ジブチルアミノ)ナフタレンの含有比率を、0.1wt%となるようにしたこと以外は、実施例1と同様にして非水電解質電池を作製した。
<Example 7>
A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the content ratio of 1,8-bis (dibutylamino) naphthalene in the nonaqueous electrolytic solution was 0.001 wt%.
<Example 8>
A nonaqueous electrolyte battery was produced in the same manner as in Example 1, except that the content ratio of 1,8-bis (dibutylamino) naphthalene in the nonaqueous electrolytic solution was 0.1 wt%.

<実施例9>
非水電解液中の1,8−ビス(ジブチルアミノ)ナフタレンの含有比率を、1wt%となるようにしたこと以外は、実施例1と同様にして非水電解質電池を作製した。
<実施例10>
非水電解液中の1,8−ビス(ジブチルアミノ)ナフタレンの含有比率を、2wt%となるようにしたこと以外は、実施例1と同様にして非水電解質電池を作製した。
<Example 9>
A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the content ratio of 1,8-bis (dibutylamino) naphthalene in the nonaqueous electrolytic solution was 1 wt%.
<Example 10>
A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the content ratio of 1,8-bis (dibutylamino) naphthalene in the nonaqueous electrolytic solution was 2 wt%.

<比較例1>
非水電解液中に、1,8−ビス(ジブチルアミノ)ナフタレンを含有させなかったこと以外は、実施例1と同様にして非水電解質電池を作製した。
<比較例2>
非水電解液中の1,8−ビス(ジブチルアミノ)ナフタレンの替わりに、キシダ化学社製のトリエチルアミンを蒸留して用いたこと以外は、実施例1と同様にして非水電解質電池を作製した。
<Comparative Example 1>
A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that 1,8-bis (dibutylamino) naphthalene was not contained in the nonaqueous electrolyte.
<Comparative Example 2>
A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that triethylamine manufactured by Kishida Chemical Co. was used instead of 1,8-bis (dibutylamino) naphthalene in the nonaqueous electrolyte. .

<比較例3>
非水電解液中の1,8−ビス(ジブチルアミノ)ナフタレンの含有比率を、0.0001wt%となるようにしたこと以外は、実施例1と同様にして非水電解質電池を作製した。
<比較例4>
非水電解液中の1,8−ビス(ジブチルアミノ)ナフタレンの含有比率を、6wt%となるようにしたこと以外は、実施例1と同様にして非水電解質電池を作製した。
<Comparative Example 3>
A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the content ratio of 1,8-bis (dibutylamino) naphthalene in the nonaqueous electrolyte was 0.0001 wt%.
<Comparative example 4>
A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the content ratio of 1,8-bis (dibutylamino) naphthalene in the nonaqueous electrolyte was 6 wt%.

〔特性評価〕
上述のように作製した実施例1〜10及び比較例1〜4について、以下のようにして耐湿保存特性を評価し、結果を表1に示した。
各電池に対して、20℃、1Aの定電流定電圧充電を上限4.2Vまで行い、次に500mAの定電流放電を終止電圧2.5Vまで行い、このときの放電容量を保存前容量として求めた。次に、40℃、85%RHに設定した恒温恒湿槽で1ヶ月間保存した後、同一条件で再度充放電を数サイクル行い、そのうち最も高い容量の値を保存後容量とした。そして、放電容量維持率(%)を次式により求めた。
放電容量維持率(%)=(保存後容量/保存前容量)×100
(Characteristic evaluation)
With respect to Examples 1 to 10 and Comparative Examples 1 to 4 produced as described above, moisture storage characteristics were evaluated as follows, and the results are shown in Table 1.
For each battery, constant current constant voltage charging at 20 ° C. and 1 A is performed up to 4.2 V, then 500 mA constant current discharging is performed up to a final voltage of 2.5 V, and the discharge capacity at this time is defined as the capacity before storage. Asked. Next, after storing for 1 month in a constant temperature and humidity chamber set at 40 ° C. and 85% RH, several cycles of charge and discharge were performed again under the same conditions, and the highest capacity value was taken as the capacity after storage. And discharge capacity maintenance factor (%) was calculated | required by following Formula.
Discharge capacity maintenance rate (%) = (capacity after storage / capacity before storage) × 100

