JP2011040668A - Optical semiconductor device - Google Patents

Optical semiconductor device Download PDF

Info

Publication number
JP2011040668A
JP2011040668A JP2009188967A JP2009188967A JP2011040668A JP 2011040668 A JP2011040668 A JP 2011040668A JP 2009188967 A JP2009188967 A JP 2009188967A JP 2009188967 A JP2009188967 A JP 2009188967A JP 2011040668 A JP2011040668 A JP 2011040668A
Authority
JP
Japan
Prior art keywords
optical semiconductor
semiconductor device
lead frame
sealing resin
silver plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009188967A
Other languages
Japanese (ja)
Inventor
Katsuyuki Imazawa
克之 今澤
Tsutomu Kashiwagi
努 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2009188967A priority Critical patent/JP2011040668A/en
Priority to KR1020100079072A priority patent/KR20110018840A/en
Priority to TW099127440A priority patent/TWI517454B/en
Publication of JP2011040668A publication Critical patent/JP2011040668A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Led Device Packages (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical semiconductor device that is sealed with a sealing resin, and excellent in durability of reflection efficiency, especially, in a sulfur containing gas environment. <P>SOLUTION: In the optical semiconductor device constituted by connecting and mounting an electrode of an optical semiconductor element to a lead frame in a cup-shaped premolded package molded integrally with the lead frame through a conductive adhesive or conductive wires, and sealing the inside of the premolded package with the sealing resin, the lead frame is coated with silver plating having a surface of ≤0.3 μm in center-line average roughness (Ra) and ≤2 μm in 10-point average roughness (Rz). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光半導体装置に関するもので、詳しくは、硫化ガス雰囲気下での反射効率の耐久性に優れた光半導体装置に関するものである。   The present invention relates to an optical semiconductor device, and more particularly to an optical semiconductor device excellent in durability of reflection efficiency in a sulfur gas atmosphere.

発光ダイオード(LED)等の光半導体素子の被覆保護用樹脂組成物としては、その硬化物が透明性を有することが要求されており、一般にビスフェノールA型エポキシ樹脂又は脂環式エポキシ樹脂等のエポキシ樹脂及び酸無水物系硬化剤からなるエポキシ樹脂組成物が用いられている(特許文献1:特許第3241338号公報、特許文献2:特開平7−25987号公報参照)。しかし、かかるエポキシ樹脂組成物の硬化物は、短波長を有する光線の透過性が低いため、耐光耐久性が低い、或いは光劣化により着色するという問題が生じている。
また、SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物、1分子中に少なくとも2個のSiH基を含有するケイ素化合物、及びヒドロシリル化触媒からなる付加硬化型シリコーン樹脂組成物も提案されている(特許文献3:特開2002−327126号公報、特許文献4:特開2002−338833号公報参照)。しかし、このようなシリコーン樹脂組成物の硬化物は、従来のエポキシ樹脂に比べ、ガス透過性が大きいため、保管環境や使用環境に存在する硫化ガスが透過してしまい、硫化ガスと発光素子パッケージのリードフレームの銀メッキ表面との硫化反応により、銀メッキ面が黒色の硫化銀に変化し、その結果、銀メッキ面での光反射効率が低下し、発光素子の発光強度が経時で劣化してしまい、長期信頼性が維持できない問題が生じている。
As a resin composition for protecting a coating of an optical semiconductor element such as a light emitting diode (LED), the cured product is required to have transparency, and is generally an epoxy such as a bisphenol A type epoxy resin or an alicyclic epoxy resin. An epoxy resin composition comprising a resin and an acid anhydride curing agent is used (see Patent Document 1: Japanese Patent No. 3241338, Patent Document 2: Japanese Patent Laid-Open No. 7-25987). However, the cured product of such an epoxy resin composition has a problem that it has low light resistance or is colored due to light deterioration because of its low transmittance of light having a short wavelength.
And an organic compound containing at least two carbon-carbon double bonds reactive with SiH groups in one molecule, a silicon compound containing at least two SiH groups in one molecule, and a hydrosilylation catalyst. Addition-curable silicone resin compositions have also been proposed (see Patent Document 3: JP 2002-327126 A and Patent Document 4: JP 2002-338833 A). However, the cured product of such a silicone resin composition has a higher gas permeability than conventional epoxy resins, so that the sulfide gas existing in the storage environment and the use environment permeates, and the sulfide gas and the light emitting device package. As a result of the sulfurization reaction with the silver plating surface of the lead frame, the silver plating surface changes to black silver sulfide. As a result, the light reflection efficiency on the silver plating surface decreases and the light emission intensity of the light emitting element deteriorates over time. As a result, there is a problem that long-term reliability cannot be maintained.

特許第3241338号公報Japanese Patent No. 3241338 特開平7−25987号公報JP 7-25987 A 特開2002−327126号公報JP 2002-327126 A 特開2002−338833号公報JP 2002-338833 A

本発明は、上記事情に鑑みなされたもので、硫化ガス雰囲気下での反射効率の耐久性に優れた光半導体装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an optical semiconductor device excellent in durability of reflection efficiency in a sulfurized gas atmosphere.

本発明者らは、上記目的を達成するため、鋭意検討を行なった結果、光半導体装置に使用する銀メッキされたリードフレームの表面粗さがある値以上になると、封止樹脂であるシリコーン樹脂がその銀メッキ表面の凹凸面に侵入できず、空隙が残存した状態で封止樹脂と銀メッキ表面が接着してしまうため、このような光半導体装置が硫化ガスの存在する雰囲気で放置された場合、硫化ガスが封止樹脂を透過し、銀メッキ表面と封止樹脂の界面に存在する空隙に溜まり銀メッキ表面の硫化反応を引き起こすと共に、その硫化反応が銀メッキ表面と封止樹脂の接着を破壊するので、硫化反応に更なる拍車を掛けることを発見した。
そこで、このような硫化反応を防止するために、封止樹脂と銀メッキ表面との界面に空隙がない状態で接着させることが必要であると考え、銀メッキの表面粗度を中心線平均粗さ(Ra):0.3μm以下且つ10点平均粗さ(Rz):2μm以下としたところ、硫化ガス雰囲気下での反射効率の耐久性に優れた光半導体装置が得られることを見出し、本発明を完成するに至った。
In order to achieve the above object, the present inventors have intensively studied, and as a result, when the surface roughness of the silver-plated lead frame used in the optical semiconductor device exceeds a certain value, a silicone resin which is a sealing resin However, since the sealing resin and the silver plating surface adhere to each other with the void remaining, the optical semiconductor device is left in an atmosphere containing sulfur gas. In this case, the sulfurized gas permeates through the sealing resin and accumulates in voids existing at the interface between the silver plating surface and the sealing resin, causing a sulfurization reaction on the silver plating surface, and the sulfurization reaction causes the adhesion between the silver plating surface and the sealing resin. Has been found to spur further sulfurization reactions.
Therefore, in order to prevent such a sulfurization reaction, it is considered necessary to bond the interface between the sealing resin and the silver plating surface with no voids, and the surface roughness of the silver plating is calculated as the centerline average roughness. When the thickness (Ra) is 0.3 μm or less and the 10-point average roughness (Rz) is 2 μm or less, it has been found that an optical semiconductor device having excellent durability of reflection efficiency in a sulfur gas atmosphere can be obtained. The invention has been completed.

