JP2011047286A - Refrigerant compressor - Google Patents
Refrigerant compressor Download PDFInfo
- Publication number
- JP2011047286A JP2011047286A JP2009194012A JP2009194012A JP2011047286A JP 2011047286 A JP2011047286 A JP 2011047286A JP 2009194012 A JP2009194012 A JP 2009194012A JP 2009194012 A JP2009194012 A JP 2009194012A JP 2011047286 A JP2011047286 A JP 2011047286A
- Authority
- JP
- Japan
- Prior art keywords
- crankshaft
- cast iron
- bearing
- ferrite
- graphite cast
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/04—Heavy metals
- F05C2201/0433—Iron group; Ferrous alloys, e.g. steel
- F05C2201/0436—Iron
- F05C2201/0439—Cast iron
- F05C2201/0442—Spheroidal graphite cast iron, e.g. nodular iron, ductile iron
Landscapes
- Compressor (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
本発明は、業務用および家庭用の冷凍空調に使用されるロータリ冷媒圧縮機に関するものである。 The present invention relates to a rotary refrigerant compressor used for commercial and household refrigeration and air conditioning.
従来の冷媒圧縮機としては、圧縮機の動力を伝えるクランクシャフトに片状黒鉛鋳鉄に合金を添加した材料(合金入りねずみ鋳鉄)が使用されていたが、近年圧縮機の高効率の要求仕様に対して、片状黒鉛と比較して剛性の高い球状黒鉛鋳鉄製あるいは合金入り金型共晶黒鉛鋳鉄製クランクシャフトが使用されるようになってきた。 As a conventional refrigerant compressor, a crankshaft that transmits the power of the compressor is made of a material in which an alloy is added to flake graphite cast iron (alloyed gray cast iron). On the other hand, crankshafts made of spheroidal graphite cast iron or alloyed die-eutectic graphite cast iron having higher rigidity than flake graphite have been used.
クランクシャフトの基地組織は従来の合金入りねずみ鋳鉄が殆どパーライトであるのに対し、剛性を向上させた球状黒鉛鋳鉄は、パーライトとフェライトが混在したもので、また、合金入り金型共晶黒鉛鋳鉄は基地が基本的にフェライトであるため、軸受との間で耐摩耗性に対し、材料的な管理が必要となっている。 While the base structure of the crankshaft is mostly pearlite with conventional alloyed gray cast iron, spheroidal graphite cast iron with improved rigidity is a mixture of pearlite and ferrite. Since the base is basically made of ferrite, material management is required for wear resistance with the bearing.
しかしながら、前記従来の合金入りねずみ鋳鉄製クランクシャフトでは、基地は殆どパーライトであるが剛性が低いため、高効率設計が困難であったが、球状黒鉛鋳鉄や合金入り金型共晶黒鉛鋳鉄のクランクシャフトでは、高い剛性が確保されるため高効率設計が容易となったが、組織的には基地中にフェライトを含むため軸受け材料との間での耐摩耗性を確保しなければならないと課題を有していた。 However, in the conventional alloyed gray cast iron crankshaft, the base is almost pearlite but its rigidity is low, so it was difficult to design with high efficiency, but the crank of spheroidal graphite cast iron or alloyed eutectic graphite cast iron was difficult. With shafts, high efficiency is easy because high rigidity is ensured, but organizationally, since ferrite is contained in the base, there is a problem that it is necessary to ensure wear resistance with the bearing material. Had.
本発明は、基地中にフェライトを多く含むクランクシャフトを使用する圧縮機において耐摩耗性を確保するという課題を解決するもので、クランクシャフトとの間で充分な耐摩耗性を有する軸受け材を提供することを目的とする。 The present invention solves the problem of ensuring wear resistance in a compressor using a crankshaft containing a large amount of ferrite in the base, and provides a bearing material having sufficient wear resistance with the crankshaft. The purpose is to do.
前記従来の課題を解決するために、本発明のねずみ鋳鉄製の主軸受は、基地中の相をパーライトとすべくMn(マンガン)の含有量を管理し達成させるものである。 In order to solve the above-described conventional problems, the gray cast iron main bearing of the present invention manages and achieves the content of Mn (manganese) so that the phase in the base is pearlite.