Figure 2011049111
Figure 2011049111

表1から次のことがわかる。
塩基性部位が置換基によって覆われている化学式(1)や化学式(2)で表される化合物を非水電解液中に含有させた実施例1〜10は、これらの化合物を含有しない場合の比較例1と比較して、耐湿保存特性が向上している。更に、実施例1〜10は、立体障害の小さい化合物を含有した比較例2と比較して、耐湿保存特性が向上している。従って、実施例1〜10では、評価セル中に水分が浸入して酸が発生したとしても、酸の悪影響を抑制できる。
また、実施例1〜10は、化学式(1)や化学式(2)で表される化合物の含有量を0.001wt%以上、5wt%以下の範囲とすることで、範囲外の比較例3及び4と比較して、耐湿保存特性が向上している。
Table 1 shows the following.
Examples 1 to 10 in which the compound represented by the chemical formula (1) or the chemical formula (2) in which the basic site is covered with the substituent are contained in the non-aqueous electrolyte solution do not contain these compounds. Compared to Comparative Example 1, the moisture-resistant storage characteristics are improved. Furthermore, compared with the comparative example 2 which contains the compound with small steric hindrance in Examples 1-10, the moisture-proof preservation characteristic is improving. Therefore, in Examples 1 to 10, even if moisture enters the evaluation cell and acid is generated, the adverse effect of the acid can be suppressed.
In addition, in Examples 1 to 10, the content of the compound represented by the chemical formula (1) or the chemical formula (2) is in the range of 0.001 wt% or more and 5 wt% or less. Compared to 4, the moisture-resistant storage characteristics are improved.

Claims (6)

リチウムをドープ・脱ドープ可能な炭素材料を負極活物質として有する負極と、リチウムと遷移金属との複合酸化物を正極活物質として有する正極と、非水電解液とを備え、
前記非水電解液が、化学式(1)
Figure 2011049111
及び、化学式(2)
Figure 2011049111
(式(1)及び(2)中、Eは−CH2−,−CH=CH−,−O−,−S−,−Se−のいずれかであり、置換基R1乃至R4は、Cn2n+1で表される炭素数4乃至8(n=4〜8)の直鎖アルキル基又は炭素数3乃至8(n=3〜8)の分岐状アルキル基であり、置換基R5は、水素原子又はメトキシ基である)
で表されるジアミン化合物を少なくとも1種、0.001wt%以上、5wt%以下の範囲で含有していることを特徴とする非水電解質電池。
A negative electrode having a carbon material capable of doping and dedoping lithium as a negative electrode active material, a positive electrode having a composite oxide of lithium and a transition metal as a positive electrode active material, and a non-aqueous electrolyte,
The non-aqueous electrolyte has the chemical formula (1)
Figure 2011049111
And chemical formula (2)
Figure 2011049111
(In the formulas (1) and (2), E is any of —CH 2 —, —CH═CH—, —O—, —S—, —Se—, and the substituents R 1 to R 4 are A linear alkyl group having 4 to 8 carbon atoms (n = 4 to 8) or a branched alkyl group having 3 to 8 carbon atoms (n = 3 to 8) represented by C n H 2n + 1 , and a substituent R 5 is a hydrogen atom or a methoxy group)
A non-aqueous electrolyte battery comprising at least one diamine compound represented by the formula: 0.001 wt% or more and 5 wt% or less.
前記非水電解液が、前記ジアミン化合物を2種以上含み、前記2種以上のジアミン化合物の含有量の合計が、0.001wt%以上、5wt%以下の範囲である請求項1に記載の非水電解質電池。   2. The non-aqueous electrolyte according to claim 1, wherein the non-aqueous electrolyte contains two or more of the diamine compounds, and the total content of the two or more diamine compounds is in the range of 0.001 wt% or more and 5 wt% or less. Water electrolyte battery. 前記非水電解液が、前記化学式(1)で表されるジアミン化合物から2種以上、前記化学式(2)で表されるジアミン化合物から2種以上、又は前記化学式(1)で表されるジアミン化合物と前記化学式(2)で表されるジアミン化合物とをそれぞれ1種類以上含む請求項1又は2に記載の非水電解質電池。   The non-aqueous electrolyte is two or more kinds from the diamine compound represented by the chemical formula (1), two or more kinds from the diamine compound represented by the chemical formula (2), or the diamine represented by the chemical formula (1). The nonaqueous electrolyte battery according to claim 1 or 2, comprising at least one kind of the compound and the diamine compound represented by the chemical formula (2). 前記非水電解液が、全て同一の置換基R1乃至R4を有する前記化学式(1)及び化学式(2)で表されるジアミン化合物を少なくとも1種含有している請求項1〜3のいずれか1つに記載の非水電解質電池。 The non-aqueous electrolyte is any of claims 1 to 3 which contains at least one diamine compound represented by Formula (1) and formula all have the same substituents R 1 to R 4 (2) The nonaqueous electrolyte battery as described in any one. 前記非水電解液が、前記ジアミン化合物を0.001wt%以上、2wt%以下の範囲で含有している請求項1〜4のいずれか1つに記載の非水電解質電池。   The nonaqueous electrolyte battery according to any one of claims 1 to 4, wherein the nonaqueous electrolytic solution contains the diamine compound in a range of 0.001 wt% to 2 wt%. 前記非水電解液が、電解質塩としてLiPF6を含有する請求項1〜5のいずれか1つに記載の非水電解質電池。 The non-aqueous electrolyte battery according to claim 1, wherein the non-aqueous electrolyte contains LiPF 6 as an electrolyte salt.
JP2009198567A 2009-08-28 2009-08-28 Non-aqueous electrolyte battery Expired - Fee Related JP5023120B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009198567A JP5023120B2 (en) 2009-08-28 2009-08-28 Non-aqueous electrolyte battery
CN201010267955.5A CN102005607B (en) 2009-08-28 2010-08-27 Non-aqueous electrolyte battery
US12/869,938 US8361653B2 (en) 2009-08-28 2010-08-27 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009198567A JP5023120B2 (en) 2009-08-28 2009-08-28 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2011049111A true JP2011049111A (en) 2011-03-10
JP5023120B2 JP5023120B2 (en) 2012-09-12