即ち、本発明は、下記光半導体装置を提供する。
請求項1:
内部底面にリードフレームが配されるよう一体成形したカップ状のプレモールドパッケージ内部に、光半導体素子の電極を導電性接着剤又は導電性ワイヤーを介して前記リードフレームに接続し、光半導体素子を実装すると共に、前記プレモールドパッケージ内部を封止樹脂で封止した光半導体装置であって、前記リードフレームが中心線平均粗さ(Ra):0.3μm以下且つ10点平均粗さ(Rz):2μm以下の表面を有する銀メッキで被覆されていることを特徴とする光半導体装置。
請求項2:
リードフレームの材質が銅又は銅系合金であることを特徴とする請求項1に記載の光半導体装置。
請求項3:
封止樹脂が、付加硬化型シリコーン樹脂組成物の硬化物であることを特徴とする請求項1又は2に記載の光半導体装置。
That is, the present invention provides the following optical semiconductor device.
Claim 1:
An electrode of the optical semiconductor element is connected to the lead frame via a conductive adhesive or a conductive wire inside a cup-shaped pre-molded package integrally formed so that the lead frame is arranged on the inner bottom surface, and the optical semiconductor element is An optical semiconductor device in which the inside of the pre-mold package is sealed with a sealing resin while the lead frame has a center line average roughness (Ra): 0.3 μm or less and a 10-point average roughness (Rz) An optical semiconductor device coated with silver plating having a surface of 2 μm or less.
Claim 2:
2. The optical semiconductor device according to claim 1, wherein a material of the lead frame is copper or a copper-based alloy.
Claim 3:
The optical semiconductor device according to claim 1, wherein the sealing resin is a cured product of an addition-curable silicone resin composition.

本発明によれば、硫化ガス雰囲気下での反射効率の耐久性に優れた光半導体装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the optical semiconductor device excellent in durability of the reflection efficiency in sulfur gas atmosphere can be provided.

本発明の代表的な光半導体装置の概略断面図である。It is a schematic sectional drawing of the typical optical semiconductor device of this invention. 本発明の代表的な光半導体装置における封止樹脂とリーフレームの銀メッキ表面との界面の状態を表す断面図である。It is sectional drawing showing the state of the interface of the sealing resin in the typical optical semiconductor device of this invention, and the silver plating surface of a lead frame. 従来の代表的な光半導体装置における封止樹脂とリーフレームの銀メッキ表面との界面の状態を表す断面図である。It is sectional drawing showing the state of the interface of the sealing resin and the silver plating surface of a Lee frame in the conventional typical optical semiconductor device.

以下、本発明についてより詳細に説明する。
図1は、本発明の代表的な光半導体装置1の概略断面図である。
本発明の光半導体装置1は、内部底面にリードフレーム6が配されるよう一体成形したカップ状のプレモールドパッケージ2内部に、図示しない光半導体素子3の電極を導電性接着剤4又は導電性ワイヤー5を介して前記リードフレーム6に接続し、光半導体素子3を実装すると共に、前記プレモールドパッケージ2内部を封止樹脂7で封止する光半導体装置1であって、前記リードフレーム6が中心線平均粗さ(Ra):0.3μm以下且つ10点平均粗さ(Rz):2μm以下の表面を有する銀メッキで被覆されているものである。
なお、ここで、上記Ra及びRzは、JIS B 0601(1982)に基づき測定することができる。
Hereinafter, the present invention will be described in more detail.
FIG. 1 is a schematic sectional view of a typical optical semiconductor device 1 of the present invention.
The optical semiconductor device 1 of the present invention has an electrode of an optical semiconductor element 3 (not shown) formed in a cup-shaped pre-molded package 2 integrally formed so that a lead frame 6 is disposed on the inner bottom surface. The optical semiconductor device 1 is connected to the lead frame 6 via a wire 5 to mount the optical semiconductor element 3 and the inside of the premolded package 2 is sealed with a sealing resin 7. Center line average roughness (Ra): 0.3 μm or less and 10-point average roughness (Rz): coated with silver plating having a surface of 2 μm or less.
Here, Ra and Rz can be measured based on JIS B 0601 (1982).

このように、リードフレーム6を、Ra:0.3μm以下且つRz:2μm以下の表面を有する銀メッキで被覆することにより、図2のように、封止樹脂7を前記銀メッキ表面との界面に空隙がない状態で接着させることができるので、このような光半導体装置1を硫化ガスの存在する雰囲気で放置した場合、硫化ガスが封止樹脂7を透過したとしても、硫化ガスが溜まるべく銀メッキ表面と封止樹脂7の界面に空隙がないので、銀メッキ表面の硫化反応は殆ど起こらず、銀メッキ表面と封止樹脂7の接着が破壊されることもない。従って、硫化ガス雰囲気下での反射効率の耐久性に優れた光半導体装置1を得ることができる。   Thus, by covering the lead frame 6 with silver plating having a surface with Ra: 0.3 μm or less and Rz: 2 μm or less, the sealing resin 7 is interfaced with the silver plating surface as shown in FIG. Therefore, when such an optical semiconductor device 1 is left in an atmosphere in which a sulfide gas exists, even if the sulfide gas permeates the sealing resin 7, the sulfide gas should be accumulated. Since there is no gap at the interface between the silver plating surface and the sealing resin 7, the sulfidation reaction on the silver plating surface hardly occurs and the adhesion between the silver plating surface and the sealing resin 7 is not broken. Therefore, it is possible to obtain the optical semiconductor device 1 that is excellent in the durability of the reflection efficiency in the sulfurized gas atmosphere.

一方、銀メッキ表面のRa及びRzが上記値を超えると、封止樹脂7が銀メッキ表面の凹凸面に侵入できず、図3のように、空隙8が残存した状態で封止樹脂と銀メッキ表面を接着してしまうため、このような光半導体装置を硫化ガスの存在する雰囲気で放置した場合、硫化ガスが封止樹脂7を透過し、銀メッキ表面と封止樹脂7の界面に存在する空隙8に溜まり銀メッキ表面の硫化反応を起こすと共に、その硫化反応によって銀メッキ表面と封止樹脂7の接着が破壊されるので、硫化反応に更なる拍車を掛けてしまう。特に、このような銀メッキ表面の硫化反応は黒色の硫化銀を生成する反応であるため、反射効率が著しく劣った光半導体装置となってしまう。   On the other hand, when Ra and Rz on the surface of the silver plating exceed the above values, the sealing resin 7 cannot enter the irregular surface of the surface of the silver plating, and the sealing resin and silver remain in the state where the gap 8 remains as shown in FIG. If such an optical semiconductor device is left in an atmosphere containing sulfide gas because the plating surface is adhered, the sulfide gas passes through the sealing resin 7 and exists at the interface between the silver plating surface and the sealing resin 7. In the void 8 that accumulates, the silver plating surface undergoes a sulfurization reaction, and the adhesion between the silver plating surface and the sealing resin 7 is broken by the sulfuration reaction, which further accelerates the sulfurization reaction. In particular, such a sulfidation reaction on the surface of the silver plating is a reaction that produces black silver sulfide, so that the optical semiconductor device has a remarkably inferior reflection efficiency.

なお、リードフレーム6を被覆する銀メッキ表面のRa及びRzは小さければ小さいほど好ましいが、メッキ技術や表面加工の観点から、それぞれRa:0.03μm以上及びRz:0.1μm以上が現実的である。
このようなRa及びRzを有する銀メッキは、リードフレーム6に、電解メッキ、無電解メッキ、溶融メッキ、真空蒸着メッキ等により銀メッキ処理を施し、必要に応じて、この銀メッキ表面を、化学研磨剤等を染み込ませた研磨布によってバフ研磨し、その値を合わせ込むことによって得られる。
The smaller the Ra and Rz of the silver plating surface covering the lead frame 6, the more preferable. However, from the viewpoint of plating technology and surface processing, Ra: 0.03 μm or more and Rz: 0.1 μm or more are practical, respectively. is there.
In such silver plating having Ra and Rz, the lead frame 6 is subjected to silver plating treatment by electrolytic plating, electroless plating, hot-dip plating, vacuum deposition plating, etc. It is obtained by buffing with a polishing cloth soaked with an abrasive or the like and adjusting the value.

リードフレーム6の本体の材質には、公知のCu、Sn/Cu、Cu/Sn/Bi、及びSn/Ag/Cu等の銅又は銅系合金が、導電性やコストの観点から好ましく用いられる。
また、導電性接着剤4には、公知の銀ペーストが好ましく用いられる。
As the material of the main body of the lead frame 6, known copper, copper-based alloys such as Cu / Sn / Cu, Cu / Sn / Bi, and Sn / Ag / Cu are preferably used from the viewpoint of conductivity and cost.
For the conductive adhesive 4, a known silver paste is preferably used.

そして、光半導体素子3の下面に位置する図示しない電極とその直下に位置する銀メッキリードフレーム6との接続は、導電性接着剤4(銀ペースト)を介して150〜300℃、数分〜数時間で接続され、また、光半導体素子3の上面に位置する図示しない上記電極のカウンター電極と導電性ワイヤー5(Au製等)との接続、及び導電性ワイヤー5と銀メッキリードフレーム6との接続は、公知のワイヤーボンディング法によって接続される。
こうして得られる光半導体素子3を実装したプレモールドパッケージ2内部は、最後に封止樹脂7によって封止され、光半導体装置1となる。
And the connection between the electrode (not shown) located on the lower surface of the optical semiconductor element 3 and the silver-plated lead frame 6 located immediately below is 150 to 300 ° C. for several minutes through the conductive adhesive 4 (silver paste). The connection between the counter electrode of the electrode (not shown) located on the upper surface of the optical semiconductor element 3 and the conductive wire 5 (made of Au, etc.) and the conductive wire 5 and the silver-plated lead frame 6 are connected in a few hours. Are connected by a known wire bonding method.
The inside of the pre-mold package 2 on which the optical semiconductor element 3 obtained in this way is mounted is finally sealed with a sealing resin 7 to form the optical semiconductor device 1.

このような封止樹脂7は、特に、(A)非共有結合性二重結合基を有する有機ケイ素化合物、(B)オルガノハイドロジェンポリシロキサン、及び(C)白金系触媒を必須成分とする付加硬化型シリコーン樹脂組成物が好適に使用される。
(A)成分:
(A)成分には、下記一般式(1):
123SiO−(R45SiO)a−(R67SiO)b−SiR123 (1)
(式中、R1は非共有結合性二重結合基含有一価炭化水素基を示し、R2〜R7はそれぞれ同一又は異種の一価炭化水素基を示し、このうちR4〜R7は、好ましくは脂肪族不飽和結合を除く一価炭化水素基を示し、また、R6及び/又はR7は芳香族一価炭化水素基を示し、0≦a+b≦500、好ましくは10≦a+b≦500の整数であり、0≦a≦500、好ましくは10≦a≦500、0≦b≦250、好ましくは0≦b≦150の整数である。)
で示されるオルガノポリシロキサンを使用することができる。
Such a sealing resin 7 is particularly an addition containing (A) an organosilicon compound having a non-covalent double bond group, (B) an organohydrogenpolysiloxane, and (C) a platinum-based catalyst as essential components. A curable silicone resin composition is preferably used.
(A) component:
The component (A) includes the following general formula (1):
R 1 R 2 R 3 SiO— (R 4 R 5 SiO) a — (R 6 R 7 SiO) b —SiR 1 R 2 R 3 (1)
(In the formula, R 1 represents a non-covalent double bond group-containing monovalent hydrocarbon group, and R 2 to R 7 represent the same or different monovalent hydrocarbon groups, among which R 4 to R 7. Preferably represents a monovalent hydrocarbon group excluding an aliphatic unsaturated bond, and R 6 and / or R 7 represents an aromatic monovalent hydrocarbon group, and 0 ≦ a + b ≦ 500, preferably 10 ≦ a + b ≦ 500, 0 ≦ a ≦ 500, preferably 10 ≦ a ≦ 500, 0 ≦ b ≦ 250, preferably 0 ≦ b ≦ 150.
Can be used.