また、本発明の鉄系焼結である副軸受は、基地中のフェライトを低減させ、ほぼ共析パーライト基地とすべく、C(炭素)の含有量を管理するものである。 In addition, the secondary bearing, which is iron-based sintered of the present invention, controls the content of C (carbon) so as to reduce the ferrite in the matrix and make it almost a eutectoid pearlite matrix.
これによって、クランクシャフトのフェライト相とのかじりの発生を防止するものである。 This prevents the occurrence of galling with the ferrite phase of the crankshaft.
本発明の主軸受あるいは副軸受けの基地組織をパーライト化することにより、クランクシャフトとの耐摺動、耐摩耗性を確保するものである。 By making the base structure of the main bearing or the sub-bearing of the present invention pearlite, sliding resistance and wear resistance with the crankshaft are ensured.
第1の発明は、基地がパーライト50%以上で残部フェライトの組織からなる球状黒鉛鋳鉄製、あるいは基地がフェライトからなる合金入り金型共晶黒鉛鋳鉄製クランクシャフトの回転を支持する主軸受がねずみ鋳鉄であり、特に主軸受の上部(ボス孔部)が薄肉のため、鋳造時に急冷されやすく黒鉛自身も、他の部位と異なり共晶黒鉛となり基地もフェライト化傾向が大きくなるため、前記基地にフェライトを含むクランクシャフトとの摺動で、フェライト同士のかじりが発生しやすく耐摩耗性が低下するため、主軸受の急冷しやすいボス上部組織でもほぼパーライト基地が確保できるよう、鋳鉄のMn量を0.7〜1.0%の範囲とすることにより、クランクシャフトとの耐摩耗性を確保することができるようにするものである。 In the first invention, the main bearing for supporting the rotation of a crankshaft made of spheroidal graphite cast iron having a base of 50% or more of pearlite and having a remaining ferrite structure, or an alloyed mold eutectic graphite cast iron having a base made of ferrite is used. Cast iron, especially because the upper part (boss hole) of the main bearing is thin, so it is easy to be cooled rapidly during casting, and the graphite itself is eutectic graphite unlike other parts, and the base tends to become ferritic. Since sliding with the crankshaft containing ferrite tends to cause galling between ferrites and lowers wear resistance, the Mn amount of cast iron is set so that a pearlite base can be secured almost even in the boss upper structure where the main bearing is easily cooled. By setting the content within the range of 0.7 to 1.0%, it is possible to ensure wear resistance with the crankshaft.
第2の発明は、第1および第2の発明に記載のクランクシャフトの回転を支持する副軸受が鉄系焼結部品で、Ni、Moの合金添加の有無にかかわらず、C量を0.7〜1.1%と共析成分とし、基地がほぼパーライトとすることで、フェライト相を有する前記クランクシャフトとの耐磨耗性を確保し、圧縮機の軸周りの信頼性を向上することができる。 In the second invention, the auxiliary bearing supporting the rotation of the crankshaft described in the first and second inventions is an iron-based sintered part, and the C amount is set to 0. 7% to 1.1% of eutectoid component and the base is almost pearlite to ensure wear resistance with the crankshaft having the ferrite phase and to improve the reliability around the compressor shaft. Can do.
第3の発明は、冷媒がHCFCあるいはより潤滑条件の厳しいHFC冷媒条件であっても、発明1〜3に記載の軸受の基地組織のパーライトの確保により、クランクシャフトおよび軸受の間での耐摩耗性が向上し、圧縮機の信頼性を確保することができる。 According to a third aspect of the present invention, even if the refrigerant is HCFC or HFC refrigerant conditions with stricter lubrication conditions, the wear resistance between the crankshaft and the bearing is ensured by securing the pearlite of the bearing base structure according to any one of the first to third aspects. Thus, the reliability of the compressor can be ensured.
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
(実施の形態1)
図1は、本発明が適用されるロータリ圧縮機の縦断面図、図2はその圧縮機のメカの要部を示す横断面図である。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of a rotary compressor to which the present invention is applied, and FIG. 2 is a transverse sectional view showing an essential part of a mechanism of the compressor.
