JP2011041559A - Multipurpose thawing machine in water and in air by low-temperature liquefied gas - Google Patents

Multipurpose thawing machine in water and in air by low-temperature liquefied gas Download PDF

Info

Publication number
JP2011041559A
JP2011041559A JP2009213713A JP2009213713A JP2011041559A JP 2011041559 A JP2011041559 A JP 2011041559A JP 2009213713 A JP2009213713 A JP 2009213713A JP 2009213713 A JP2009213713 A JP 2009213713A JP 2011041559 A JP2011041559 A JP 2011041559A
Authority
JP
Japan
Prior art keywords
oxygen
gas
free
water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009213713A
Other languages
Japanese (ja)
Inventor
Shintaro Takenaka
伸太郎 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinyoh Industries Co Ltd
Original Assignee
Shinyoh Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinyoh Industries Co Ltd filed Critical Shinyoh Industries Co Ltd
Priority to JP2009213713A priority Critical patent/JP2011041559A/en
Publication of JP2011041559A publication Critical patent/JP2011041559A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide thawing machines and the related functional commodity with faithfully reproducible functions of good freshness at bearable prices in the range of machines for food supermarkets, restaurants and small machines for ordinary families. <P>SOLUTION: By the slight consumption of low-temperature oxygen-free liquefied gas 1, which, for example, is -196°C liquid nitrogen gas in the thawing machine in the water, and by the underwater diffusion of the slight amount of the gas, the explosion ultrasonic wave and the cavitation energy emanation of the underwater bubble 11 of the oxygen-free gas, from which a 200°C temperature difference is brought, are utilized. In the thawing machine in the air, the exchange of oxygen-containing air in the treatment tank 5 for liquid nitrogen gas, with the cyclic use of the oxygen-free gas and the wind pressure of the humidification gas in the tank, both in the water and in the air treatments, makes it possible to perform rapid thawing with no-oxygen, no-drying, no-dripping, keeping the fresh color of flesh, and retaining freshness. An expensive electric ultrasonic wave oscillator, a catalyst compression diffusion chilling unit and the like are not needed, and the treatment tank 5, the underwater treatment pump 13 and, in the case of the treatment in the air, a fan, moreover, the liquefied gas pipe unit and the oxygen-free gas 3 are only needed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

主として冷凍食材の解凍処理分野で、単体の鮮魚や肉塊等の水中解凍、微細シラウオや微細チリメンジャコブロック冷凍等の冷凍食材、或は和菓子のような真空包装以外では裸で水中解凍不能な食材の気中解凍、付随的にチルド加工及び冷凍加工の総合分野である。  Mainly in the field of thawing processing of frozen ingredients, frozen ingredients such as single fresh fish and meat chunks, frozen ingredients such as fine shirauo and fine chirijaja block frozen, or ingredients that cannot be defrosted underwater except in vacuum packaging such as Japanese confectionery Is a comprehensive field of thawing in the air, incidental chilling and freezing.

応用として、医療生態保存物、例えば臓器移植冷凍保管での無酸素低温急速解凍、或は輸血血液の冷凍保存で、無酸素低温急速解凍、及び医学研究等々の解凍にも使用される。  As an application, it is also used for medical ecological preservation, for example, oxygen-free low-temperature rapid thawing in organ transplant frozen storage, or cryopreservation of transfused blood, oxygen-free low-temperature rapid thawing, and medical research.

応用として、電気抵抗検証や湿度と温度対応研究にも使用される。  As an application, it is also used for electrical resistance verification and humidity and temperature studies.

応用として、素材開発の温度湿度による種々変化検証にも使用される。  As an application, it is also used for verification of various changes by temperature and humidity during material development.

冷凍食材の解凍では気中解凍と水中解凍、水中気中のいずれかの電気式超音波発振解凍があり、或は水道水放水解凍、中には自然温度気中放置解凍迄ある。  In the thawing of frozen foods, there are thawing in the air, thawing in water and thawing in electric water, or defrosting in tap water, and in some cases, thawing by standing in the air at natural temperature.

水中解凍の場合は、貯水タンクに被解凍物を投げこみ解凍で、水温低下で解凍不能、やむを得ずボイラ−蒸気導入で加温解凍もでも鮮度劣化はもとより、ドリップ汚濁排水の浄化費用も加算される。  In the case of thawing in water, throwing the material to be thawed into the water storage tank and thawing it is impossible to thaw due to a drop in water temperature. .

水中或は気中の両者共に、従来既存の電気発振装置による発振素子では、一定振幅周波数帯固有の低周波又は高周波単独巾振幅発振に関する解凍技術が存在するが、振動素子からの直進性の電気的特徴に阻まれたり、被処理物の直射部以外の陰影部位及び裏面部位の処理力の劣りが致命傷で、また低炭素化社会に反して大きな電力を消費し、設備機器も非常に高価で、健康管理上からも種々の問題をはらんでいる。  In both the water and the air, there are thawing techniques for the low-frequency or high-frequency single-width amplitude oscillation inherent in the constant amplitude frequency band in the oscillation elements by the existing electric oscillation device. The inferior processing power of the shaded part and the back part other than the direct part of the object to be processed is fatal wound, consumes a lot of power against the low-carbon society, and the equipment is very expensive. There are various problems in health management.

冷凍食材の水中或は気中解凍では、人工的各種単一波長の電気高周波発振器による被解凍物の分子振動は、多少の差はあれ、分子摩擦熱解凍が主であり、膨大な電気エネルギ−消費と共に、振動素子は低周波数発信素子、高周波数発信素子共に、周波数帯で耐用期間は替わるが機能低下で年次交換を必要とし、時には、周波数帯によっては近接精密電気機器へのノイズ的悪影響も発生する。  When thawing frozen foods in water or in the air, the molecular vibrations of the material to be defrosted by various artificial single-wave electric high-frequency oscillators are mainly due to molecular frictional heat thawing, although there are some differences. Along with consumption, both low-frequency and high-frequency oscillators have different lifetimes in the frequency band, but they require annual replacement due to reduced functionality, and sometimes the noise adversely affects nearby precision electrical equipment depending on the frequency band. Also occurs.

冷凍食材の気中解凍では、前日からの長時間を費やして、その上に低温雰囲気にすれば低温乾燥と尚の長時間解凍を要し、常温では高温劣化促進が早く、その上に、客対応の翌日必要量想定量の事前解凍では、当日での過不足が平均的に30%前後発生し、余れば食材損失、不足では鮮度味無関係の電子レンジ解凍等、有形無形のロス発生が日常茶飯事の常識論となっている。  In the air thawing of frozen ingredients, it takes a long time from the previous day, and if it is put in a low temperature atmosphere, it requires low temperature drying and further thawing for a long time. In the previous thawing of the estimated amount required for the next day, an excess or deficiency of about 30% on the day occurs on average, and if the remainder is lost, tangible and intangible losses such as a microwave oven thawing that is unrelated to freshness will occur. It has become a common sense theory of everyday life.

特に、指摘せざるを得ない事は、近年、過冷却瞬間冷凍と称する−7℃冷凍技術で鮮度維持を誇示している商品でも、全てが小物薄物が過度冷却の世界であり、100mm以上の厚みの海老ブロック、或は肉塊等の−30℃乃至鮪の−60℃の冷凍加工には通用しないが、それも良しとして、いくら高度冷凍の冷凍加工物でも、前述の従来の解凍方式では全く意味が無く、解凍技術の大きな問題点は、少しでも鮮度維持の為に解凍雰囲気温度を低下させているが、温度差による長時間解凍しか無いと言う先入観的常識論から、やむを得ず鮮度劣化解凍により、一般社会からも冷凍、解凍品が低イメ−ジの代名詞にもなっている。  In particular, it must be pointed out that, in recent years, even in products that have been demonstrating the maintenance of freshness with the -7 ° C freezing technology called supercooling instant freezing, all small objects are overcooled, Although it does not work for -30 ° C to -60 ° C refrigeration processing of thick shrimp blocks or meat chunks etc., it is good, no matter how highly frozen products are frozen, There is no meaning at all, and the major problem of the thawing technology is that the thawing atmosphere temperature is lowered to maintain the freshness even a little, but from the preconceived common sense theory that there is only a long time thawing due to the temperature difference, unavoidable freshness defrosting Therefore, frozen and thawed products have become synonymous with low images from the general public.

特に、市中に氾濫している冷凍冷蔵庫は、急速解凍室、保湿冷蔵室が装填された冷凍解凍冷蔵庫は全世界でもなく、家庭用や、特に欧米のホ−ムパ−ティ−用の冷凍食品解凍は単に冷凍室から冷蔵室に移管して長時間乾燥の解凍劣化が常識である。  In particular, frozen refrigerators that are flooded in the city are frozen thawing rooms with quick thawing rooms and moisturizing refrigerated rooms not in the whole world, but frozen foods for home use, especially for Western home parties. It is common knowledge that thawing is simply transferred from the freezer to the refrigerator and dried for a long time.

本来、鮮度維持目的の冷凍食材は、必要な時に、必要な量を、即刻、鮮度維持して、急速解凍し、レストランではオ−ダ−が来て解凍調理、主婦は夕食等の献立調理寸前に解凍が出来なければ、鮮度維持冷凍食材の意味が無く、残念ながら全世界で該当商品は皆無である。  Originally, frozen ingredients for the purpose of maintaining freshness, when necessary, immediately maintain the freshness, quickly thaw, quickly thaw, order comes at the restaurant and thaw cooks, housewives are on the verge of menu cooking such as dinner If it cannot be thawed, there is no meaning of freshness-maintaining frozen food, and unfortunately there are no corresponding products worldwide.

従来の大量の業務用冷凍食材の解凍の多くは、小型大型のタンクに清水を充填して、被処理物を浸し、被解凍物の大量投入で水温低下の場合は加温装置で加温水とするか、又は水道放流水によって温度低下を回避、それでも長時間解凍で鮮度劣化と水道料金と排水処理に膨大な金額の浪費をしており、気中冷蔵温度解凍でも人工的電気発振装置で高価で大電力消費の一定周波数帯の超音波で、多かれす少なかれ、分子振動摩擦発熱解凍に終始している。  Many of the conventional thawing of commercial frozen foods are performed by filling small and large tanks with fresh water, immersing the object to be processed, and adding a large amount of material to be thawed to reduce the water temperature. Or avoiding a temperature drop due to the tap water discharged, but still a huge amount of waste is spent on freshness deterioration and water charges and wastewater treatment by thawing for a long time, and even in the refrigeration temperature in the air is expensive with an artificial electric oscillation device With ultrasonic waves in a certain frequency band with high power consumption, more or less, molecular vibration frictional heat generation and thawing are all over.

又、医学研究或は冷凍保存の動物臓器類や、電気抵抗試験等の機器類は、超低温雰囲気は簡単に装設出来ても、解凍技術に至っては、動物臓器ですら常温解凍の現状で有り、広大な米国での臓器保冷運搬も、現地では常温解凍しているのが現状である。  In addition, animal organs for medical research or cryopreservation and electrical resistance tests can be easily installed in an ultra-low temperature atmosphere. Even in the vast United States, organs are transported by cold storage at room temperature.

特願2009− 20783 特願2009−118018 特願2009−119237 特願2009−141652 特願2009−181044Japanese Patent Application No. 2009-20783 Japanese Patent Application No. 2009-118018 Japanese Patent Application No. 2009-119237 Japanese Patent Application No. 2009-141652 Japanese Patent Application No. 2009-181044

真っ先に、現代の全ての加工処理機械は、地球の人類生存条件である低炭素社会にマッチした、省エネルギ−機器でなければならない事が、今後の大きな課題である。  First and foremost, all the modern processing machines must be energy-saving equipment that matches the low-carbon society that is the condition of humankind on earth.

多種多様な種類の冷凍食材等の解凍処理、冷凍加工完了時の鮮度を忠実に再現する為には可能な限り低温で急速に、必要に応じて付着菌類の滅菌処理解凍等、自然界の原理で危険な人工的超音波発振器を使わずに、絶対安全なしかも低コストで、これらの全てを機能的に保持しなければならない。  In order to faithfully reproduce the freshness at the completion of freezing processing, such as thawing processing of a wide variety of frozen foods, etc., at the lowest possible temperature, sterilizing and thawing the attached fungi as necessary. All of these must be maintained functionally without the use of dangerous artificial ultrasonic oscillators, without absolute safety and at low cost.

現状の解凍では、水中解凍処理、或は気中解凍処理共に、前日からの長時間解凍の為に必要予想量解凍処理で30%前後の想定誤差があり、解凍量過不足発生等、又、長時間の為の時間外の勤務時間的にも、有形無形のロスが日常茶飯事で大きな課題である。  In the current thawing, there is an estimated error of around 30% in the expected amount of thawing process for long time thawing from the previous day for both underwater thawing processing or in-air thawing processing, the thawing amount is excessive or insufficient, etc. Tangible and intangible loss is a major issue in daily life, even when working overtime due to long hours.

気中解凍法では、冷凍加工物を、気中温度その儘雰囲気に放置して、長時間解凍している物まであり、鮮度劣化もさることながら、菌類急速増殖防止で、食の安全性からも雑菌繁殖が大きな課題である。  In the air thawing method, frozen processed products are left in the atmosphere at that temperature, and there are even products that have been thawed for a long period of time. Also, the breeding of miscellaneous bacteria is a major issue.

気中解凍法では、周知の事実である冷凍庫から冷蔵庫の5℃前後に移管して、長時間低温乾燥の鮮度劣化と大きな目減りをする食材、例えばチリメンジャコ冷凍ブロックのような場合、微細姿外形に雑菌付着のまま6kg前後のブロック形状で冷凍され、解凍長時間の気中解凍でブロック芯部の解凍迄にはブロック外周は雑菌増殖して臭気発散、消費者保護の面からも問題である。  In the air thawing method, it is transferred from a freezer, which is a well-known fact, to around 5 ° C in a refrigerator, and when it is a food that deteriorates the freshness of the low-temperature drying for a long time and greatly reduces the weight, for example, a chimney coco freezing block, It is frozen in a block shape of around 6kg with various bacteria adhering to it, and by thawing in the air for a long time, the outer periphery of the block grows in the presence of various bacteria until the core of the block is thawed. .

気中解凍法では、常温又は冷蔵温度に移管し、電気的超音波発振装置を併用しているものでは、解凍処理に必要な大電力消費と共に、周波数によっては人体への影響と関係機関への届け出も必要で、健康的安全性も考慮すべきである。  In the air thawing method, if the device is transferred to room temperature or refrigerated temperature and is also used with an electrical ultrasonic oscillator, it consumes a large amount of power necessary for the thawing process and, depending on the frequency, affects the human body and affects Notification is also necessary and health safety should be considered.

又、従来の電気的超音波発振装置による振動素子からの強制振動波長は直進性を持ち、高周波になればなる程に被処理物の分子振動摩擦熱が大きくなり、電気的特性の波動直進性による受波面の組織劣化に繋がり、気中超音波発振の場合は構造的安全性と、水中発振の場合は作業者の水中接触を禁止すべきであるが、健康面に影響があり得るにも係らず法的規制はないが、作業者健康保護にも慎重に対応すべきである。  In addition, the forced vibration wavelength from the vibration element by the conventional electric ultrasonic oscillator has a straight traveling property, and the higher the frequency, the greater the molecular vibration frictional heat of the object to be processed. This should lead to tissue degradation of the wave receiving surface, and structural safety should be prohibited in the case of in-air ultrasonic oscillation, while underwater oscillation should be prohibited from the operator's underwater contact, although it may affect health. There are no legal restrictions, but workers' health protection should be handled carefully.

又、日本料理のダシに欠かせられないイリコの元の鰯の稚魚も、日本の瀬戸内海で漁獲されるが大漁時に冷凍保管して必要時に解凍処理等、一端冷凍加工すれば水中での解凍が不能な食材は数知れず、現状では致し方なく低温乾燥解凍しか無い。  In addition, Irico's original salmon fry, which is indispensable for Japanese cuisine, is caught in the Seto Inland Sea of Japan, but it can be stored frozen during large fishing and thawed when necessary. There are countless ingredients that cannot be processed, and there is currently only low-temperature dry thawing.

日本では法的規制により、将来は別として現状では余り必要では無いが、欧米を含む多くの国では、生態移植医学で、或は生体移植目的の冷凍保存の解凍処理で、卵子精子の微細細胞ですら低温放散した核水分の自己再吸入度合いが使用可否の別れ道で、人体内蔵移植秒読み時間帯の中で、現状の体温同様の35℃前後の気中解凍の組織酸化劣化の医療生態解凍に、無酸素低温気中で、乾燥することなく、急速に解凍処理方策が望まれている。  In Japan, due to legal restrictions, the current situation is not so necessary apart from the future, but in many countries, including Europe and the United States, the fine cells of egg spermatozoa are obtained by ecological transplantation medicine or by thawing treatment for cryopreservation for the purpose of living transplantation. Even so, the degree of self-re-inhalation of nuclear water that has been released at low temperatures is another way to determine whether or not it can be used. There is a demand for a rapid thawing strategy without drying in an oxygen-free, low-temperature atmosphere.

又、電気抵抗検証や湿度と温度対応研究にも、中央の大型耐候試験装置の使用も悪くはないが、それぞれ分散された各研究棟毎の独立研究室において種々目的に便利に小型化された機器が望まれている。  In addition, the use of the large central weathering test equipment is not bad for electrical resistance verification and humidity and temperature studies, but it has been conveniently reduced in size for various purposes in independent laboratories in each distributed research building. Equipment is desired.

素材開発の温度と湿度及び酸素との関連等による種々変化検証にも同様である。  The same applies to verification of various changes due to the relationship between temperature, humidity, and oxygen during material development.

重要な事は、冷凍物の宿命である解凍方法が、解凍劣化による諸リスクから逃避している冷凍製造業界の技術的或は精神的課題を消費者は指摘すべきであるが、残念ながら冷凍加工業界も消費者も、全てが温度差冷凍、温度差解凍での現状の先入観に浸っており、ノ−エネルギ−で安全な鮮度保持解凍などは意中に無い。  Importantly, consumers should point out the technical or spiritual challenges of the refrigeration industry where the thawing method, which is the fate of frozen foods, escapes the risks of thawing degradation. The processing industry and consumers are all immersed in the current preconceptions of temperature difference refrigeration and temperature difference thawing, and no energy and safe freshness preservation and thawing are not surprising.

課題を解決する為の手段Means to solve the problem

食品分野、医療分野、或は各種研究分野等、解凍処理に必要な鮮度再現基本条件は、水中解凍或は気中解凍共に、無酸素、低温、無乾燥、急速、簡易操作、安全性、ランニング費用低廉、設備費用低廉、同時に低炭素社会対応、これら全てが必須条件である。  The basic conditions for reproduction of freshness required for thawing treatment in the food, medical, or various research fields are oxygen free, low temperature, dry, rapid, simple operation, safety, running, both in water and in air. Low costs, low equipment costs, and a low-carbon society at the same time are all essential conditions.

これらの各条件の全ての項目を可能ならしめるには、常識的見解を破棄して、冷凍にしか使用されていない−196℃超低温の液化窒素ガス等の使用がベストである事に留意すべきである。  In order to make all the items of each of these conditions possible, it should be noted that it is best to discard the common-sense view and use liquefied nitrogen gas, etc. that is used only for refrigeration, such as liquefied nitrogen gas at an extremely low temperature of -196 ° C. It is.

低温液化窒素ガス或は低温液化炭酸ガス等の低温無酸素液化ガスによる各分野での冷凍加工技術は昔からの周知の事実である。  The refrigeration processing technology in various fields using low-temperature oxygen-free liquefied gas such as low-temperature liquefied nitrogen gas or low-temperature liquefied carbon dioxide gas is a well-known fact from the past.

既冷凍加工物が避けて通れない過程で、解凍処理技術にも、この無酸素液化ガスによって実施可能ならば、冷凍食材業界は一変し、世界で初めて、無酸素、無加熱、無乾燥、低温維持、分単位の急速、無ドリップ、チアイ鮮血色で、その上に、チルド加工、低温滅菌、冷凍加工をも脇役に持つ事が現実となる。  In the process that already frozen processed products cannot be avoided, if the thawing treatment technology can be implemented with this oxygen-free liquefied gas, the frozen food industry will be transformed, and for the first time in the world, oxygen-free, heatless, dry, low temperature Maintenance, rapid minute-by-minute, no drip, fresh blood, and on top of that, chilled processing, low-temperature sterilization, and freezing are also supported.

本発明と、従来市販の各種解凍機と根本的な違いは、高価な固定周波数の電気超音波発振装置一式及び冷媒による冷却装置、及び流水ロス、とりわけ鮮度劣化に繋がる長時間を費やしている解凍のネックポイント解消になる。  The fundamental difference between the present invention and various commercially available thawing machines is that a set of expensive fixed-frequency electric ultrasonic oscillators and a cooling device using a refrigerant, and a thawing that spends a long time leading to loss of running water, especially deterioration of freshness. The neck point of will be eliminated.

又、非常にシンプルな構成と同時に、無酸素ガス液体(2)及び無酸素ガス(3)の消費量及び付帯機器の電力消費量の費用は超微小である事から、大型解凍機種は勿論の事、小型ポ−タ−ブル解凍機種に至る迄同一構造であり、−196℃液化窒素ガス等による無加熱、低温、急速、鮮度維持解凍処理と言う本発明の利点は更に多く、従来常識的な冷凍庫から冷蔵庫に移管解凍と言う長時間事前解凍による過不足ロス問題も自然解消し、常温又は低温の、急速水中解凍機と急速気中解凍機の二機種が、又付随的にチルド加工や冷凍加工をも可能なならしめる。  In addition to the extremely simple configuration, the consumption of the oxygen-free gas liquid (2) and oxygen-free gas (3) and the power consumption of the auxiliary equipment are extremely small. That is, it has the same structure up to a small portable thawing model, and there are many advantages of the present invention such as non-heating, low temperature, rapid, freshness-maintaining thawing treatment with 196 ° C. liquefied nitrogen gas, etc. The problem of excess and deficiency due to long-term pre-thawing, such as transferring and thawing from a typical freezer to a refrigerator, is also resolved naturally, and two types of chilled processing at room temperature or low temperature, a rapid water thawing machine and a rapid air thawing machine, are also incidentally chilled. And make it possible to freeze processing.

例えば、−196℃の液化窒素ガス使用の冷凍加工は古来から周知の事実であり、超低温下での冷凍は単なる温度差による冷凍で、小学生でも常識の域である。  For example, refrigeration using liquefied nitrogen gas at −196 ° C. is a well-known fact since ancient times, and refrigeration at ultra-low temperatures is refrigeration based on a simple temperature difference, and even elementary school students are in the common sense.

しかし、−196℃の液化窒素ガス使用の解凍処理と言えば、国内外を問わず全世界の液化窒素冷凍加工業界の製造技術者でも、温度差による冷凍と温度差による解凍と言う常識的先入観から、本発明と従来の認識思想は天と地程のかけ離れた技術であるが、冷凍も解凍も鮮度維持の同一目的である限り、−196℃液化窒素ガスは冷凍と解凍は同類項的域の媒体素材であることに留意しなければならない。  However, when it comes to thawing treatment using liquefied nitrogen gas at -196 ° C, even the manufacturing engineers in the liquefied nitrogen refrigeration industry around the world, both domestically and overseas, have a common sense prejudice of refrigeration due to temperature differences and thawing due to temperature differences Therefore, the present invention and the conventional recognition concept are technologies that are far from the sky, but as long as refrigeration and thawing have the same purpose of maintaining freshness, -196 ° C liquefied nitrogen gas is a similar category of refrigeration and thawing. It must be noted that it is a medium material.

否、それ以上に、−1956℃液化窒素ガスは、冷凍加工媒体以上に、それよりも解凍処理に適している媒体素材である。  No, more than that, -1956 ° C. liquefied nitrogen gas is a medium material more suitable for thawing treatment than refrigeration processing medium.

何故ならば、超低温無酸素環境での冷凍加工が鮮度維持に適していると思われるが、冷凍加工可能な低温域では相対湿度はゼロであり、仮超低温域に気中加湿しても気中水分は独立微細水滴で瞬間的に氷結し、冷凍加工物の水分蒸散防止には全く意味が無いことは周知の事実で、一例が、−196℃液化窒素での体外受精卵子保存の適応卵子検体時には、シャ−レ−内で卵子自体が特種水分吸収の可否が分かれ道であり、水分吸収された卵子のみが受精行程に入れるもので、超低温保存全ての卵子が受精作業に適しているものではないことからも、超低温の液体窒素による急速冷凍でも欠点がある。  This is because refrigeration in an ultra-low temperature and oxygen-free environment seems to be suitable for maintaining freshness, but the relative humidity is zero in the low temperature range where refrigeration is possible, and even if humidified in the temporary ultra low temperature range, It is a well-known fact that the water freezes instantaneously with independent fine water droplets, and there is no meaning in preventing moisture evaporation of the frozen processed product. One example is an adapted egg specimen for storage of in vitro fertilized eggs at -196 ° C liquefied nitrogen In some cases, the egg itself in the chalet can be used to absorb special water, and only the water-absorbed egg enters the fertilization process, and not all eggs stored at ultra-low temperatures are suitable for fertilization. For this reason, even quick freezing with ultra-low temperature liquid nitrogen has drawbacks.

しかし、解凍処理の条件は、低温とはいえ冷凍温度と異なり、水中解凍でも気中解凍でも、解凍雰囲気温度は5℃前後から10℃未満が多く、水中解凍では低温乾燥は有り得無いが、気中解凍の場合でも、この温度範囲では、加湿機による湿度上昇が容易に可能で、解凍処理工程では、低温冷凍時に蒸散させられた体内水分の補完すら可能である。  However, the thawing conditions are different from the freezing temperature, although the temperature is low, the thawing atmosphere temperature is often around 5 ° C. to less than 10 ° C. in both air thawing and air thawing. Even in the case of medium thawing, in this temperature range, the humidity can be easily increased by a humidifier, and in the thawing process, it is possible to even supplement the moisture in the body that has been evaporated during low-temperature freezing.

水中解凍処理も気中解凍処理も、鮮度維持では酸化劣化防止が第一目的であり、従来既存機種の水中解凍処理に20%有酸素空気の水中散気でもしようものなら、瞬く間に水面は酸化ドリップ泡で覆いつくされるが、低温液化ガスの無酸素ガスの水中散気では全くドリップ泡が発生せず、処理水との温度差で複合周波数の水中爆裂超音波発振で急速解凍我出来、又気中解凍では、処理槽内の20%空気を無酸素ガス注入で交換して無酸素ガス空間にすれば、加湿無酸素ガスで、加圧風流ファンによって処理槽内の無酸素ガスの循環で吸引吹きつけによる風速衝突衝撃波発生すり自然界低域超音波での急速解凍が可能となった。  In both the underwater thawing process and the air thawing process, the primary purpose is to prevent oxidative deterioration in order to maintain freshness. Although it is covered with oxidized drip foam, no drip foam is generated at all in the aeration of low-temperature liquefied oxygen-free gas, and it can be quickly thawed by underwater explosion ultrasonic wave oscillation of complex frequency due to temperature difference with treated water. Also, in the air thawing, if 20% air in the treatment tank is exchanged by oxygen-free gas injection to make an oxygen-free gas space, it is humidified oxygen-free gas and the oxygen-free gas in the treatment tank is compressed by a pressurized airflow fan. Wind-velocity impact shock waves generated by suction blowing in circulation can be quickly thawed with natural low-frequency ultrasonic waves.

水中解凍処理も気中解凍処理も、当然ながら鮮度維持目的で低温雰囲気であり、処理槽内に液化窒素ガスの一定温度低下迄の継続充満でも低温化は充分に可能で、従来の高価で電力を消費し、故障発生も高い処理水冷却装置や空気冷却装置の必要性は全くない。  Naturally, thawing treatment in water and thawing treatment in air is a low-temperature atmosphere for the purpose of maintaining freshness, and it is possible to lower the temperature sufficiently even if the liquefied nitrogen gas is continuously filled up to a certain temperature drop in the treatment tank. There is no need for a treated water cooling device or an air cooling device that consumes a large amount of trouble and has a high occurrence of failure.

気中解凍処理は、無乾燥環境での解凍処理が重要であり、被解凍物の外部水分蒸散は必然的に浸透圧によって内部水分も細胞外に漏洩し、鮮度劣化や重量低下によるロスも発生し、この水分蒸散劣化回避には、加湿器で槽内無酸素ガス気体を吸引して加湿無酸素ガスで処理槽内に循環的に戻し、絶えず処理槽内の規定湿度を保ち鮮度維持を計る。  In the air thawing process, it is important to thaw in a dry environment, and the external moisture transpiration of the material to be thawed inevitably leaks the internal moisture to the outside due to osmotic pressure, resulting in loss of freshness and weight loss. However, in order to avoid this moisture transpiration deterioration, the oxygen-free gas in the tank is sucked with a humidifier and returned to the treatment tank cyclically with the humidified oxygen-free gas, and the freshness is constantly maintained while maintaining the specified humidity in the process tank. .

ポ−タ−ブル形状の小型解凍機種では、加湿器にかわって砕氷を裸で装填すれば、加圧風流ファンによって砕氷が解氷して水分蒸散で蒸散熱冷却と同時に処理槽内の加湿にも繋がる。  In portable thawing models, if crushed ice is loaded naked instead of a humidifier, the crushed ice is thawed by a pressurized airflow fan and moisture is evaporated to cool the transpiration heat and simultaneously humidify the treatment tank. Is also connected.

これらの理想論的環境の全てが備わって初めて可能な事項が、加圧風流ファンによる低温の無酸素加湿気体を被解凍物に放散する事で、これによって無酸素の目視不能な気中水滴と無酸素気体の放散衝突で低周波的超音波も発生し、水中波動にも匹敵する解凍速度の上昇にも繋がった。  The only thing that can be done with all of these ideal environments is to dissipate the low-temperature, oxygen-free, humidified gas from the pressurized airflow fan into the thawing material. Low-frequency ultrasonic waves were also generated by the diffusion collision of oxygen-free gas, leading to an increase in the thawing speed comparable to underwater waves.

この気中急速解凍は、処理槽内の無酸素加湿低温ガスを加圧風流ファンによって吸引して、被処理物に加圧吹きつけする事で、処理槽内加湿水分子が被処理物の表裏全体に直接又は反射風が衝突する時の衝撃波動で冷凍物にあらゆる複合波動を与え、従来の槽内静止放置長時間乾燥劣化解凍或は、それに高価で人工電気的分子摩擦発熱特性と、直進性超音波照射の受波面の直射部分瑕疵と、反対面の解凍遅延ギャップ等の解消に、百万円単位での設備投資削減にもなる事が実証された。  This rapid thawing in the air is performed by sucking the oxygen-free humidified low-temperature gas in the treatment tank with a pressurized airflow fan and pressurizing and blowing it to the treatment object, so that the humidified water molecules in the treatment tank are turned on and off the treatment object. All combined waves are given to the frozen material by shock waves when the reflected wind collides with the whole, and it is left standing in the tank for a long time. It was proved that the equipment investment in millions of yen was reduced by eliminating the direct irradiation part of the receiving surface of the ultrasonic irradiation and the defrosting delay gap on the opposite side.

滅菌解凍。或は滅菌洗浄の目的は、本来冷凍時点で滅菌冷凍されるべき物が、輸入相手国での状況把握不透明の為、或は国内でも冷凍時点で生食冷凍食品の滅菌が本来の形であるが不透明であり、解凍には欠かせられない一工程である。  Sterilized and thawed. Or, the purpose of sterilization washing is that the sterilization of raw frozen foods is the original form because things that should be sterilized and frozen at the time of freezing are uncertain in the importing country, or even in Japan It is opaque and is an indispensable process for thawing.

これには、食品安全法に基づく種々の安全滅菌剤を、気中解凍では加湿器蒸散水に自動又は手動で点滴することで、又水中解凍の場合は処理槽内の清水又は海水の解凍水に添加すれば、被解凍物の外部全域にくまなく滅菌機能を発揮し、安全を確保する。  For this purpose, various safe sterilizing agents based on the Food Safety Law are automatically or manually infused into the humidifier transpiration water in the case of thawing in the air, and in the case of thawing in water, fresh water in the treatment tank or seawater thawing water. If it is added to, the sterilization function will be exerted all over the outside of the material to be thawed to ensure safety.

操作の安全性については、当然ながらソフトやハ−ドの知識がない厨房担当者が、如何なる状況にあっても危険性を持たない安全性を追求し、特に心臓ペ−スメ−カ−保持社経の配慮から、人体悪影響の電波、磁力、赤外線等の使用は、仮に安全装置を付随しても使用してはならない。  As for the safety of operation, of course, the person in charge of the kitchen who has no knowledge of software or hardware pursues safety without any danger in any situation, especially the cardiac pacemaker holding company For the sake of consideration, the use of radio waves, magnetic forces, infrared rays, etc., which are harmful to the human body, should not be used even if safety devices are attached.

ランニング費用の低減化は低炭素化社会で機器開発企業の義務であり、液化窒素ガスの消費量においては、解凍処理に必要量は被解凍物の種類によって多少の差はあるが、被解凍物1kg当たりの液化窒素消費量は0.1kg乃至0.2kgで、冷凍加工に消費する量の3%乃至5%で充分である。  Reduction of running costs is a duty of equipment development companies in a low-carbon society, and the amount of liquefied nitrogen gas consumption varies slightly depending on the type of material to be thawed. The liquefied nitrogen consumption per kg is 0.1 kg to 0.2 kg, and 3% to 5% of the amount consumed for the freezing process is sufficient.

設備費用は、高度な解凍機能を有しながら、管材以外の電気機器は、水中解凍処理では処理水循環水流ポンプ、気中解凍では加圧風流ファン、加湿機以外は必要無く、従来解凍機器の高価な冷却装置、及び超音波発振装置と超音波振動素子等の百万円単位の各機器は不要であり、設備費用及び消費電力共に僅かである。  The equipment costs are high thawing function, but electrical equipment other than pipes is not necessary except for treated water circulating water pump for underwater thawing treatment, pressurized airflow fan and humidifier for air thawing treatment. Such a cooling device, and an apparatus of millions of yen such as an ultrasonic oscillation device and an ultrasonic vibration element are unnecessary, and both the equipment cost and the power consumption are small.

「請求項2」は、周知の市販冷凍冷蔵庫内に、本発明の小型機種をレ−ルロ−ラ−方式等で挿入設置し、冷蔵温度による冷却空気に加湿機によって湿度を加え、小型可搬無酸素ガスボンベ(16)による、低温加湿無酸素の水中又は気中の解凍処理機を装着したもので、従来の冷蔵庫移管での長時間解低温乾燥劣化解凍とは雲泥の差の鮮度維持解凍が得られるもので、解凍室付きの冷凍解凍冷蔵庫である。  "Claim 2" is a small portable product in which a small model of the present invention is inserted and installed in a well-known commercial refrigerator-freezer by a rail roller method, etc., and humidity is added to the cooling air by the refrigeration temperature by a humidifier. It is equipped with a low-temperature humidified oxygen-free water or air thawing machine with an oxygen-free gas cylinder (16), and it can maintain the freshness maintaining thawing difference of cloud mud from long-term low-temperature drying deterioration thawing in conventional refrigerator transfer. It is a freezing and thawing refrigerator with a thawing chamber.

発明の効果The invention's effect

超低温液化ガス、例えば−196℃の液化窒素ガスは冷凍加工以外には超低温であるが為に、解凍処理に使用すること自体が想定外であったようだが、真実は、冷凍以上に、解凍には不可欠な機能素材であり、本発明の効果は下記の通りである。  Ultra-low temperature liquefied gas, for example -196 ° C liquefied nitrogen gas, is extremely low temperature except for refrigeration, so it seems that it was unexpected to use it for thawing process. Is an indispensable functional material, and the effects of the present invention are as follows.

1、超低温の液化ガスの新用途開発であり、ガス業界と食品業界の繋がりは、一部ガス企 業の窒素冷凍機分野だけであったが、末端のガス販売会社迄、食品流通業界に進路開 拓が可能となった。
2、世界で初めて、ポ−タ−ブル超小型機から大型機種まで、水中処理から気中処理迄、 解凍機能からチルド加工や付随的には洗浄から滅菌処理、又冷凍までも一貫した、本 来の企業の社会的責任(CSR)完遂の食品機械で、種々の食品分野への進展が可能 となった。
3、従来機種に装着の高価な電気機器の必要が無く、格安設備費と格安のランニングコス トで、しかも最高の機能が得られる。
4、設備は処理槽と、処理水循環水流ポンプ、加圧風流ファン、加湿器と管材ユニット、 後は低温液化ガスシリンダ−或は液化ガス貯留タンク等はガス販売社の貸与設置。
5、CSRとトレサビリティ−で、従来解凍法では開示不能な生産管理解凍詳細の開示ア ピ−ルも可能。
6、従来の真空装置や電磁波等の電力浪費及び人体影響懸念を排除し、低温無酸素の各種 急速解凍処理が可能。
7、従来の水中解凍の有酸素空気水中散気の酸化ドリップ泡による鮮度劣化から、低温水 中無酸素ガス放散でドリップ泡の解消と、気中解凍の長時間酸化乾燥劣化を、低温加 湿無酸素加圧風流で急速解凍処理が可能。
8、被処理物付着雑菌類の滅菌が水中解凍、気中解凍両者共可能である。
9、冷凍冷蔵庫の冷蔵室に本発明を格納すれば、冷蔵温度有酸素加湿気体での新鮮急速解 凍室付きの、冷凍解凍冷蔵庫にもなる。
10、ポ−タ−ブル小型機種は、海上及び陸上でレジャ−にも、交流及び直流電源で使用 可能で得ある。
1. Development of new uses for ultra-low temperature liquefied gas. The connection between the gas industry and the food industry was limited to the nitrogen refrigerator field of some gas companies. Development has become possible.
2. For the first time in the world, from portable micromachines to large models, from underwater treatment to aerial treatment, from thaw function to chilled processing, incidentally from cleaning to sterilization, and freezing A food machine that has fulfilled its corporate social responsibility (CSR) has made it possible to advance into various food fields.
3. There is no need for expensive electrical equipment installed in conventional models, and the best functions can be obtained with low equipment costs and low running costs.
4. Equipment is loaned from a gas sales company for treatment tank, treated water circulating water pump, pressurized air flow fan, humidifier and pipe material unit, and low temperature liquefied gas cylinder or liquefied gas storage tank.
5. With CSR and traceability, it is possible to make an appeal for the details of production management decompression that cannot be disclosed by conventional decompression methods.
6. Eliminates the waste of electric power such as conventional vacuum equipment and electromagnetic waves, and concerns about the effects of human body, and enables various low-temperature oxygen-free rapid thawing processes.
7. From the deterioration of freshness caused by oxidized drip bubbles in the aerobic air in aerobic air thawed underwater, the elimination of drip bubbles by the diffusion of oxygen-free gas in low-temperature water and the long-term oxidative drying deterioration after thawing in the air at low temperature humidification Rapid defrosting with oxygen-free pressurized air flow is possible.
8. Sterilization of bacteria attached to the object can be thawed both in water and in air.
9. If this invention is stored in the refrigerator compartment of a refrigerator-freezer, it can also be a refrigerator-freezer-thaw refrigerator with a fresh quick-freezing chamber with refrigerated temperature, aerobic and humidified gas.
10. The portable small model can be used with both AC and DC power supplies both at sea and on land.

発明を実施する為の最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

請求項1には、低温液化ガスによる水中解凍機及び気中解凍機が記述されているが、先ず、水中解凍機殻述べる。  Claim 1 describes an underwater defroster and an air defroster using a low-temperature liquefied gas. First, an underwater defroster shell will be described.

「図1」等に示す水中解凍機の場合は、解凍機本体(4)の処理槽(5)内に、清水又は塩水の、処理水(6)を処理槽(5)の水面上空間を持って充填する。  In the case of the underwater thawing machine shown in FIG. 1 etc., the treated water (6) of fresh water or salt water is placed in the treatment tank (5) of the thawing machine body (4) and the space above the surface of the treatment tank (5). Hold and fill.

処理水(6)を事前に急速低温化するには、低温無酸素液化ガス貯留槽(1)から、無酸素ガス液体(2)を処理槽(5)内に導入使用する事も良いが、被処理物(7)投入と同時に数度℃の処理水(6)温度低下でも不足の場合にのみ無酸素ガス液体(2)を導入して処理水(6)の低温化をはかる方がベタ−である。  In order to rapidly lower the temperature of the treated water (6) in advance, the oxygen-free gas liquid (2) may be introduced from the low-temperature oxygen-free liquefied gas storage tank (1) into the treatment tank (5). It is better to reduce the temperature of the treated water (6) by introducing the oxygen-free gas liquid (2) only when the temperature of the treated water (6) drops several degrees Celsius at the same time as the workpiece (7) is charged. -.

処理水(6)の充填量は、被処理物(7)を投入しても処理槽(5)内水面上の空間に無酸素ガス(3)を充満させて、後述の吸引吐出の循環使用に必要な量の空間容積を保有する。  The filling amount of the treated water (6) is such that the space above the water surface in the treatment tank (5) is filled with the oxygen-free gas (3) even when the object to be treated (7) is charged, and the suction and discharge circulation described later is used. Possess the required volume of space.

低温無酸素液化ガス貯留槽(1)からの、無酸素ガス液体(2)又は無酸素ガス(3)を、無酸素液化ガス流量調整弁(8)を経由して、処理槽(5)内に充填の処理水(6)中に設置したガス放散箱又は管(9)に直接に、又は微細気泡発生器(10)を装着経由で結続して、処理水(6)の水中に無酸素ガス水中気泡(11)を発生させる。
無酸素ガス水中気泡(11)は、処理水(6)の水中に装填の網籠(12)の中の被処理物(7)に向かって処理水循環水流ポンプ(13)の放散圧力で噴射するが、この理由は、低温無酸素液化ガス貯留槽(1)自体の放出圧力で常時稼動すれば、無酸素ガス(3)の必要以上のロス回避の為である。
The oxygen-free gas liquid (2) or oxygen-free gas (3) from the low-temperature oxygen-free liquefied gas storage tank (1) is passed through the oxygen-free liquefied gas flow rate adjustment valve (8) in the treatment tank (5). In the treated water (6), the gas diffusion box or pipe (9) installed directly in the treated water (6) or directly connected to the microbubble generator (10) is attached to the treated water (6). Oxygen gas underwater bubbles (11) are generated.
The anaerobic gas underwater bubbles (11) are injected into the treated water (6) under the pressure of the circulated water circulating pump (13) toward the workpiece (7) in the reed (12). However, the reason for this is to avoid an unnecessary loss of the oxygen-free gas (3) if it is always operated at the discharge pressure of the low-temperature oxygen-free liquefied gas storage tank (1) itself.

処理水循環水流ポンプ(13)の吐出管(14)に付設の槽内上部空間ガス吸引管(15)よって、処理水(6)の水面上空間残留の無酸素ガス(3)を吸引して気泡化させ、水面上に浮上した無酸素ガス(3)は再度槽内上部空間ガス吸引管(15)によって吸引され、これを繰り返す。  The oxygen-free gas (3) remaining in the space above the surface of the treated water (6) is sucked by the upper space gas suction pipe (15) in the tank attached to the discharge pipe (14) of the treated water circulation water flow pump (13). The oxygen-free gas (3) floating on the water surface is again sucked by the tank upper space gas suction pipe (15), and this is repeated.

但し、ポ−タ−ブル処理機を含む小型機種では、小型可搬無酸素ガスボンベ(16)によって、処理槽(5)内の処理水(6)の水面上空間に無酸素ガス(3)をスプレ−吹き込みで、有酸素空気を追い出し、無酸素ガス空間(17)とする事も出来る。  However, in a small model including a portable processing machine, an oxygen-free gas (3) is introduced into the space above the surface of the treated water (6) in the processing tank (5) by a small portable oxygen-free gas cylinder (16). It is also possible to expel aerobic air by spraying into the anaerobic gas space (17).

処理槽(5)内に無酸素ガス(3)を循環利用するに当たり、処理水循環水流ポンプ(13)の吐出圧力でも微細水中気泡は出来るが、必要に応じて、微細気泡発生器(10)を装着経由して供給する。  When the oxygen-free gas (3) is circulated and used in the treatment tank (5), fine water bubbles can be generated even at the discharge pressure of the treated water circulation water flow pump (13), but if necessary, a fine bubble generator (10) can be used. Supply via mounting.

ガス放散箱又は管(9)に開けられた単数又は複数の放散開口孔(18)の口径は、高圧注入では1mmから2mm直径穴、低圧の場合はそれなりに約5mmに直径を広げる事もある。  The diameter of one or more diffusion opening holes (18) opened in the gas diffusion box or tube (9) may be increased from 1 mm to 2 mm in the case of high pressure injection and about 5 mm in the case of low pressure. .

特に、ガス放散箱又は管(9)は、処理槽内壁(22)に垂直装着、或は処理槽蓋(21)に装着されることもあり、一定の放散圧力を保有する。  In particular, the gas diffusion box or pipe (9) may be mounted vertically on the inner wall (22) of the processing tank or mounted on the processing tank lid (21) and has a certain discharge pressure.

処理水循環水流ポンプ(13)の機種機構は、処理水(6)の水中ポンプの場合は潤滑油不使用機種で、尚、危険防止の為に直流12V乃至24Vとし、処理槽外設置ポンプで交流高電圧の場合でも、インペラ室と駆動部の独立機種でシ−ル破損でも処理水(6)内に潤滑油脂類の漏洩混入が皆無のポンプ機種とする。  The model mechanism of the treated water circulating water pump (13) is a model that does not use lubricating oil in the case of the treated water (6) submersible pump. Even in the case of high voltage, the pump model is independent of the impeller chamber and the drive unit, and even if the seal is broken, the pump type is free from any leakage of lubricating oils and fats in the treated water (6).

固定又は脱着可能な孔開き仕切り壁(19)と、多少の間隙を持って、挿入及び引き上げ等で脱着可能な一定面積保有の濾過網(20)を装着する。  A perforated partition wall (19) that can be fixed or detachable, and a filtration network (20) having a fixed area that can be detached and attached by insertion, pulling up, etc. with a slight gap.

通常は処理槽(5)内の水流通過が容易な網目とするが、微細魚のチリメンジャコ及びレジャ−魚釣り用の撒き餌アミエビ等は微細網目の網籠(12)を使用する。  Normally, the mesh is easy to pass through the water in the treatment tank (5), but the fine fish chimney cocoons and the reed-fishing bait amii shrimp and the like use the fine mesh net cage (12).

処理槽蓋(21)は、処理槽(5)内の水流等での水滴飛散防止と同時に、気流が激しい場所の水面上の無酸素ガス(3)と有酸素空気との接触混合防止で、処理槽蓋(21)の設置が必要であろう。  The treatment tank lid (21) is capable of preventing water droplets from being scattered in the water flow in the treatment tank (5) and at the same time preventing contact mixing of anoxic gas (3) and aerobic air on the surface of the water where the air current is intense. It may be necessary to install a treatment tank lid (21).

処理槽内壁(22)の素材は、無酸素ガス水中気泡(11)の破裂時に発生する超音波やキャビテ−ションの反響機能があるステンレス製が望ましいが、家庭用を含む量産対応では樹脂製でも差し支え無い。  The material of the inner wall of the treatment tank (22) is preferably made of stainless steel having an echo and cavitation resonating function that occurs when the oxygen-free gas bubble (11) bursts. There is no problem.

低温の無酸素ガス液体(2)及び無酸素ガス(3)は、−196℃超低温液化窒素ガス、或は超低温液化炭酸ガス、その他の液化ガス等が使用されるが、酸化作用と引火爆発性さえ無ければ、又、食品衛生上と価格との関連性さえ許容されれば、他の無酸素ガスでも使用は可能である。  The low temperature oxygen-free gas liquid (2) and oxygen-free gas (3) use -196 ° C ultra-low temperature liquefied nitrogen gas, ultra-low temperature liquefied carbon dioxide gas, other liquefied gas, etc. It is possible to use other oxygen-free gases as long as there is no such difference between food hygiene and price.

処理水(6)には、解凍機として使用する場合は、清水又は塩水を使用するが、0℃以下で使用する冷凍加工や低温チルド加工の場合は、エチルアルコ−ル添加等による不凍水とする。  The treated water (6) uses fresh water or salt water when used as a thawing machine, but in the case of freezing or low temperature chilled processing used at 0 ° C. or lower, it can be treated with antifreeze water by adding ethyl alcohol or the like. To do.

冷蔵温度の4℃から10℃、或は30℃未満の水温の中に、−196℃液化窒素ガス等を放散すれば、温度差200℃前後の為に大小無数の大きさの水中気泡が、発生、破裂、幾何級数的振幅の水中超音波波動、その上に液化ガスの微細気泡発生器(10)との相乗効果で、透明水が瞬時に無酸素ガスで白濁化し、−20℃前後の冷凍物等の投入、或は超低温の無酸素ガス液体(2)の注入で、処理水(6)が急激に低温化で7℃前後の冷水にもかかわらず、解凍水中の気泡破裂による高低超音波及びそれに基づくキャビ−ションエネルギ−作用と想定されるが、水素結合凍結の解除作用によって、冷凍魚類のさんま及び20mmの厚さのビ−フステ−キ冷凍牛肉も1分前後で解凍され、ポ−タ−ブル家庭用から、小規模店舖用、大規模大量処理に至るまで、同一機構でシンプル格安の、低温液化ガスによる水中解凍機となる。If liquefied nitrogen gas, etc. is diffused in a water temperature of 4 ° C. to 10 ° C. or less than 30 ° C., a bubble temperature of around 200 ° C. will result in infinitely large and small water bubbles. Generation, bursting, underwater ultrasonic wave with geometrical amplitude, and synergistic effect with liquefied gas microbubble generator (10), transparent water instantly becomes cloudy with oxygen-free gas, High or low due to bursting of bubbles in thawing water, despite the fact that the treated water (6) is rapidly cooled and cooled to around 7 ° C due to the introduction of frozen material or the injection of ultra-low temperature oxygen-free gas liquid (2). It is assumed that the sonic energy and the cavitation energy action are based on it, but by releasing the hydrogen bond freezing, the frozen fish saury and the 20 mm thick beef-stuck frozen beef are thawed in about 1 minute. -From table household to small store, large-scale mass Until sense, simple cheap same mechanism, the underwater thawing machine according to low-temperature liquefied gas.

次に、「図2」に示す気中解凍機の場合は、解凍機本体(4)の処理槽(5)内の清水又は塩水、或は不凍水の処理水(6)に代わって無酸素ガス空間(17)とする。  Next, in the case of the air thawing machine shown in FIG. 2, there is no substitute for the treated water (6) of fresh water or salt water or antifreeze water in the treatment tank (5) of the thawing machine body (4). Let it be an oxygen gas space (17).

既冷凍物等である被処理物(7)を解凍処理をするにあたり、処理槽(5)内を事前に急速低温化するには超低温の無酸素ガス液体(2)を導入使用する事も良いが、被処理物(7)投入と同時に低温の無酸素ガス(3)を導入して処理槽(5)内の低温化をはかる方がガス消費量が減少して省エネルギ−に繋がる。  When the object to be treated (7), which is already frozen, etc., is thawed, an ultra-low temperature oxygen-free gas liquid (2) may be introduced and used to rapidly lower the temperature in the treatment tank (5) in advance. However, introducing the low-temperature oxygen-free gas (3) at the same time when the object to be processed (7) is introduced to lower the temperature in the treatment tank (5) reduces the gas consumption and leads to energy saving.

低温無酸素液化ガス貯留槽(1)自体には、液化ガスの液体排出専用弁と蒸散ガス排出専用弁が既設されているが、装着目的から微調整が困難である為に、低温無酸素液化ガス貯留槽(1)において両者の選択で、解凍機本体で無酸素ガス液体(2)又は無酸素ガス(3)の放出量を制御する無酸素液化ガス流量調整弁(8)を設置経由して、処理槽(5)内に設置したガス放散箱又は管(9)に、或は処理槽(5)内に直接放散する。  The low-temperature oxygen-free liquefied gas storage tank (1) itself already has a liquefied gas liquid discharge valve and a transpiration gas discharge valve, but it is difficult to make fine adjustments for the purpose of installation. By selecting both in the gas storage tank (1), an oxygen-free liquefied gas flow rate adjustment valve (8) that controls the discharge amount of the oxygen-free gas liquid (2) or oxygen-free gas (3) in the defroster body is installed. Then, it diffuses directly into the gas diffusion box or pipe (9) installed in the treatment tank (5) or directly into the treatment tank (5).

処理槽(5)内の低温化の為に、低温無酸素液化ガス貯留槽(1)自体の放出圧力で無酸素ガス液体(2)を処理槽(5)内に放出する事は良いとしても、無酸素ガス(3)は処理槽(5)内への連続導入は、余剰ガスとなって処理槽(5)外に放散するだけの為に一定量の処理槽(5)内への導入後は停止し、水中解凍機の処理水循環水流ポンプ(13)に代わって設置の加圧風流ファン(23)により、処理槽(5)内に充満の無酸素ガス(3)を吸引して槽内に吐出し、これを繰り返すことで低温無酸素液化ガス貯留槽(1)の無酸素ガス(3)を必要最小限の消費で浪費を解消する。  In order to lower the temperature in the processing tank (5), it is possible to discharge the oxygen-free gas liquid (2) into the processing tank (5) with the discharge pressure of the low-temperature oxygen-free liquefied gas storage tank (1) itself. The oxygen-free gas (3) is continuously introduced into the treatment tank (5), and is introduced into the treatment tank (5) in a certain amount only as an excess gas is diffused out of the treatment tank (5). After that, it stops and sucks the full oxygen-free gas (3) into the treatment tank (5) by the pressurized air flow fan (23) installed in place of the treated water circulation water flow pump (13) of the underwater defroster. Discharging inside and repeating this eliminates the waste of the oxygen-free gas (3) in the low-temperature oxygen-free liquefied gas storage tank (1) with the minimum necessary consumption.

但し、ポ−タ−ブル処理機を含む小型機種では、小型可搬無酸素ガスボンベ(16)によって、処理槽(5)内空間に無酸素ガス(3)をスプレ−吹き込みで、有酸素空気を追い出し、無酸素ガス空間(17)とする事で、大型と同様の目的を達成する。  However, in a small model including a portable processing machine, anaerobic gas (3) is sprayed into the inner space of the processing tank (5) by a small portable oxygen-free gas cylinder (16), and oxygenated air is discharged. By expelling and making an oxygen-free gas space (17), the same purpose as that of the large size is achieved.

処理槽(5)内に無酸素ガス(3)を連続大量に供給しても、処理槽(5)内の有酸素空気と入れ代わって無酸素ガス空間(17)となった後の無酸素ガス(3)供給は、瞬時に大気放散の為に、槽内の無酸素ガス(3)を循環使用する事がベタ−であるが、無酸素ガス(3)の大量消費でも良い場合でも、超乾燥の無酸素ガス(3)の直接使用は正当でなく、必ず、被処理物(7)と共に処理槽(5)内に投入の氷塊(26)の加圧風流ファン(23)による解氷蒸散湿度、或は処理槽(5)内の無酸素ガス(3)吸引吐出による加湿器(24)による加湿空間として加圧風流ファン(23)が必要で有る。  Even if oxygen-free gas (3) is continuously supplied in a large amount into the treatment tank (5), oxygen-free air after replacing oxygenated air in the treatment tank (5) to become an oxygen-free gas space (17) For the gas (3) supply, it is best to circulate and use the oxygen-free gas (3) in the tank for instantaneous atmospheric dissipation, but even if a large amount of oxygen-free gas (3) may be consumed, Direct use of the ultra-dry oxygen-free gas (3) is not valid, and the deicing by the pressurized air flow fan (23) of the ice block (26) put into the processing tank (5) together with the workpiece (7) is always performed. A pressurized air flow fan (23) is required as a humidification space by the humidifier (24) by transpiration humidity or oxygen-free gas (3) suction and discharge in the treatment tank (5).

加圧風流ファン(23)から槽内循環で供給される無酸素ガス(3)が一定圧力以上の場合は、ガス放散箱又は管(9)に直接に導入しても機能を発揮するが、ガス放散箱又は管(9)に単数又は複数装着している放散開口孔(18)の口径が小さい場合はそれなりに圧力を要求するが、放散開口孔(18)の口径を大きくすることで目的を果たす。  In the case where the oxygen-free gas (3) supplied by the circulation in the tank from the pressurized airflow fan (23) is above a certain pressure, the function is exhibited even if it is directly introduced into the gas diffusion box or pipe (9). When the aperture of the diffusion opening hole (18), which is attached to the gas diffusion box or pipe (9), is small, it requires a certain pressure, but the purpose is to increase the diameter of the diffusion opening hole (18). Fulfill.

しかし、ガス放散箱又は管(9)を経由せずに、加圧風流ファン(23)によって直接に、処理槽(5)内の加湿された無酸素ガス(3)を循環放散対流によって、冷蔵庫等での低温気体静止解凍では得られない、鮮度維持無乾燥急速解凍処理が実現した。  However, the humidified oxygen-free gas (3) in the treatment tank (5) is not directly passed through the gas diffusion box or the pipe (9) but directly by the pressurized air flow fan (23). A freshness-maintaining, non-drying and rapid thawing process that was not possible with low-temperature gas static thawing at a low temperature was realized.

気中解凍機に装着の、加圧風流ファン(26)の機種機構は種々有るが、ガス放散箱又は管(9)経由の場合は一定以上の吹き出し圧力が必要な為に、複数段付きの加圧風流ファン(23)、或は各種気体加圧機等があるが、処理槽(5)内に直接吹き込む場合は、静圧をも考慮してタ−ボファン、シロッコファン等々がベタ−であり、軸流ファンでも風量によっては差し支えない。  There are various types of mechanisms of the pressurized airflow fan (26) attached to the air defroster. However, when a gas discharge box or pipe (9) is used, a blowing pressure higher than a certain level is required. There is a pressurized airflow fan (23) or various gas pressurizers, but when blowing directly into the treatment tank (5), a turbofan, a sirocco fan, etc. are solid in consideration of static pressure. An axial fan can be used depending on the air volume.

加圧風流ファン(23)の装着は、処理槽(5)と導通穴を有する穴開き仕切り壁(19)に、単数又は複数の加圧風流ファン(23)の吐出口径の貫通孔を別途開けて装着するが、水中解凍機に使用の脱着可能な濾過網(20)は当然撤去する。  To install the pressurized airflow fan (23), a through hole having a discharge port diameter of one or more pressurized airflow fans (23) is separately opened in the perforated partition wall (19) having a processing tank (5) and a conduction hole. Of course, the removable filter screen (20) used for the underwater defroster is naturally removed.

穴開き仕切り壁(19)も、濾過網(20)同様な挿入引き上げ撤去可能にすれば、気中解凍機用に加圧風流ファン(23)装着済の穴開き仕切り壁(19)として、用途に応じて交換可能とし、別途格納することが望ましい。  The perforated partition wall (19) can also be used as a perforated partition wall (19) with a pressurized airflow fan (23) installed for an air defroster if it can be inserted, lifted and removed in the same manner as the filtration net (20). It is desirable to replace it according to the situation and store it separately.

処理槽(5)内での加圧風流ファン(23)は乱気流で、空気と接している場合は、比重が空気とほぼ同様である為に無酸素ガス(3)が処理槽外に飛散して有酸素空気が進入する為に、又、設置場所によっては外気の風気流で、処理槽(5)内の無酸素ガス(3)と有酸素空気との接触混合防止で、処理槽蓋(21)の設置が必要である。  The pressurized air flow fan (23) in the treatment tank (5) is turbulent, and when it is in contact with air, the specific gravity is almost the same as that of air, so the oxygen-free gas (3) is scattered outside the treatment tank. In order to prevent aerobic air from entering, and depending on the installation location, it is possible to prevent the contact mixing of anaerobic gas (3) and aerobic air in the treatment tank (5) with an air flow of outside air. 21) is required.

処理槽内壁(22)の素材は、厳密に思考すれば加湿の無酸素ガス(3)が加圧風流ファン(23)によって処理槽(5)内のあらゆる物質に衝突する衝撃波で超音波を発する為に、音波反射機能があるステンレス製が望ましいが、家庭用を含む量産対応では樹脂製でも差し支え無い。  If the material of the inner wall (22) of the processing tank is strictly considered, the humidified oxygen-free gas (3) emits an ultrasonic wave with a shock wave that collides with any substance in the processing tank (5) by the pressurized airflow fan (23). Therefore, stainless steel having a sound wave reflecting function is desirable, but resin can be used for mass production including home use.

低温の無酸素ガス液体(2)及び無酸素ガス(3)は、−196℃超低温液化窒素ガス、或は超低温液化炭酸ガス、その他の液化ガス等が使用されるが、其の他の無酸素ガスも酸化作用と引火爆発性さえ無ければ、又、食品衛生上と価格との関連性さえ許容されれば他の無酸素ガスでも使用は可能である。  As the low temperature oxygen-free gas liquid (2) and oxygen-free gas (3), -196 ° C ultra-low temperature liquefied nitrogen gas, ultra-low temperature liquefied carbon dioxide gas, other liquefied gas, etc. are used. The gas can also be used with other oxygen-free gases as long as it does not have an oxidative effect and flammable explosive property, and if the relationship between food hygiene and price is acceptable.

処理槽(5)内の無酸素ガス空間(17)内に装填の被処理物(7)に、加圧風流ファン(23)によって、加湿された無酸素ガス(3)を吹きつける事によって、被処理物(7)の表面に一種の衝撃波の低周波が発生し、冷蔵温度の4℃から10℃、或は30℃未満の無酸素加湿ガス空間の中で、複合波長振幅の気中超音波波動が発生し、被処理物(7)の導伝導率にもよるが、水素結合凍結の解除作用に大きく作用し、急速鮮度維持解凍が可能である。  By blowing the oxygen-free gas (3) humidified by the pressurized airflow fan (23) onto the workpiece (7) loaded in the oxygen-free gas space (17) in the treatment tank (5), A kind of shock wave low frequency is generated on the surface of the object to be processed (7), and in the oxygen-free humidified gas space of refrigeration temperature of 4 to 10 ° C or less than 30 ° C Waves are generated, and depending on the conductivity of the object to be processed (7), it greatly affects the action of releasing hydrogen bond freezing, and rapid freshness maintenance thawing is possible.

従来の冷蔵室移管解凍のような無気流静止乾燥空間での解凍では想定不能な急速解凍、無乾燥解凍、無酸化解凍、無ドリップ、鮮度維持解凍が、ポ−タ−ブル家庭用から、小規模店舗用、大規模大量処理に至るまで、同一機構でシンプル格安の、低温液化ガスによる気中解凍機である。  Rapid thawing, non-drying thawing, non-oxidation thawing, no drip, and freshness-maintaining thawing, which cannot be envisaged by thawing in a non-airflow static drying space such as conventional refrigerated room transfer thawing, are small for portable household use. It is a low-temperature liquefied gas in-air thawing machine with the same mechanism, for large-scale stores and large-scale mass processing.

以上の、低温液化ガスによる水中及び気中の解凍で、両者選択使い分けは、水中解凍に適した食材、例えば鮮魚、野菜類、果実類等は低温水中で無酸素ガス水中気泡(11)の水中爆裂によるエネルギ−で、鮮度維持急速解凍を行う。  In the above-described thawing in water and in the air with a low-temperature liquefied gas, the selection and use of both are appropriate for foods suitable for thawing in water, such as fresh fish, vegetables, fruits, etc. Rapid thawing to maintain freshness with the energy from the explosion.

又水中解凍にはそぐわないえ食材を気中解凍で、例えばチリメンジャコの冷凍ブロックや冷凍菓子類等の解凍を、無酸素低温加湿風力で鮮度維持急速解凍を行う。  In addition, foods that are not suitable for underwater thawing are thawed in the air, for example, chilled blocks of frozen chili coconuts, frozen confectionery, etc. are thawed, and rapid thawing is performed with oxygen-free low-temperature humidified wind.

低温無酸素液化ガス貯留槽(1)から導入の無酸素ガス液体(2)及び無酸素ガス(3)の両者の導入種選択で、無酸素ガス液体(2)の場合は超低温である事から、水中冷凍機の場合はエチルアルコ−ル添加による不凍水(27)にすればチルド加工や−20℃乃至−35℃温度域で、無酸素ガス水中気泡(11)の稼動と停止により、水中爆裂超音波及びキャビテ−ションエネルギ−の稼動と停止に重なり、可能な限りの被処理物(7)の外と芯の同時冷凍が可能であり、気中冷凍の場合は処理槽(5)内に無酸素ガス液体(2)を被処理物(7)に加圧放射することで、従来に無い外と芯の超急冷凍我可能で、チルド加工も可能な、低温液化ガスによる水中及び気中の多目的解凍機である。  Selection of both the oxygen-free gas liquid (2) and oxygen-free gas (3) introduced from the low-temperature oxygen-free liquefied gas storage tank (1), and in the case of oxygen-free gas liquid (2), it is extremely low temperature. In the case of an underwater refrigerator, if it is made antifreeze water (27) by adding ethyl alcohol, it can be submerged in the chilled processing or in the temperature range of -20 ° C to -35 ° C by operating and stopping the oxygen-free gas underwater bubbles (11). It is possible to freeze the outside of the workpiece (7) and the core at the same time as much as possible, in the treatment tank (5) in the case of air freezing. The oxygen-free gas liquid (2) is radiated under pressure to the workpiece (7), so that the outside and core can be ultra-frozen and can be chilled. It is a multipurpose decompressor inside.

「請求項2」は、家庭用及び業務用の冷凍冷蔵庫内に、冷蔵庫装填解凍機(28)として装填される、低温液化ガスによる水中及び気中の多目的解凍機。  “Claim 2” is a multipurpose defroster in water and in the air using a low-temperature liquefied gas, which is loaded as a refrigerator loaded defroster (28) in a refrigerator for home use and for business use.

「請求項3」は、ポ−タ−ブル小型機種では、レジャ−ボ−ト、キャンピングカ−、及び魚釣り道具の一つとして、ブロック冷凍しか販売していない撒き餌アミエビの釣り場所での解凍にも使用出来る、レジャ−用解凍機(29)の、低温液化ガスによる水中及び気中の多目的解凍機。  “Claim 3” means that in portable portable models, as a recreation boat, a camping car, and a fishing tool, the thaw at the fishing place of the shrimp bait that sells only block frozen A multipurpose defroster in water and in the air with a low-temperature liquefied gas that can be used as a decompressor defroster (29).

低温無酸素ガスの水中放散による水中解凍機で、ポ−タ−ブルから大型に至るまでの透視図、一部開欠図、の斜視図である。FIG. 3 is a perspective view from a portable to a large size, partially perspective view of a submersible thawing machine using low-temperature oxygen-free gas diffusion in water. 低温無酸素ガスの水中放散による水中解凍機で、濾過網と網籠がドッキングした、透視図、一部開欠図、の斜視図である。It is a perspective view of a perspective view and a partially cutaway view in which a filtration net and a net cage are docked by an underwater thawing machine using low-temperature oxygen-free gas diffusion in water. 低温無酸素ガスの処理槽内放散による気中解凍機で、加湿器内蔵の処理槽で氷塊投入解氷加湿の気中解凍機の透視図、一部開欠図、の斜視図である。It is a perspective view of a perspective view and a partial cutaway view of an in-air defroster in which an ice lump is added in a treatment tank with a built-in humidifier, and a defroster in which the low-temperature oxygen-free gas is diffused in the treatment tank. 低温無酸素ガスの処理槽内放散による気中解凍機で、氷塊投入解氷加湿の気中解凍機の透視図、一部開欠図、の斜視図である。It is the perspective view of the see-through | perspective view and a partially open view of an air defroster of the ice lump injection | thawing deicing / humidification by the air defroster by dispersion | distribution in a processing tank of a low temperature anoxic gas. 低温無酸素ガスの処理槽内放散による気中解凍機で、氷塊投入解氷加湿の気中解凍機の槽内回転風流の透視図、一部開欠図、の斜視図である。FIG. 3 is a perspective view of a rotating wind flow in a tank of an air defroster in which ice blocks are thawed and dehumidified and humidified, and a perspective view of a partially open view. 低温無酸素ガスの処理槽内放散による気中解凍機で、加湿器装着で、無酸素ガスによる低温化の槽内回転風流気中大型解凍機の透視図、一部開欠図、の斜視図である。A perspective view of a large-scale thawing machine that is equipped with a humidifier and is equipped with a humidifier. It is. 超低温の無酸素ガス水中気泡の放散で、気泡爆裂超音波発振のイメ−ジの、処理槽断面図である。FIG. 5 is a cross-sectional view of a processing tank of an image of bubble explosion ultrasonic wave oscillation by diffusion of bubbles in an ultra-low temperature oxygen-free gas. 超低温の無酸素ガスによる気中回頭機の、加湿無酸素ガスと不処理物との衝突衝撃波によるイメ−ジの、処理槽断面図である。It is processing tank sectional drawing of the image by the collision shock wave of humidified oxygen-free gas and an untreated thing of the air turning machine by an ultra-low temperature oxygen-free gas. 水中解凍或は気中解凍の処理槽自体を、低温の冷蔵庫に挿入引き出しで方式で装填した、側面斜視図である。It is a side perspective view which loaded the processing tank itself of underwater thawing or in-air thawing into the low-temperature refrigerator by the insertion drawer. 処理水循環ポンプと、濾過網と網籠を共用して一体化したユニットで、魚釣り枚餌のオキアミ冷凍ブロックも、ビ−フテキ牛肉もキャンプで簡単に解凍可能な、水中解凍機の斜視透明図である。This unit is a unit that integrates a treated water circulation pump and a filtration net and a net cage. It is a transparent perspective view of an underwater thawing machine that can easily thaw the krill frozen block and beefsteak beef at the camp. is there. 処理水循環ポンプと、濾過網と網籠を共用して一体化したユニットで、あらゆる水槽の中で使用可能な、無酸素ガスの可搬小型ボンベ使用の水中解凍機の斜視透明図である。FIG. 2 is a perspective transparent view of a submersible defroster using an oxygen-free portable small cylinder that can be used in any water tank, with a unit that integrates a treated water circulation pump and a filtration net and a net.

1 低温無酸素液化ガス貯留槽
2 無酸素ガス液体
3 無酸素ガス
4 解凍機本体
5 処理槽
6 処理水
7 被処理物
8 無酸素液化ガス流量調整弁
9 ガス放散箱又は管
10 微細気泡発生器
11 無酸素ガス水中気泡
12 網籠
13 処理水循環水流ポンプ
14 吐出管
15 槽内上部空間ガス吸引管
16 小型可搬無酸素ガスボンベ
17 無酸素ガス空間
18 放散開口孔
19 穴開き仕切り壁
20 濾過網
21 処理槽蓋
22 処理槽内壁
23 加圧風流ファン
24 加湿器
25 無酸素加湿風流空間
26 氷塊
27 不凍水
28 冷蔵庫装填解凍機
29 レジャ−用解凍機
DESCRIPTION OF SYMBOLS 1 Low temperature oxygen-free liquefied gas storage tank 2 oxygen-free gas liquid 3 oxygen-free gas 4 thawing machine body 5 process tank 6 treated water 7 to-be-processed object 8 oxygen-free liquefied gas flow control valve 9 gas diffusion box or pipe 10 fine bubble generator DESCRIPTION OF SYMBOLS 11 Oxygen-free gas underwater 12 Net cage 13 Treated water circulation water flow pump 14 Discharge pipe 15 Upper space gas suction pipe 16 in a tank Small portable oxygen-free gas cylinder 17 Oxygen-free gas space 18 Dispersion opening hole 19 Perforated partition wall 20 Filtration net 21 Treatment tank lid 22 Treatment tank inner wall 23 Pressurized air flow fan 24 Humidifier 25 Oxygen humidification air flow space 26 Ice lump 27 Antifreeze water 28 Refrigerator loaded thawing machine 29

Claims (3)

超低温無酸素液化ガスによる冷凍加工は周知の事実であるが、その超低温無酸素液化ガス貯留槽(1)から、無酸素ガス液体(2)と無酸素ガス(3)の二種の選択導入使用により、無酸素水中急速解凍処理及び無酸素気中加湿急速解凍処理を可能にし、同時に付随機能としてチルド加工、滅菌機能、及び冷凍機能も保有するのが本発明である。
先ず、「図1」等に示す水中解凍機の場合は、解凍機本体(4)の処理槽(5)内の清水又は塩水の処理水(6)の中で、既冷凍物等である被処理物(7)を解凍処理をするにあたり、処理水(6)を事前に急速低温化するには無酸素ガス液体(2)を導入使用する事も良いが、被処理物(7)投入と同時に数度℃の処理水(6)温度低下でも不足の場合にのみ無酸素ガス液体(2)を導入して処理水(6)の低温化をはかる方がベタ−である。 処理水(6)の充填量は、被処理物(7)を投入しても処理槽(5)内水面上の空間に無酸素ガス(3)を充満させて、後述の吸引吐出の循環使用に必要な量の空間容積を保有する。
尚、処理水(6)は、低温チルド加工や冷凍機構に使用する場合は、不凍水にして使用することは言うまでもない。
低温無酸素液化ガス貯留槽(1)からの、無酸素ガス液体(2)又は無酸素ガス(3)を、無酸素液化ガス流量調整弁(8)を経由して、処理槽(5)内に充填の処理水(6)中に設置したガス放散箱又は管(9)に、直接に又は微細気泡発生器(10)経由で結続して、処理水(6)の水中に無酸素ガス水中気泡(11)を発生させ、処理水(6)の水中に装填の網籠(12)の中の被処理物(7)に向かって放散するが、処理水(6)の低温化の為に、低温無酸素液化ガス貯留槽(1)自体の放出圧力で無酸素ガス液体(2)を処理水(6)中に放出する事は良いとしても、無酸素ガス(3)は処理水(6)中への導入後は、余剰ガスで処理水(6)を浮上して処理槽(5)外に放散するだけの為に、無酸素ガス(3)は一定量の処理水(6)内への導入後は停止し、処理水循環水流ポンプ(13)の吐出管(14)に付設の槽内上部空間ガス吸引管(15)よって、処理水(6)の水面上空間残留の無酸素ガス(3)を吸引して気泡化させ、水面上に浮上した無酸素ガス(3)は再度槽内上部空間ガス吸引管(15)によって吸引され、これを繰り返すことで低温無酸素液化ガス貯留槽(1)の無酸素ガス(3)の浪費を解消する。
但し、ポ−タ−ブル処理機を含む小型機種では、小型可搬無酸素ガスボンベ(16)によって、処理槽(5)内の処理水(6)の水面上空間に無酸素ガス(3)をスプレ−吹き込みで、有酸素空気を追い出し、無酸素ガス空間(17)とする事で、大型と同様の目的を達成する。
処理槽(5)内に無酸素ガス(3)を大量に供給しても、無酸素水中気泡はその大半が瞬時に大気放散の為に、低圧微量の無酸素ガス(3)を微細気泡発生器(10)を経由して供給する事の方がベタ−であるが、無酸素ガス(3)の大量消費でも良い場合は、当然ながら微細気泡発生器(10)の装着は必要無い。
低温無酸素液化ガス貯留槽(1)から供給される無酸素ガス(3)が一定圧力以上の場合は、ガス放散箱又は管(9)に直接に導入しても、ガス放散箱又は管(9)に単数又は複数装着している放散開口孔(18)の口径が1mmから2mmの場合は大小各種の気泡が発生するが、水中吹き出し圧力の不足の場合は、ガス放散箱又は管(9)が垂直装着で水平吹き出しの事も想定され、或はガス放散箱又は管(9)が網籠(12)の上部設置で下向き吹き出しの事も有り、その吹き出し圧力不足の場合等と同時に、主たる目的は、無酸素ガス(3)の消費量削減であり、処理水(6)を吸引して、ガス放散箱又は管(9)に加圧供給する処理水循環水流ポンプ(13)を設置するだけでも、水中気泡の放出圧力の幇助にもなる。
処理水循環水流ポンプ(13)の機種機構は、処理水(6)の水中ポンプの場合は潤滑油不使用機種で、尚、危険防止の為に直流12V乃至24Vとし、処理槽外設置ポンプで交流高電圧の場合でも、インペラ室と駆動部の独立機種でシ−ル破損でも処理水(6)内に潤滑油脂類の漏洩混入が皆無のポンプ機種が安全で、当然ながら処理水循環水流ポンプ(13)の異物吸引防止と、ガス放散箱又は管(9)の放散開口孔(18)の目詰り防止で、必要ある場合は脱着可能な孔開き仕切り壁(19)を装着し、多少の間隙を持って一定の面積を持った挿入及び引き上げ等で脱着可能な濾過網(20)を必ず装着し、微細魚のチリメンジャコ及びレジャ−魚釣り用の撒き餌アミエビ等は微細網目の網籠(12)を利用し、処理水(6)を吸引及びガス放散箱又は管(9)経由で処理槽(5)内に循環吐出する。
処理槽蓋(21)は、処理槽(5)内の水流等での水滴飛散防止と同時に、気流が激しい場所の水面上の無酸素ガス(3)と有酸素空気との接触混合防止で、処理槽蓋(21)の設置が必要であろう。
処理槽内壁(22)の素材は、無酸素ガス水中気泡(11)の破裂時に発生する超音波やキャビテ−ションの反響機能があるステンレス製が望ましいが、家庭用を含む量産対応では樹脂製でも差し支え無い。
低温の無酸素ガス液体(2)及び無酸素ガス(3)は、−196℃超低温液化窒素ガス、或は超低温液化炭酸ガス、その他の液化ガス等が使用されるが、酸化作用と引火爆発性さえ無ければ、又、食品衛生上と価格との関連性さえ許容されれば、他の無酸素ガスでも使用は可能である。
処理水(6)には、清水又は塩水を使用し、冷蔵温度の4℃から10℃、或は30℃未満の水温の中に、−196℃液化窒素ガス等を放散すれば、温度差200℃前後の為に大小無数の大きさの水中気泡が、発生、破裂、幾何級数的振幅の水中超音波波動、その上に液化ガスの微細気泡発生器(10)との相乗効果で、透明水が瞬時に無酸素ガスで白濁化し、−20℃前後の冷凍物等の投入、或は超低温の無酸素ガス液体(2)の注入で、処理水(6)が急激に低温化で7℃前後の冷水にもかかわらず、解凍水中の気泡破裂による高低超音波及びそれに基づくキャビ−ションエネルギ−作用と想定されるが、水素結合凍結の解除作用によって、冷凍魚類のさんま及び20mmの厚さのビ−フステ−キ冷凍牛肉も1分前後で解凍され、ポ−タ−ブル家庭用から、小規模店舗用、大規模大量処理に至るまで、同一機構でシンプル格安の、低温液化ガスによる水中解凍機となる。
次に「図2」、「図3」、「図4」によって気中解凍機を説明する。
解凍機本体(4)の処理槽(5)内の清水又は塩水の処理水(6)に代わって無酸素ガス空間(17)の中で、既冷凍物等である被処理物(7)を解凍処理をするにあたり、処理槽(5)内を事前に急速低温化するには超低温の無酸素ガス液体(2)を導入使用する事も良いが、氷塊に等しい被処理物(7)投入と同時に無酸素ガス()を導入して処理槽(5)内の低温化をはかる方が省エネルギ−からベタ−である。
低温無酸素液化ガス貯留槽(1)からの、無酸素ガス液体(2)又は無酸素ガス(3)を、無酸素液化ガス流量調整弁(8)を経由して、処理槽(5)内に設置したガス放散箱又は管(9)に、或は処理槽(5)内に直接放散して処理槽(5)内を無酸素ガス空間とする。
処理槽(5)内に装填の網籠(12)の中の被処理物(7)に向かって、放散する無酸素ガス(3)は、処理槽(5)内の低温化の為に、低温無酸素液化ガス貯留槽(1)自体の放出圧力で無酸素ガス液体(2)の放出でも良い我、無酸素ガス(3)は処理槽(5)内への連続導入は、余剰ガスとなって処理槽(5)外に放散するだけの為に、無酸素ガス(3)は一定量の処理槽(5)内への導入後は停止し、水中解凍機の処理水循環水流ポンプ(13)に代わって装着の、加圧風流ファン(23)により、処理槽(5)内に充満の無酸素ガス(3)を吸引して槽内に吐出し、これを繰り返すことで低温無酸素液化ガス貯留槽(1)の無酸素ガス(3)を必要最小限に止める。
但し、ポ−タ−ブル処理機を含む小型機種では、小型可搬無酸素ガスボンベ(16)によって、処理槽(5)内空間に無酸素ガス(3)をスプレ−吹き込みで、有酸素空気を追い出し、無酸素ガス空間(17)とする事で、大型と同様の目的を達成する。
処理槽(5)内に無酸素ガス(3)を連続大量に供給しても、処理槽(5)内の有酸素空気と入れ代わって無酸素ガス空間(17)となった後の無酸素ガス(3)供給は、瞬時に大気放散の為に槽内の無酸素ガス(3)を循環使用する。
又、低温無酸素液化ガス貯留槽(1)からの湿度ゼロの無酸素ガス(3)を直接的被処理物(7)に放散することは正当でなく、必ず、被処理物(7)と共に処理槽(5)内に投入の氷塊(26)の加圧風流ファン(23)による解氷蒸散湿度、或は処理槽(5)内の無酸素ガス(3)吸引吐出による加湿器(24)による加湿無酸素ガスの加圧風流ファン(23)による循環使用が正当である。
加圧風流ファン(23)から槽内循環で供給される無酸素ガス(3)が一定圧力以上の場合は、ガス放散箱又は管(9)に直接に導入しても機能を発揮するが、ガス放散箱又は管(9)に単数又は複数装着している放散開口孔(18)の口径が小さい場合はそれなりに圧力を要求するも、放散開口孔(18)の口径を大きくすることで目的を果たす事が出来る。
又、ガス放散箱又は管(9)を経由せずに、直接に処理槽(5)内に無酸素ガス(3)を吹き込み、処理槽(5)内部全体に加湿された無酸素ガス(3)を循環放散対流によって、低温無酸素対流雰囲気で、従来の気体静止解凍では得られない、鮮度維持無乾燥急速解凍処理が実現した。
加圧風流ファン(26)の機種機構は種々有るが、ガス放散箱又は管(9)経由の場合は一定以上の吹き出し圧力が必要な為に、複数段付きの加圧風流ファン(23)、或は各種気体加圧機等、種々あるが、処理槽(5)内に直接吹き込む場合は、静圧をも考慮してタ−ボファン、シロッコファン等々がベタ−であり、軸流ファンでも風量によっては差し支えない。
加圧風流ファン(23)の装着は、処理槽(5)と導通穴を有する、穴開き仕切り壁(19)に、単数又は複数の加圧風流ファン(23)の吐出口径の貫通孔を別途開けて装着するが、水中解凍機に使用の脱着可能な濾過網(20)は当然撤去する。
穴開き仕切り壁(19)も、濾過網(20)同様な挿入引き上げ撤去可能にすれば、気中解凍機用に加圧風流ファン(23)装着済の穴開き仕切り壁(19)として別途格納することが望ましい。
処理槽蓋(21)は、処理槽(5)内での加圧風流ファン(23)の乱気流で、無酸素ガス(3)が処理槽外に飛散して有酸素空気が進入する為に、又、気流が激しい場所の水処理槽(5)内の無酸素ガス(3)と有酸素空気との接触混合防止で、処理槽蓋(21)の設置が必要である。
処理槽内壁(22)の素材は、厳密に思考すれば加湿の無酸素ガス(3)が加圧風流ファン(23)によって処理槽(5)内のあらゆる物質に衝突する衝撃波で超音波を発する為に、反響機能があるステンレス製が望ましいが、家庭用を含む量産対応では樹脂製でも差し支え無い。
低温の無酸素ガス液体(2)及び無酸素ガス(3)は、−196℃超低温液化窒素ガス、或は超低温液化炭酸ガス、その他の液化ガス等が使用されるが、酸化作用と引火爆発性さえ無ければ、又、食品衛生上と価格との関連性さえ許容されれば、他の無酸素ガスでも使用は可能である。
処理槽(5)内の無酸素ガス空間(17)内に装填の被処理物(7)に、加圧風流ファン(23)によって、加湿された無酸素ガス(3)を吹きつける事によって、被処理物(7)の表面に一種の衝撃波の低周波が発生し、無酸素加湿ガス空間の中で、複合波長振幅の気中超音波波動が発生し、−20℃前後の冷凍物等の装填と、低温の無酸素ガス(3)の注入で、処理槽(5)内温度は5℃前後の冷温になり、被処理物(7)の熱電導率にもよるが、水素結合凍結の解除作用に大きく作用し、急速鮮度維持解凍が可能となった。
従来の低温無気流静止空間での解凍では想定不能な、急速解凍、無乾燥解凍、無酸化解凍、無ドリップ、鮮度維持解凍が、ポ−タ−ブル家庭用から、小規模店舗用、大規模大量処理に至るまで、同一機構でシンプル格安の、低温液化ガスによる気中解凍機である。
以上の、低温液化ガスによる水中及び気中の解凍で、両者選択使い分けは、水中解凍に適した食材、例えば鮮魚、野菜類、果実類等は、低温水中で無酸素ガス水中気泡(11)の水中爆裂によるエネルギ−で、鮮度維持急速解凍を行う。
又水中解凍にはそぐわないえ食材を気中解凍で、例えばチリメンジャコの冷凍ブロックや冷凍菓子類等の解凍を、無酸素低温加湿風力で鮮度維持急速解凍を行う。
低温無酸素液化ガス貯留槽(1)から導入の無酸素ガス液体(2)及び無酸素ガス(3)の両者の導入種選択で、無酸素ガス液体(2)の場合は超低温である事から、水中冷凍の場合はエチルアルコ−ル添加による不凍水(27)にすればチルド加工や−20℃乃至−35℃温度域の無酸素ガス水中気泡(11)の稼動及び停止により、水中爆裂超音波及びキャビテ−ションエネルギ−の稼動と停止に重なり、可能な限りの被処理物(7)の外と芯の同時冷凍が可能であり、気中冷凍機の場合は処理槽(5)内に無酸素ガス液体(2)を導入し、被処理物(7)に噴射するだけで超急速冷凍の為に低温乾燥する予有がなく鮮度抜群の冷凍加工と共に、チルド加工も可能な、低温液化ガスによる水中及び気中の多目的解凍機。
Refrigeration processing with ultra-low temperature oxygen-free liquefied gas is a well-known fact, but two types of selective introduction and use of oxygen-free gas liquid (2) and oxygen-free gas (3) from its ultra-low temperature oxygen-free liquefied gas storage tank (1) Thus, the present invention enables rapid thawing treatment in oxygen-free water and rapid humidification in oxygen-free atmosphere, and at the same time possesses chilled processing, sterilization function, and freezing function as accompanying functions.
First, in the case of the underwater thawing machine shown in “FIG. 1” etc., in the treated water (6) of the fresh water or salt water in the treatment tank (5) of the thawing machine body (4), In defrosting the treated product (7), an oxygen-free gas liquid (2) may be introduced and used to rapidly cool the treated water (6) in advance. At the same time, it is better to reduce the temperature of the treated water (6) by introducing the oxygen-free gas liquid (2) only when the temperature of the treated water (6) at several degrees C is insufficient. The filling amount of the treated water (6) is such that the space above the water surface in the treatment tank (5) is filled with the oxygen-free gas (3) even when the object to be treated (7) is charged, and the suction and discharge circulation described later is used. Possess the required volume of space.
Needless to say, the treated water (6) is used as non-freezing water when used for low temperature chilled processing or a refrigeration mechanism.
The oxygen-free gas liquid (2) or oxygen-free gas (3) from the low-temperature oxygen-free liquefied gas storage tank (1) is passed through the oxygen-free liquefied gas flow rate adjustment valve (8) in the treatment tank (5). Oxygen-free gas in the water of the treated water (6) by connecting directly or via the fine bubble generator (10) to the gas diffusion box or pipe (9) installed in the treated water (6) filled in Underwater bubbles (11) are generated and diffused into the treated water (6) toward the object (7) in the reed net (12), but the treated water (6) has a low temperature. In addition, the oxygen-free gas liquid (2) may be discharged into the treated water (6) with the discharge pressure of the low-temperature oxygen-free liquefied gas storage tank (1) itself, but the oxygen-free gas (3) is treated with the treated water ( 6) After the introduction, the oxygen-free gas (3) is a certain amount of treated water because the treated water (6) is floated with surplus gas and is simply dissipated out of the treatment tank (5). 6) After the introduction to the inside, the tank is stopped, and the upper space gas suction pipe (15) in the tank attached to the discharge pipe (14) of the treated water circulation water flow pump (13) causes the residual space of the treated water (6) on the surface of the water. The oxygen-free gas (3) is sucked into bubbles, and the oxygen-free gas (3) floating on the water surface is again sucked by the tank upper space gas suction pipe (15). The waste of oxygen-free gas (3) in the gas storage tank (1) is eliminated.
However, in a small model including a portable processing machine, an oxygen-free gas (3) is introduced into the space above the surface of the treated water (6) in the processing tank (5) by a small portable oxygen-free gas cylinder (16). By spraying in, aerobic air is expelled to form an oxygen-free gas space (17), thereby achieving the same purpose as that of a large-sized one.
Even if a large amount of oxygen-free gas (3) is supplied into the treatment tank (5), most of the oxygen-free water bubbles are instantly released into the atmosphere, so fine bubbles of low-pressure trace amount of oxygen-free gas (3) are generated. Supplying via the vessel (10) is solid, but if a large amount of oxygen-free gas (3) may be consumed, it is of course unnecessary to attach the fine bubble generator (10).
When the oxygen-free gas (3) supplied from the low-temperature oxygen-free liquefied gas storage tank (1) is at a certain pressure or higher, even if it is directly introduced into the gas diffusion box or pipe (9), the gas diffusion box or pipe ( 9) When the diameter of the divergence opening hole (18) attached to one or more is 9 mm to 2 mm, various large and small bubbles are generated, but when the underwater blowing pressure is insufficient, the gas radiating box or tube (9 ) Is assumed to be a horizontal blowout with vertical mounting, or the gas diffusion box or pipe (9) may be blown downward in the upper installation of the net cage (12), at the same time as the blowout pressure is insufficient, The main purpose is to reduce the consumption of oxygen-free gas (3) and install a treated water circulation water flow pump (13) that sucks the treated water (6) and supplies it to the gas diffusion box or pipe (9). It alone will help the pressure of the underwater bubbles.
The model mechanism of the treated water circulating water pump (13) is a model that does not use lubricating oil in the case of the treated water (6) submersible pump. Even in the case of high voltage, a pump model that is independent of the impeller chamber and drive unit and has no leakage of lubricating oil in the treated water (6) even if the seal breaks is safe. Of course, the treated water circulation pump (13 ) To prevent foreign matter from being sucked in and to prevent clogging of the gas diffusion box or the diffusion opening hole (18) of the tube (9). A filter net (20) that has a certain area and that can be removed by insertion and pull-up, etc. must be installed, and the fine fish chile and the shrimp bait for fishing, etc. use the fine mesh net (12). And suction the treated water (6). Gas-effusing box or tube (9) through a processing tank (5) circulating discharge within.
The treatment tank lid (21) is capable of preventing water droplets from being scattered in the water flow in the treatment tank (5) and at the same time preventing contact mixing of anoxic gas (3) and aerobic air on the surface of the water where the air current is intense. It may be necessary to install a treatment tank lid (21).
The material of the inner wall (22) of the treatment tank is preferably made of stainless steel having an echo and cavitation resonating function that occurs when the oxygen-free gas bubbles (11) burst, but it may be made of resin for mass production including household use. There is no problem.
The low temperature oxygen-free gas liquid (2) and oxygen-free gas (3) use -196 ° C ultra-low temperature liquefied nitrogen gas, ultra-low temperature liquefied carbon dioxide gas, other liquefied gas, etc. Other oxygen-free gases can be used as long as there is no relationship between food hygiene and price.
As the treated water (6), fresh water or salt water is used, and if liquefied nitrogen gas or the like is diffused in a water temperature of refrigeration temperature of 4 ° C. to 10 ° C. or less than 30 ° C., the temperature difference is 200. A large number of small and large water bubbles are generated, bursting, and underwater ultrasonic waves with geometrical amplitude, and a synergistic effect with the liquefied gas microbubble generator (10). Will become cloudy with oxygen-free gas instantaneously, the frozen water at around -20 ° C will be charged, or the ultra-low temperature oxygen-free gas liquid (2) will be injected, and the treated water (6) will be rapidly cooled down to around 7 ° C. In spite of cold water, it is assumed that high and low ultrasonic waves are generated by rupture of bubbles in thawed water and cavitation energy action based on it. -Frozen frozen beef is also thawed in about 1 minute, From for Le home, for small stores, to large-scale mass treatment, of simple cheap in the same mechanism, the water-extracting machine according to the low-temperature liquefied gas.
Next, the air defroster will be described with reference to FIG. 2, FIG. 3, and FIG. 4.
In place of the treated water (6) of fresh water or salt water in the treatment tank (5) of the thawing machine main body (4), the object to be treated (7) which is already frozen in the oxygen-free gas space (17). In the thawing process, an ultra-low temperature oxygen-free gas liquid (2) may be introduced and used to rapidly lower the temperature in the treatment tank (5) in advance. At the same time, introducing oxygen-free gas () to lower the temperature in the treatment tank (5) is better in terms of energy saving.
The oxygen-free gas liquid (2) or oxygen-free gas (3) from the low-temperature oxygen-free liquefied gas storage tank (1) is passed through the oxygen-free liquefied gas flow rate adjustment valve (8) in the treatment tank (5). The gas diffusion box or pipe (9) installed in the above, or directly diffused into the treatment tank (5) to make the inside of the treatment tank (5) an oxygen-free gas space.
The oxygen-free gas (3) dissipating toward the object (7) in the reed (12) loaded in the treatment tank (5) is used to lower the temperature in the treatment tank (5). The oxygen-free gas liquid (2) may be released at the discharge pressure of the low-temperature oxygen-free liquefied gas storage tank (1) itself, and the oxygen-free gas (3) is introduced into the treatment tank (5) as a surplus gas. Therefore, the oxygen-free gas (3) is stopped after being introduced into the treatment tank (5) in order to dissipate outside the treatment tank (5), and the treated water circulation water flow pump (13 ) In place of the pressurized airflow fan (23), the full oxygen-free gas (3) is sucked into the treatment tank (5) and discharged into the tank. The oxygen-free gas (3) in the gas storage tank (1) is kept to a minimum.
However, in a small model including a portable processing machine, anaerobic gas (3) is sprayed into the inner space of the processing tank (5) by a small portable oxygen-free gas cylinder (16), and oxygenated air is discharged. By expelling and making an oxygen-free gas space (17), the same purpose as that of the large size is achieved.
Even if oxygen-free gas (3) is continuously supplied in a large amount into the treatment tank (5), oxygen-free air after replacing oxygenated air in the treatment tank (5) to become an oxygen-free gas space (17) In supplying gas (3), oxygen-free gas (3) in the tank is circulated and used for instantaneous atmospheric dissipation.
Also, it is not legal to directly release the oxygen-free gas (3) having zero humidity from the low-temperature oxygen-free liquefied gas storage tank (1) to the object to be treated (7). The deicing and transpiration humidity of the ice block (26) charged into the processing tank (5) by the pressurized air flow fan (23), or the humidifier (24) by oxygen-free gas (3) suction and discharge in the processing tank (5) The use of humidified oxygen-free gas by a pressurized airflow fan (23) is justified.
In the case where the oxygen-free gas (3) supplied by the circulation in the tank from the pressurized airflow fan (23) is above a certain pressure, the function is exhibited even if it is directly introduced into the gas diffusion box or pipe (9). If the diameter of the diffusion opening hole (18), which is attached to the gas diffusion box or pipe (9), is small, it requires a certain pressure, but the purpose is to increase the diameter of the diffusion opening hole (18). Can be fulfilled.
Further, the oxygen-free gas (3) is blown directly into the treatment tank (5) without going through the gas diffusion box or the pipe (9), and the oxygen-free gas (3 ) Was achieved by circulating diffuse convection in a low-temperature oxygen-free convection atmosphere, which was not possible with conventional gas static thawing, and which kept freshness without drying and rapid thawing.
There are various types of mechanisms for the pressurized airflow fan (26), but when a gas discharge box or a pipe (9) is used, a blowing pressure of a certain level or more is required. There are various types of gas pressurizers, etc., but when blowing directly into the treatment tank (5), the turbofan, sirocco fan, etc. are solid in consideration of the static pressure. Is fine.
The pressurized airflow fan (23) is attached to the perforated partition wall (19) having a processing hole (5) and a conduction hole by separately providing a through hole having a discharge port diameter of one or a plurality of pressurized airflow fans (23). Although it is opened and installed, the removable filter screen (20) used for the underwater defroster is naturally removed.
The perforated partition wall (19) can be stored separately as a perforated partition wall (19) fitted with a pressurized airflow fan (23) for an air defroster if it can be inserted, lifted and removed in the same manner as the filtration net (20). It is desirable to do.
The treatment tank lid (21) is a turbulent flow of the pressurized air flow fan (23) in the treatment tank (5), and the anaerobic gas (3) is scattered outside the treatment tank so that aerobic air enters. In addition, it is necessary to install the treatment tank lid (21) in order to prevent contact and mixing of the oxygen-free gas (3) in the water treatment tank (5) and the aerobic air in the place where the air current is intense.
If the material of the inner wall (22) of the processing tank is strictly considered, the humidified oxygen-free gas (3) emits an ultrasonic wave with a shock wave that collides with any substance in the processing tank (5) by the pressurized airflow fan (23). For this reason, it is desirable to use stainless steel with a reverberation function, but it may be made of resin for mass production including household use.
The low temperature oxygen-free gas liquid (2) and oxygen-free gas (3) use -196 ° C ultra-low temperature liquefied nitrogen gas, ultra-low temperature liquefied carbon dioxide gas, other liquefied gas, etc. It is possible to use other oxygen-free gases as long as there is no such difference between food hygiene and price.
By blowing the oxygen-free gas (3) humidified by the pressurized airflow fan (23) onto the workpiece (7) loaded in the oxygen-free gas space (17) in the treatment tank (5), A kind of low-frequency shock wave is generated on the surface of the object to be processed (7), and in the oxygen-free humidified gas space, air waves of the composite wavelength amplitude are generated in the air. And, by injecting low temperature oxygen-free gas (3), the temperature in the processing tank (5) becomes a cool temperature around 5 ° C, and depending on the thermal conductivity of the object to be processed (7), release of hydrogen bond freezing It has a large effect on the action, and rapid freshness maintenance thawing became possible.
Rapid thawing, non-drying thawing, non-oxidation thawing, no drip, freshness maintenance thawing, which cannot be imagined with conventional thawing in a low-temperature, no-airflow static space, from portable homes to small stores, large-scale It is a low-temperature liquefied gas in-air thawing machine that has the same mechanism and is simple and inexpensive up to mass processing.
In the above-mentioned thawing in water and in the air with low-temperature liquefied gas, both selective use is suitable for ingredients suitable for thawing underwater, such as fresh fish, vegetables, fruits, etc. Quick thawing to maintain freshness with energy from underwater explosion.
In addition, foods that are not suitable for underwater thawing are thawed in the air, for example, chilled blocks of frozen chili coconuts, frozen confectionery, etc. are thawed, and rapid thawing is performed with oxygen-free low-temperature humidified wind.
Selection of both the oxygen-free gas liquid (2) and oxygen-free gas (3) introduced from the low-temperature oxygen-free liquefied gas storage tank (1), and in the case of oxygen-free gas liquid (2), it is extremely low temperature. In the case of underwater freezing, if antifreeze water (27) is obtained by adding ethyl alcohol, chilled processing and the operation and stop of an oxygen-free gas underwater bubble (11) in the temperature range of -20 ° C to -35 ° C will result in an underwater explosion. Overlap of operation and stop of sonic wave and cavitation energy, as much as possible, the outside of the object to be treated (7) and the core can be frozen at the same time. In the case of an air refrigerator, the inside of the treatment tank (5) Low-temperature liquefaction that can be chilled and combined with excellent freshness without introducing the low-temperature drying for ultra-rapid freezing by simply introducing the oxygen-free gas liquid (2) and spraying it onto the workpiece (7) Multipurpose thawing machine in water and in the air.
家庭用及び業務用の冷凍冷蔵庫内に、冷蔵庫装填解凍機(28)として装填される、請求項1記載の低温液化ガスによる水中及び気中の多目的解凍機。  The multipurpose defroster in water and in the air with a low-temperature liquefied gas according to claim 1, wherein the multipurpose defroster is loaded into a refrigerator refrigerator for home use and for business use as a refrigerator defroster (28). ポ−タ−ブル小型機種では、レジャ−ボ−ト、キャンピングカ−、及び魚釣り道具の一つとして、ブロック冷凍しか販売していない撒き餌アミエビの釣り場所での解凍にも使用出来るレジャ−用解凍機(29)の、請求項1記載の低温液化ガスによる水中及び気中の多目的解凍機。  In portable portable models, as a leisure boat, camping car, and fishing tool, a thawer for leisure that can also be used for thawing the bait shrimp that only sells block freezing at fishing locations (29) The multipurpose defroster in water and in the air by the low-temperature liquefied gas of Claim 1.
JP2009213713A 2009-08-24 2009-08-24 Multipurpose thawing machine in water and in air by low-temperature liquefied gas Pending JP2011041559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009213713A JP2011041559A (en) 2009-08-24 2009-08-24 Multipurpose thawing machine in water and in air by low-temperature liquefied gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009213713A JP2011041559A (en) 2009-08-24 2009-08-24 Multipurpose thawing machine in water and in air by low-temperature liquefied gas

Publications (1)

Publication Number Publication Date
JP2011041559A true JP2011041559A (en) 2011-03-03

Family

ID=43829478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009213713A Pending JP2011041559A (en) 2009-08-24 2009-08-24 Multipurpose thawing machine in water and in air by low-temperature liquefied gas

Country Status (1)

Country Link
JP (1) JP2011041559A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109469999A (en) * 2018-12-19 2019-03-15 广州极速制冷设备有限公司 A kind of intelligent multifunctional molecule is quick-frozen, molecule is fresh-keeping, molecule defrozing silo
JP2020193733A (en) * 2019-05-24 2020-12-03 富士電機株式会社 Thawing device
EP3914093A4 (en) * 2019-01-22 2022-10-05 Junia Alva Methods and apparatuses for tempering organic products

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109469999A (en) * 2018-12-19 2019-03-15 广州极速制冷设备有限公司 A kind of intelligent multifunctional molecule is quick-frozen, molecule is fresh-keeping, molecule defrozing silo
EP3914093A4 (en) * 2019-01-22 2022-10-05 Junia Alva Methods and apparatuses for tempering organic products
JP2020193733A (en) * 2019-05-24 2020-12-03 富士電機株式会社 Thawing device
JP7342421B2 (en) 2019-05-24 2023-09-12 富士電機株式会社 Thawing device

Similar Documents

Publication Publication Date Title
Wu et al. Recent developments in novel freezing and thawing technologies applied to foods
Hu et al. Novel synergistic freezing methods and technologies for enhanced food product quality: A critical review
JP2009058212A (en) Refrigerator-freezer
JP2011041559A (en) Multipurpose thawing machine in water and in air by low-temperature liquefied gas
AU2006226728B2 (en) System and method for transporting live aquatic animals
WO2010076886A1 (en) Multifunctional apparatus for cold processing of organic materials
CN101734445A (en) Hermetically fresh-keeping container utensil with cold sea water
US6691608B1 (en) Frozen food thawing device
Lyu et al. Progress of ice slurry in food industry: application, production, heat and mass transfer
CN102538340A (en) Refrigerator and quick-freezing method thereof
CN108253720A (en) The control method of ice clothing preservation device, refrigerator and refrigerator
CN103843874A (en) High-pressure static fruit fresh-keeping equipment
JP2019097547A (en) Frozen object thaw chamber
CN114403200A (en) Device and method for freezing sausage food materials
JP2009065962A (en) Thawing machine of thawing treatment water circulating jet stream
JP2022080810A (en) Oxygen-free gas multipurpose freezing and thawing machine
CN211739608U (en) Fishing boat instant freezer and fishing boat
JP2009065956A (en) Thawing machine for bubble water jet stream
CN215189134U (en) Novel fruit and vegetable fresh-keeping tray
JP2009065958A (en) Thawing machine of thawing treatment water circulating jet stream
JP3193891U (en) Storage tank system with nitrogen gas injection device
US20220404093A1 (en) Hybrid mobile shellfish cooling system
JP2018192260A (en) Hemolysis-suppressing cryopreservation method, fresh fish cryopreservation method, and refrigerator
CN208059374U (en) A kind of micro- jelly device of prawn with sterilizing function
JP2007309556A (en) Refrigeration apparatus and refrigerating method