この場合、R1は炭素数2〜8、特に2〜6のアルケニル基で代表される脂肪族不飽和結合を有し、R2〜R7は炭素数1〜20、特に1〜10の範囲にあるものが好適であり、アルキル基、アルケニル基、アリール基、アラルキル基などが挙げられるが、このうちR4〜R7は好適にはアルケニル基等の脂肪族不飽和結合を除くアルキル基、アリール基、アラルキル基などが挙げられる。また、R6及び/又R7はフェニル基やトリル基などの炭素数6〜12のアリール基等の芳香族一価炭化水素基であることが望ましいものである。 In this case, R 1 has an aliphatic unsaturated bond represented by an alkenyl group having 2 to 8 carbon atoms, particularly 2 to 6 carbon atoms, and R 2 to R 7 have 1 to 20 carbon atoms, particularly 1 to 10 carbon atoms. Are preferably alkyl groups, alkenyl groups, aryl groups, aralkyl groups, etc., among which R 4 to R 7 are preferably alkyl groups other than aliphatic unsaturated bonds such as alkenyl groups, An aryl group, an aralkyl group, etc. are mentioned. R 6 and / or R 7 is preferably an aromatic monovalent hydrocarbon group such as an aryl group having 6 to 12 carbon atoms such as a phenyl group or a tolyl group.

上記一般式(1)のオルガノポリシロキサンは、例えば主鎖を構成する環状ジメチルポリシロキサン、環状ジフェニルポリシロキサン、環状メチルフェニルポリシロキサン等の環状ジオルガノポリシロキサンと、末端基を構成するジビニルテトラメチルジシロキサン、ジメチルテトラビニルジシロキサン、ヘキサビニルジシロキサン、ジフェニルテトラビニルジシロキサン、ジビニルテトラフェニルジシロキサン等のジシロキサンとのアルカリ平衡化反応によって得ることができるが、この場合、通常、シラノール基及びクロル分は含有されない。   The organopolysiloxane of the general formula (1) includes, for example, cyclic diorganopolysiloxanes such as cyclic dimethylpolysiloxane, cyclic diphenylpolysiloxane, and cyclic methylphenylpolysiloxane that constitute the main chain, and divinyltetramethyl that constitutes the terminal group. It can be obtained by alkali equilibration reaction with disiloxanes such as disiloxane, dimethyltetravinyldisiloxane, hexavinyldisiloxane, diphenyltetravinyldisiloxane, divinyltetraphenyldisiloxane, etc. Chlorine content is not contained.

上記一般式(1)のオルガノポリシロキサンとしては、具体的に下記のものが例示される。

Figure 2011040668

(上記式において、k,mは、0≦k+m≦500を満足する整数であり、好ましくは5≦k+m≦250で、0≦m/(k+m)≦0.5を満足する整数である。) Specific examples of the organopolysiloxane of the general formula (1) include the following.
Figure 2011040668

(In the above formula, k and m are integers satisfying 0 ≦ k + m ≦ 500, preferably 5 ≦ k + m ≦ 250, and integers satisfying 0 ≦ m / (k + m) ≦ 0.5.)

(A)成分には、上記一般式(1)の直鎖構造を有するオルガノポリシロキサンの他、必要に応じて、3官能性シロキサン単位、4官能性シロキサン単位等を含む三次元網目構造を有するオルガノポリシロキサンを併用することもできる。   The component (A) has a three-dimensional network structure including a trifunctional siloxane unit, a tetrafunctional siloxane unit, and the like as necessary in addition to the organopolysiloxane having the linear structure of the general formula (1). Organopolysiloxane can also be used in combination.

(A)成分中の非共有結合性二重結合基の含有量は、全一価炭化水素基の1〜50モル%、好ましくは2〜40モル%、より好ましくは5〜30モル%である。非共有結合性二重結合基の含有量が1モル%よりも少ないと硬化物が得られず、50モル%よりも多いと機械的特性が悪くなることがあるため好ましくない。   The content of the non-covalent double bond group in the component (A) is 1 to 50 mol%, preferably 2 to 40 mol%, more preferably 5 to 30 mol% of all monovalent hydrocarbon groups. . If the content of the non-covalent double bond group is less than 1 mol%, a cured product cannot be obtained, and if it is more than 50 mol%, the mechanical properties may be deteriorated.

また、(A)成分中の芳香族基の含有量は、全一価炭化水素基の0〜95モル%、好ましくは10〜90モル%、より好ましくは20〜80モル%である。芳香族基は樹脂中に適量含まれた方が、機械的特性が良く製造もしやすいという利点がある。また、芳香族基の導入により屈折率を制御できることも利点として挙げられる。   Moreover, content of the aromatic group in (A) component is 0-95 mol% of all the monovalent hydrocarbon groups, Preferably it is 10-90 mol%, More preferably, it is 20-80 mol%. When an appropriate amount of the aromatic group is contained in the resin, there is an advantage that the mechanical properties are good and the production is easy. Another advantage is that the refractive index can be controlled by introducing an aromatic group.

(B)成分:
(B)成分には、一分子中にケイ素原子に結合した水素原子を2個以上有するオルガノハイドロジェンポリシロキサンが用いられる。かかるオルガノハイドロジェンポリシロキサンは、架橋剤として作用するもので、該成分中のSiH基と(A)成分のビニル基等の非共有結合性二重結合含有基(典型的にはアルケニル基)とが付加反応することにより、硬化物を形成するものである。
(B) component:
As the component (B), an organohydrogenpolysiloxane having two or more hydrogen atoms bonded to silicon atoms in one molecule is used. Such an organohydrogenpolysiloxane acts as a crosslinking agent, and includes a SiH group in the component and a non-covalent double bond-containing group (typically an alkenyl group) such as a vinyl group in the component (A). Are cured to form a cured product.

また、オルガノハイドロジェンポリシロキサンは、芳香族炭化水素基を有することで、前記(A)成分の非共有結合性二重結合基を有する有機ケイ素化合物が高屈折率の場合に相溶性を高め、透明な硬化物を与えることができる。従って、(B)成分のオルガノハイドロジェンポリシロキサンにおいて、芳香族一価炭化水素基を持ったオルガノハイドロジェンポリシロキサンを、(B)成分の一部又は全部として含ませることができる。   In addition, the organohydrogenpolysiloxane has an aromatic hydrocarbon group, thereby increasing compatibility when the organosilicon compound having a non-covalent double bond group as the component (A) has a high refractive index, A transparent cured product can be provided. Therefore, in the organohydrogenpolysiloxane of the component (B), the organohydrogenpolysiloxane having an aromatic monovalent hydrocarbon group can be included as part or all of the component (B).

また、(B)成分のオルガノハイドロジェンポリシロキサンにおいて、グリシジル構造を持ったオルガノハイドロジェンポリシロキサンを、(B)成分の一部又は全部として含ませることができ、オルガノハイドロジェンポリシロキサンはグリシジル構造含有基を有することで、基板との接着性の高い光半導体用封止樹脂組成物を与えることができる。   Further, in the organohydrogenpolysiloxane of the component (B), the organohydrogenpolysiloxane having a glycidyl structure can be included as a part or all of the component (B), and the organohydrogenpolysiloxane has a glycidyl structure. By having a containing group, a sealing resin composition for optical semiconductors having high adhesiveness to the substrate can be provided.

上記オルガノハイドロジェンポリシロキサンとしては、これらに限られるものではないが、1,1,3,3−テトラメチルジシロキサン、1,3,5,7−テトラメチルシクロテトラシロキサン、トリス(ジメチルハイドロジェンシロキシ)メチルシラン、トリス(ジメチルハイドロジェンシロキシ)フェニルシラン、1−グリシドキシプロピル−1,3,5,7−テトラメチルシクロテトラシロキサン、1,5−グリシドキシプロピル−1,3,5,7−テトラメチルシクロテトラシロキサン、1−グリシドキシプロピル−5−トリメトキシシリルエチル−1,3,5,7−テトラメチルシクロテトラシロキサン、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、トリメトキシシラン重合体、(CH32HSiO1/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位とSiO4/2単位と(C65)SiO3/2単位とからなる共重合体などが挙げられる。 Examples of the organohydrogenpolysiloxane include, but are not limited to, 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, tris (dimethylhydrogen Siloxy) methylsilane, tris (dimethylhydrogensiloxy) phenylsilane, 1-glycidoxypropyl-1,3,5,7-tetramethylcyclotetrasiloxane, 1,5-glycidoxypropyl-1,3,5 7-tetramethylcyclotetrasiloxane, 1-glycidoxypropyl-5-trimethoxysilylethyl-1,3,5,7-tetramethylcyclotetrasiloxane, trimethylsiloxy group-blocked methylhydrogenpolysiloxane, both ends Trimethylsiloxy group-blocked dimethylsiloxa・ Methyl hydrogensiloxane copolymer, dimethylpolysiloxane blocked with dimethylhydrogensiloxy at both ends, dimethylsiloxane blocked with dimethylhydrogensiloxy group at both ends ・ Methylhydrogensiloxane copolymer, methylhydrogensiloxane blocked at both ends with trimethylsiloxy group・ Diphenylsiloxane copolymer, trimethylsiloxy group-blocked methylhydrogensiloxane at both ends ・ Diphenylsiloxane ・ dimethylsiloxane copolymer, trimethoxysilane polymer, (CH 3 ) 2 HSiO 1/2 unit and SiO 4/2 unit And a copolymer composed of (CH 3 ) 2 HSiO 1/2 units, SiO 4/2 units, and (C 6 H 5 ) SiO 3/2 units.

また、下記構造で示される単位を使用して得られるオルガノハイドロジェンポリシロキサンも用いることができる。

Figure 2011040668
Moreover, the organohydrogenpolysiloxane obtained using the unit shown by the following structure can also be used.
Figure 2011040668

このようなオルガノハイドロジェンポリシロキサンとしては下記のものが挙げられる。

Figure 2011040668
Examples of such organohydrogenpolysiloxanes include the following.
Figure 2011040668

このようなオルガノハイドロジェンポリシロキサンの分子構造は、直鎖状、環状、分岐状、三次元網目構造のいずれであってもよいが、一分子中のケイ素原子の数(又は重合度)は2個以上、好ましくは2〜1,000個、より好ましくは2〜300個程度のものを使用することができる。   The molecular structure of such an organohydrogenpolysiloxane may be any of linear, cyclic, branched, and three-dimensional network structures, but the number of silicon atoms (or the degree of polymerization) in one molecule is 2. One or more, preferably 2 to 1,000, more preferably about 2 to 300 can be used.

このようなオルガノハイドロジェンポリシロキサンの配合量は、(A)成分の非共有結合性二重結合基(典型的にはアルケニル基)1個当たり(B)成分中のケイ素原子結合水素原子(SiH基)を0.75〜2.0個与えるに十分な量を含むことが好ましい。   The compounding amount of such an organohydrogenpolysiloxane is such that the silicon atom-bonded hydrogen atom (SiH) in the component (B) per non-covalent double bond group (typically alkenyl group) in the component (A). It is preferable to include an amount sufficient to give 0.75 to 2.0 groups).

(C)成分:
(C)成分には、白金系触媒が用いられる。白金系触媒には塩化白金酸、アルコール変性塩化白金酸、キレート構造を有する白金錯体等が挙げられる。これらは単独でも、2種以上の組み合わせでも使用することができる。
これらの触媒成分の配合量は、硬化有効量であり所謂触媒量でよく、通常、前記(A)及び(B)成分の合計量100質量部当り、白金族金属の質量換算で0.1〜500ppm、特に0.5〜100ppmの範囲で使用される。
(C) component:
As the component (C), a platinum-based catalyst is used. Examples of the platinum-based catalyst include chloroplatinic acid, alcohol-modified chloroplatinic acid, platinum complexes having a chelate structure, and the like. These can be used alone or in combination of two or more.
The compounding amount of these catalyst components is a curing effective amount and may be a so-called catalyst amount, and is usually 0.1 to 0.1 parts by mass in terms of platinum group metal per 100 parts by mass of the total amount of the components (A) and (B). It is used in the range of 500 ppm, especially 0.5-100 ppm.

(D)その他の成分:
本発明に使用する付加硬化型シリコーン樹脂組成物は、上述した(A)〜(C)成分を必須成分とするが、これに必要に応じて各種のシランカップリング剤を添加してもよい。
例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、N−2(アミノエチル)3−アミノプロピルメチルジメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシラン、3−メルカプトプロピルトリメトキシシラン等や、トリメトキシシラン、テトラメトキシシラン及びそのオリゴマー等が挙げられる。これらのシランカップリング剤は、単独でも2種以上混合して使用することも可能である。
シランカップリング剤の配合量は、組成物全体の10質量%以下(0〜10質量%)、特に5質量%以下(0〜5質量%)程度配合することが好ましい。
(D) Other ingredients:
The addition-curable silicone resin composition used in the present invention contains the above-described components (A) to (C) as essential components, and various silane coupling agents may be added thereto as necessary.
For example, vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3- Glycidoxypropyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, N-2 (amino Ethyl) 3-aminopropylmethyldimethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxy Run, 3-aminopropyltriethoxysilane, N- phenyl-3-aminopropyl trimethoxysilane, and 3-mercaptopropyl trimethoxysilane, trimethoxysilane, tetramethoxysilane and oligomers thereof, and the like. These silane coupling agents can be used alone or in combination of two or more.
The blending amount of the silane coupling agent is preferably 10% by mass or less (0 to 10% by mass), particularly 5% by mass or less (0 to 5% by mass) of the entire composition.

また、本発明に使用する付加硬化型シリコーン樹脂組成物には、光半導体装置の性能を悪化させない範囲で必要に応じて、例えば、酸化防止剤としてBHT、ビタミンB等や、公知の変色防止剤、例えば有機リン系変色防止剤等や、ヒンダードアミンのような光劣化防止剤等や、反応性希釈剤としてビニルエーテル類、ビニルアミド類、エポキシ樹脂、オキセタン類、アリルフタレート類、アジピン酸ビニル等や、ヒュームドシリカや沈降性シリカ等の補強性充填材、難燃性向上剤、蛍光体、有機溶剤等を添加して封止樹脂組成物としてもよい。また、着色成分により着色しても構わない。   In addition, the addition curable silicone resin composition used in the present invention may include, for example, BHT or vitamin B as an antioxidant, or a known discoloration inhibitor as long as it does not deteriorate the performance of the optical semiconductor device. For example, organic phosphorus-based discoloration inhibitors, photodegradation inhibitors such as hindered amines, etc., reactive ethers such as vinyl ethers, vinyl amides, epoxy resins, oxetanes, allyl phthalates, vinyl adipates, etc. A sealing resin composition may be prepared by adding a reinforcing filler such as silica or precipitated silica, a flame retardant, a phosphor, an organic solvent, or the like. Moreover, you may color with a coloring component.

付加硬化型シリコーン樹脂組成物の調製方法等:
付加硬化型シリコーン樹脂組成物は、上記(A)〜(C)成分、及び所望の上記その他の(D)成分を同時に、又は別々に必要により加熱処理を加えながら撹拌、溶解、混合、及び分散させることにより得ることができる。
これらの操作に用いる装置は特に限定されないが、撹拌、加熱装置を備えたライカイ機、3本ロール、ボールミル、プラネタリーミキサー等を用いることができる。また、これら装置を適宜組み合わせてもよい。
Preparation method of addition curable silicone resin composition:
The addition-curable silicone resin composition is prepared by stirring, dissolving, mixing, and dispersing the components (A) to (C) and the desired other component (D) at the same time or separately while applying heat treatment as necessary. Can be obtained.
Although the apparatus used for these operations is not particularly limited, a lykai machine equipped with a stirring and heating apparatus, a three roll, a ball mill, a planetary mixer, and the like can be used. Moreover, you may combine these apparatuses suitably.

このようにして得られる付加硬化型シリコーン樹脂組成物は、光半導体装置の封止に用いられるもので、光半導体素子としては、LED、フォトダイオード、CCD、CMOS、フォトカプラなどが挙げられ、特にLEDの封止に有効である。   The addition curable silicone resin composition thus obtained is used for sealing an optical semiconductor device, and examples of the optical semiconductor element include LED, photodiode, CCD, CMOS, photocoupler, etc. It is effective for LED sealing.

封止方法としては、発光素子の種類に応じた公知の方法が採用され、付加硬化型シリコーン樹脂組成物の硬化条件は、室温(20〜30℃)から200℃程度までの温度範囲で、数十秒から数日間程度の時間範囲を採用できるが、硬化品質や作業性等の観点から、80〜180℃の温度範囲で1分程度から10時間程度の時間範囲とすることが好ましい。   As a sealing method, a known method according to the type of the light-emitting element is adopted, and the curing conditions of the addition-curable silicone resin composition are in a temperature range from room temperature (20 to 30 ° C.) to about 200 ° C. Although a time range of about 10 seconds to several days can be adopted, it is preferable to set the time range from about 1 minute to about 10 hours at a temperature range of 80 to 180 ° C. from the viewpoint of curing quality, workability, and the like.

このようにして得られる付加硬化型シリコーン樹脂組成物の硬化物で封止された光半導体装置は、上記表面粗さを有する銀メッキリードフレームと相俟って、耐熱、耐湿、耐光性に優れ、硫化ガス雰囲気下において、反射板の役割も果たす銀メッキ表面を変色することなく、その結果、反射効率の耐久性に優れた光半導体装置を提供することが可能となる。   The optical semiconductor device encapsulated with the cured product of the addition-curable silicone resin composition thus obtained is excellent in heat resistance, moisture resistance, and light resistance in combination with the silver-plated lead frame having the above surface roughness. As a result, it is possible to provide an optical semiconductor device excellent in durability of reflection efficiency without discoloring the surface of the silver plating that also serves as a reflector in a sulfur gas atmosphere.

以下、実施例及び比較例に基づき、本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。以下の例において、部は質量部を示す。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example and a comparative example, this invention is not limited to the following Example. In the following examples, parts indicate parts by mass.

[実施例1]
表面粗さ(Ra,Rz)=(0.05μm,0.5μm)を有する銀メッキリードフレーム6とソルベイ社製の熱可塑性樹脂を用いて、射出成形法により、図1に示すような銀メッキリードフレーム6と一体成形した断面が凹形状の底面を有するプレモールドパッケージ2を作製した。
次いで、プレモールドパッケージ2の底面の銀メッキリードフレーム6上に、LEDチップ3として主発光ピークが460nmのInGaN半導体をマウントし、その両電極を銀ペースト4及び金線5を介してそれぞれの銀メッキリードフレーム6に接続して、樹脂封止前のLED装置とした。なお、銀ペーストの硬化条件及び金線の接続方法(ワイヤーボンディング方法)は公知の方法に従った。
更に、下記(i)式で示される両末端ビニルジメチルシロキシ基封鎖ジメチルポリシロキサン100部に、下記(ii)式で示されるオルガノハイドロジェンポリシロキサンを、(i)式中のビニル基に対する(ii)式中のSiH基のモル比が1.5となる量に配合し、これに塩化白金酸のオクチルアルコール変性溶液を0.05部配合して、よく撹拌して付加硬化型シリコーン樹脂組成物を調製すると共に、前記樹脂封止前のLED装置の凹部に流し込み、150℃、4時間の条件で硬化させ、封止樹脂7として封止し、LED装置1を完成させた。
[Example 1]
Silver plating as shown in FIG. 1 is performed by injection molding using a silver plating lead frame 6 having surface roughness (Ra, Rz) = (0.05 μm, 0.5 μm) and a thermoplastic resin manufactured by Solvay. A premold package 2 having a bottom surface with a concave cross section formed integrally with the lead frame 6 was produced.
Next, an InGaN semiconductor having a main emission peak of 460 nm is mounted as the LED chip 3 on the silver-plated lead frame 6 on the bottom surface of the pre-mold package 2, and both electrodes are connected to the respective silver via the silver paste 4 and the gold wire 5. It was connected to the plating lead frame 6 to obtain an LED device before resin sealing. In addition, the hardening conditions of a silver paste and the connection method (wire bonding method) of a gold wire followed the well-known method.
Furthermore, an organohydrogenpolysiloxane represented by the following formula (ii) is added to 100 parts of both-end vinyldimethylsiloxy-blocked dimethylpolysiloxane represented by the following formula (i) with respect to the vinyl group in the formula (ii): (ii) ) In the formula, the molar ratio of SiH groups is 1.5, and 0.05 parts of octyl alcohol-modified solution of chloroplatinic acid is added to this, and the mixture is well agitated, followed by addition-curable silicone resin composition. Was prepared, poured into the recesses of the LED device before resin sealing, cured at 150 ° C. for 4 hours, and sealed as a sealing resin 7 to complete the LED device 1.

Figure 2011040668
(但し、L=450)
Figure 2011040668
(However, L = 450)

Figure 2011040668
(但し、L=10、M=8)
Figure 2011040668
(However, L = 10, M = 8)

[実施例2,3]
表面粗さ(Ra,Rz)=(0.10μm,0.8μm)及び(0.2μm,1.5μm)を有する銀メッキリードフレーム6を用いた以外は、実施例1と全く同様にLED装置1を完成させた。これらを、それぞれ実施例2,3とした。
[Examples 2 and 3]
An LED device exactly as in Example 1 except that a silver-plated lead frame 6 having surface roughness (Ra, Rz) = (0.10 μm, 0.8 μm) and (0.2 μm, 1.5 μm) was used. 1 was completed. These were designated as Examples 2 and 3, respectively.

[比較例1,2]
表面粗さ(Ra,Rz)=(0.35μm,2.5μm)及び(0.5μm,3.5μm)を有する銀メッキリードフレームを用いた以外は、実施例1と全く同様にLED装置を完成させた。これらを、それぞれ比較例1,2とした。
[Comparative Examples 1 and 2]
The LED device was fabricated in the same manner as in Example 1 except that a silver-plated lead frame having surface roughness (Ra, Rz) = (0.35 μm, 2.5 μm) and (0.5 μm, 3.5 μm) was used. Completed. These were designated as Comparative Examples 1 and 2, respectively.

このようにして得られた実施例1〜3及び比較例1,2の各LED装置を、硫化水素ガス発生容器(濃度:30ppm)内に入れて密封、放置し、25mAの電流を流して点灯させながら、0,10,30,50及び100hr毎に各LED装置の基板(リードフレーム)表面の外観観察及び初期発光強度に対する発光強度の減衰率を測定した。
結果を表1に示す。
The LED devices of Examples 1 to 3 and Comparative Examples 1 and 2 thus obtained were sealed in a hydrogen sulfide gas generation container (concentration: 30 ppm), left to stand, and turned on with a current of 25 mA. The appearance intensity of the substrate (lead frame) surface of each LED device was observed every 0, 10, 30, 50, and 100 hours, and the decay rate of the emission intensity with respect to the initial emission intensity was measured.
The results are shown in Table 1.

Figure 2011040668
Figure 2011040668

実施例1〜3では、硫化水素ガス発生容器内に100時間放置してもLED装置の基板(銀メッキリードフレーム)の硫化による黒化は起こらず、発光強度の低下も殆ど起こらなかった。
しかし、比較例1では、10時間放置後、LED装置基板(銀メッキリードフレーム)の硫化による黒化が観察され、発光強度が10%も低下した。更に、銀メッキの面粗さが粗い比較例2では、10時間放置後、基板の硫化により発光強度が15%も低下し、100時間後には、初期の64%の発光強度まで低下した。
In Examples 1 to 3, even when left in a hydrogen sulfide gas generation container for 100 hours, the LED device substrate (silver-plated lead frame) was not blackened due to sulfuration, and the emission intensity was hardly reduced.
However, in Comparative Example 1, after standing for 10 hours, blackening due to sulfuration of the LED device substrate (silver-plated lead frame) was observed, and the emission intensity was reduced by 10%. Further, in Comparative Example 2 in which the surface roughness of the silver plating was rough, the light emission intensity decreased by 15% due to the sulfuration of the substrate after standing for 10 hours, and after 100 hours, the light emission intensity decreased to the initial light emission intensity of 64%.

1 光半導体装置
2 プレモールドパッケージ
3 光半導体素子
4 導電性接着剤
5 導電性ワイヤー
6 リードフレーム(銀メッキ済)
7 封止樹脂
8 空隙
DESCRIPTION OF SYMBOLS 1 Optical semiconductor device 2 Premold package 3 Optical semiconductor element 4 Conductive adhesive 5 Conductive wire 6 Lead frame (silver plated)
7 Sealing resin 8 Air gap

Claims (3)

内部底面にリードフレームが配されるよう一体成形したカップ状のプレモールドパッケージ内部に、光半導体素子の電極を導電性接着剤又は導電性ワイヤーを介して前記リードフレームに接続し、光半導体素子を実装すると共に、前記プレモールドパッケージ内部を封止樹脂で封止した光半導体装置であって、前記リードフレームが中心線平均粗さ(Ra):0.3μm以下且つ10点平均粗さ(Rz):2μm以下の表面を有する銀メッキで被覆されていることを特徴とする光半導体装置。   An electrode of the optical semiconductor element is connected to the lead frame via a conductive adhesive or a conductive wire inside a cup-shaped pre-molded package integrally formed so that the lead frame is arranged on the inner bottom surface, and the optical semiconductor element is An optical semiconductor device in which the inside of the pre-mold package is sealed with a sealing resin while the lead frame has a center line average roughness (Ra): 0.3 μm or less and a 10-point average roughness (Rz) An optical semiconductor device coated with silver plating having a surface of 2 μm or less. リードフレームの材質が銅又は銅系合金であることを特徴とする請求項1に記載の光半導体装置。   2. The optical semiconductor device according to claim 1, wherein a material of the lead frame is copper or a copper-based alloy. 封止樹脂が、付加硬化型シリコーン樹脂組成物の硬化物であることを特徴とする請求項1又は2に記載の光半導体装置。   The optical semiconductor device according to claim 1, wherein the sealing resin is a cured product of an addition-curable silicone resin composition.
JP2009188967A 2009-08-18 2009-08-18 Optical semiconductor device Pending JP2011040668A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009188967A JP2011040668A (en) 2009-08-18 2009-08-18 Optical semiconductor device
KR1020100079072A KR20110018840A (en) 2009-08-18 2010-08-17 Optical semiconductor device
TW099127440A TWI517454B (en) 2009-08-18 2010-08-17 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009188967A JP2011040668A (en) 2009-08-18 2009-08-18 Optical semiconductor device

Publications (1)

Publication Number Publication Date
JP2011040668A true JP2011040668A (en) 2011-02-24

Family

ID=43768109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009188967A Pending JP2011040668A (en) 2009-08-18 2009-08-18 Optical semiconductor device

Country Status (3)

Country Link
JP (1) JP2011040668A (en)
KR (1) KR20110018840A (en)
TW (1) TWI517454B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011101A (en) * 2015-06-22 2017-01-12 Shマテリアル株式会社 Led package, lead frame for multi-column led, and manufacturing method thereof
US9570380B2 (en) 2014-10-24 2017-02-14 Stmicroelectronics S.R.L. Electronic device provided with an encapsulation structure with improved electric accessibility and method of manufacturing the electronic device
JPWO2018225809A1 (en) * 2017-06-09 2020-04-09 デンカ株式会社 Ceramic circuit board
US11894290B2 (en) 2020-04-17 2024-02-06 Stmicroelectronics S.R.L. Packaged stackable electronic power device for surface mounting and circuit arrangement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5893874B2 (en) 2011-09-02 2016-03-23 信越化学工業株式会社 Optical semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252168A (en) * 2004-03-08 2005-09-15 Nichia Chem Ind Ltd Surface mount light emitting device
JP2005303012A (en) * 2004-04-12 2005-10-27 Sumitomo Electric Ind Ltd Semiconductor light emitting element mount member and semiconductor light emitting device using it
JP2006228856A (en) * 2005-02-16 2006-08-31 Ngk Spark Plug Co Ltd Wiring board for packaging light emitting device
JP2007063538A (en) * 2005-08-03 2007-03-15 Shin Etsu Chem Co Ltd Addition curing-type silicone resin composition for light emitting diode
JP2008016593A (en) * 2006-07-05 2008-01-24 Ngk Spark Plug Co Ltd Wiring board for mounting light emitting element
JP2009117833A (en) * 2007-11-08 2009-05-28 Shin Etsu Chem Co Ltd Silicone resin for protecting light transmitting surface of optoelectronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252168A (en) * 2004-03-08 2005-09-15 Nichia Chem Ind Ltd Surface mount light emitting device
JP2005303012A (en) * 2004-04-12 2005-10-27 Sumitomo Electric Ind Ltd Semiconductor light emitting element mount member and semiconductor light emitting device using it
JP2006228856A (en) * 2005-02-16 2006-08-31 Ngk Spark Plug Co Ltd Wiring board for packaging light emitting device
JP2007063538A (en) * 2005-08-03 2007-03-15 Shin Etsu Chem Co Ltd Addition curing-type silicone resin composition for light emitting diode
JP2008016593A (en) * 2006-07-05 2008-01-24 Ngk Spark Plug Co Ltd Wiring board for mounting light emitting element
JP2009117833A (en) * 2007-11-08 2009-05-28 Shin Etsu Chem Co Ltd Silicone resin for protecting light transmitting surface of optoelectronic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9570380B2 (en) 2014-10-24 2017-02-14 Stmicroelectronics S.R.L. Electronic device provided with an encapsulation structure with improved electric accessibility and method of manufacturing the electronic device
JP2017011101A (en) * 2015-06-22 2017-01-12 Shマテリアル株式会社 Led package, lead frame for multi-column led, and manufacturing method thereof
JPWO2018225809A1 (en) * 2017-06-09 2020-04-09 デンカ株式会社 Ceramic circuit board
JP7420555B2 (en) 2017-06-09 2024-01-23 デンカ株式会社 ceramic circuit board
US11894290B2 (en) 2020-04-17 2024-02-06 Stmicroelectronics S.R.L. Packaged stackable electronic power device for surface mounting and circuit arrangement

Also Published As

Publication number Publication date
TW201119101A (en) 2011-06-01
KR20110018840A (en) 2011-02-24
TWI517454B (en) 2016-01-11

Similar Documents

Publication Publication Date Title
EP2508569B1 (en) Silicone resin composition and optical semiconductor device using the composition
JP5893874B2 (en) Optical semiconductor device
JP5170471B2 (en) Low gas permeable silicone resin composition and optical semiconductor device
JP5971835B2 (en) Curable silicone resin composition and light emitting diode device using the same
JP5414337B2 (en) Method for sealing optical semiconductor device
KR101722089B1 (en) Curable organopolysiloxane composition and optical semiconductor device
CN103173020B (en) High reliability curable silicone resin composition and the luminescent semiconductor device using said composition
JP5640476B2 (en) Resin composition for sealing optical semiconductor element and light emitting device
US7592399B2 (en) Epoxy/silicone hybrid resin composition and optical semiconductor device
JP6245136B2 (en) Silicone resin composition for optical semiconductor element sealing and optical semiconductor device
EP2809726A1 (en) Curable silicone composition, cured product thereof, and optical semiconductor device
TWI762515B (en) Curable silicone composition, cured product thereof, and optical semiconductor device
CN110382625B (en) Curable organopolysiloxane composition and semiconductor device
EP3101062A1 (en) Nanoparticle, method for producing nanoparticle, addition curing silicone resin composition, and semiconductor apparatus
JP2011009346A (en) Optical semiconductor device
JP2011040668A (en) Optical semiconductor device
TWI791554B (en) Curable organopolysiloxane composition and optical semiconductor device
JP5941974B2 (en) Optical semiconductor device
CN111607231B (en) Addition curing type silicone composition, silicone cured product for light reflecting material, and optical semiconductor device
KR20240137471A (en) High thixotropic curable silicone composition and cured product thereof
JP2022104216A (en) Curable silicone composition, sealant, and photo-semiconductor device
JP2022178085A (en) Curable silicone composition, sealing agent and optical semiconductor device
JP2013153175A (en) Method for suppressing discoloration of sealing resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029