図1において、1は密閉容器であり、電動機部2と圧縮機構部3が配置されている。電動機部2は回転子2aと固定子2bから構成され、回転子2aには主軸受9と副軸受10により回転自在に支持されたクランクシャフト8が圧入等の方法により固定されている。圧縮機部3は吸入孔5および径方向のシリンダ溝23を有するシリンダ20と、外周面をシリンダ20の内周面に摺動しながら偏芯回転するローラ7と、ローラ7の内周面に摺動自在に挿入されたクランクシャフト8の偏芯部と、シリンダ溝23に往復摺動自在に収納されてスプリング24による押圧力と背圧(吐出圧)により先端部がローラ7に押し付けられてシリンダ内部空間を吸入室25と圧縮室26に分割するベーン21と、シリンダ両端面を密閉する主軸受9および副軸受10から構成されている。 In FIG. 1, reference numeral 1 denotes a sealed container, in which an electric motor unit 2 and a compression mechanism unit 3 are arranged. The electric motor unit 2 includes a rotor 2a and a stator 2b, and a crankshaft 8 rotatably supported by a main bearing 9 and a sub bearing 10 is fixed to the rotor 2a by a method such as press fitting. The compressor unit 3 includes a cylinder 20 having a suction hole 5 and a radial cylinder groove 23, a roller 7 that rotates eccentrically while sliding an outer peripheral surface on the inner peripheral surface of the cylinder 20, and an inner peripheral surface of the roller 7. The eccentric part of the crankshaft 8 inserted slidably and the cylinder groove 23 are housed slidably in a reciprocating manner, and the tip part is pressed against the roller 7 by the pressing force and back pressure (discharge pressure) by the spring 24. A vane 21 that divides the internal space of the cylinder into a suction chamber 25 and a compression chamber 26, and a main bearing 9 and a sub-bearing 10 that seal both ends of the cylinder are configured.
次に、ロータリ圧縮機の動作を説明する。電動機部2に外部から通電することにより回転子が回転してクランクシャフト8が回転駆動される。クランクシャフト8が回転すると偏芯部に摺動自在に取り付けられたローラ7がシリンダ内周面に摺接しながら遊星運動(図2で反時計方向回転)を行う。その結果、HFCなどの冷媒ガスが吸入管4から吸入孔5を介して吸入室25に吸い込まれ、同時に圧縮室26で圧力を上げられた冷媒ガスが吐出切り欠き22から吐出孔6を通して密閉容器1内に吐出される。 Next, the operation of the rotary compressor will be described. When the motor unit 2 is energized from the outside, the rotor rotates and the crankshaft 8 is rotationally driven. When the crankshaft 8 rotates, the roller 7 slidably attached to the eccentric portion performs planetary motion (counterclockwise rotation in FIG. 2) while slidingly contacting the inner peripheral surface of the cylinder. As a result, refrigerant gas such as HFC is sucked into the suction chamber 25 from the suction pipe 4 through the suction hole 5, and at the same time, the refrigerant gas whose pressure is increased in the compression chamber 26 passes through the discharge hole 6 through the discharge hole 6 and is sealed. 1 is discharged.
なお、図1では見やすくするために吐出孔6の位置を吸入孔から離れた位置に描いたが、実際には図2に示すようにベーン21を挟んで吸入孔5の近くに配置されている。 In FIG. 1, the position of the discharge hole 6 is depicted at a position away from the suction hole for the sake of clarity, but in reality, it is disposed near the suction hole 5 with the vane 21 interposed therebetween as shown in FIG. 2. .
この時、吸入孔25と圧縮室26とを仕切るベーン21はスプリング24とベーン背部にかかる圧力によりローラ7の外周面に押し付けられており、先端部がローラ7の外周面と、側面部がシリンダ溝23の内壁面と摺動することになる。ベーン21とローラ7およびシリンダ溝23の潤滑は定常運転状態では密閉容器底部に貯留されている冷凍機油12を使って行われるが、始動時には摺動部に充分な冷凍機油が存在しておらず、吸入された冷媒ガスに僅かながら含まれている冷凍機油12(冷凍機油は僅かではあるが冷媒ガスと共に圧縮機から吐出され、冷凍サイクルを循環した後、再び吸入管4から圧縮機に戻ってくる)が使われることになる。 At this time, the vane 21 that divides the suction hole 25 and the compression chamber 26 is pressed against the outer peripheral surface of the roller 7 by the pressure applied to the spring 24 and the back portion of the vane, the tip portion is the outer peripheral surface of the roller 7, and the side surface portion is the cylinder. It will slide with the inner wall surface of the groove 23. Lubrication of the vane 21, the roller 7, and the cylinder groove 23 is performed using the refrigerating machine oil 12 stored in the bottom of the hermetic container in the steady operation state, but there is not enough refrigerating machine oil in the sliding part at the time of starting. Refrigerating machine oil 12 slightly contained in the sucked refrigerant gas (refrigerant oil is slightly discharged from the compressor together with the refrigerant gas, circulates through the refrigeration cycle, and then returns to the compressor from the suction pipe 4 again. Come) will be used.
