JP2011043438A - Reflective photoelectric encoder - Google Patents

Reflective photoelectric encoder Download PDF

Info

Publication number
JP2011043438A
JP2011043438A JP2009192415A JP2009192415A JP2011043438A JP 2011043438 A JP2011043438 A JP 2011043438A JP 2009192415 A JP2009192415 A JP 2009192415A JP 2009192415 A JP2009192415 A JP 2009192415A JP 2011043438 A JP2011043438 A JP 2011043438A
Authority
JP
Japan
Prior art keywords
optical system
reflection
receiving element
detection
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009192415A
Other languages
Japanese (ja)
Inventor
Toru Yaku
亨 夜久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2009192415A priority Critical patent/JP2011043438A/en
Publication of JP2011043438A publication Critical patent/JP2011043438A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Transform (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve detection resolution, while improving the efficiency of using light, by improving resolution of a reflective photoelectric encoder using a concave reflecting grating. <P>SOLUTION: In the reflective photoelectric encoder for detecting reflected light from a reflection scale 10 by a light receiving element 40 through a detection optical system 30, and detecting relative displacement between a detector 20 including a detection optical system and the light receiving element and a measuring axis direction of the reflection scale, the reflecting grating 12 of the reflection scale is formed to have a concave shape whose axis is extended in the measuring axis direction, and whose height range of a detection range is equal to or below a focal depth of the detection optical system, and as the detection optical system, reflected light is imaged into the light receiving element, by using telecentric optical systems 32, 50 including cylindrical lenses 34, 52 arranged so that the reflected light from the reflection scale is imaged in the measuring axis direction, and having an axis in a direction perpendicular to the measuring axis, and a slit 38 disposed on the focal position thereof, and extending in the direction perpendicular to the measuring axis. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、反射スケールからの反射光を検出光学系を介して受光素子で検出し、検出光学系及び受光素子を含む検出器と反射スケールの測定軸方向の相対変位を検出するようにした反射型光電式エンコーダに係り、特に、凹面状反射格子を用いた反射型光電式エンコーダの分解能を向上して、光の利用効率を向上させつつ、検出分解能を向上させることが可能な反射型光電式エンコーダに関する。   In the present invention, the reflected light from the reflection scale is detected by the light receiving element through the detection optical system, and the reflection including the detection optical system and the detector including the light receiving element and the relative displacement in the measurement axis direction of the reflection scale is detected. In particular, the reflection type photoelectric encoder that can improve the resolution of the reflection type photoelectric encoder using the concave reflection grating and improve the light utilization efficiency and the detection resolution. It relates to the encoder.

反射型光電式エンコーダにおいて、反射スケール上のアブソリュートパターンや格子パターンをレンズを含む検出光学系で検出する技術が特許文献1に提案されている。   Patent Document 1 proposes a technique for detecting an absolute pattern or a grating pattern on a reflective scale with a detection optical system including a lens in a reflective photoelectric encoder.

ここで、検出応答周波数を向上させる目的で受光素子を小さくすると、検出できる光量が減ってしまうという問題がある。   Here, when the light receiving element is made small for the purpose of improving the detection response frequency, there is a problem that the amount of light that can be detected is reduced.

一方、特許文献2には、検出光量を増やす目的で、スケール格子形状を立体的に形成し、光路を一点に集光させる技術が記載されている。   On the other hand, Patent Document 2 describes a technique of forming a scale lattice shape three-dimensionally and condensing an optical path at one point for the purpose of increasing the detected light amount.

しかしながら、この方法ではスケール格子を3次元成形しなければならないので、製造コストが上昇してしまうという問題がある。   However, in this method, since the scale lattice must be three-dimensionally formed, there is a problem that the manufacturing cost increases.

又、特許文献3や4には、反射スケールの反射面を円弧状とすることで、光路を一点に集光させる技術が記載されている。   Patent Documents 3 and 4 describe a technique for condensing an optical path at one point by making the reflection surface of the reflection scale into an arc shape.

特開2003−307440(図4)JP2003-307440 (FIG. 4) 特開2003−337052(図1)JP 2003-337052 (FIG. 1) 特開平4−218720(図3)JP-A-4-218720 (FIG. 3) 特開2006−250877(図8)JP 2006-250877 A (FIG. 8)

特許文献3及び4に記載された技術では、受光素子面上に反射スケール上の反射格子の投影像が生起するとされている。しかしながら、測定軸方向の結像手段が無いため、測定軸方向における受光素子面上の結像が得られない。従って、格子ピッチを細かくして高分解能化を図ることができない。   In the techniques described in Patent Documents 3 and 4, a projection image of a reflection grating on a reflection scale is generated on the light receiving element surface. However, since there is no imaging means in the measurement axis direction, imaging on the light receiving element surface in the measurement axis direction cannot be obtained. Therefore, it is impossible to increase the resolution by making the grating pitch fine.

又、反射スケールの反射面が円弧状になっているために、平面スケールであれば反射格子で反射された光により生成される干渉縞が生成されないという問題もある。   In addition, since the reflection surface of the reflection scale has an arc shape, there is a problem that interference fringes generated by the light reflected by the reflection grating are not generated if it is a plane scale.

本発明は、前記従来の問題点を解決するべくなされたもので、凹面状反射格子を用いた反射型光電式エンコーダの分解能を向上して、反射型光電式エンコーダにおける光の利用効率を向上させつつ、検出分解能を向上させることを課題とする。   The present invention has been made to solve the above-described conventional problems, and improves the resolution of a reflective photoelectric encoder using a concave reflection grating, thereby improving the light utilization efficiency in the reflective photoelectric encoder. However, it is an object to improve detection resolution.

本発明は、反射スケールからの反射光を検出光学系を介して受光素子で検出し、検出光学系及び受光素子を含む検出器と反射スケールの測定軸方向の相対変位を検出するようにした反射型光電式エンコーダにおいて、前記反射スケールの反射格子を、測定軸方向に軸が延びる、検出範囲の高さ範囲が検出光学系の焦点深度以下とされた凹面状に形成すると共に、前記検出光学系として、前記反射スケールからの反射光を、測定軸方向に結像するように配置された、測定軸と直交する方向に軸を有するシリンドリカルレンズと、その焦点位置に配設された、測定軸と直交する方向に延びるスリットを含むテレセントリック光学系を用いて、前記反射光を受光素子に結像するようにして、前記課題を解決したものである。   In the present invention, the reflected light from the reflection scale is detected by the light receiving element through the detection optical system, and the reflection including the detection optical system and the detector including the light receiving element and the relative displacement in the measurement axis direction of the reflection scale is detected. In the type photoelectric encoder, the reflection grating of the reflection scale is formed in a concave shape in which the axis extends in the measurement axis direction and the height range of the detection range is less than the focal depth of the detection optical system, and the detection optical system A cylindrical lens having an axis in a direction orthogonal to the measurement axis, which is arranged so as to form an image of reflected light from the reflection scale in the measurement axis direction, and a measurement axis disposed at the focal position thereof. By using a telecentric optical system including a slit extending in an orthogonal direction, the reflected light is imaged on a light receiving element to solve the above problem.

ここで、前記テレセントリック光学系を、スリットの前後にシリンドリカルレンズが設けられた両側テレセントリック光学系とすることができる。   Here, the telecentric optical system can be a double-sided telecentric optical system in which cylindrical lenses are provided before and after the slit.

又、前記反射スケールの直上にビームスプリッタを設け、照明光の光軸と検出光学系の光軸を、反射スケールの直上で重畳/分離するようにすることができる。   In addition, a beam splitter can be provided immediately above the reflection scale, and the optical axis of the illumination light and the optical axis of the detection optical system can be superimposed / separated immediately above the reflection scale.

本発明によれば、凹面状反射格子を用いた反射型光電式エンコーダの分解能を向上して、反射型光電式エンコーダにおける光の利用効率を向上させつつ、検出分解能を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the resolution of a reflective photoelectric encoder using a concave reflection grating can be improved, and the detection resolution can be improved while improving the light utilization efficiency in the reflective photoelectric encoder.

又、シリンドリカルレンズを用いているので、一方向の調整で良く、光軸が合わせ易い。これに対して、丸レンズの場合は2方向の調整が必要であり、顕微鏡で調整する必要がある。   In addition, since a cylindrical lens is used, adjustment in one direction is sufficient, and the optical axis is easily aligned. On the other hand, in the case of a round lens, adjustment in two directions is necessary, and adjustment with a microscope is necessary.

本発明の第1実施形態の全体構成を示す斜視図The perspective view which shows the whole structure of 1st Embodiment of this invention. 第1実施形態を光源方向から見た平面図The top view which looked at 1st Embodiment from the light source direction 第1実施形態を測定軸方向から見た側面図Side view of the first embodiment viewed from the measurement axis direction 第1実施形態の検出光学系の光路を示す平面図The top view which shows the optical path of the detection optical system of 1st Embodiment 同じく側面図Same side view 検出光学系を展開した状態を示す光路図Optical path diagram showing the detection optical system deployed 凹面状の反射格子の形成方法の一例を示す側面図Side view showing an example of a method for forming a concave reflection grating 本発明の第2実施形態の全体構成を示す斜視図The perspective view which shows the whole structure of 2nd Embodiment of this invention. 第2実施形態を光源方向から見た平面図The top view which looked at 2nd Embodiment from the light source direction 第2実施形態を測定軸方向から見た側面図Side view of the second embodiment viewed from the measurement axis direction

以下図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の第1実施形態は、図1(斜視図)、図2(光源方向から見た平面図)、図3(測定軸方向から見た側面図)に示す如く、反射スケール10からの反射光を検出光学系30を介して受光素子40で検出し、検出光学系30及び受光素子40を含む検出器20と反射スケール10の測定軸方向の相対変位を検出するようにした反射型光電式エンコーダにおいて、前記反射スケール10の反射格子12を、測定軸方向に軸が延びる、検出範囲の高さ範囲が検出光学系30の焦点深度以下とされた凹面状に形成すると共に、前記検出光学系30として、前記反射スケール10からの反射光を、図2に示す如く、測定軸方向に結像するように配置された、測定軸と直交する方向に軸を有するシリンドリカルレンズ34と、その焦点位置に配設された、測定軸と直交する方向に延びるスリット38が形成されたスリット板36を含むテレセントリック光学系32を用いて、前記反射光を受光素子40に結像するようにしたものである。   As shown in FIG. 1 (perspective view), FIG. 2 (plan view seen from the light source direction), and FIG. 3 (side view seen from the measurement axis direction), the first embodiment of the present invention reflects from the reflective scale 10. Light is detected by the light receiving element 40 through the detection optical system 30, and the reflection type photoelectric type is configured to detect the relative displacement in the measurement axis direction between the detector 20 including the detection optical system 30 and the light receiving element 40 and the reflection scale 10. In the encoder, the reflection grating 12 of the reflection scale 10 is formed in a concave shape in which the axis extends in the measurement axis direction and the height range of the detection range is equal to or less than the focal depth of the detection optical system 30, and the detection optical system As shown in FIG. 2, a cylindrical lens 34 having an axis in a direction orthogonal to the measurement axis, which is arranged so as to form an image of reflected light from the reflection scale 10 in the measurement axis direction, as shown in FIG. Arranged in Was, by using the telecentric optical system 32 including the measuring axis and perpendicular slit plate 36 slits 38 are formed extending in a direction, the reflected light is obtained so as to formed on the light receiving element 40.

本実施形態においては、前記反射スケール10の直上の検出器20内にビームスプリッタ26が設けられ、同じく検出器20内の光源22から放射され、コリメータレンズ24により平行光線化された照明光の光軸(光源光軸と称する)と、検出光学系30の光軸を、反射スケール10の直上で重畳/分離するようにされている。   In the present embodiment, a beam splitter 26 is provided in the detector 20 immediately above the reflection scale 10, and the illumination light emitted from the light source 22 in the detector 20 and converted into parallel rays by the collimator lens 24 is used. The axis (referred to as the light source optical axis) and the optical axis of the detection optical system 30 are superimposed / separated immediately above the reflection scale 10.

図においては、光源22及びコリメータレンズ24が反射スケール10の上方に設けられ、検出光学系30が反射スケール10の側方に設けられているが、光源と検出光学系の配置は逆であっても良い。   In the figure, the light source 22 and the collimator lens 24 are provided above the reflection scale 10, and the detection optical system 30 is provided on the side of the reflection scale 10, but the arrangement of the light source and the detection optical system is reversed. Also good.

前記受光素子40の前面には、図2に示される如く、検出格子42が配置されている。この検出格子42のピッチは、シリンドリカルレンズ34及びスリット38を含むテレセントリック光学系32で受光素子40上に結像される結像格子像と同じピッチとされている。   As shown in FIG. 2, a detection grating 42 is disposed on the front surface of the light receiving element 40. The pitch of the detection grating 42 is set to the same pitch as the imaging grating image formed on the light receiving element 40 by the telecentric optical system 32 including the cylindrical lens 34 and the slit 38.

従って、結像格子像は検出格子42と干渉し合って、結像格子像の移動に応じて変化する光量が受光素子40に入射する。よって、受光素子40は結像格子像の移動に応じた検出信号を出力することができ、反射スケール10に対する検出器20の測定軸方向の変位を検出することができる。   Therefore, the imaging grating image interferes with the detection grating 42, and a light amount that changes according to the movement of the imaging grating image is incident on the light receiving element 40. Therefore, the light receiving element 40 can output a detection signal corresponding to the movement of the imaging grid image, and can detect the displacement of the detector 20 relative to the reflection scale 10 in the measurement axis direction.

このように、反射格子面を凹面とすることにより、反射スケール10で反射された光を受光素子40に集光することができる。   Thus, the light reflected by the reflection scale 10 can be condensed on the light receiving element 40 by making the reflection grating surface concave.

反射スケール10から受光素子40までの光路の寸法を図4(平面図)、図5(側面図)、図6(展開図)に示す。反射スケール10と受光素子40の中間点にシリンドリカルレンズ34が配置され、又、シリンドリカルレンズ34と受光素子40の中間点にスリット幅Wsのスリット38が配置されている。従って、反射スケール10を物体面とする片側テレセントリック光学系を構成している。   The dimensions of the optical path from the reflective scale 10 to the light receiving element 40 are shown in FIG. 4 (plan view), FIG. 5 (side view), and FIG. A cylindrical lens 34 is disposed at an intermediate point between the reflection scale 10 and the light receiving element 40, and a slit 38 having a slit width Ws is disposed at an intermediate point between the cylindrical lens 34 and the light receiving element 40. Therefore, a one-side telecentric optical system having the reflection scale 10 as an object surface is configured.

ここで、片側テレセントリック光学系のNA(開口数)は、シリンドリカルレンズ34の焦点距離fとスリット幅Wsから次式で求められる。

Figure 2011043438
Here, the NA (numerical aperture) of the one-side telecentric optical system is obtained from the focal length f of the cylindrical lens 34 and the slit width Ws by the following equation.
Figure 2011043438

又、開口数NAを持つ光学系の遮断空間周波数fcは、光源22からの光の波長をλとすると、次式より求められる。

Figure 2011043438
Further, the cutoff spatial frequency fc of the optical system having the numerical aperture NA can be obtained from the following equation, where λ is the wavelength of light from the light source 22.
Figure 2011043438

従って、この場合の検出限界パターン周期Pcは次式で求められる。

Figure 2011043438
Therefore, the detection limit pattern period Pc in this case is obtained by the following equation.
Figure 2011043438

ここで、λ=880nm、f=10mm、Ws=0.88mmとすると、Pcは次式で求められる。

Figure 2011043438
Here, when λ = 880 nm, f = 10 mm, and Ws = 0.88 mm, Pc is obtained by the following equation.
Figure 2011043438

従って、この光学系の検出限界ピッチは10μmとなり、反射スケール10と受光素子40の間に結像系が存在しない場合と比べて、非常に細かいピッチの反射格子を検出することができるようになる。   Therefore, the detection limit pitch of this optical system is 10 μm, and a reflection grating with a very fine pitch can be detected as compared with the case where no imaging system exists between the reflection scale 10 and the light receiving element 40. .

又、焦点深度DOFは次式より求められる。

Figure 2011043438
The depth of focus DOF can be obtained from the following equation.
Figure 2011043438

従って、Pc=10μm、λ=880nmとすると、DOFは次式で求められる。

Figure 2011043438
Accordingly, when Pc = 10 μm and λ = 880 nm, DOF is obtained by the following equation.
Figure 2011043438

即ち、この光学系の焦点深度は±0.23mmとなり、反射スケール10の検出範囲の高さが凹面状(図6の側では円弧状)の湾曲によって変化している状態においても、細かいピッチの反射格子の像を受光素子面上に結像することができ、これを受光素子40で検出することができる。   That is, the depth of focus of this optical system is ± 0.23 mm, and even when the height of the detection range of the reflective scale 10 is changed by a concave curved surface (arc shape on the side of FIG. 6), the fine pitch is small. An image of the reflection grating can be formed on the light receiving element surface, and this can be detected by the light receiving element 40.

以上の作用により、反射スケール10を凹面状にして、光の利用効率を上げつつ、且つ、検出すべき反射格子12の格子ピッチを細かくして分解能を向上することができる。   With the above operation, it is possible to improve the resolution by making the reflection scale 10 concave to improve the light utilization efficiency and by reducing the grating pitch of the reflection grating 12 to be detected.

前記反射格子12は、例えば図7に示す如く、テープスケール14を枠16に入れることによって、凹面状に形成することができる。   For example, as shown in FIG. 7, the reflection grating 12 can be formed in a concave shape by placing a tape scale 14 in a frame 16.

次に検出光学系を片側テレセントリック光学系から両側テレセントリック光学系に変えた本発明の第2実施形態を説明する。本実施形態は、図8(斜視図)、図9(光源方向から見た平面図)及び図10(測定軸方向から見た側面図)に示す如く、検出光学系を、スリット38の前後にシリンドリカルレンズ34、52が設けられた両側テレセントリック光学系50としたものである。   Next, a description will be given of a second embodiment of the present invention in which the detection optical system is changed from a one-side telecentric optical system to a two-side telecentric optical system. In this embodiment, as shown in FIG. 8 (perspective view), FIG. 9 (plan view seen from the light source direction), and FIG. 10 (side view seen from the measurement axis direction), the detection optical system is placed before and after the slit 38. This is a double-sided telecentric optical system 50 provided with cylindrical lenses 34 and 52.

ここで、受光素子40側のシリンドリカルレンズ52は、スリット38が、その焦点位置に来るように配置される。   Here, the cylindrical lens 52 on the light receiving element 40 side is arranged so that the slit 38 comes to the focal position.

本実施形態においては、スリット38と受光素子40間の距離の変動に対して影響を受け難くなる。   In the present embodiment, it becomes difficult to be affected by fluctuations in the distance between the slit 38 and the light receiving element 40.

なお、前記実施形態においては、いずれも反射格子12が等ピッチのインクリメンタルパターンとされていたが、反射格子の種類はこれに限定されず、不等ピッチで絶対位置が検出可能とされたアブソリュートパターンであっても良い。又、照明も、光源22とコリメータレンズ24の組合せに限定されない。更に、ビームスプリッタ26を省略して、斜め入射とし、光源光軸と検出光学系光軸を独立させることも可能である。又、検出格子42と受光素子40を別体とすることもできる。更に、直線型エンコーダでなく回転型エンコーダであっても良い。   In the above-described embodiments, the reflection grating 12 is an incremental pattern having an equal pitch. However, the type of the reflection grating is not limited to this, and an absolute pattern in which the absolute position can be detected at an unequal pitch. It may be. Further, the illumination is not limited to the combination of the light source 22 and the collimator lens 24. Further, the beam splitter 26 may be omitted to make the oblique incidence, and the light source optical axis and the detection optical system optical axis may be made independent. Also, the detection grid 42 and the light receiving element 40 can be separated. Furthermore, a rotary encoder may be used instead of the linear encoder.

10…反射スケール
12…反射格子
20…検出器
22…光源
24…コリメータレンズ
26…ビームスプリッタ
30…検出光学系
32…テレセントリック光学系
34、52…シリンドリカルレンズ
38…スリット
40…受光素子
42…検出格子
50…両側テレセントリック光学系
DESCRIPTION OF SYMBOLS 10 ... Reflection scale 12 ... Reflection grating 20 ... Detector 22 ... Light source 24 ... Collimator lens 26 ... Beam splitter 30 ... Detection optical system 32 ... Telecentric optical system 34, 52 ... Cylindrical lens 38 ... Slit 40 ... Light receiving element 42 ... Detection grating 50 ... Both telecentric optical system

Claims (3)

反射スケールからの反射光を検出光学系を介して受光素子で検出し、検出光学系及び受光素子を含む検出器と反射スケールの測定軸方向の相対変位を検出するようにした反射型光電式エンコーダにおいて、
前記反射スケールの反射格子が、測定軸方向に軸が延びる、検出範囲の高さ範囲が検出光学系の焦点深度以下とされた凹面状に形成されると共に、
前記検出光学系として、前記反射スケールからの反射光を、測定軸方向に結像するように配置された、測定軸と直交する方向に軸を有するシリンドリカルレンズと、その焦点位置に配設された、測定軸と直交する方向に延びるスリットを含むテレセントリック光学系を用いて、前記反射光を受光素子に結像するようにしたことを特徴とする反射型光電式エンコーダ。
A reflection type photoelectric encoder that detects reflected light from a reflection scale with a light receiving element through a detection optical system, and detects a relative displacement in the measurement axis direction between the detector including the detection optical system and the light receiving element and the reflection scale. In
The reflection grating of the reflection scale is formed in a concave shape in which the axis extends in the measurement axis direction and the height range of the detection range is equal to or less than the focal depth of the detection optical system,
As the detection optical system, a cylindrical lens having an axis in a direction orthogonal to the measurement axis, which is arranged so as to form an image of reflected light from the reflection scale in the direction of the measurement axis, is disposed at the focal position thereof. A reflective photoelectric encoder characterized in that the reflected light is imaged on a light receiving element using a telecentric optical system including a slit extending in a direction perpendicular to the measurement axis.
前記テレセントリック光学系が、スリットの前後にシリンドリカルレンズが設けられた両側テレセントリック光学系であることを特徴とする請求項1に記載の反射型光電式エンコーダ。   2. The reflective photoelectric encoder according to claim 1, wherein the telecentric optical system is a double-sided telecentric optical system in which cylindrical lenses are provided before and after the slit. 前記反射スケールの直上にビームスプリッタが設けられ、照明光の光軸と検出光学系の光軸を、反射スケールの直上で重畳/分離するようにされていることを特徴とする請求項1又は2に記載の反射型光電式エンコーダ。   3. A beam splitter is provided immediately above the reflection scale, and the optical axis of illumination light and the optical axis of the detection optical system are superimposed / separated immediately above the reflection scale. Reflective photoelectric encoder described in 1.
JP2009192415A 2009-08-21 2009-08-21 Reflective photoelectric encoder Pending JP2011043438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009192415A JP2011043438A (en) 2009-08-21 2009-08-21 Reflective photoelectric encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009192415A JP2011043438A (en) 2009-08-21 2009-08-21 Reflective photoelectric encoder

Publications (1)

Publication Number Publication Date
JP2011043438A true JP2011043438A (en) 2011-03-03

Family

ID=43830970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009192415A Pending JP2011043438A (en) 2009-08-21 2009-08-21 Reflective photoelectric encoder

Country Status (1)

Country Link
JP (1) JP2011043438A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106969710A (en) * 2017-05-26 2017-07-21 四川瑞丰锻造有限公司 It is easy to the stable type optical splitter of detection
CN106979751A (en) * 2017-05-26 2017-07-25 四川瑞丰锻造有限公司 A kind of optical splitter
CN108332679A (en) * 2018-01-18 2018-07-27 中国科学院上海光学精密机械研究所 A kind of precision position from defocus device and detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106969710A (en) * 2017-05-26 2017-07-21 四川瑞丰锻造有限公司 It is easy to the stable type optical splitter of detection
CN106979751A (en) * 2017-05-26 2017-07-25 四川瑞丰锻造有限公司 A kind of optical splitter
CN108332679A (en) * 2018-01-18 2018-07-27 中国科学院上海光学精密机械研究所 A kind of precision position from defocus device and detection method

Similar Documents

Publication Publication Date Title
JP6315957B2 (en) Position measuring device
JP5164424B2 (en) Optical displacement measuring device
JP2862417B2 (en) Displacement measuring device and method
JP5562202B2 (en) Photoelectric encoder
JP2017067768A (en) Optical encoder
EP3683542B1 (en) Distance measuring module
JP4398744B2 (en) Photoelectric encoder
JP4843342B2 (en) Photoelectric incremental encoder
JP4721685B2 (en) Shape measuring method and shape measuring apparatus
JP2011043438A (en) Reflective photoelectric encoder
JP2010145468A (en) Height detection device and toner height detection apparatus using the same
JP2010038654A (en) Optical displacement measuring device
JP2008292406A (en) Photoelectric encoder
JP2013083482A (en) State detection device
JP5069364B2 (en) Photoelectric incremental encoder
JP6743788B2 (en) Displacement sensor
JP5112797B2 (en) Photoelectric incremental encoder
US8891732B2 (en) Apparatus and method for detecting marks and semiconductor device processing system
JP7201547B2 (en) optical encoder
JP2005114406A (en) Optical encoder
JP4051830B2 (en) Radiation detector
JP2007155545A (en) Photoelectric rotary encoder
JP2006132972A (en) Defect detecting method and defect detecting device of optical part
JP2004239855A (en) Reflex photoelectric encoder
JP3696228B2 (en) Distance measuring method and distance sensor