JP2011047018A - Continuous heat treatment furnace for steel strip and method for operating the same - Google Patents

Continuous heat treatment furnace for steel strip and method for operating the same Download PDF

Info

Publication number
JP2011047018A
JP2011047018A JP2009197934A JP2009197934A JP2011047018A JP 2011047018 A JP2011047018 A JP 2011047018A JP 2009197934 A JP2009197934 A JP 2009197934A JP 2009197934 A JP2009197934 A JP 2009197934A JP 2011047018 A JP2011047018 A JP 2011047018A
Authority
JP
Japan
Prior art keywords
steel strip
oxidation
temperature
reduction
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009197934A
Other languages
Japanese (ja)
Other versions
JP5365864B2 (en
Inventor
Shigeyuki Aizawa
重行 相澤
Hiroaki Masuda
博昭 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009197934A priority Critical patent/JP5365864B2/en
Publication of JP2011047018A publication Critical patent/JP2011047018A/en
Application granted granted Critical
Publication of JP5365864B2 publication Critical patent/JP5365864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous heat treatment furnace for a steel strip which can prevent the phenomenon that scale is transferred and baked to the surface of a hearth roll from the steel strip during rolling without reducing the heating efficiency therein, and to provide a method for operating the same. <P>SOLUTION: A continuous heat treatment furnace where the inside of a heating zone composed of a direct-fired furnace heating a steel strip by a gas burner and a radiation furnace heating the same by a radiant tube is provided with a plurality of hearth rolls supporting the steel strip is improved. Concretely, a non-water-cooled system and a water-cooled system are adopted to the hearth roll, further, the water-cooled system hearth roll is arranged only at the generation region of scale, and also, the surface temperature of the hearth roll is controlled to the one less than the sintering temperature of Fe oxide. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鋼帯の連続熱処理炉及びその操業方法に係わり、特に、連続溶融亜鉛めっきを施す鋼帯に用いられる連続熱処理炉内で、該鋼帯を支持するために配置されたハースロールの表面に、鋼帯からスケールが転写して焼付くのを防止するのに有効な技術に関する。   The present invention relates to a continuous heat treatment furnace for a steel strip and a method of operating the same, and more particularly, a hearth roll disposed to support the steel strip in a continuous heat treatment furnace used for a steel strip subjected to continuous hot dip galvanizing. The present invention relates to a technique effective for preventing the scale from being transferred and seized on a surface from a steel strip.

例えば、鋼帯に溶融亜鉛めっきを施すに際しては、該鋼帯に所定の機械的特性を与えるため、事前に鋼帯を加熱、冷却して熱処理する必要があり、垂直方向に通板する縦型及び水平方向に通板する横型の連続熱処理炉が一般に用いられている。   For example, when hot dip galvanizing is applied to a steel strip, it is necessary to heat, cool and heat the steel strip in advance in order to give the steel strip predetermined mechanical properties. In addition, a horizontal continuous heat treatment furnace that passes through in the horizontal direction is generally used.

このうち、横型連続熱処理炉は、図3(a)及び(b)に模式的に示すように、水平な配置の加熱帯を、ガスバーナ1で鋼帯2を直接加熱する直火炉3と、ラジアント・チューブ4により加熱する輻射炉5(Radiant Tube Heating の略で、通称RTHという)とで構成すると共に、保持帯(Holding Sectionの略で、HSという)と、ガス噴射冷却装置6(Jet Coolingの略で、JCという)とで構成する冷却帯を有している。なお、該直火炉3は、無酸化炉(Non Oxidizing Furnace の略で、通称NOFという)とも称されている。   Among these, as shown schematically in FIGS. 3 (a) and 3 (b), the horizontal continuous heat treatment furnace includes a horizontal heating zone, a direct-fired furnace 3 that directly heats the steel strip 2 with a gas burner 1, and a radiant. A radiation furnace 5 heated by a tube 4 (abbreviation of Radiant Tube Heating, commonly referred to as RTH), a holding band (abbreviation of Holding Section, referred to as HS), and a gas injection cooling device 6 (of Jet Cooling) It is abbreviated as JC). The direct-fired furnace 3 is also called a non-oxidizing furnace (abbreviated as Non Oxidizing Furnace, commonly called NOF).

そして、これらの炉内を連続的に通過(通板という)する鋼帯2は、ハースロール7と称し、小径で円筒状の回転体を多数配置して支持されている。このハースロール7には、材質がSUS304,SUS430のステンレス鋼製で、以前は、単に円筒状になった非水冷方式のものが使用せれていたが、現在は、理由を後述するが、内部に通水が可能なジャケット(図示せず)で形成されている水冷方式のものも利用されている。なお、図3(b)中の「#301」等の記号は、ハースロール7に指定した番号である。   The steel strip 2 that continuously passes through these furnaces (referred to as a through plate) is called a hearth roll 7 and is supported by arranging a large number of small-diameter cylindrical rotating bodies. This hearth roll 7 is made of stainless steel of SUS304, SUS430, and was previously used in a non-water-cooled type that was simply cylindrical, but now the reason will be described later. A water-cooled type formed of a jacket (not shown) capable of passing water is also used. Note that symbols such as “# 301” in FIG. 3B are numbers designated for the hearth roll 7.

ところで、鋼帯2は、該ハースロール7の上を通板する際に加熱、冷却されて熱処理(例えば、焼鈍等)が行われるので、長い焼鈍時間を得ようとすると、炉体の長さが長大となる。そこで、炉体長さを短縮するため、図3(a)及び(b)に示したように、加熱帯の入側に、加熱能力が高い直火炉3が配置されているのである。   By the way, the steel strip 2 is heated and cooled when passing over the hearth roll 7 and is subjected to heat treatment (for example, annealing). Therefore, when trying to obtain a long annealing time, the length of the furnace body is increased. Becomes long. Therefore, in order to shorten the length of the furnace body, as shown in FIGS. 3A and 3B, the direct-fired furnace 3 having a high heating capacity is arranged on the entrance side of the heating zone.

この直火炉3では、鋼帯2は、ガスバーナ1で600〜700℃程度まで直接加熱される。該ガスバーナ1は、燃料であるCOGガスと空気との比(空気比)を1.0以下に、鋼帯2を酸化させない配慮をして設計されているが、実際には、直火炉3内は弱酸化性であり、通板中に鋼帯2の表面がわずかに酸化され、薄い酸化鉄(スケールという)の層が生じる。そのため、図2に示すように、通板中に、前記スケール層8がハースロール7の表面に転写して焼付き(ピックアップともいう)、硬い凹凸状の表面を形成する。従って、それ以降にハースロール7に支持され通板される鋼帯2の表面には、押し疵と称する欠陥が発生し、製品鋼帯の表面品質を悪化させるという問題が起きる。   In the direct furnace 3, the steel strip 2 is directly heated to about 600 to 700 ° C. by the gas burner 1. The gas burner 1 is designed so that the ratio (air ratio) of COG gas, which is fuel, to air is 1.0 or less, and the steel strip 2 is not oxidized. Is weakly oxidizable, and the surface of the steel strip 2 is slightly oxidized in the threading plate to form a thin iron oxide (referred to as scale) layer. Therefore, as shown in FIG. 2, the scale layer 8 is transferred onto the surface of the hearth roll 7 and is seized (also referred to as a pickup) to form a hard rugged surface. Therefore, after that, a defect called a push rod occurs on the surface of the steel strip 2 that is supported by the hearth roll 7 and passed through, causing a problem that the surface quality of the product steel strip is deteriorated.

このような問題を解決するため、従来より、ハースロール7の内部を冷却してピックアップを防止することが行われていた。ところが、水冷を行うと、ハースロール7の表面温度が低下して前記スケールの焼付きは防止できるが、熱も奪われて炉内の雰囲気温度や鋼帯2の温度も低下するので、それら温度の維持を図ると、燃料原単位が上昇するというデメリットもある。   In order to solve such problems, conventionally, the inside of the hearth roll 7 has been cooled to prevent pickup. However, when water cooling is performed, the surface temperature of the hearth roll 7 is lowered and the scale can be prevented from seizing, but the heat is also taken away and the atmosphere temperature in the furnace and the temperature of the steel strip 2 are also lowered. However, there is a demerit that the basic unit of fuel will rise if we maintain it.

そこで、かかる温度低下を抑えるため、ハースロール7の円筒状胴部の内部に通水し、冷却を行う水冷ロールにおいて、胴部内壁に断熱材を0.5〜3.0mmの厚みでコーティングした水冷ロールが開示されている(例えば、特許文献1参照)。また、水冷ハースロールの外周面温度を炉内雰囲気温度に対応して個別に調節する技術もある。その際、外周面温度を750〜800℃に調節しているが、熱ロスを考慮し、750℃を下限としている(例えば、特許文献2参照)。さらに、連続熱処理炉のうちのRTH炉内に非水冷ハースロールを配置し、該非水冷ハースロールと下方のラジアント・チューブとの間に、ラジアント・チューブからの輻射熱を遮る防熱壁を設置し、炉内や鋼帯に大きな熱損失を与えず、スケールの焼付きを防止する技術も開示されている(例えば、特許文献3参照)。   Therefore, in order to suppress such a temperature drop, in the water-cooled roll that cools water through the cylindrical body of the hearth roll 7 and coats the inner wall of the body with a thickness of 0.5 to 3.0 mm. A water-cooled roll is disclosed (see, for example, Patent Document 1). There is also a technique for individually adjusting the outer peripheral surface temperature of the water-cooled hearth roll in accordance with the furnace atmosphere temperature. At that time, the outer peripheral surface temperature is adjusted to 750 to 800 ° C., but considering the heat loss, the lower limit is set to 750 ° C. (see, for example, Patent Document 2). Furthermore, a non-water-cooled hearth roll is disposed in the RTH furnace of the continuous heat treatment furnace, and a thermal barrier that blocks radiant heat from the radiant tube is installed between the non-water-cooled hearth roll and the lower radiant tube, A technique for preventing seizure of the scale without giving a large heat loss to the inside or the steel strip is also disclosed (see, for example, Patent Document 3).

このように、水冷ハースロールの使用は、冷却による鋼帯の熱ロスが大きく、熱処理炉の加熱効率が極端に低下することに配慮がなされているし、非水冷ハースロールの使用に対しても工夫を凝らしている。   In this way, the use of water-cooled hearth rolls has taken into consideration that the heat loss of the steel strip due to cooling is large, and the heating efficiency of the heat treatment furnace is extremely reduced. It is devised.

しかしながら、上記した技術を用いても、スケールの焼付きや炉の燃料原単位についてまだ十分に満足できる成果は得られていないのが現状である。また、水冷ハースロールの配設位置についても明確な考えに基づいているわけではなく、試行錯誤で配置しているに過ぎず、さらなる検討の余地がある。   However, even with the use of the above-described technology, no satisfactory results have yet been obtained with respect to scale seizure and furnace fuel intensity. Further, the position of the water-cooled hearth roll is not based on a clear idea, but is merely arranged by trial and error, and there is room for further study.

特開昭52−53711号公報JP 52-53711 A 特開平9−241762号公報JP-A-9-241762 特開2006−307296号公報JP 2006-307296 A

本発明は、かかる事情を鑑み、連続熱処理炉の加熱効率を低下せずに、通板中の鋼帯からスケールがハースロール上に転写、焼付くのを防止可能な鋼帯の連続熱処理炉及びその操業方法を提供することを目的としている。特に、横型連続熱処理炉に適用することが好ましい。   In view of such circumstances, the present invention is a continuous heat treatment furnace for a steel strip capable of preventing scale from being transferred and seized onto a hearth roll from a steel strip in a plate without lowering the heating efficiency of the continuous heat treatment furnace, and The purpose is to provide the method of operation. In particular, it is preferably applied to a horizontal continuous heat treatment furnace.

発明者は、上記目的を達成するため鋭意研究を重ね、その成果を本発明に具現化した。すなわち、本発明は、鋼帯を、酸化性雰囲気で加熱する酸化帯及び還元性雰囲気で加熱する還元帯が順次設けられた加熱帯内に、該鋼帯を支持するハースロールを複数個配設した鋼帯の連続熱処理炉において、Feの酸化が生じる前記酸化帯の位置から、前記酸化帯による酸化量が前記還元帯によるスケールの還元により0になる前記還元帯の位置までの領域のうち、鋼帯温度がFe酸化物のハースロールへの焼結が生じる温度以上となる部分のみに水冷方式のハースロールを配置することを特徴とする鋼帯の連続熱処理炉である。   The inventor has intensively studied to achieve the above object, and the results have been embodied in the present invention. That is, in the present invention, a plurality of hearth rolls supporting the steel strip are disposed in a heating zone in which an oxidation zone for heating the steel strip in an oxidizing atmosphere and a reduction zone for heating in a reducing atmosphere are sequentially provided. In the continuous heat treatment furnace of the steel strip, the region from the position of the oxidation zone where oxidation of Fe occurs to the position of the reduction zone where the oxidation amount by the oxidation zone becomes 0 by reduction of the scale by the reduction zone, A continuous heat treatment furnace for a steel strip, characterized in that a water-cooled hearth roll is disposed only in a portion where the steel strip temperature is equal to or higher than the temperature at which the Fe oxide is sintered into the hearth roll.

また、本発明は、鋼帯を、酸化性雰囲気で加熱する酸化帯及び還元性雰囲気で加熱する還元帯が順次設けられた加熱帯内に、該鋼帯を支持するハースロールを複数個配設した鋼帯の連続熱処理炉において、下記(1)式で定まるFeの酸化が生じる前記酸化帯の位置から、下記(1)式で定まる前記酸化帯による酸化量が下記(2)式で定まる前記還元帯によるスケールの還元により0になる前記還元帯の位置までの領域のうち、鋼帯温度がFe酸化物のハ−スロールへの焼結が生じる温度以上となる部分のみに水冷方式のハースロールを配置することを特徴とする鋼帯の連続熱処理炉である。   In the present invention, a plurality of hearth rolls supporting the steel strip are arranged in a heating zone in which an oxidation zone for heating the steel strip in an oxidizing atmosphere and a reduction zone for heating in a reducing atmosphere are sequentially provided. In the continuous heat treatment furnace of the steel strip, the amount of oxidation by the oxidation zone determined by the following equation (1) is determined by the following equation (2) from the position of the oxidation zone where oxidation of Fe determined by the following equation (1) occurs. A water-cooled hearth roll is only applied to a portion where the steel strip temperature is equal to or higher than the temperature at which the Fe oxide is sintered into the hearth roll in the region up to the reduction zone position where the scale is reduced to 0 by reduction of the scale by the reduction zone. Is a continuous heat treatment furnace for steel strips.

酸化の式
={7750exp[−2970/RT]}×to+(0.66T)−186)×(72/16) ・・(1)
還元の式
Y=9.55×10−21×t 0.19×T6.98×H 1.26×H−0.03 ×10 ・・(2)
ここで、
X:酸化量(mg/m)、to:酸化時間(sec)、
R:気体定数[=1.99](cal/molK)、T:酸化温度[=鋼帯温度](K)
Y:還元量(mg/m)、t:還元時間(sec)、
T:還元温度[=鋼帯温度](℃)、H:H濃度[=10vol%で一定]、
O:HO濃度「=1vol%で一定」
この場合、前記焼結が生じる温度が713℃であることが好ましい。あるいは、前記酸化帯が鋼帯をガスバーナで加熱する直火炉であり、前記還元帯が鋼帯をラジアントチューブで加熱する輻射炉であることが好ましい。
Oxidation formula X 2 = {7750exp [−2970 / RT 1 ]} × to + (0.66T 1 ) −186) 2 × (72/16) (1)
Reduction formula Y = 9.55 × 10 −21 × t R 0.19 × T 6.98 × H 2 1.26 × H 2 O −0.03 × 10 3 (2)
here,
X: oxidation amount (mg / m 2 ), to: oxidation time (sec),
R: gas constant [= 1.99] (cal / mol K), T 1 : oxidation temperature [= steel strip temperature] (K)
Y: reduction amount (mg / m 2 ), t R : reduction time (sec),
T: Reduction temperature [= steel strip temperature] (° C.), H 2 : H 2 concentration [= constant at 10 vol%],
H 2 O: H 2 O concentration “constant at 1 vol%”
In this case, the temperature at which the sintering occurs is preferably 713 ° C. Alternatively, the oxidation zone is preferably a direct furnace that heats the steel strip with a gas burner, and the reduction zone is preferably a radiation furnace that heats the steel strip with a radiant tube.

さらに、本発明は、上記記載の鋼帯の連続熱処理炉の操業方法であって、水冷方式のハースロールの表面温度を713℃未満になるように、ハースロールへの通水量を調整することを特徴とする鋼帯の連続熱処理炉の操業方法でもある。   Furthermore, the present invention is a method for operating a continuous heat treatment furnace for steel strips as described above, wherein the water flow rate to the hearth roll is adjusted so that the surface temperature of the water-cooled hearth roll is less than 713 ° C. It is also a method for operating a continuous heat treatment furnace for steel strip.

本発明では、加熱帯を通板する際のスケールの生成量(酸化量ともいう)及び消滅量(還元量ともいう)を考慮し、加熱帯でのスケールの焼結領域を推定すると共に、その領域のみに水冷方式のハースロールを配置するようにしたので、水冷ハースロールの配置についての考え方が明確になるばかりでなく、熱ロスとなる水冷ハースロールの数が従来より低減され、鋼帯への熱ロスの影響を最小限とし、熱処理炉の加熱効率低下を防ぐことが可能になる。   In the present invention, in consideration of the amount of scale generated (also referred to as oxidation amount) and the amount of disappearance (also referred to as reduction amount) when passing through the heating zone, the sintered area of the scale in the heating zone is estimated, Since the water-cooled hearth rolls are arranged only in the area, not only the concept of the water-cooled hearth rolls is clarified, but also the number of water-cooled hearth rolls that cause heat loss is reduced compared to the conventional one. This makes it possible to minimize the influence of heat loss and to prevent a reduction in the heating efficiency of the heat treatment furnace.

さらに、加熱帯に配置した水冷方式のハースロールの表面温度を、鋼帯の表面で形成され、ハースロールの表面へ転写するスケールの焼結温度である713℃未満に調整するようにしたので、転写したスケールのハースロールへの焼き付き(ピックアップ)を防止する。   Furthermore, since the surface temperature of the water-cooled hearth roll arranged in the heating zone is adjusted to less than 713 ° C. which is the sintering temperature of the scale formed on the surface of the steel strip and transferred to the surface of the hearth roll, Prevents seizure (pickup) of the transferred scale to the hearth roll.

本発明により決まる加熱帯でのスケールの焼結領域とハースロールの配置を説明する図である。It is a figure explaining the arrangement | positioning of the sintering area | region of a scale in the heating zone determined by this invention, and a hearth roll. ハースロールの表面に焼付いたスケールの状態を示す図である。It is a figure which shows the state of the scale baked on the surface of the hearth roll. 横型連続熱処理炉を説明する模式図であり、(a)は炉全体を、(b)は加熱帯を示している。It is a schematic diagram explaining a horizontal type | mold continuous heat processing furnace, (a) has shown the whole furnace, (b) has shown the heating zone. 鋼帯の酸化実験で、酸化温度と酸化時間の酸化量に及ぼす影響を調査した結果を示す図である。It is a figure which shows the result of having investigated the influence which the oxidation temperature and the oxidation time exert on the oxidation amount in the oxidation experiment of the steel strip.

以下、発明をなすに至った経緯を含め、本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described, including the background to the invention.

まず、発明者は、鋼帯の表面と直火炉の炉内雰囲気中に残留している酸素との反応で生じるスケール(酸化鉄)が、ハースロール7に転写し、焼付いた状態(図3参照)を更に調査した。その調査は、スケールの焼付きが多い輻射炉5内のハースロール7について行った。 スケールを化学分析した結果、ハースロール7に焼付いているスケールの表層には、還元された鉄層(Fe:83 mass%,O:10 mass%,Ca:3 mass%)が存在し、その下層に酸化鉄としてウスタイト(Fe:71 mass%,O:29 mass%)が存在していることがわかった。還元された鉄層が存在する理由は、前記輻射炉5は還元雰囲気であり、直火炉3で形成した酸化鉄が還元されて鉄に戻るためである。そして、主要な酸化鉄の粉末の焼結温度を別途実験で求めたところ、表1に示す結果が得られた。ハースロール7に直接焼付いている酸化鉄は、上記のようにウスタイトであったので、表1より、その焼付きを回避するには、ハースロール7の表面温度を713℃未満にすれば良いことがわかった。この値は、特許文献2に記載された750℃とは異なり、かなり低目である。   First, the inventor transferred the scale (iron oxide) generated by the reaction between the surface of the steel strip and oxygen remaining in the furnace atmosphere of the direct-fired furnace to the hearth roll 7 and seized (see FIG. 3). ) Was further investigated. The investigation was conducted on the hearth roll 7 in the radiant furnace 5 where the scale was seized. As a result of chemical analysis of the scale, a reduced iron layer (Fe: 83 mass%, O: 10 mass%, Ca: 3 mass%) exists on the surface layer of the scale that is baked on the hearth roll 7, and its lower layer It was found that wustite (Fe: 71 mass%, O: 29 mass%) was present as iron oxide. The reason why the reduced iron layer exists is that the radiation furnace 5 is in a reducing atmosphere, and iron oxide formed in the direct-fired furnace 3 is reduced and returned to iron. And when the sintering temperature of the powder of main iron oxide was calculated | required by experiment separately, the result shown in Table 1 was obtained. The iron oxide directly baked on the hearth roll 7 was wustite as described above. From Table 1, in order to avoid the seizure, the surface temperature of the hearth roll 7 should be less than 713 ° C. I understood. This value is considerably lower than 750 ° C. described in Patent Document 2.

Figure 2011047018
Figure 2011047018

ハースロール7の表面温度を713℃未満にするには、水冷方式のハースロールが必須であり、その場合、図示していないが、ジャケット内への冷却水の通水量で温度コントロールを行うことになる。また、713℃未満になると、特許文献2記載の750℃の場合に比べ、鋼帯2から奪う熱量が増加する。そのため、加熱帯の加熱効率の低下が生じるので、その低下をできるだけ少なくすることが望ましい。従って、本発明では、管理対象の温度を(713−α)℃とし、このαが極小になるように、具体的には、ジャケットへ送る冷却水の配管に設けたバルブの開閉程度を温度計からの指示で自動的に調整することで行うのがさらに好ましい。   In order to make the surface temperature of the hearth roll 7 lower than 713 ° C., a water-cooled hearth roll is indispensable. In this case, although not shown, the temperature is controlled by the amount of cooling water flowing into the jacket. Become. Moreover, when it becomes less than 713 degreeC, compared with the case of 750 degreeC of patent document 2, the calorie | heat amount taken away from the steel strip 2 will increase. Therefore, since the heating efficiency of the heating zone is reduced, it is desirable to reduce the reduction as much as possible. Therefore, in the present invention, the temperature to be managed is set to (713−α) ° C., and specifically, the opening / closing degree of the valve provided in the piping of the cooling water sent to the jacket is set to a thermometer so that α is minimized. More preferably, it is performed by automatically adjusting according to an instruction from.

さらに、発明者は、鋼帯の熱ロスを少なくし、熱効率の向上を図るには、スケールの焼付きが起きる領域(焼結領域という)にのみ、水冷方式のハースロールを配置することを着想した。つまり、本発明は、Feの酸化が生じる前記酸化帯の位置から、前記酸化帯による酸化量が前記還元帯によるスケールの還元により0になる前記還元帯の位置までの領域のうち、鋼帯温度がFe酸化物のハースロールへの焼結が生じる温度以上となる部分のみに水冷方式のハースロールを配置する鋼帯の連続熱処理炉である。そして、引き続きスケールの焼結領域の推定を行った。   Furthermore, the inventor has conceived that a water-cooled hearth roll is disposed only in a region where scale seizure occurs (sintered region) in order to reduce the heat loss of the steel strip and improve the thermal efficiency. did. That is, the present invention relates to the steel strip temperature in the region from the position of the oxidation zone where oxidation of Fe occurs to the position of the reduction zone where the amount of oxidation by the oxidation zone becomes 0 by reduction of the scale by the reduction zone. Is a continuous heat treatment furnace for a steel strip in which a water-cooled hearth roll is disposed only in a portion where the temperature is higher than the temperature at which the Fe oxide is sintered to the hearth roll. Subsequently, the sintered area of the scale was estimated.

まず、酸化性雰囲気で加熱する酸化帯、好適には直火炉3内での鋼帯2の酸化量、つまりスケールの生成量、及び還元性雰囲気で加熱する還元帯、好適には輻射炉5内での還元量、つまり生成したスケールを鉄に戻すスケールの消滅量から、残留するスケール量を求める実験を行った。それは、酸化温度と酸化時間の酸化量に及ぼす影響並びに輻射炉5内の鋼帯温度、雰囲気中の水素濃度及び還元時間のスケール還元量に及ぼす影響を調査するものであり、その実験結果は、酸化量及び還元量を表す式として得られる。   First, an oxidation zone heated in an oxidizing atmosphere, preferably the amount of oxidation of the steel strip 2 in the direct-fired furnace 3, that is, the amount of scale generated, and a reduction zone heated in a reducing atmosphere, preferably in the radiation furnace 5 An experiment was carried out to determine the amount of residual scale from the amount of reduction in iron, that is, the disappearance of the scale that returns the generated scale to iron. It investigates the influence of the oxidation temperature and oxidation time on the amount of oxidation and the influence of the steel strip temperature in the radiation furnace 5, the hydrogen concentration in the atmosphere and the reduction time on the amount of scale reduction. It is obtained as a formula representing the amount of oxidation and the amount of reduction.

酸化実験では、CO/CO=0.11,O=0.015 vol%のガス雰囲気で酸化温度と酸化時間の酸化量に及ぼす影響を検討し、図4を得た。図4より、鋼帯2の酸化量は、酸化温度及び酸化時間に比例して増加するが、高温、長時間になるほど酸化物の増加量が少なくなる。つまり、酸化速度は、所謂「速度論」でいう放物線則に従うことが明らかである。そこで、横軸を(1/RT)、縦軸をX(実験値)として実験データを整理したところ,下記(1)式を得た。 In the oxidation experiment, the influence of the oxidation temperature and the oxidation time on the oxidation amount in a gas atmosphere of CO / CO 2 = 0.11, O 2 = 0.015 vol% was examined, and FIG. 4 was obtained. From FIG. 4, the oxidation amount of the steel strip 2 increases in proportion to the oxidation temperature and the oxidation time, but the increase amount of the oxide decreases as the temperature increases and the time increases. In other words, it is clear that the oxidation rate follows the parabolic law referred to as “kinetics”. Thus, when the experimental data was arranged with the horizontal axis (1 / RT) and the vertical axis X 2 (experimental value), the following equation (1) was obtained.

一方、H=10vol%、HO濃度=1vol%、残部N−Hの雰囲気中の加熱によるスケールの還元実験で得たデータを回帰分析で整理して下記(2)式を得たので、酸化量から還元量を差し引くと、輻射炉5内加熱中に残留するスケール量(酸化量)が求まることになる。 On the other hand, the data obtained in the reduction experiment of the scale by heating in the atmosphere of H 2 = 10 vol%, H 2 O concentration = 1 vol% and the balance N 2 —H 2 was arranged by regression analysis to obtain the following formula (2). Therefore, when the reduction amount is subtracted from the oxidation amount, the amount of scale (oxidation amount) remaining during heating in the radiation furnace 5 is obtained.

酸化の式
={7750exp[−2970/RT]}×to+(0.66T)−186)×(72/16) ・・(1)
還元の式
Y=9.55×10−21×t 0.19×T6.98×H 1.26×H−0.03 ×10 ・・(2)
ここで、
X:酸化量(mg/m)、to:酸化時間(sec)、
R:気体定数[=1.99](cal/molK)、T:酸化温度[=鋼帯温度](K)
Y:還元量(mg/m)、t:還元時間(sec)、
T:還元温度[=鋼帯温度](℃)、H:H濃度[=10vol%で一定]、
O:HO濃度「=1vol%で一定」
なお、酸化量は、酸化処理した鋼板の酸素の湿式分析結果より蛍光X線分析による検量線を作成し、この検量線を用いて蛍光X線分析により酸素を定量し、酸化量を求めた。
Oxidation formula X 2 = {7750exp [−2970 / RT 1 ]} × to + (0.66T 1 ) −186) 2 × (72/16) (1)
Reduction formula Y = 9.55 × 10 −21 × t R 0.19 × T 6.98 × H 2 1.26 × H 2 O −0.03 × 10 3 (2)
here,
X: oxidation amount (mg / m 2 ), to: oxidation time (sec),
R: gas constant [= 1.99] (cal / mol K), T 1 : oxidation temperature [= steel strip temperature] (K)
Y: reduction amount (mg / m 2 ), t R : reduction time (sec),
T: Reduction temperature [= steel strip temperature] (° C.), H 2 : H 2 concentration [= constant at 10 vol%],
H 2 O: H 2 O concentration “constant at 1 vol%”
The amount of oxidation was determined by preparing a calibration curve by fluorescent X-ray analysis from the wet analysis result of oxygen in the oxidized steel sheet, and quantifying oxygen by fluorescent X-ray analysis using this calibration curve.

酸化量:Xは、直火炉3内での酸化時間:to及び鋼帯2の温度Tに依存し、このTも酸化時間によって変化する。そこで、実際の計算では、toが1秒経過すると温度が変化すると仮定し、最初は(1)式のtoを1秒で一定として、板温をある一定値にしてX(酸化量)を計算し、次いで、板温を高くして再度Xを計算し、前回の計算値に後の計算値を加えて積算し、二回目の酸化量とする。以降は、このような計算を順次繰り返して、図1の酸化量の最大値へと向う。 The oxidation amount: X depends on the oxidation time: to in the direct-fired furnace 3 and the temperature T 1 of the steel strip 2, and this T 1 also varies depending on the oxidation time. Therefore, in the actual calculation, it is assumed that the temperature changes after 1 second of to, and first, X (oxidation amount) is calculated with the to of the equation (1) being constant at 1 second and the plate temperature being a certain value. Then, the plate temperature is raised and X is calculated again, and the subsequent calculation value is added to the previous calculation value and integrated to obtain the second oxidation amount. Thereafter, such calculation is sequentially repeated to reach the maximum oxidation amount in FIG.

一方、還元量:Yは、輻射炉5内では還元温度:T(鋼帯温度)の昇温状況を考慮し、還元時間:tを複数の水準変化させて各還元時間での還元量を求め、前記最大の酸化量から差し引き、残存するスケール量(酸化量)とし、残存スケール量(酸化量)が0になるまで、同様の計算を繰り返す。図1の鋼板表面スケール量は、このような計算で推定したものである。 On the other hand, the reduction amount: Y takes into account the temperature rise state of the reduction temperature: T (steel strip temperature) in the radiant furnace 5, and the reduction time: t R is changed at a plurality of levels to reduce the reduction amount at each reduction time. It is obtained and subtracted from the maximum oxidation amount to obtain the remaining scale amount (oxidation amount), and the same calculation is repeated until the remaining scale amount (oxidation amount) becomes zero. The steel plate surface scale amount in FIG. 1 is estimated by such calculation.

この図1より、発明者らは、「直火炉3及び輻射炉5にまたがり、鋼帯表面にスケールが存在している領域がハースロール7にスケールの焼付きが起きる恐れがある」と判断した。そして、その領域は、上記推定計算による図1の結果で明らかなように、#305のハースロールから#311のハースロールの間の領域であると推定された。さらに、この領域のうち、鋼帯温度がスケール(Fe酸化物)のハースロールへの焼結が生じる温度以上となる部分のみがハースロール7にスケールの焼付きが生じると考えた。また、前述の通り、スケールの主成分はウスタイトであることから、上記Fe酸化物の焼結が生じる温度は713℃とすることがさらに好ましい。   From FIG. 1, the inventors have determined that “the region where the scale is present on the surface of the steel strip 3 and the radiation furnace 5 and the scale is present on the surface of the steel strip may cause scale scoring on the hearth roll 7”. . The region was estimated to be a region between the hearth roll of # 305 and the hearth roll of # 311 as is apparent from the result of FIG. Further, in this region, it was considered that only the portion where the steel strip temperature is equal to or higher than the temperature at which the scale (Fe oxide) is sintered into the hearth roll is seized on the hearth roll 7. As described above, since the main component of the scale is wustite, the temperature at which the Fe oxide is sintered is more preferably 713 ° C.

そこで、発明者は、加熱帯の全体に配設するハースロールのうち、上記Fe酸化物の焼結部分にのみ、水冷方式のものを配置し、他の位置には、非水冷方式のものを配置することが鋼帯の熱ロスを抑制する上で最も良いと結論し、この考えを連続熱処理炉に具現化して本発明としたのである。この様子を、図1に、水冷方式のハースロールを●印で、非水冷方式のハースロールを○印で表すことで示した。   Therefore, the inventor arranges the water-cooled type only in the sintered portion of the Fe oxide among the hearth rolls arranged in the entire heating zone, and the non-water-cooled type in other positions. It is concluded that the arrangement is the best in suppressing the heat loss of the steel strip, and this idea is embodied in a continuous heat treatment furnace to be the present invention. This state is shown in FIG. 1 by representing a water-cooled hearth roll with a circle and a non-water-cooled hearth roll with a circle.

従来は、水冷式のハースロールの配設に対する考え方が不明確で、配設する個数が過剰になる傾向があったが、本発明により、水冷方式のハースロールの配設が適切になり、配設個数の低減による鋼帯2の加熱効率の向上が達成できる。   Conventionally, the concept for the arrangement of water-cooled hearth rolls has been unclear, and there has been a tendency for the number to be arranged to be excessive. However, according to the present invention, the arrangement of water-cooled hearth rolls becomes appropriate, and Improvement in the heating efficiency of the steel strip 2 can be achieved by reducing the number of installed steel sheets.

また、本発明では、鋼帯2の通板速度は特に限定するものではない。亜鉛めっき用素材以外の鋼帯2にも本発明を適用できるからである。ただし、鋼帯2が亜鉛めっき用の素材である場合には、通板速度が30〜80m/minであることが好ましい。現在亜鉛めっきを施す前の連続熱処理に適用され、スケール焼付に起因する不具合をほぼ100%防止できている速度だからである。   Moreover, in this invention, the plate | board speed of the steel strip 2 is not specifically limited. This is because the present invention can be applied to the steel strip 2 other than the material for galvanization. However, when the steel strip 2 is a material for galvanization, it is preferable that the plate passing speed is 30 to 80 m / min. This is because it is applied to continuous heat treatment before galvanization and can prevent almost 100% of defects caused by scale baking.

また、発明者は、鋼帯の連続熱処理炉の操業方法として、前記で限定した領域内にのみ配置した水冷方式のハースロールの表面温度を713℃未満、さらに好ましくは(713−α)℃とし、且つ該αが極小になるように、ハースロール7への通水量を調整することが好ましい。その根拠は、前記したので、ここでは省略する。   In addition, as an operation method of the steel strip continuous heat treatment furnace, the inventor sets the surface temperature of the water-cooled hearth roll disposed only in the region defined above to less than 713 ° C, more preferably (713-α) ° C. In addition, it is preferable to adjust the amount of water flow to the hearth roll 7 so that α is minimized. The basis for this is described above and is omitted here.

鋼帯2に溶融亜鉛めっきを施す連続溶融亜鉛めっき設備(ライン)に付帯した図3(b)に示す横型連続熱処理炉で、めっき前の鋼帯2に熱処理として焼鈍を行った。素材のコイル状鋼帯は、幅600〜1600mm×板厚0.4〜2.0mmであり、コイルをアンコイラで巻き戻して通板させ、目標鋼帯温度を890℃として焼鈍した。その際、鋼帯2の通板速度は、40m/minとした。また、横型連続熱処理炉の加熱帯(長さ:80m)には22個のハースロールが配設され、そのうちの多くは非水冷としたが、水冷方式のものの配置位置と個数を変更して、該水冷ハースロールの表面温度を冷却水の通水量を調整することで試験操業を試みた。   In the horizontal continuous heat treatment furnace shown in FIG. 3 (b) attached to a continuous hot dip galvanizing facility (line) for applying hot dip galvanizing to the steel strip 2, the steel strip 2 before plating was annealed as heat treatment. The coiled steel strip as a raw material had a width of 600 to 1600 mm and a plate thickness of 0.4 to 2.0 mm. The coil was unwound with an uncoiler and passed through, and annealed at a target steel strip temperature of 890 ° C. At that time, the sheet feeding speed of the steel strip 2 was set to 40 m / min. In addition, 22 hearth rolls are arranged in the heating zone (length: 80 m) of the horizontal continuous heat treatment furnace, most of which are non-water cooled, but the arrangement position and number of water-cooled ones are changed, The test operation was attempted by adjusting the surface temperature of the water-cooled hearth roll to adjust the amount of cooling water flow.

なお、本発明の適用に際しては、水冷ハースロールの配置位置を、前記したように、鋼帯2へのスケールの生成が始まる前記直火炉3内の進行方向位置と、上記(1)式で定まる鋼帯2の酸化量が上記(2)式で定まるスケールの還元量で0になる前記輻射炉5内の進行方向位置とで決定した。   In applying the present invention, the arrangement position of the water-cooled hearth roll is determined by the traveling direction position in the direct-fired furnace 3 where the generation of the scale on the steel strip 2 starts as described above, and the above equation (1). The oxidation amount of the steel strip 2 was determined by the position in the traveling direction in the radiation furnace 5 where the reduction amount of the scale determined by the above equation (2) becomes zero.

さらに、通水量の調整は、各水冷ハースロールの表面温度を連続的に測定し、目標温度を設定し、自動的に水配管のバルブを開閉するようにした。これらの試験結果は、水冷ハースロールの表面へのスケール焼付きの有無と、加熱効率として燃料原単位の大小で評価することにした。   In addition, the water flow rate was adjusted by continuously measuring the surface temperature of each water-cooled hearth roll, setting the target temperature, and automatically opening and closing the water piping valve. These test results were evaluated based on the presence or absence of scale seizure on the surface of the water-cooled hearth roll and the amount of fuel consumption as the heating efficiency.

スケール焼付き評価基準
△:#309、#311ハースロールに軽度の焼付き発生
○:焼付き発生なし
燃料原単位評価基準
大(劣)△>○>◎ 小(優)
水冷ハースロールの配置位置及び個数に応じた試験結果を表2に一括して示す。表2より、本発明を適用すると、水冷ハースロールの配置個数が3個減ったのもかかわらず、スケールの焼付きは皆無で、且つ燃料原単位の低減が達成できることが明らかである。
Scale seizure evaluation criteria △: Mild seizure generation on # 309, # 311 hearth rolls ○: No seizure occurrence Fuel basic unit evaluation criteria large (inferior) △>○> ◎ small (excellent)
Table 2 collectively shows the test results according to the arrangement position and the number of water-cooled hearth rolls. From Table 2, it is clear that when the present invention is applied, there is no scale seizure and a reduction in fuel consumption can be achieved even though the number of water-cooled hearth rolls is reduced by three.

Figure 2011047018
Figure 2011047018

1 ガスバーナ
2 鋼帯
3 直火炉
4 ラジアントチューブ
5 輻射炉
6 ガス噴射冷却装置
7 ハースロール
8 スケール層
9 鋼帯の進行方向を示す矢印
DESCRIPTION OF SYMBOLS 1 Gas burner 2 Steel strip 3 Direct-fired furnace 4 Radiant tube 5 Radiation furnace 6 Gas injection cooling device 7 Hearth roll 8 Scale layer 9 Arrow which shows the advancing direction of a steel strip

Claims (5)

鋼帯を、酸化性雰囲気で加熱する酸化帯及び還元性雰囲気で加熱する還元帯が順次設けられた加熱帯内に、該鋼帯を支持するハースロールを複数個配設した鋼帯の連続熱処理炉において、
Feの酸化が生じる前記酸化帯の位置から、前記酸化帯による酸化量が前記還元帯によるスケールの還元により0になる前記還元帯の位置までの領域のうち、鋼帯温度がFe酸化物のハースロールへの焼結が生じる温度以上となる部分のみに水冷方式のハースロールを配置することを特徴とする鋼帯の連続熱処理炉。
Continuous heat treatment of a steel strip in which a plurality of hearth rolls supporting the steel strip are arranged in a heating zone in which an oxidation zone for heating the steel strip in an oxidizing atmosphere and a reduction zone for heating in a reducing atmosphere are sequentially provided. In the furnace,
In the region from the position of the oxidation zone where oxidation of Fe occurs to the position of the reduction zone where the amount of oxidation due to the oxidation zone becomes 0 due to the reduction of the scale by the reduction zone, the steel strip temperature is the hearth of the Fe oxide A continuous heat treatment furnace for a steel strip, wherein a water-cooled hearth roll is disposed only in a portion where the temperature at which sintering to a roll occurs or higher.
鋼帯を、酸化性雰囲気で加熱する酸化帯及び還元性雰囲気で加熱する還元帯が順次設けられた加熱帯内に、該鋼帯を支持するハースロールを複数個配設した鋼帯の連続熱処理炉において、
下記(1)式で定まるFeの酸化が生じる前記酸化帯の位置から、下記(1)式で定まる前記酸化帯による酸化量が下記(2)式で定まる前記還元帯によるスケールの還元により0になる前記還元帯の位置までの領域のうち、鋼帯温度がFe酸化物のハ−スロールへの焼結が生じる温度以上となる部分のみに水冷方式のハースロールを配置することを特徴とする鋼帯の連続熱処理炉。
酸化の式
={7750exp[−2970/RT]}×to+(0.66T)−186)×(72/16) ・・(1)
還元の式
Y=9.55×10−21×t 0.19×T6.98×H 1.26×H−0.03 ×10 ・・(2)
ここで、
X:酸化量(mg/m)、to:酸化時間(sec)、
R:気体定数[=1.99](cal/molK)、T:酸化温度[=鋼帯温度](K)
Y:還元量(mg/m)、t:還元時間(sec)、
T:還元温度[=鋼帯温度](℃)、H:H濃度[=10vol%で一定]、
O:HO濃度「=1vol%で一定」
Continuous heat treatment of a steel strip in which a plurality of hearth rolls supporting the steel strip are arranged in a heating zone in which an oxidation zone for heating the steel strip in an oxidizing atmosphere and a reduction zone for heating in a reducing atmosphere are sequentially provided. In the furnace,
From the position of the oxidation zone where oxidation of Fe determined by the following formula (1) occurs, the oxidation amount by the oxidation zone determined by the following formula (1) is reduced to 0 by the reduction of the scale by the reduction zone determined by the following formula (2). A water-cooled hearth roll is disposed only in a portion where the steel strip temperature is equal to or higher than the temperature at which sintering of Fe oxide to the hearth roll is performed in the region up to the position of the reduction zone. A continuous heat treatment furnace for strips.
Oxidation formula X 2 = {7750exp [−2970 / RT 1 ]} × to + (0.66T 1 ) −186) 2 × (72/16) (1)
Reduction formula Y = 9.55 × 10 −21 × t R 0.19 × T 6.98 × H 2 1.26 × H 2 O −0.03 × 10 3 (2)
here,
X: oxidation amount (mg / m 2 ), to: oxidation time (sec),
R: gas constant [= 1.99] (cal / mol K), T 1 : oxidation temperature [= steel strip temperature] (K)
Y: reduction amount (mg / m 2 ), t R : reduction time (sec),
T: Reduction temperature [= steel strip temperature] (° C.), H 2 : H 2 concentration [= constant at 10 vol%],
H 2 O: H 2 O concentration “constant at 1 vol%”
前記焼結が生じる温度が713℃であることを特徴とする請求項1又は2に記載の鋼帯の連続熱処理炉。   The continuous heat treatment furnace for steel strip according to claim 1 or 2, wherein a temperature at which the sintering occurs is 713 ° C. 前記酸化帯が鋼帯をガスバーナで加熱する直火炉であり、前記還元帯が鋼帯をラジアントチューブで加熱する輻射炉であることを特徴とする請求項1〜3のいずれか一項に記載の鋼帯の連続熱処理炉。   The said oxidation zone is a direct-fired furnace which heats a steel strip with a gas burner, The said reduction zone is a radiant furnace which heats a steel strip with a radiant tube. Continuous heat treatment furnace for steel strip. 請求項1〜4のいずれか一項に記載の鋼帯の連続熱処理炉の操業方法であって、
水冷方式のハースロールの表面温度を713℃未満になるように、ハースロールへの通水量を調整することを特徴とする鋼帯の連続熱処理炉の操業方法。

It is an operation method of the continuous heat treatment furnace of the steel strip according to any one of claims 1 to 4,
A method for operating a continuous heat treatment furnace for a steel strip, wherein the amount of water passing through the hearth roll is adjusted so that the surface temperature of the water-cooled hearth roll is less than 713 ° C.

JP2009197934A 2009-08-28 2009-08-28 Steel strip continuous heat treatment furnace and its operating method Active JP5365864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009197934A JP5365864B2 (en) 2009-08-28 2009-08-28 Steel strip continuous heat treatment furnace and its operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009197934A JP5365864B2 (en) 2009-08-28 2009-08-28 Steel strip continuous heat treatment furnace and its operating method

Publications (2)

Publication Number Publication Date
JP2011047018A true JP2011047018A (en) 2011-03-10
JP5365864B2 JP5365864B2 (en) 2013-12-11

Family

ID=43833639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009197934A Active JP5365864B2 (en) 2009-08-28 2009-08-28 Steel strip continuous heat treatment furnace and its operating method

Country Status (1)

Country Link
JP (1) JP5365864B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082542A1 (en) * 2017-10-26 2019-05-02 株式会社神戸製鋼所 Production method for molten zinc-plated steel sheet
CN112029972A (en) * 2020-09-23 2020-12-04 重庆赛迪热工环保工程技术有限公司 Method and system for improving low-temperature non-oxidation heat treatment of radiant tube type roller hearth furnace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743938A (en) * 1980-08-29 1982-03-12 Nippon Steel Corp Structure for turning and conveying strip in continuous annealing furnace
JPH09241762A (en) * 1996-03-04 1997-09-16 Nisshin Steel Co Ltd Heat treatment of metallic strip and continuous heat treatment furnace
JP2000096150A (en) * 1998-09-25 2000-04-04 Nkk Corp Continuous heat treatment method for steel strip
JP2006307296A (en) * 2005-04-28 2006-11-09 Sumitomo Metal Ind Ltd Method for continuously heat-treating metallic strip and horizontal continuous heat treating furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743938A (en) * 1980-08-29 1982-03-12 Nippon Steel Corp Structure for turning and conveying strip in continuous annealing furnace
JPH09241762A (en) * 1996-03-04 1997-09-16 Nisshin Steel Co Ltd Heat treatment of metallic strip and continuous heat treatment furnace
JP2000096150A (en) * 1998-09-25 2000-04-04 Nkk Corp Continuous heat treatment method for steel strip
JP2006307296A (en) * 2005-04-28 2006-11-09 Sumitomo Metal Ind Ltd Method for continuously heat-treating metallic strip and horizontal continuous heat treating furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082542A1 (en) * 2017-10-26 2019-05-02 株式会社神戸製鋼所 Production method for molten zinc-plated steel sheet
JP2019077933A (en) * 2017-10-26 2019-05-23 株式会社神戸製鋼所 Production method of galvanized steel sheet
CN112029972A (en) * 2020-09-23 2020-12-04 重庆赛迪热工环保工程技术有限公司 Method and system for improving low-temperature non-oxidation heat treatment of radiant tube type roller hearth furnace

Also Published As

Publication number Publication date
JP5365864B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
TWI302571B (en) A method for continuous annealing and hot-dip plating of silicon-containing steel sheet and an apparatus for carrying out the same
RU2426815C2 (en) Procedure for continuous annealing and preparing strip of high strength steel for its zinc plating by immersion with heating
CN102666923B (en) High-strength cold rolled steel sheet and method for producing same
KR101624351B1 (en) Continuous heat treatment furnace
JP2008196015A (en) Continuous annealing facility
JP5338087B2 (en) Method for producing hot-dip galvanized steel sheet with excellent plating properties and continuous hot-dip galvanizing equipment
US11339450B2 (en) Method and device for reaction control
WO2013150710A1 (en) Continuous hot-dip zinc plating facility
JP5365864B2 (en) Steel strip continuous heat treatment furnace and its operating method
CN107245564B (en) A kind of control method of non-orientation silicon steel internal oxidation layer
JP2008195998A (en) Finish-annealing method for grain-oriented electrical steel sheet, and inner case used therefor
JP5000116B2 (en) Soaking furnace operation method in steel strip continuous treatment equipment
JP2012036437A (en) Method for manufacturing steel sheet
BR102020001356A2 (en) METHOD AND OVEN TO THERMALLY TREAT A HIGH RESISTANCE STEEL STRIP UNDERSTANDING A TEMPERATURE HOMOGENEIZATION CHAMBER
JPS59205412A (en) Work piece heat treatment and device
KR20180064497A (en) Manufacturing method of hot-dip galvanized steel sheet
EP4306665A1 (en) Continuous annealing equipment, continuous annealing method, cold-rolled steel sheet manufacturing method, and plated steel sheet manufacturing method
CN109518104A (en) The method for eliminating cold rolling aluminium flanging part annealing hickie
US2602653A (en) Bright strip annealing apparatus
JP2007270181A (en) METHOD FOR ADJUSTING BAKE HARDENABILITY OF EXTRA-LOW CARBON STEEL CONTAINING Nb
JP2006152336A (en) Conveying device in continuous heat treatment furnace for metal strip
US11414736B2 (en) Production method of hot-dip galvanized steel sheet
JP6717151B2 (en) Cooling method for coil steel sheet
JP2006307296A (en) Method for continuously heat-treating metallic strip and horizontal continuous heat treating furnace
JPH07173545A (en) Continuous heat treatment device and continuous heat treatment of metallic strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130828

R150 Certificate of patent or registration of utility model

Ref document number: 5365864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250