従来のロータリ圧縮機では、クランクシャフト8は、最近の圧縮機の高効率化の動きを受け、剛性の高い球状黒鉛鋳鉄あるいは合金入り金型共晶黒鉛鋳鉄が使用されていたが、前述のように、密閉型ロータリ圧縮機の始動時における摺動条件は潤滑油が充分に供給されない厳しいものであり、特にクランクシャフト8と主軸受9と副軸受10の間は回転運動となるため油膜が形成されにくいため更に厳しい摺動条件であるということがいえる。また、近年環境対策のために採用されているHFC冷媒はそれ自身に潤滑性が乏しいので、HFC冷媒を使用したロータリ圧縮機の摺動条件は特に厳しいものであるといえる。 In the conventional rotary compressor, the crankshaft 8 has been used in spite of recent high-efficiency movements such as high-efficiency spheroidal graphite cast iron or alloyed mold eutectic graphite cast iron. In addition, the sliding condition at the start of the hermetic rotary compressor is a severe condition in which the lubricating oil is not sufficiently supplied. In particular, an oil film is formed between the crankshaft 8, the main bearing 9, and the sub-bearing 10 because of rotational movement. It can be said that it is a more severe sliding condition because it is hard to be done. In addition, since the HFC refrigerant adopted for environmental measures in recent years has poor lubricity, it can be said that the sliding condition of the rotary compressor using the HFC refrigerant is particularly severe.
図3は従来の実施の形態における主軸受ボス上部組織を示すもので、急冷されているため、基地がフェライト(白色)化しやすいのが分かる。 FIG. 3 shows an upper structure of the main bearing boss in the conventional embodiment, and it can be seen that the base is easily converted to ferrite (white) because it is rapidly cooled.
一方、図4は本発明(Mn量の管理)における主軸受のボス上部組織を示すもので、基地にはフェライト(白色)が少なく、ほぼパーライト(写真では灰色/縞状)化しているのが分かる。 On the other hand, FIG. 4 shows the boss superstructure of the main bearing in the present invention (management of the amount of Mn). The base has few ferrite (white) and is almost pearlite (gray / striped in the photograph). I understand.
図5は従来の実施の形態における鉄系焼結部品の副軸受の組織を示すもので、基地はパーライトもあるものの、フェライトも存在する混在したものとなっている。 FIG. 5 shows the structure of the secondary bearing of the iron-based sintered component in the conventional embodiment, and the base is a mixture of pearlite but ferrite.
一方、図6は、本発明の実施の形態における副軸受の組織を示すもので、C量をパーライトが析出する範囲に管理した副軸受であり、基地はほぼパーライト化しているのが分かる。 On the other hand, FIG. 6 shows the structure of the sub-bearing in the embodiment of the present invention, which is a sub-bearing in which the C amount is controlled within the range where pearlite is deposited, and it can be seen that the base is almost pearlite.
以上のように、主軸受および副軸受の基地のパーライト化により、基地中にフェライト相を含むクランクシャフトに対する、耐摩耗性の向上を図ることが出来る。 As described above, by making the base of the main bearing and the sub-bearing pearlite, it is possible to improve the wear resistance of the crankshaft including the ferrite phase in the base.
一方、クランクシャフトが従来使用されている合金入りねずみ鋳鉄の場合、基地組織はほぼパーライトであるものの、相手軸受材が従来の基地組織でフェライトを若干含む場合には、クランクシャフトおよび軸受周りの信頼性が損なわれるになるため、本発明における基地の改善を実施することにより、圧縮機自体の信頼性、安全性が向上することになる。 On the other hand, when the crankshaft is an alloyed gray cast iron that has been used in the past, the base structure is almost pearlite, but when the mating bearing material is a conventional base structure and contains some ferrite, the reliability around the crankshaft and the bearing Therefore, by improving the base in the present invention, the reliability and safety of the compressor itself are improved.
1 密閉容器
2 電動機部
3 圧縮機部
4 吸入管
5 吸入孔
6 吐出孔
7 ローラ
8 シャフト
9 主軸受
10 副軸受
11 締め付けボルト
12 冷凍機油
20 シリンダ
21 ベーン
22 吐出切欠き
23 シリンダ溝
24 スプリング
25 吸入室
26 圧縮室
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Electric motor part 3 Compressor part 4 Suction pipe 5 Suction hole 6 Discharge hole 7 Roller 8 Shaft 9 Main bearing 10 Sub bearing
11 Clamping bolt 12 Refrigeration machine oil 20 Cylinder 21 Vane 22 Discharge notch 23 Cylinder groove 24 Spring 25 Suction chamber 26 Compression chamber
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009194012A JP5170035B2 (en) | 2009-08-25 | 2009-08-25 | Refrigerant compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009194012A JP5170035B2 (en) | 2009-08-25 | 2009-08-25 | Refrigerant compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011047286A true JP2011047286A (en) | 2011-03-10 |
JP5170035B2 JP5170035B2 (en) | 2013-03-27 |
Family
ID=43833866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009194012A Expired - Fee Related JP5170035B2 (en) | 2009-08-25 | 2009-08-25 | Refrigerant compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5170035B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07189958A (en) * | 1993-12-27 | 1995-07-28 | Toshiba Corp | Material for rotary compressor, and roller, cylinder and bearing for rotary compressor |
JPH1088203A (en) * | 1996-09-06 | 1998-04-07 | Toshiba Corp | Material of sliding parts for compressor and its manufacture |
JP2005036693A (en) * | 2003-07-18 | 2005-02-10 | Hitachi Home & Life Solutions Inc | Method of manufacturing refrigerant compressor |
JP2009097429A (en) * | 2007-10-17 | 2009-05-07 | Panasonic Corp | Refrigerant compressor |
-
2009
- 2009-08-25 JP JP2009194012A patent/JP5170035B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07189958A (en) * | 1993-12-27 | 1995-07-28 | Toshiba Corp | Material for rotary compressor, and roller, cylinder and bearing for rotary compressor |
JPH1088203A (en) * | 1996-09-06 | 1998-04-07 | Toshiba Corp | Material of sliding parts for compressor and its manufacture |
JP2005036693A (en) * | 2003-07-18 | 2005-02-10 | Hitachi Home & Life Solutions Inc | Method of manufacturing refrigerant compressor |
JP2009097429A (en) * | 2007-10-17 | 2009-05-07 | Panasonic Corp | Refrigerant compressor |
Also Published As
Publication number | Publication date |
---|---|
JP5170035B2 (en) | 2013-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4864572B2 (en) | Rotary compressor and refrigeration cycle apparatus using the same | |
JP3941815B2 (en) | Composition for sliding member, sliding member and fluid machine | |
JP2005201140A (en) | Fluid machine | |
JP2008303844A (en) | Scroll fluid machine | |
US9879678B2 (en) | Scroll compressor | |
CN1270661A (en) | Sliding member and refrigerating compressor using the same | |
JP2007127093A (en) | Compressor | |
JP5991958B2 (en) | Rotary compressor | |
JP5170035B2 (en) | Refrigerant compressor | |
JP6057535B2 (en) | Refrigerant compressor | |
JP2008121481A (en) | Scroll fluid machine | |
JP2009287483A (en) | Refrigerant compressor | |
JP2009097429A (en) | Refrigerant compressor | |
JP2010101232A (en) | Refrigerant compressor | |
JP2005325842A (en) | Fluid machine | |
JP2008280934A (en) | Refrigerant compressor | |
JP2010265777A (en) | Compressor | |
JP2012077728A (en) | Rotary compressor | |
JP2009228558A (en) | Refrigerant compressor | |
JP2010112174A (en) | Rotary compressor | |
JP2008014285A (en) | Refrigerant compressor | |
JPH0849048A (en) | Rotary compressor | |
JP2009250189A (en) | Refrigerant compressor | |
JP2011179452A (en) | Rotary compressor | |
JP2008280846A (en) | Hermetic refrigerant compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110809 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121031 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121217 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160111 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |