JP2010112174A - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP2010112174A
JP2010112174A JP2008282718A JP2008282718A JP2010112174A JP 2010112174 A JP2010112174 A JP 2010112174A JP 2008282718 A JP2008282718 A JP 2008282718A JP 2008282718 A JP2008282718 A JP 2008282718A JP 2010112174 A JP2010112174 A JP 2010112174A
Authority
JP
Japan
Prior art keywords
upper bearing
oil
oil groove
cylinder
sliding surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008282718A
Other languages
Japanese (ja)
Inventor
Takeshi Karino
健 苅野
Noboru Iida
飯田  登
Masao Nakano
雅夫 中野
Daisuke Funakoshi
大輔 船越
Tsutomu Tsujimoto
力 辻本
Yu Haraki
雄 原木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008282718A priority Critical patent/JP2010112174A/en
Publication of JP2010112174A publication Critical patent/JP2010112174A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary compressor for reducing an input loss, by reducing a sliding loss in an upper bearing, by improving slidability of a rotating shaft and an inner peripheral sliding surface of the upper bearing. <P>SOLUTION: An oil groove 15 arranged on the inner peripheral sliding surface of the upper bearing 6 has a first oil groove 15A and a second oil groove 15B divided in the axial direction of a shaft 4 by the cylinder 5 side and the compression driving part (electric motor part 102) side. Since the first oil groove 15A and the second oil groove 15B can improve the slidability of the rotating shaft 4 and the inner peripheral sliding surface of the upper bearing 6 by minimizing reduction in load capacity by the oil groove of the upper bearing 6 by arranging an angle difference of about 180° in the circumferential direction of the inner peripheral sliding surface of the upper bearing 6, the sliding loss in the upper bearing can be reduced. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ルームエアコン、冷蔵庫、空気調和装置に組み込まれるロータリ圧縮機に関するものである。   The present invention relates to a rotary compressor incorporated in a room air conditioner, a refrigerator, and an air conditioner.

従来のロータリ圧縮機は密閉容器内に圧縮駆動部の電動機部と、電動機部によって駆動される圧縮機構部が収納されており、密閉容器の底部をオイル溜りとしている。電動機部はステータとロータにて構成され、ロータの回転がシャフトを介して圧縮機構部に伝達される。圧縮機構部は、シリンダーと、このシリンダーの電動機側端面に締結される上軸受けと、反対側端面に締結される下軸受けを有しており、この上軸受けと下軸受けとの間に位置するシャフトの偏心部にはピストンが嵌合され、このピストンに当接するベーンにより、シリンダー内に仕切られた吸入室と圧縮室を形成する。ピストンの偏心回転とベーンの往復運動によって吸入室と圧縮室の容積が変化し、この容積変化により、圧縮機構部の吸入ポートからシリンダー内の吸入室に吸入された冷媒ガスが圧縮されて高温高圧の冷媒ガスとなり、シリンダー内の圧縮室より吐出ポート、吐出マフラー室を経て、密閉容器内に吐出される。そして、ロータリ圧縮機から吐出された冷媒ガスは冷凍サイクル内の放熱器で放熱した後、膨張弁で絞られて蒸発器で吸熱して再びロータリ圧縮機に吸入されるサイクルを繰り返す。   In a conventional rotary compressor, an electric motor part of a compression driving part and a compression mechanism part driven by the electric motor part are housed in a hermetic container, and the bottom part of the hermetic container serves as an oil reservoir. The electric motor part is composed of a stator and a rotor, and the rotation of the rotor is transmitted to the compression mechanism part via the shaft. The compression mechanism has a cylinder, an upper bearing fastened to the end surface of the cylinder on the electric motor side, and a lower bearing fastened to the opposite end surface, and a shaft positioned between the upper bearing and the lower bearing. A piston is fitted to the eccentric portion of the, and a suction chamber and a compression chamber partitioned in the cylinder are formed by a vane contacting the piston. The volume of the suction chamber and the compression chamber changes due to the eccentric rotation of the piston and the reciprocating movement of the vane, and this change in volume compresses the refrigerant gas sucked from the suction port of the compression mechanism into the suction chamber in the cylinder. The refrigerant gas is discharged from the compression chamber in the cylinder through the discharge port and the discharge muffler chamber into the sealed container. Then, after the refrigerant gas discharged from the rotary compressor is radiated by the radiator in the refrigeration cycle, the refrigerant is squeezed by the expansion valve, absorbed by the evaporator, and again sucked into the rotary compressor.

また、シャフトの、電動機部と反対側端部に設けられたオイルポンプによりオイル溜り内のオイルが吸引され、オイルはシャフト内を通り、上軸受けの内周摺動面及び下軸受けの内周摺動面に給油されて摺動部を潤滑する(例えば、特許文献1参照)。   Also, the oil in the oil reservoir is sucked by the oil pump provided at the end of the shaft opposite to the motor part, and the oil passes through the shaft, and the inner sliding surface of the upper bearing and the inner sliding surface of the lower bearing. Oil is supplied to the moving surface to lubricate the sliding portion (see, for example, Patent Document 1).

図6と図7は、特許文献1に記載された従来のロータリ圧縮機を示すものである。図6および図7に示すように、シャフト44にはピストン38を介して、シリンダー35内の圧縮室側圧力Pcと吸入室側圧力Psの差圧により発生する力F1が圧縮室34から吸入室33の方向に作用し、シリンダー35の両端面に締結される上軸受け36と下軸受け37により支持する。特に、ベーン39がシリンダー35の内側に最も突出した時点のシャフト44の位置を0°とした場合に、シャフト44の位置が略90°以上180°未満の角度で、シリンダー35内の圧縮室側圧力Pcと吸入室側圧力Psとの差圧が最も高く、上軸受け36及び下軸受け37の内周摺動面では、上軸受け36及び下軸受け37を電動機部側から見てベーン溝30の位置を0°とした場合に、シャフト44が回転する方向に略90°以上180°未満の角度に最も高い力が作用する。   6 and 7 show a conventional rotary compressor described in Patent Document 1. FIG. As shown in FIGS. 6 and 7, a force F1 generated by the differential pressure between the compression chamber side pressure Pc and the suction chamber side pressure Ps in the cylinder 35 is applied to the shaft 44 via the piston 38 from the compression chamber 34 to the suction chamber. It acts in the direction of 33 and is supported by an upper bearing 36 and a lower bearing 37 fastened to both end faces of the cylinder 35. In particular, when the position of the shaft 44 at the time when the vane 39 protrudes most inside the cylinder 35 is 0 °, the position of the shaft 44 is at an angle of approximately 90 ° or more and less than 180 °, and the compression chamber side in the cylinder 35. The differential pressure between the pressure Pc and the suction chamber side pressure Ps is the highest. On the inner peripheral sliding surfaces of the upper bearing 36 and the lower bearing 37, the position of the vane groove 30 when the upper bearing 36 and the lower bearing 37 are viewed from the electric motor side. Is set to 0 °, the highest force acts at an angle of approximately 90 ° to less than 180 ° in the direction in which the shaft 44 rotates.

従来は、上軸受け36及び下軸受け37の内周摺動面には、軸受け部の、潤滑油膜形成のためのオイル給油と冷却を目的として、それぞれ1本ずつのオイル溝を設け、このオイル溝の円周方向位置は上軸受け及び下軸受け共に、シャフト44が回転する方向に略270°以上360°未満の角度であり、即ち、オイル溝部で潤滑油膜によって発生する圧力が0となることを考慮して、上記差圧により発生する力の方向に対し、軸受けの負荷容量が大きく確保できる位置が選定されていた。これにより、軸受け部に好適な潤滑油膜を形成して、回転するシャフトと上軸受け及び下軸受けの内周摺動面との摺動性を向上させて、入力の低減を図っていた。
特開2003−214369号公報
Conventionally, on the inner peripheral sliding surfaces of the upper bearing 36 and the lower bearing 37, one oil groove is provided for the purpose of oil supply and cooling for forming a lubricating oil film of the bearing portion. The circumferential position of both the upper and lower bearings is an angle of approximately 270 ° to less than 360 ° in the direction in which the shaft 44 rotates, that is, the pressure generated by the lubricating oil film in the oil groove is zero. Thus, a position where a large load capacity of the bearing can be secured with respect to the direction of the force generated by the differential pressure has been selected. As a result, a suitable lubricating oil film is formed on the bearing portion to improve the slidability between the rotating shaft and the inner peripheral sliding surfaces of the upper bearing and the lower bearing, thereby reducing input.
JP 2003-214369 A

しかしながら、前記従来の構成では、図7のように、上軸受け36は軸受け部の面圧を
小さく抑えるためにシャフト44の軸方向に長さを大きくするため、上軸受け36のシリンダー側内周摺動面にはシリンダー35内の圧縮室側圧力Pcと吸入室側圧力Psの差圧により発生する力が圧縮室から吸入室の方向に作用し、上軸受け36の電動機部側、即ち、圧縮駆動部側内周摺動面にはシリンダー側と円周方向に略180°逆方向の力が作用する。従って、上記差圧により発生する力が最も高く作用する角度は、上軸受け36を圧縮駆動部側から見てベーン溝30の位置を0°とした場合に、上軸受け36のシリンダー側内周摺動面ではシャフト44が回転する方向に略90°以上180°未満の角度で、圧縮駆動部側内周摺動面ではシャフト44が回転する方向に略270°以上360°未満の角度となり、上軸受けの内周摺動面に設けたオイル溝が円周方向近傍に存在するため、上軸受けの負荷容量が著しく低下して摺動損失が大きくなり、入力ロスが発生していた。
However, in the conventional configuration, as shown in FIG. 7, the upper bearing 36 is increased in length in the axial direction of the shaft 44 in order to keep the surface pressure of the bearing portion small. A force generated by a differential pressure between the compression chamber side pressure Pc and the suction chamber side pressure Ps in the cylinder 35 acts on the moving surface in the direction from the compression chamber to the suction chamber, and the motor portion side of the upper bearing 36, that is, compression drive. A force approximately 180 ° opposite to the cylinder side and circumferential direction acts on the inner circumferential sliding surface on the part side. Therefore, the angle at which the force generated by the differential pressure is the highest is such that when the upper bearing 36 is viewed from the compression drive unit side and the position of the vane groove 30 is 0 °, the inner side sliding of the upper bearing 36 on the cylinder side. The moving surface has an angle of about 90 ° to less than 180 ° in the direction in which the shaft 44 rotates, and the compression driving portion side inner peripheral sliding surface has an angle in the direction of rotation of the shaft 44 to about 270 ° to less than 360 °. Since the oil groove provided on the inner peripheral sliding surface of the bearing is present in the vicinity of the circumferential direction, the load capacity of the upper bearing is significantly reduced, the sliding loss is increased, and the input loss is generated.

本発明は、前記従来の課題を解決するもので、上軸受けの圧縮駆動部側において、上軸受けのオイル溝による負荷容量の低下を抑制し、回転するシャフトと上軸受けの内周摺動面との摺動性を向上させて、入力ロスが小さいロータリ圧縮機を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and on the compression drive part side of the upper bearing, suppresses a decrease in load capacity due to the oil groove of the upper bearing, and the rotating shaft and the inner peripheral sliding surface of the upper bearing An object of the present invention is to provide a rotary compressor in which the slidability is improved and the input loss is small.

前記従来の課題を解決するために、本発明のロータリ圧縮機は、上軸受けの内周摺動面でシリンダー側と圧縮駆動部側とでシャフトの軸方向に分割された第1のオイル溝と第2のオイル溝を備え、第1のオイル溝と第2のオイル溝は、上軸受けの内周摺動面の円周方向に略180°の角度差を設けたものである。これにより、上記差圧により発生する力の方向に上軸受けのシリンダー側内周摺動面と圧縮駆動部側摺動面で円周方向に略180°の角度差がある場合に、この力が上軸受けのシリンダー側内周摺動面と圧縮駆動部側摺動面に最も高く作用する角度の円周方向近傍から、上軸受けの内周摺動面に設けたオイル溝を回避することができる。   In order to solve the above-described conventional problems, the rotary compressor of the present invention includes a first oil groove that is divided in the axial direction of the shaft on the cylinder side and the compression drive unit side on the inner peripheral sliding surface of the upper bearing. A second oil groove is provided, and the first oil groove and the second oil groove are provided with an angular difference of about 180 ° in the circumferential direction of the inner peripheral sliding surface of the upper bearing. As a result, when there is an angular difference of approximately 180 ° in the circumferential direction between the inner bearing sliding surface on the cylinder side of the upper bearing and the sliding surface on the compression drive unit in the direction of the force generated by the differential pressure, The oil groove provided on the inner peripheral sliding surface of the upper bearing can be avoided from the vicinity of the circumferential direction of the angle that most acts on the cylinder inner peripheral sliding surface and the compression drive side sliding surface of the upper bearing. .

本発明のロータリ圧縮機は、上軸受けのオイル溝による負荷容量の低下を抑制し、回転するシャフトと上軸受けの内周摺動面との摺動性を向上させることができる。従って、上軸受けの摺動損失を低減し、入力ロスが小さいロータリ圧縮機を提供することが可能となる。   The rotary compressor of the present invention can suppress a decrease in load capacity due to the oil groove of the upper bearing, and can improve the slidability between the rotating shaft and the inner peripheral sliding surface of the upper bearing. Therefore, it is possible to provide a rotary compressor that reduces the sliding loss of the upper bearing and has a small input loss.

第1の発明は、密閉容器内に、圧縮機構部と、その圧縮機構部を駆動するための圧縮駆動部とを収納し、圧縮機構部はシリンダーと、シリンダーの両端面に配置される上軸受け及び下軸受けと、シリンダー内を回転するピストンと、ピストンを駆動し、かつ、密閉容器内のオイル溜りから、上軸受け及び下軸受けの内周摺動面にオイルを供給するオイル給油孔を設けたシャフトと、シリンダー内を吸入室と圧縮室に仕切るベーンと、シリンダーに形成され、ベーンが往復運動するベーン溝とを有して構成したロータリ圧縮機であって、上軸受けの内周摺動面でシリンダー側と圧縮駆動部側とでシャフトの軸方向に分割された第1のオイル溝と第2のオイル溝を備え、第1のオイル溝と第2のオイル溝は、上軸受けの内周摺動面の円周方向に略180°の角度差を設けたことにより、シリンダー内の圧縮室側圧力Pcと吸入室側圧力Psの差圧により発生する力の方向に上軸受けのシリンダー側内周摺動面と圧縮駆動部側摺動面で円周方向に略180°の角度差がある場合に、この力が上軸受けのシリンダー側内周摺動面と圧縮駆動部側摺動面に最も高く作用する角度の円周方向近傍から、上軸受けの内周摺動面に設けたオイル溝を回避することができる。   According to a first aspect of the present invention, a compression mechanism portion and a compression drive portion for driving the compression mechanism portion are accommodated in a sealed container, and the compression mechanism portion is an upper bearing disposed on both ends of the cylinder and the cylinder. And a lower bearing, a piston that rotates in the cylinder, and an oil supply hole that drives the piston and supplies oil from the oil reservoir in the sealed container to the inner peripheral sliding surfaces of the upper bearing and the lower bearing. A rotary compressor having a shaft, a vane that divides the inside of the cylinder into a suction chamber and a compression chamber, and a vane groove that is formed in the cylinder and in which the vane reciprocates, the inner peripheral sliding surface of the upper bearing The first oil groove and the second oil groove are divided in the axial direction of the shaft on the cylinder side and the compression drive part side, and the first oil groove and the second oil groove are the inner circumference of the upper bearing. Approximate in the circumferential direction of the sliding surface By providing an angle difference of 80 °, the inner bearing sliding surface on the cylinder side of the upper bearing and the compression drive unit side in the direction of the force generated by the pressure difference between the compression chamber side pressure Pc and the suction chamber side pressure Ps in the cylinder. When there is an angle difference of approximately 180 ° in the circumferential direction on the sliding surface, the circumferential direction of the angle at which this force is most effective on the inner bearing sliding surface on the cylinder side of the upper bearing and the sliding surface on the compression drive unit The oil groove provided on the inner peripheral sliding surface of the upper bearing can be avoided from the vicinity.

第2の発明は、特に第1の発明のロータリ圧縮機について、上軸受けを圧縮駆動部側から見てベーン溝の位置を0°とした場合に、シリンダー側の第1のオイル溝をシャフトが回転する方向に略270°以上360°未満の角度に、圧縮駆動部側の第2のオイル溝を
シャフトが回転する方向に略90°以上180°未満の角度に設けたので、上軸受けのシリンダー側内周摺動面で、シャフトが回転する方向に略90°以上180°未満の角度に作用する力と、上軸受けの圧縮駆動部側内周摺動面で、シャフトが回転する方向に略270°以上360°未満の角度に作用する力に対して、上軸受けのオイル溝による負荷容量の低下を最小限に抑制することができる。
In the second aspect of the invention, particularly in the rotary compressor of the first aspect, when the position of the vane groove is set to 0 ° when the upper bearing is viewed from the compression drive unit side, the shaft is connected to the first oil groove on the cylinder side. Since the second oil groove on the compression drive unit side is provided at an angle of approximately 90 ° to less than 180 ° in the direction of rotation of the shaft at an angle of approximately 270 ° to less than 360 ° in the rotating direction, the cylinder of the upper bearing On the side inner peripheral sliding surface, the force acting at an angle of approximately 90 ° or more and less than 180 ° in the direction in which the shaft rotates, and the upper bearing compression driving portion side inner peripheral sliding surface in the direction in which the shaft rotates. With respect to a force acting on an angle of 270 ° or more and less than 360 °, a decrease in load capacity due to the oil groove of the upper bearing can be suppressed to a minimum.

第3の発明は、特に第1の発明のロータリ圧縮機を、上軸受けの内周摺動面に、上軸受けの内径寸法より大なる円環状の溝を設けて、シリンダー側の第1のオイル溝と圧縮駆動部側の第2のオイル溝を連通するように構成したことにより、シャフトの給油孔から上軸受けのシリンダー側内周摺動面に供給されたオイルを円環状の溝に逃がし、かつ、円環状の溝から圧縮駆動部側内周摺動面にオイルを給油することができる。   According to a third aspect of the invention, in particular, in the rotary compressor of the first aspect, an annular groove larger than the inner diameter of the upper bearing is provided on the inner peripheral sliding surface of the upper bearing, and the first oil on the cylinder side is provided. By configuring the groove to communicate with the second oil groove on the compression drive unit side, oil supplied from the oil supply hole of the shaft to the cylinder-side inner sliding surface of the upper bearing is released to the annular groove, In addition, oil can be supplied from the annular groove to the inner peripheral sliding surface on the compression drive unit side.

第4の発明は、特に第1の発明のロータリ圧縮機を、シャフトの、上軸受けと対向する外周摺動面に、シャフトの外径寸法より小なる円環状の溝を設けて、シリンダー側の第1のオイル溝と圧縮駆動部側の第2のオイル溝を連通するように構成したことにより、シャフトの給油孔から上軸受けのシリンダー側内周摺動面に供給されたオイルを円環状の溝に逃がし、かつ、円環状の溝から圧縮駆動部側内周摺動面にオイルを給油することができる。   In the fourth aspect of the invention, in particular, the rotary compressor of the first aspect of the present invention is provided with an annular groove smaller than the outer diameter of the shaft on the outer peripheral sliding surface of the shaft facing the upper bearing. By configuring the first oil groove and the second oil groove on the compression drive unit side to communicate with each other, the oil supplied from the oil supply hole of the shaft to the cylinder side inner peripheral sliding surface of the upper bearing is annular. Oil can escape from the groove and can be supplied from the annular groove to the inner peripheral sliding surface of the compression drive unit.

第5の発明は、特に第1の発明のロータリ圧縮機に、シリンダー側の第1のオイル溝内面から上軸受けの外側へ至るオイル逃げ穴と、シャフトに形成され、シリンダー側の第1のオイル溝を含む内周摺動面と、圧縮駆動部側の第2のオイル溝を含む内周摺動面にオイルを供給するオイル給油孔とを備えたことにより、オイル給油孔から上軸受けのシリンダー側内周摺動面に供給されたオイルを、上軸受けの外側へ至るオイル逃げ穴を経由して上軸受けの外側へ逃がし、オイル給油孔から圧縮駆動部側の内周摺動面にオイルを給油することができる。   According to a fifth aspect of the present invention, in particular, in the rotary compressor of the first aspect of the present invention, an oil relief hole extending from the inner surface of the first oil groove on the cylinder side to the outer side of the upper bearing and the shaft is formed. By providing an inner peripheral sliding surface including a groove and an oil supply hole for supplying oil to the inner peripheral sliding surface including a second oil groove on the compression drive unit side, the cylinder of the upper bearing from the oil supply hole The oil supplied to the inner peripheral sliding surface is released to the outer side of the upper bearing through an oil escape hole that extends to the outer side of the upper bearing, and oil is supplied from the oil supply hole to the inner peripheral sliding surface on the compression drive unit side. Can be refueled.

以下、本発明の実施形態について図面に従って説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の第1の実施の形態におけるロータリ圧縮機を示す縦断面図、図2は図1のA−A矢視を示す断面図、図3は本発明の第1の実施の形態におけるロータリ圧縮機を示す要部縦断面図、図4は図1のB−B矢視を示す断面図である。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view showing a rotary compressor according to a first embodiment of the present invention, FIG. 2 is a sectional view showing an arrow AA in FIG. 1, and FIG. 3 is a first embodiment of the present invention. FIG. 4 is a cross-sectional view taken along line BB in FIG. 1.

図1において、100はR410Aを冷媒ガスとして使用するロータリ圧縮機で、このロータリ圧縮機100は円筒状の密閉容器1と、この密閉容器1の内部上側に配置された電動機部102、及びこの電動機部102の下側に配置され、この電動機部102によって駆動される圧縮機構部101によって構成されており、密閉容器1底部をオイル溜りとしている。   In FIG. 1, reference numeral 100 denotes a rotary compressor that uses R410A as a refrigerant gas. The rotary compressor 100 includes a cylindrical hermetic container 1, an electric motor unit 102 disposed on the upper side of the hermetic container 1, and the electric motor. The compression mechanism unit 101 is arranged below the unit 102 and driven by the electric motor unit 102, and the bottom of the sealed container 1 is used as an oil reservoir.

電動機部102は、密閉容器1の内部上側の内周面に沿って環状に取り付けられたステータ2と、このステータ2の内側に若干の隙間を設けて挿入されるロータ3からなっており、このロータ3は中心部で鉛直方向にシャフト4に固定されている。   The electric motor unit 102 includes a stator 2 that is annularly attached along the inner peripheral surface on the inner upper side of the sealed container 1, and a rotor 3 that is inserted with a slight gap inside the stator 2. The rotor 3 is fixed to the shaft 4 in the vertical direction at the center.

圧縮機構部101は、シリンダー5と、このシリンダー5の電動機部側端面に締結される上軸受け6と、反対側端面に締結される下軸受け7を有しており、この上軸受け6及び下軸受け7はシャフト4を径方向に支持している。上軸受け6と下軸受け7との間に位置するシャフト4の偏心部にピストン8が嵌合されている。   The compression mechanism unit 101 includes a cylinder 5, an upper bearing 6 fastened to the end surface of the cylinder 5 on the electric motor side, and a lower bearing 7 fastened to the end surface on the opposite side. The upper bearing 6 and the lower bearing 7 supports the shaft 4 in the radial direction. A piston 8 is fitted to an eccentric portion of the shaft 4 located between the upper bearing 6 and the lower bearing 7.

図3に示すように、上軸受け6の内周摺動面に設けたオイル溝15は、シリンダー5側と圧縮駆動部(電動機部102)側とでシャフト4の軸方向に分割された第1のオイル溝15Aと第2のオイル溝15Bを備え、第1のオイル溝15Aと第2のオイル溝15Bは、上軸受け6の内周摺動面の円周方向に略180°の角度差を設けたものである。具体的には、図4に示すように、上軸受け6を電動機部102側から見てベーン溝の位置を0°とした場合に、シリンダー側のオイル溝15Aをシャフト4が回転する方向に略270°以上360°未満の角度に、電動機部側のオイル溝15Bをシャフト4が回転する方向に略90°以上180°未満の角度に設けている。また、上軸受け6の内周摺動面に、上軸受け6の内径寸法より大なる円環状の溝15Cを設けて、シリンダー側のオイル溝15Aと電動機部側のオイル溝15Bを連通させている。   As shown in FIG. 3, the oil groove 15 provided on the inner peripheral sliding surface of the upper bearing 6 is a first divided in the axial direction of the shaft 4 on the cylinder 5 side and the compression drive part (electric motor part 102) side. Oil groove 15A and second oil groove 15B. The first oil groove 15A and the second oil groove 15B have an angular difference of about 180 ° in the circumferential direction of the inner peripheral sliding surface of the upper bearing 6. It is provided. Specifically, as shown in FIG. 4, when the position of the vane groove is 0 ° when the upper bearing 6 is viewed from the electric motor unit 102 side, the oil groove 15 </ b> A on the cylinder side is approximately in the direction in which the shaft 4 rotates. The oil groove 15B on the motor unit side is provided at an angle of approximately 90 ° to less than 180 ° in the direction in which the shaft 4 rotates at an angle of 270 ° to less than 360 °. Also, an annular groove 15C larger than the inner diameter of the upper bearing 6 is provided on the inner peripheral sliding surface of the upper bearing 6, and the cylinder-side oil groove 15A and the motor section-side oil groove 15B are communicated with each other. .

図2に示すように、シリンダー5にはベーン9を摺動自在に配置するためのベーン溝10と、ベーン9の半径方向外側に配置されるベーンバネ11を収納するベーンバネ孔12が設けられており、ベーン9はシャフト4の偏心回転によりベーン溝10内を往復運動しながら、ベーンバネ11によりバネ力を付勢されてピストン8の外周面に当接し、シリンダー5内にベーン9によって仕切られた吸入室13と圧縮室14を形成する。   As shown in FIG. 2, the cylinder 5 is provided with a vane groove 10 for slidably disposing the vane 9 and a vane spring hole 12 for accommodating a vane spring 11 disposed on the radially outer side of the vane 9. The vane 9 is reciprocated in the vane groove 10 by the eccentric rotation of the shaft 4, and the spring force is urged by the vane spring 11 to come into contact with the outer peripheral surface of the piston 8, and the suction separated by the vane 9 in the cylinder 5. A chamber 13 and a compression chamber 14 are formed.

以上のように構成されたロータリ圧縮機について、以下その動作を説明する。   The operation of the rotary compressor configured as described above will be described below.

まず、電動機部102が起動するとロータ3が回転する。この回転により、シャフト4の回転と共に、シャフト4の偏心部に嵌合されたピストン8がシリンダー5の内周面にほぼ沿いながら偏心回転し、ベーン9によって仕切られた吸入室13と圧縮室14の容積が変化する。   First, when the electric motor unit 102 is activated, the rotor 3 rotates. With this rotation, the piston 8 fitted to the eccentric portion of the shaft 4 rotates eccentrically along the inner peripheral surface of the cylinder 5 together with the rotation of the shaft 4, and the suction chamber 13 and the compression chamber 14 partitioned by the vanes 9. The volume of changes.

これにより、吸入ライナ16を経由してシリンダー5に形成された吸入ポート17より、シリンダー5内の吸入室13に吸入された冷媒ガスは、ピストン8とベーン9の動作により圧縮されて、シリンダー5内の圧縮室14より吐出ポート18、上軸受け6とこの上軸受け6の上側に配置固定されたバルブカバー19によって囲まれる吐出マフラー室103を経由して、密閉容器1内に吐出される。   Thus, the refrigerant gas sucked into the suction chamber 13 in the cylinder 5 from the suction port 17 formed in the cylinder 5 via the suction liner 16 is compressed by the operation of the piston 8 and the vane 9, and the cylinder 5 The air is discharged into the sealed container 1 from the inner compression chamber 14 through the discharge port 18, the upper bearing 6, and the discharge muffler chamber 103 surrounded by the valve cover 19 disposed and fixed above the upper bearing 6.

同時に、シャフト4の、電動機部102と反対側端部にオイルポンプ20が設けられており、シャフト4が回転すると、オイルポンプ20がオイル溜り内のオイルを吸引し、吸引されたオイルは、シャフト4内を通り、上軸受け6の内周摺動面及び下軸受け7の内周摺動面に給油されて摺動部を潤滑すると共に、シリンダー5内各部の摺動部に給油されてそれらの摺動部を潤滑する。   At the same time, an oil pump 20 is provided at the end of the shaft 4 opposite to the motor part 102. When the shaft 4 rotates, the oil pump 20 sucks oil in the oil reservoir, and the sucked oil is 4, lubricated to the inner peripheral sliding surface of the upper bearing 6 and the inner peripheral sliding surface of the lower bearing 7 to lubricate the sliding parts, and lubricated to the sliding parts of each part in the cylinder 5 Lubricate the sliding part.

上軸受け6の内周摺動面にはシリンダー5内の圧縮室側圧力Pcと吸入室側圧力Psの差圧により発生する力が作用し、この力が最も高く作用する方向は、上軸受け6を電動機部102側から見てベーン溝10の位置を0°とした場合に、上軸受け6のシリンダー側内周摺動面ではシャフト4が回転する方向に略90°以上180°未満の角度で、電動機部側内周摺動面ではシャフト4が回転する方向に略270°以上360°未満の角度となるので、シリンダー側のオイル溝15Aをシャフト4が回転する方向に略270°以上360°未満の角度に、電動機部側のオイル溝15Bをシャフト4が回転する方向に略90°以上180°未満の角度に設けることにより、上軸受け6のオイル溝による負荷容量の低下を最小限に抑制して、回転するシャフト4と上軸受け6の内周摺動面との摺動性を向上させることができるので、上軸受けの摺動損失を低減することができる。   A force generated by the pressure difference between the compression chamber side pressure Pc and the suction chamber side pressure Ps in the cylinder 5 acts on the inner peripheral sliding surface of the upper bearing 6, and the direction in which this force acts highest is the upper bearing 6. When the position of the vane groove 10 is 0 ° when viewed from the motor unit 102 side, the cylinder side inner peripheral sliding surface of the upper bearing 6 has an angle of approximately 90 ° to less than 180 ° in the direction in which the shaft 4 rotates. In the motor part side inner peripheral sliding surface, the angle is approximately 270 ° or more and less than 360 ° in the direction in which the shaft 4 rotates. Therefore, the oil groove 15A on the cylinder side is approximately 270 ° or more and 360 ° in the direction in which the shaft 4 rotates. By providing the oil groove 15B on the motor section side at an angle of less than 90 ° and less than 180 ° in the direction in which the shaft 4 rotates, the load capacity drop due to the oil groove of the upper bearing 6 is minimized. And rotate Since it is possible to improve the sliding property between the shift 4 and the inner circumferential sliding surface of the upper bearing 6, it is possible to reduce the sliding loss of the upper bearing.

また、本実施の形態1の、上軸受け6のシリンダー側内周摺動面に供給されたオイルを逃がし、かつ、電動機部側内周摺動面にオイルを給油する手段を図示はしないが、シャフトの、上軸受けと対向する外周摺動面に、シャフトの外径寸法より小なる円環状の溝を設
けて、シリンダー側のオイル溝と圧縮駆動部側のオイル溝を連通するように構成することにより、本実施例と同様の効果が得られる。具体的には、シャフトの給油孔から上軸受けのシリンダー側内周摺動面に供給されたオイルを円環状の溝に逃がし、かつ、円環状の溝から圧縮駆動部側内周摺動面にオイルを給油することができる。
Further, although not shown in the drawings, means for releasing oil supplied to the cylinder side inner peripheral sliding surface of the upper bearing 6 and supplying oil to the motor unit side inner peripheral sliding surface of the first embodiment is not shown. An annular groove smaller than the outer diameter of the shaft is provided on the outer peripheral sliding surface of the shaft facing the upper bearing so that the oil groove on the cylinder side communicates with the oil groove on the compression drive unit side. Thus, the same effect as in the present embodiment can be obtained. Specifically, the oil supplied from the oil supply hole of the shaft to the cylinder side inner peripheral sliding surface of the upper bearing is released to the annular groove, and the annular groove is transferred to the inner peripheral sliding surface of the compression drive unit. Oil can be supplied.

更に、図5に示すように本実施の形態1の、上軸受けのシリンダー側内周摺動面に供給されたオイルを逃がし、かつ、電動機部側の内周摺動面にオイルを給油する手段を、上軸受け6に形成され、上軸受け6の内周摺動面に設けたシリンダー側のオイル溝15A内面から上軸受け6の外側へ至るオイル逃げ穴21と、シャフト4に形成され、シリンダー側のオイル溝15Aを含む内周摺動面と、電動機部側のオイル溝15Bを含む内周摺動面にオイルを供給するオイル給油孔とを備えることにより、本実施例と同様の効果が得られる。具体的には、オイル給油孔から上軸受けのシリンダー側内周摺動面に供給されたオイルを、上軸受けの外側へ至るオイル逃げ穴を経由して上軸受けの外側へ逃がし、オイル給油孔から圧縮駆動部側の内周摺動面にオイルを給油することができる。   Further, as shown in FIG. 5, the means for releasing oil supplied to the cylinder-side inner peripheral sliding surface of the upper bearing and supplying oil to the inner peripheral sliding surface on the electric motor unit side of the first embodiment as shown in FIG. Formed in the upper bearing 6 and formed in the shaft 4 and the oil relief hole 21 extending from the inner surface of the cylinder side oil groove 15A provided on the inner peripheral sliding surface of the upper bearing 6 to the outside of the upper bearing 6, By providing the inner peripheral sliding surface including the oil groove 15A and the oil supply hole for supplying oil to the inner peripheral sliding surface including the oil groove 15B on the motor unit side, the same effect as in this embodiment is obtained. It is done. Specifically, the oil supplied from the oil supply hole to the inner bearing sliding surface on the cylinder side of the upper bearing is released to the outside of the upper bearing via the oil escape hole that extends to the outside of the upper bearing. Oil can be supplied to the inner peripheral sliding surface on the compression drive unit side.

以上のように、本発明にかかるロータリ圧縮機は、入力ロスを小さくすることができるため、給湯器用CO圧縮機、空気圧縮の用途にも適用できる。 As described above, since the rotary compressor according to the present invention can reduce input loss, it can also be applied to CO 2 compressors for hot water heaters and air compression applications.

本発明の第1の実施の形態におけるロータリ圧縮機を示す縦断面図The longitudinal cross-sectional view which shows the rotary compressor in the 1st Embodiment of this invention 図1のA−A矢視を示す断面図Sectional drawing which shows the AA arrow of FIG. 本発明の第1の実施の形態におけるロータリ圧縮機を示す要部縦断面図1 is a longitudinal sectional view of an essential part showing a rotary compressor according to a first embodiment of the present invention. 図1のB−B矢視を示す断面図Sectional drawing which shows the BB arrow of FIG. 本発明の他の実施の形態におけるロータリ圧縮機を示す要部縦断面図The principal part longitudinal cross-sectional view which shows the rotary compressor in other embodiment of this invention. 従来のロータリ圧縮機を示す要部断面図Main part sectional drawing which shows the conventional rotary compressor 従来のロータリ圧縮機を示す要部縦断面図Longitudinal cross-sectional view of a main part showing a conventional rotary compressor

符号の説明Explanation of symbols

1 密閉容器
2 ステータ
3 ロータ
4 シャフト
5 シリンダー
6 上軸受け
7 下軸受け
8 ピストン
9 ベーン
10 ベーン溝
11 ベーンバネ
12 ベーンバネ孔
13 吸入室
14 圧縮室
15 オイル溝
15A シリンダー側のオイル溝
15B 電動機部側のオイル溝
16 吸入ライナ
17 吸入ポート
18 吐出ポート
19 バルブカバー
20 オイルポンプ
21 オイル逃げ穴
22 オイル給油孔
100 ロータリ圧縮機
101 圧縮機構部
102 電動機部
103 吐出マフラー室、
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Stator 3 Rotor 4 Shaft 5 Cylinder 6 Upper bearing 7 Lower bearing 8 Piston 9 Vane 10 Vane groove 11 Vane spring 12 Vane spring hole 13 Suction chamber 14 Compression chamber 15 Oil groove 15A Cylinder side oil groove 15B Oil on motor side Groove 16 Suction liner 17 Suction port 18 Discharge port 19 Valve cover 20 Oil pump 21 Oil relief hole 22 Oil supply hole 100 Rotary compressor 101 Compression mechanism section 102 Electric motor section 103 Discharge muffler chamber,

Claims (5)

密閉容器内に、圧縮機構部と、その圧縮機構部を駆動するための圧縮駆動部とを収納し、前記圧縮機構部はシリンダーと、該シリンダーの両端面に配置される上軸受け及び下軸受けと、前記シリンダー内を回転するピストンと、該ピストンを駆動し、かつ、前記密閉容器内のオイル溜りから、前記上軸受け及び下軸受けの内周摺動面にオイルを供給するオイル給油孔を設けたシャフトと、前記シリンダー内を吸入室と圧縮室に仕切るベーンと、前記シリンダーに形成され、前記ベーンが往復運動するベーン溝とを有して構成したロータリ圧縮機であって、前記上軸受けの内周摺動面で前記シリンダー側と前記圧縮駆動部側とで前記シャフトの軸方向に分割された第1のオイル溝と第2のオイル溝を備え、前記第1のオイル溝と前記第2のオイル溝は、前記上軸受けの内周摺動面の円周方向に略180°の角度差を設けたことを特徴とするロータリ圧縮機。 In the sealed container, a compression mechanism part and a compression drive part for driving the compression mechanism part are housed, and the compression mechanism part includes a cylinder, and upper and lower bearings disposed on both end faces of the cylinder. A piston that rotates in the cylinder, and an oil supply hole that drives the piston and supplies oil from the oil reservoir in the sealed container to the inner peripheral sliding surfaces of the upper bearing and the lower bearing. A rotary compressor having a shaft, a vane that divides the inside of the cylinder into a suction chamber and a compression chamber, and a vane groove that is formed in the cylinder and in which the vane reciprocates. A first oil groove and a second oil groove that are divided in the axial direction of the shaft on the cylinder side and the compression drive part side on a circumferential sliding surface, the first oil groove and the second oil groove; Oy Groove, the rotary compressor is characterized by providing an angular difference of approximately 180 ° in the circumferential direction of the inner circumferential sliding surface of the upper bearing. 上軸受けを圧縮駆動部側から見てベーン溝の位置を0°とした場合に、シリンダー側の第1のオイル溝をシャフトが回転する方向に略270°以上360°未満の角度に、圧縮駆動部側の第2のオイル溝を前記シャフトが回転する方向に略90°以上180°未満の角度に設けた請求項1に記載のロータリ圧縮機。 When the position of the vane groove is 0 ° when the upper bearing is viewed from the compression drive side, the first oil groove on the cylinder side is compressed at an angle of about 270 ° to less than 360 ° in the shaft rotation direction. 2. The rotary compressor according to claim 1, wherein a second oil groove on a part side is provided at an angle of approximately 90 ° to less than 180 ° in a direction in which the shaft rotates. 上軸受けの内周摺動面に、前記上軸受けの内径寸法より大なる円環状の溝を設けて、シリンダー側の第1のオイル溝と圧縮駆動部側の第2のオイル溝を連通するように構成した請求項1に記載のロータリ圧縮機。 An annular groove larger than the inner diameter of the upper bearing is provided on the inner peripheral sliding surface of the upper bearing so that the first oil groove on the cylinder side communicates with the second oil groove on the compression drive unit side. The rotary compressor of Claim 1 comprised in this. シャフトの上軸受けと対向する外周摺動面に、前記シャフトの外径寸法より小なる円環状の溝を設けて、シリンダー側の第1のオイル溝と圧縮駆動部側の第2のオイル溝を連通するように構成した請求項1に記載のロータリ圧縮機。 An annular groove smaller than the outer diameter of the shaft is provided on the outer peripheral sliding surface facing the upper bearing of the shaft, and a first oil groove on the cylinder side and a second oil groove on the compression drive unit side are provided. The rotary compressor of Claim 1 comprised so that it might communicate. 上軸受けに形成され、シリンダー側の第1のオイル溝の内面から前記上軸受けの外側へ至るオイル逃げ穴と、シャフトに形成されシリンダー側の第1のオイル溝を含む内周摺動面と、圧縮駆動部側の第2のオイル溝を含む内周摺動面にオイルを供給するオイル給油孔とを備えた請求項1に記載のロータリ圧縮機。 An oil escape hole formed on the upper bearing and extending from the inner surface of the first oil groove on the cylinder side to the outer side of the upper bearing; an inner peripheral sliding surface formed on the shaft and including the first oil groove on the cylinder side; 2. The rotary compressor according to claim 1, further comprising an oil supply hole that supplies oil to an inner peripheral sliding surface including a second oil groove on the compression drive unit side.
JP2008282718A 2008-11-04 2008-11-04 Rotary compressor Pending JP2010112174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008282718A JP2010112174A (en) 2008-11-04 2008-11-04 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008282718A JP2010112174A (en) 2008-11-04 2008-11-04 Rotary compressor

Publications (1)

Publication Number Publication Date
JP2010112174A true JP2010112174A (en) 2010-05-20

Family

ID=42300919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008282718A Pending JP2010112174A (en) 2008-11-04 2008-11-04 Rotary compressor

Country Status (1)

Country Link
JP (1) JP2010112174A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015158146A (en) * 2014-02-21 2015-09-03 東芝キヤリア株式会社 rotary compressor and refrigeration cycle device
CN104912806A (en) * 2015-06-18 2015-09-16 广东美芝制冷设备有限公司 Bearing module of compressor and compressor with same
WO2019024562A1 (en) * 2017-07-31 2019-02-07 广东美芝制冷设备有限公司 Compressor and refrigeration apparatus having same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015158146A (en) * 2014-02-21 2015-09-03 東芝キヤリア株式会社 rotary compressor and refrigeration cycle device
CN104912806A (en) * 2015-06-18 2015-09-16 广东美芝制冷设备有限公司 Bearing module of compressor and compressor with same
WO2019024562A1 (en) * 2017-07-31 2019-02-07 广东美芝制冷设备有限公司 Compressor and refrigeration apparatus having same

Similar Documents

Publication Publication Date Title
JP4862925B2 (en) Rotary compressor
US8978826B2 (en) Compressor
US9145890B2 (en) Rotary compressor with dual eccentric portion
US10233929B2 (en) Rotary compressor having two cylinders
JP2010112174A (en) Rotary compressor
JP2008121481A (en) Scroll fluid machine
JP2006177227A (en) Rotary two-stage compressor
JP2009062820A (en) Hermetic rotary compressor
JP7325975B2 (en) open compressor
JP2009108747A (en) Hermetic electric compressor
JP2014234785A (en) Scroll compressor
JP2010112173A (en) Rotary compressor
US20200284257A1 (en) Scroll compressor
KR102515120B1 (en) Scroll compressor
JP2010265830A (en) Hermetic type compressor and refrigeration cycle equipment
WO2016139735A1 (en) Rotary compressor
KR101988719B1 (en) Compressor having oil groove placed on bottom surface of eccentric part
JP2010037973A (en) Rotary compressor
KR102105464B1 (en) Scroll compressor
JP2011085034A (en) Rotary compressor
JP5282698B2 (en) Rotary compressor
JP5117971B2 (en) Variable capacity compressor
KR101698085B1 (en) Hermetic compressor
JP2011179452A (en) Rotary compressor
JPWO2019142315A1 (en) Rotary compressor