Family

ID=43835238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009198567A Expired - Fee Related JP5023120B2 (en) 2009-08-28 2009-08-28 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP5023120B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013016108A1 (en) * 2011-07-22 2013-01-31 Chemtura Corporation Electrolytes comprising polycyclic aromatic amine derivatives
JPWO2013047299A1 (en) * 2011-09-28 2015-03-26 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2016146329A (en) * 2015-02-06 2016-08-12 寧徳新能源科技有限公司 Electrolyte and lithium ion battery applying electrolyte thereto
WO2019039805A3 (en) * 2017-08-22 2019-05-23 주식회사 삼양사 Electrolyte composition for secondary battery and secondary battery comprising same
WO2019059698A3 (en) * 2017-09-21 2019-05-23 주식회사 엘지화학 Electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP2020532837A (en) * 2017-09-21 2020-11-12 エルジー・ケム・リミテッド Lithium secondary battery electrolyte and lithium-secondary battery containing it

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529019A (en) * 1991-07-18 1993-02-05 Yuasa Corp Lithium secondary battery
JP2001093571A (en) * 1999-09-22 2001-04-06 Sony Corp Non-aqueous electrolyte battery
JP2010257639A (en) * 2009-04-22 2010-11-11 Nec Energy Devices Ltd Nonaqueous electrolyte, and secondary battery using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529019A (en) * 1991-07-18 1993-02-05 Yuasa Corp Lithium secondary battery
JP2001093571A (en) * 1999-09-22 2001-04-06 Sony Corp Non-aqueous electrolyte battery
JP2010257639A (en) * 2009-04-22 2010-11-11 Nec Energy Devices Ltd Nonaqueous electrolyte, and secondary battery using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013016108A1 (en) * 2011-07-22 2013-01-31 Chemtura Corporation Electrolytes comprising polycyclic aromatic amine derivatives
EP2735051B1 (en) * 2011-07-22 2018-04-04 LANXESS Solutions US Inc. Electrolytes comprising polycyclic aromatic amine derivatives
JPWO2013047299A1 (en) * 2011-09-28 2015-03-26 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2016146329A (en) * 2015-02-06 2016-08-12 寧徳新能源科技有限公司 Electrolyte and lithium ion battery applying electrolyte thereto
WO2019039805A3 (en) * 2017-08-22 2019-05-23 주식회사 삼양사 Electrolyte composition for secondary battery and secondary battery comprising same
WO2019059698A3 (en) * 2017-09-21 2019-05-23 주식회사 엘지화학 Electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP2020532837A (en) * 2017-09-21 2020-11-12 エルジー・ケム・リミテッド Lithium secondary battery electrolyte and lithium-secondary battery containing it
US11557792B2 (en) 2017-09-21 2023-01-17 Lg Energy Solution, Ltd. Electrolyte for lithium secondary battery and lithium-secondary battery including the same

Also Published As

Publication number Publication date
JP5023120B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
KR101563754B1 (en) Lithium secondary battery using ionic liquid
US7341807B2 (en) Non-flammable nonaqueous electrolyte solution and lithium ion cell using same
EP2863468B1 (en) Electrolyte for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using same
JP5573313B2 (en) Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same
KR20090020487A (en) Non-aqueous electrolytic solution secondary battery
JPH11260401A (en) Nonaqueous electrolyte and nonaqueous electrolyte secodary battery
US7767350B2 (en) Nonaqueous electrolyte battery
JP5023120B2 (en) Non-aqueous electrolyte battery
JP5062459B2 (en) Nonaqueous electrolyte secondary battery
WO2016002481A1 (en) Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same
JP2017188299A (en) Nonaqueous secondary battery, and nonaqueous electrolyte used therefor
JP7107491B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
CN110931861A (en) Nonaqueous electrolyte for lithium ion secondary battery
JP5326923B2 (en) Non-aqueous electrolyte secondary battery
JP4560854B2 (en) Nonaqueous electrolyte secondary battery
JP5259996B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery
JP5023119B2 (en) Non-aqueous electrolyte battery
US20210242489A1 (en) Negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2002015768A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP7263679B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
US8361653B2 (en) Non-aqueous electrolyte secondary battery
JP6980502B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP2011249152A (en) Lithium battery electrode active material composition and lithium battery
JP2011034698A (en) Nonaqueous electrolyte solution, and lithium secondary battery using nonaqueous electrolyte solution
JP2016192377A (en) Ion conducting polymer electrolyte

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

R150 Certificate of patent or registration of utility model

Ref document number: 5023120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees