JP2011046555A - Sintered compact of diamond fine particles and production method - Google Patents

Sintered compact of diamond fine particles and production method Download PDF

Info

Publication number
JP2011046555A
JP2011046555A JP2009195200A JP2009195200A JP2011046555A JP 2011046555 A JP2011046555 A JP 2011046555A JP 2009195200 A JP2009195200 A JP 2009195200A JP 2009195200 A JP2009195200 A JP 2009195200A JP 2011046555 A JP2011046555 A JP 2011046555A
Authority
JP
Japan
Prior art keywords
diamond
sintered body
particle size
particles
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009195200A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishizuka
博 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomei Diamond Co Ltd
Original Assignee
Tomei Diamond Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomei Diamond Co Ltd filed Critical Tomei Diamond Co Ltd
Priority to JP2009195200A priority Critical patent/JP2011046555A/en
Publication of JP2011046555A publication Critical patent/JP2011046555A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for production of a sintered compact of diamond fine particles, suppressing abnormal growth of diamond in a sintering process of diamond fine particles by liquid phase sintering. <P>SOLUTION: Prior to the sintering of diamond fine particles with a regulated average particle size (D<SB>50</SB>) of at most 1 μm, a coating layer composed of a carbonated product of a transition metal is formed on the surface of constitution particles. The diamond powder is arranged in closely contact with a metal flux composed mainly of cobalt and nickel; the whole is kept at the pressure and the temperature for thermodynamically stable conditions of diamond in order to sinter and unify the diamond powder. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は微細ダイヤモンド粒子焼結体、特に整粒された平均粒度が1μm以下の微細なダイヤモンドの粒子が効果的に結合されている焼結体、並びにその製造方法に関する。   The present invention relates to a fine diamond particle sintered body, and more particularly, to a sintered body in which fine diamond particles having an average particle size of 1 μm or less are effectively bonded, and a method for producing the same.

ダイヤモンド粉末粒子を超高圧高温下で焼結させたダイヤモンド焼結体は、その硬さを利用して研磨要素として各種の切削工具や、耐摩耗性構造材等に広く用いられているが、一般に使用されているダイヤモンド焼結体は、コバルト系またはニッケル系の溶融金属を焼結助剤として製造されている。   A diamond sintered body obtained by sintering diamond powder particles under ultra-high pressure and high temperature is widely used as a polishing element for various cutting tools, wear-resistant structural materials, etc. by utilizing its hardness. The diamond sintered body used is manufactured using a cobalt-based or nickel-based molten metal as a sintering aid.

焼結助剤を金属塊としてダイヤモンド粒子層に接して配置し、溶融した金属の浸み込みによって供給する、いわゆる溶浸法を用いると、焼結に必要とされる量だけの焼結助剤がダイヤモンド粉末粒子間に導入され、結果として、ダイヤモンド粒子間の間隔が狭い緻密な組織の焼結体が得られることが知られている。得られるダイヤモンド焼結体は、焼結助剤金属の塊とダイヤモンド含有焼結体層とが強固に接合した複合材の形を呈する。   When the so-called infiltration method is used, in which the sintering aid is placed in contact with the diamond particle layer as a metal lump and supplied by infiltration of the molten metal, the sintering aid is only in the amount required for sintering. Is introduced between diamond powder particles, and as a result, it is known that a sintered body having a dense structure with a narrow interval between diamond particles can be obtained. The resulting diamond sintered body takes the form of a composite material in which a lump of sintering aid metal and a diamond-containing sintered body layer are firmly joined.

しかしながら上記の溶浸法ではダイヤモンド層内への焼結助剤金属の浸透に時間を要することから、焼結されるダイヤモンド粉末の粒度が非常に細かい場合や、ダイヤモンド焼結体の厚い層が要求されている場合には、焼結助剤金属(例えばコバルト)の微粉を、予めダイヤモンド粉末に混合しておく、混合法が用いられている。この手法では上記の、ダイヤモンド粉末の粒度や焼結ダイヤモンド層の厚さに関する制限は緩和されるものの、金属粉末が存在した箇所が焼結後に空孔として残ることがあって、緻密な焼結体を得るのは困難であり、焼結体の品質としては前記の溶浸法による焼結体には及ばない。   However, in the above infiltration method, since it takes time for the sintering aid metal to penetrate into the diamond layer, the diamond powder to be sintered has a very fine particle size or a thick layer of diamond sintered body is required. In such a case, a mixing method is used in which fine powder of a sintering aid metal (for example, cobalt) is mixed in advance with diamond powder. Although this method relaxes the restrictions on the particle size of the diamond powder and the thickness of the sintered diamond layer described above, the portion where the metal powder was present may remain as a void after sintering, and a dense sintered body The quality of the sintered body is not as good as that of the sintered body by the infiltration method.

ダイヤモンド焼結体を微粒子のダイヤモンドで構成すると、靱性が向上し、切削工具としての使用においては仕上げ面粗さが小さいことから、粗加工から仕上げ加工までを単一の刃具で実施することが可能である。さらに過酷な切削条件に耐えるので、加工速度を大きくすることができ、切削加工の生産性向上が期待できる。しかしながら前記液相焼結の手法で微粒のダイヤモンドの焼結を行うと、ダイヤモンド微粒子にしばしば異常成長が生じ、このため上記の特性が発揮できない場合が多い。この現象を回避するためには厳密な焼結温度管理や、異常成長阻止材の添加などが必要と考えられている。   When the diamond sintered body is composed of fine-grained diamond, the toughness is improved and the roughness of the finished surface is small when used as a cutting tool, so it is possible to perform from roughing to finishing with a single blade. It is. Furthermore, since it withstands severe cutting conditions, the processing speed can be increased and the productivity of cutting can be expected to be improved. However, when fine diamond particles are sintered by the liquid phase sintering method, diamond fine particles often grow abnormally, and thus the above-mentioned characteristics cannot be exhibited in many cases. In order to avoid this phenomenon, it is considered that strict sintering temperature control and addition of an abnormal growth inhibitor are necessary.

従って本発明の主な目的は、液相焼結によるダイヤモンド微粒子の焼結工程におけるダイヤモンドの異常成長が効果的に抑制された、健全な微粒子ダイヤモンドの焼結体を製造する方法を提供することにある。   Accordingly, a main object of the present invention is to provide a method for producing a sound sintered body of fine-grained diamond in which abnormal growth of diamond is effectively suppressed in the sintering process of diamond fine-particle by liquid phase sintering. is there.

本発明の要旨とするところは、平均粒度(D50)が1μm以下の整粒されたダイヤモンド粉乃至粒子群の焼結に先立ち、構成粒子の表面に遷移金属の炭化物からなる被覆層を形成し、このダイヤモンド粉を、コバルトまたはニッケルを主成分とする融剤金属と密接に配置し、全体をダイヤモンドが熱力学的に安定な圧力温度条件に保持することにより、ダイヤモンド粉を焼結・一体化することにある。 The gist of the present invention is to form a coating layer made of transition metal carbide on the surface of the constituent particles prior to sintering of the sized diamond powder or particles having an average particle size (D 50 ) of 1 μm or less. This diamond powder is placed in close contact with a flux metal based on cobalt or nickel, and the diamond powder is sintered and integrated by maintaining the temperature under pressure and temperature conditions where the diamond is thermodynamically stable. There is to do.

前記方法により本発明において得られるダイヤモンド焼結体は、微細なダイヤモンド粉乃至粒子群が焼結により一体化されたダイヤモンド焼結体において、隣接粒子同士が遷移金属の炭化物からなる被覆層を介して結合されていることを特徴とする。   The diamond sintered body obtained in the present invention by the above method is a diamond sintered body in which fine diamond powder or particles are integrated by sintering, and adjacent particles are interposed through a coating layer made of transition metal carbide. It is characterized by being connected.

本発明の遷移金属炭化物層は、焼結時におけるダイヤモンド粒子の異常成長を阻止するためのピン留め添加剤として機能する。この異常成長は、ダイヤモンドが周囲の焼結助剤金属融液へ溶解・析出することによって生じると解釈されているが、本発明方法では焼結に先立ちダイヤモンド粒子表面に遷移金属炭化物被覆を存在させるので、ダイヤモンドの溶解・析出反応の速度が大幅に低減され、その結果、粒度において出発原料と同等のダイヤモンドで構成された焼結体が得られるものと理解される。換言すれば、遷移金属炭化物被覆はダイヤモンド粒子の異常成長阻止材として有効であるということができる。   The transition metal carbide layer of the present invention functions as a pinning additive for preventing abnormal growth of diamond particles during sintering. This abnormal growth is interpreted to be caused by the dissolution and precipitation of diamond in the surrounding sintering aid metal melt, but in the method of the present invention, a transition metal carbide coating is present on the diamond particle surface prior to sintering. Therefore, it is understood that the rate of the diamond dissolution / precipitation reaction is greatly reduced, and as a result, a sintered body composed of diamond equivalent to the starting material in particle size can be obtained. In other words, it can be said that the transition metal carbide coating is effective as a material for preventing abnormal growth of diamond particles.

ところで、ダイヤモンドの焼結に用いられるコバルト、ニッケル系の焼結助剤金属は、一般にダイヤモンド(炭素)よりも遷移金属炭化物への濡れ性が良好であることが知られている。従って本発明方法においては、遷移金属炭化物の被覆をダイヤモンド表面に形成することによって焼結助剤の溶融金属のダイヤモンド粒子間への溶浸が容易化され、ダイヤモンドが薄い被覆層を介して接合された緻密な組織の焼結体が得られる。さらに、液相の存在下において粒子の再配列が生じるので、これによる緻密化の促進機能も期待できる。   Incidentally, it is known that cobalt and nickel-based sintering aid metals used for diamond sintering generally have better wettability to transition metal carbides than diamond (carbon). Therefore, in the method of the present invention, the transition metal carbide coating is formed on the diamond surface, so that the infiltration of the sintering aid between the molten metal and the diamond particles is facilitated, and the diamond is bonded through the thin coating layer. A sintered body having a dense structure can be obtained. Furthermore, since the rearrangement of particles occurs in the presence of a liquid phase, a function of promoting densification by this can be expected.

本発明においては、遷移金属炭化物被覆による前記のピン留め効果ならびに溶浸の容易化により、サブミクロンサイズのダイヤモンドを出発原料に用いながら、粒成長が抑えられた緻密なダイヤモンド焼結体の製作が可能となり、平均粒度が1μm以下、特に平均粒度50nmの微粉ダイヤモンドをも出発原料として用いることの可能性も得られた。   In the present invention, the pinning effect by the transition metal carbide coating and the ease of infiltration make it possible to produce a dense diamond sintered body in which grain growth is suppressed while using submicron-sized diamond as a starting material. It became possible to use a fine diamond having an average particle size of 1 μm or less, particularly an average particle size of 50 nm as a starting material.

さらに遷移金属炭化物被覆は、例えば研削材として使用されるダイヤモンド粒子が高温の酸化性雰囲気中で酸化や黒鉛化するのを防止する機能も有しており、これらの効果は比表面積値の大きな前記微粉ダイヤモンドにおいて特に顕著である。   Furthermore, the transition metal carbide coating has a function of preventing, for example, diamond particles used as an abrasive from being oxidized or graphitized in a high-temperature oxidizing atmosphere, and these effects have a large specific surface area value. This is particularly noticeable in fine diamond.

本発明において炭化物被覆の形成のための遷移金属としては周期表第IV、V、VI族の金属が利用可能であり、Ti、Ta、Nb、Zr、Hf、Si、W、Mo、V、及びCrから選ばれる1種、特にTi、V又はCrが好適である。   In the present invention, metals of Group IV, V and VI of the periodic table can be used as transition metals for forming the carbide coating, and Ti, Ta, Nb, Zr, Hf, Si, W, Mo, V, and One selected from Cr, particularly Ti, V or Cr, is preferred.

ダイヤモンド粒子の表面に遷移金属炭化物の被覆を形成する手法としてはダイヤモンド粉末と金属微粉末との混合物の加熱による固相拡散法、スパッタリング、蒸着などのPVD法、遷移金属化合物のプラズマ空間における分解を利用するCVD法又は溶融塩中における遷移金属イオンの移動を利用するパイロゾル法等、いくつかの公知の方法が利用可能である。   Methods for forming transition metal carbide coatings on the surface of diamond particles include solid phase diffusion by heating a mixture of diamond powder and metal fine powder, PVD methods such as sputtering and vapor deposition, and decomposition of transition metal compounds in the plasma space. Several known methods can be used, such as a CVD method to be used or a pyrosol method using movement of transition metal ions in a molten salt.

これらの手法により、微細なダイヤモンド粒子の表面に、TiC、TaC、NbC、ZrC、HfC、SiC、WC、Mo2C、VC、Cr32からなる被覆が形成される。またTi−AlやTi−Si等ある種の合金は、スパッタリングのターゲット材として利用することにより、効果的にそれぞれ(Ti−Al)Cや(Ti−Si)Cの被覆を形成することができる。 By these methods, a coating made of TiC, TaC, NbC, ZrC, HfC, SiC, WC, Mo 2 C, VC, Cr 3 C 2 is formed on the surface of fine diamond particles. Also, certain alloys such as Ti-Al and Ti-Si can effectively form (Ti-Al) C and (Ti-Si) C coatings, respectively, by using them as sputtering target materials. .

ダイヤモンド粒子表面に形成される遷移金属炭化物被覆は、ダイヤモンド焼結体としての硬さを維持する観点からできるだけ薄くするのが好ましく、10nm以下、特に1 nmまたはそれ以下の薄膜とするのがより好ましい。例えば平均粒度100nmの粒子に5%の(炭化)チタンを被覆した場合の平均被覆厚さは0.2nm以下と見積もられる。   The transition metal carbide coating formed on the surface of the diamond particles is preferably as thin as possible from the viewpoint of maintaining the hardness as a diamond sintered body, and more preferably 10 nm or less, particularly 1 nm or less. . For example, when 5% (carbonized) titanium is coated on particles having an average particle size of 100 nm, the average coating thickness is estimated to be 0.2 nm or less.

この場合、ダイヤモンド粒子表面は全面が被覆されるのではなく、ダイヤモンド粒子同士が直接接するD−D結合の箇所も存在するが、少なくとも焼結品の組織観察からは粒子の異常成長は認められず、被覆剤によるピン留め効果が確保されていることが確認されている。   In this case, the entire surface of the diamond particle is not covered, but there are DD bond portions where the diamond particles are in direct contact with each other, but at least no abnormal growth of the particle is observed from the observation of the structure of the sintered product. It has been confirmed that the pinning effect by the coating agent is secured.

焼結体製作に用いられる出発原料ダイヤモンドの粒度としては、前記したように平均粒度50nmの微粉も使用可能である。通常の溶浸法で焼結可能な粗いサイズのダイヤモンドにも適用可能ではあるが、本発明方法においては、炭化物被覆と焼結助剤金属との良好な濡れ性を利用して、溶浸法では焼結助剤金属の融液の浸透が困難なサブミクロンダイヤモンド焼結体の製作や、ダイヤモンド焼結層の厚さが1 mmを超える厚手焼結体の作製において、特に顕著な結果が得られる。   As described above, fine particles having an average particle size of 50 nm can be used as the particle size of the starting material diamond used for manufacturing the sintered body. Although applicable to coarse-sized diamond that can be sintered by a normal infiltration method, in the method of the present invention, by utilizing the good wettability between the carbide coating and the sintering aid metal, the infiltration method is used. In the case of submicron diamond sintered body, in which the penetration of the sintering aid metal melt is difficult, and the thick sintered body with a diamond sintered layer thickness exceeding 1 mm, particularly remarkable results were obtained. It is done.

出発原料ダイヤモンドとしては、再現性の良好な焼結体製造の見地から、水簸法を用いて分級された、粒度分布幅の狭い品種、即ち累積粒度分布表示におけるD50値に対して、D10値が0.6以上、D90値が1.6以下の整粒された粒度分布を有する品種を用いるのが好ましい。 As a starting material diamond, from the viewpoint of manufacturing a sintered body with good reproducibility, it is classified by using the Minamata method and has a narrow particle size distribution range, that is, D 50 value in the cumulative particle size distribution display. 10 value of 0.6 or more, D 90 value is preferably used varieties with granulated particle size distribution of 1.6 or less.

このような粒度分布幅の狭いダイヤモンドを用いても、実際に焼結されたダイヤモンド層の研磨面には、出発原料には含まれていない微粉が多数存在することが顕微鏡観察で認められる。これは焼結に先立ち出発原料が超高圧力条件へ加圧された際に、ダイヤモンド粉末粒子同士の押圧によって生じた破砕片と説明されている。   Even when such a diamond having a narrow particle size distribution width is used, it is observed by microscopic observation that a large amount of fine powder not contained in the starting material exists on the polished surface of the actually sintered diamond layer. This is explained as a crushed piece produced by pressing diamond powder particles when the starting material is pressed to an ultrahigh pressure condition prior to sintering.

出発原料の充填の際に見かけの充填密度を増し、超高圧力条件への加圧ストロークを小さくする必要のある場合、セラミックスの分野で広く用いられている粒度配合の手法として、粒度の異なる2種類以上のダイヤモンド粉末の混合品を用いることができる。或いは耐摩耗材料の製作においては、構成ダイヤモンド粒子が累積粒度分布表示におけるD50値に対して、D10値が0.2以上、0.6未満、D90値が1.6を超え3.0以下の、粒度分布幅の広い原料を用いることもできる。 When it is necessary to increase the apparent packing density at the time of filling the starting material and reduce the pressurization stroke to the ultra-high pressure condition, the particle size blending technique widely used in the ceramics field is different. A mixture of more than one kind of diamond powder can be used. Alternatively, in the production of wear-resistant materials, the particle size distribution width of the constituent diamond particles is such that the D 10 value is 0.2 or more and less than 0.6, the D 90 value is more than 1.6 and less than 3.0 with respect to the D 50 value in the cumulative particle size distribution display. A wide range of raw materials can also be used.

平均粒度約0.2μmのMD200 (D10=119 nm、D50=209nm、D90=307nm)のダイヤモンドに、パイロゾル法によるチタンコートを施した。SUS製反応容器にダイヤモンド粉末、チタン粉末および食塩と塩化カリとの等モル混合物を入れ、アルゴン雰囲気中、800℃、2時間の加熱を行った。得られたダイヤモンドについて蛍光X線分析を行った結果、TiCの比率として10wt%が得られ、被覆層の平均厚さは約0.5 nmと見積もられた。 A diamond coat of MD200 (D 10 = 119 nm, D 50 = 209 nm, D 90 = 307 nm) having an average particle size of about 0.2 μm was coated with a titanium coating by a pyrosol method. An equimolar mixture of diamond powder, titanium powder and sodium chloride and potassium chloride was placed in a SUS reaction vessel and heated at 800 ° C. for 2 hours in an argon atmosphere. As a result of fluorescent X-ray analysis of the obtained diamond, a TiC ratio of 10 wt% was obtained, and the average thickness of the coating layer was estimated to be about 0.5 nm.

このTiC被覆ダイヤモンド粉末を0.1 mm厚さのタンタル板製容器中で、WC-13wt%Co組成の超硬合金基板上に約1 mm厚さに充填し、推定で6.0 GPa, 1400℃の条件に15分間保持して焼結を行った。得られた焼結体のダイヤモンド層についてのSEM観察において、粒成長は実質的に認められず、ヌープ押し込み硬さは 4140 kgf/mm2であった。 This TiC-coated diamond powder is filled in a 0.1 mm thick tantalum plate container onto a WC-13wt% Co composition cemented carbide substrate to a thickness of about 1 mm, and is estimated to be 6.0 GPa at 1400 ° C. Sintering was performed for 15 minutes. In SEM observation of the diamond layer of the obtained sintered body, grain growth was substantially not observed, and the Knoop indentation hardness was 4140 kgf / mm 2 .

平均粒度0.9μmのIRM 0-2級ダイヤモンド粉末(トーメイダイヤ製品)とチタン粉末(6μm)とを十分に混合し、850℃に6時間保持してダイヤモンド表面にTiC被覆を形成させた。未反応の金属チタンは塩酸溶解によって除去した。   IRM 0-2 grade diamond powder (Tomei Diamond product) having an average particle size of 0.9 μm and titanium powder (6 μm) were thoroughly mixed and held at 850 ° C. for 6 hours to form a TiC coating on the diamond surface. Unreacted titanium metal was removed by hydrochloric acid dissolution.

得られたダイヤモンドについて、前記実施例同様に蛍光X線分析を行い、炭化物被覆層の比率から、平均厚さとして約0.2nmを得た。   The obtained diamond was subjected to fluorescent X-ray analysis in the same manner as in the above example, and an average thickness of about 0.2 nm was obtained from the ratio of the carbide coating layer.

これらの炭化物被覆ダイヤモンド粉末を上記実施例と同様のタンタル板製容器中で、WC-13wt%Co組成の超硬合金基板上に約1 mm厚さに充填し、推定値6.0 GPaの圧力、1400℃の温度条件に15分間保持して焼結を行った。得られた焼結体のダイヤモンドのSEM観察では粒成長は実質的に認められず、ヌープ硬さは4300 kgf/mm2であった。 These carbide-coated diamond powders were filled in a tantalum plate container similar to the above example to a cemented carbide substrate having a WC-13 wt% Co composition to a thickness of about 1 mm, and an estimated pressure of 6.0 GPa, 1400 Sintering was performed by maintaining the temperature at 15 ° C. for 15 minutes. SEM observation of the obtained sintered diamond showed substantially no grain growth, and the Knoop hardness was 4300 kgf / mm 2 .

以下の表1及び2における操作No.1〜5の5種類のダイヤモンドを出発原料とし、各操作番号に示したより遷移金属炭化物の被覆を形成した。さらにWC-13%Coの超硬合金ブロックを溶浸材として被覆ダイヤモンド粒子に隣接して配置し、超高圧高温条件下で、焼結を行った。   Five kinds of diamonds of operation Nos. 1 to 5 in the following Tables 1 and 2 were used as starting materials, and transition metal carbide coatings were formed according to the respective operation numbers. Further, a cemented carbide block of WC-13% Co was placed as an infiltrant adjacent to the coated diamond particles, and sintered under ultra high pressure and high temperature conditions.

Figure 2011046555
Figure 2011046555

Figure 2011046555
Figure 2011046555

得られた焼結体は、ダイヤモンド層に粒成長は実質的に認められなかった。ヌープ押し込み硬さはいずれも4000 kgf/mm2以上で、切削加工用の刃具として利用した。 In the obtained sintered body, substantially no grain growth was observed in the diamond layer. The Knoop indentation hardness was 4000 kgf / mm 2 or more, and it was used as a cutting tool.

本発明方法を用いることにより、溶浸法の適用が困難であった、サブミクロン級ダイヤモンドを原料に用いた焼結体、ならびにダイヤモンド層厚さが1 mmを超える厚手のダイヤモンド焼結体の作製が可能となり、粒成長を伴わない微細組織によって得られる強靭な切削工具や、大型の耐摩耗材料実現の可能性が開かれる。
By using the method of the present invention, it was difficult to apply the infiltration method, and manufacturing a sintered body using submicron-class diamond as a raw material and a thick diamond sintered body having a diamond layer thickness exceeding 1 mm This opens up the possibility of realizing tough cutting tools and large wear-resistant materials that can be obtained with a fine structure without grain growth.

Claims (12)

粒度1μm以下のダイヤモンド粉乃至粒子群を焼結により一体化した微細ダイヤモンド粒子焼結体において、隣接粒子同士が遷移金属の炭化物からなる被覆層を介して結合されていることを特徴とする、微細ダイヤモンド粒子焼結体。   In a fine diamond particle sintered body obtained by integrating diamond powder or particles having a particle size of 1 μm or less by sintering, adjacent particles are bonded together through a coating layer made of transition metal carbide. Diamond particle sintered body. 50平均粒度が1μm以下のダイヤモンド粉乃至粒子群を焼結により一体化した微細ダイヤモンド粒子焼結体において、個々のダイヤモンド粒子が遷移金属炭化物からなる被覆層を有し、かつ隣接粒子同士が該被覆層を介して結合されていることを特徴とする、微細ダイヤモンド粒子焼結体。 D 50 In a fine diamond particle sintered body in which diamond powder or a group of particles having an average particle size of 1 μm or less is integrated by sintering, each diamond particle has a coating layer made of transition metal carbide, and adjacent particles are A fine diamond particle sintered body, which is bonded through a coating layer. 前記平均粒度が500nm以下である、請求項2に記載の微細ダイヤモンド粒子焼結体。   The fine diamond particle sintered body according to claim 2, wherein the average particle size is 500 nm or less. 前記平均粒度が300nm以下である、請求項3に記載の微細ダイヤモンド粒子焼結体。   The fine diamond particle sintered body according to claim 3, wherein the average particle size is 300 nm or less. 前記ダイヤモンド粒子群の累積粒度分布表示において、D50値に対するD10値及びD90値が、それぞれ0.6以上、及び1.6以下の(単ピーク)粒度分布を有する整粒された粉である、請求項2に記載の微細ダイヤモンド粒子焼結体。 In the cumulative particle size distribution display of the diamond particle group, the D 10 value and the D 90 value with respect to the D 50 value are a sized powder having a (single peak) particle size distribution of 0.6 or more and 1.6 or less, respectively. 2. Fine diamond particle sintered body according to 2. 前記ダイヤモンド粉のD50値に対するD10値及びD90値が、それぞれ0.2以上0.6未満、及び1.6を超え3.0以下の(単ピーク)粒度分布を有する、請求項2に記載の微細ダイヤモンド粒子焼結体。 10 value and the D 90 value D for D 50 value of said diamond powder is respectively less than 0.2 to 0.6, and a 1.6 than 3.0 following the (single peak) particle size distribution, fine diamond particles sintered according to claim 2 body. 前記遷移金属炭化物がTiC、TaC、NbC、ZrC、HfC、SiC、WC、Mo2C、VC、及びCr32から選ばれる1種である、請求項1又は2に記載の微細ダイヤモンド粒子焼結体。 The fine diamond particle firing according to claim 1 or 2, wherein the transition metal carbide is one selected from TiC, TaC, NbC, ZrC, HfC, SiC, WC, Mo 2 C, VC, and Cr 3 C 2. Union. (1) D50平均粒度が1μm以下の整粒されたダイヤモンド粉乃至粒子群の構成粒子の表面に遷移金属の炭化物からなる被覆層を形成し、
(2) 該ダイヤモンド粉をコバルトまたはニッケルを主成分とする融剤金属と密接配置し、
(3) 全体をダイヤモンドが熱力学的に安定な圧力温度条件に保持することにより、遷移金属の炭化物で被膜されたダイヤモンド粉を焼結・一体化することを特徴とする、ダイヤモンド焼結体の製造方法。
(1) D 50 average particle size to form a coating layer comprising a carbide of a transition metal in the following sizing surfaces of the diamond powder or particles of constituent particles 1 [mu] m,
(2) The diamond powder is closely placed with a flux metal mainly composed of cobalt or nickel,
(3) A diamond sintered body characterized in that diamond powder coated with carbide of transition metal is sintered and integrated by maintaining the temperature under pressure and temperature conditions where diamond is thermodynamically stable. Production method.
前記遷移金属がTi、Ta、Nb、Zr、Hf、Si、W、Mo、V、及びCrから選ばれる1種である、請求項8に記載の方法。   9. The method according to claim 8, wherein the transition metal is one selected from Ti, Ta, Nb, Zr, Hf, Si, W, Mo, V, and Cr. 前記遷移金属がTi、V又はCrから選ばれる1種である、請求項9に記載の方法。   The method according to claim 9, wherein the transition metal is one selected from Ti, V, or Cr. 前記遷移金属がTiの単体金属、或いはSi又はAlとの合金である、請求項10に記載の方法。   The method according to claim 10, wherein the transition metal is a single metal of Ti, or an alloy with Si or Al. 請求項9に記載のダイヤモンド焼結体の製造方法において、(1)の炭化物形成を固相拡散法、スパッタリング、PVD、CVD又はパイロゾル法にて行う方法。
The method for producing a diamond sintered body according to claim 9, wherein the carbide formation of (1) is performed by a solid phase diffusion method, sputtering, PVD, CVD or a pyrosol method.
JP2009195200A 2009-08-26 2009-08-26 Sintered compact of diamond fine particles and production method Pending JP2011046555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009195200A JP2011046555A (en) 2009-08-26 2009-08-26 Sintered compact of diamond fine particles and production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009195200A JP2011046555A (en) 2009-08-26 2009-08-26 Sintered compact of diamond fine particles and production method

Publications (1)

Publication Number Publication Date
JP2011046555A true JP2011046555A (en) 2011-03-10

Family

ID=43833297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009195200A Pending JP2011046555A (en) 2009-08-26 2009-08-26 Sintered compact of diamond fine particles and production method

Country Status (1)

Country Link
JP (1) JP2011046555A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052495A (en) * 2011-09-06 2013-03-21 Sumitomo Electric Ind Ltd Polishing machine for polishing diamond material and method of polishing diamond material
JP2013115096A (en) * 2011-11-25 2013-06-10 Tomei Diamond Co Ltd Diamond-containing heat sink material and manufacturing method thereof
WO2015147264A1 (en) * 2014-03-28 2015-10-01 三菱マテリアル株式会社 Rotating cutting tool having polycrystalline diamond sintered body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052495A (en) * 2011-09-06 2013-03-21 Sumitomo Electric Ind Ltd Polishing machine for polishing diamond material and method of polishing diamond material
JP2013115096A (en) * 2011-11-25 2013-06-10 Tomei Diamond Co Ltd Diamond-containing heat sink material and manufacturing method thereof
WO2015147264A1 (en) * 2014-03-28 2015-10-01 三菱マテリアル株式会社 Rotating cutting tool having polycrystalline diamond sintered body
JP2015193073A (en) * 2014-03-28 2015-11-05 三菱マテリアル株式会社 Rotary cutting tool with polycrystalline diamond sinter body
CN106132607A (en) * 2014-03-28 2016-11-16 三菱综合材料株式会社 Rotary cutting tool with polycrystalline diamond sintered body
EP3124151A4 (en) * 2014-03-28 2017-11-08 Mitsubishi Materials Corporation Rotating cutting tool having polycrystalline diamond sintered body
US10399153B2 (en) 2014-03-28 2019-09-03 Mitsubishi Materials Corporation Rotary cutting tool including polycrystalline diamond material

Similar Documents

Publication Publication Date Title
RU2694401C2 (en) New method of producing cemented carbide and product obtained thereof
JP6703757B2 (en) Cermet and cutting tool
KR20110137773A (en) Polycrystalline diamond
EP2265738A1 (en) Super-hard enhanced hard-metals
JP4330859B2 (en) Coated cemented carbide and method for producing the same
Rabinkin et al. Brazing of diamonds and cubic boron nitride
JP2011212832A (en) Cutting tool made of cubic boron nitride group ultrahigh pressure sintered material
KR20170048409A (en) Sintered body, tool using sintered body, and sintered body production method
JP2011046555A (en) Sintered compact of diamond fine particles and production method
JP5594568B2 (en) Cutting tool made of cubic boron nitride based ultra high pressure sintered material and cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
US7022403B1 (en) Adhesive composite coating for diamond and diamond-containing materials and method for producing said coating
CN102245801B (en) Method of making cutting tool inserts with high demands on dimensional accuracy
JP5856752B2 (en) Tungsten carbide-based sintered body and wear-resistant member using the same
JP2008238392A (en) Cutting tool
GB2560256A (en) Coated superhard particles and composite materials made from coated superhard particles
JP4366803B2 (en) Cemented carbide extruded material, method for producing the same, and cutting tool
EP2714387B1 (en) Method of making a multi-layer coating with cubic boron nitride particles
CN113564399A (en) Gradient-structure TiCN-based metal ceramic and method for improving coating binding force thereof
JP2010228088A (en) Surface-coated cutting tool
JP2011051890A (en) Adhesive composite coating film for diamond and for diamond-containing material, and method for producing the same
JP3422029B2 (en) Boron nitride coated hard material and method for producing the same
JP5392046B2 (en) Surface coated cutting tool
JP5392033B2 (en) Surface coated cutting tool
JP6172519B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance over a long period of time when cutting hardened steel
JP2779531B2 (en) Diamond coated tungsten carbide based sintered body