JP2011037654A - Far infrared radiation mineral ball and method for producing the same - Google Patents

Far infrared radiation mineral ball and method for producing the same Download PDF

Info

Publication number
JP2011037654A
JP2011037654A JP2009185066A JP2009185066A JP2011037654A JP 2011037654 A JP2011037654 A JP 2011037654A JP 2009185066 A JP2009185066 A JP 2009185066A JP 2009185066 A JP2009185066 A JP 2009185066A JP 2011037654 A JP2011037654 A JP 2011037654A
Authority
JP
Japan
Prior art keywords
far
porcelain
infrared radiation
core
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009185066A
Other languages
Japanese (ja)
Inventor
Kazuyasu Takagi
和安 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009185066A priority Critical patent/JP2011037654A/en
Publication of JP2011037654A publication Critical patent/JP2011037654A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radiation-Therapy Devices (AREA)
  • Cosmetics (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mineral ball which purifies drinking water, mellows the taste of various food and drinks, functions also as the deodorant of a refrigerator, and has excellent far infrared radiation properties, moisture retention, deodorization properties or the like, and to provide a method for producing the same. <P>SOLUTION: The mineral ball is made of ball-shaped ceramic ware obtained by applying a glaze comprising a far-infrared ray radiating material of ultrafine particles to the surface of the core of spherical bisquit made of china clay comprising crushed natural far-infrared ray radiating rock of serpentine, amphibolite or the like, has an outer diameter of 20 to 30 nm, and radiates far infrared rays. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、飲料水を浄化し、お風呂に入れることによってさらに体を暖かにし、また、冷蔵庫の脱臭剤としても機能する遠赤外放射性、保湿性、脱臭性等に優れた鉱物質ボールとその製造方法に関する。   The present invention purifies drinking water, further warms the body by taking a bath, and also has a far-infrared radiation, moisture retention, deodorization, etc. that function as a deodorizer for refrigerators. It relates to the manufacturing method.

従来から、遠赤外線を放射する物質として、例えば、下記の特許文献に開示されているように、特定組成のセラミックスが、加湿効果、入浴時の加温効果、人体の治療効果があることが知られている。   Conventionally, as a substance that emits far-infrared rays, for example, as disclosed in the following patent document, ceramics with a specific composition are known to have a humidifying effect, a warming effect during bathing, and a therapeutic effect on the human body. It has been.

ところが、セラミックス自体を硬質であるため微細粉末とするのが困難であり、球状への成形が困難であるため使い勝手が悪く、また、その焼成温度が高いという製造上の欠点があり、各種家庭用に適した高い遠赤外線を有する球状体を安価に得ることはできない。   However, since the ceramic itself is hard, it is difficult to make it into a fine powder, and it is difficult to form into a spherical shape, so it is not easy to use and has a manufacturing defect of high firing temperature. It is not possible to obtain a spherical body having a high far-infrared ray suitable for use at low cost.

特開平11−290411号公報JP-A-11-290411 特開2001−346852号公報JP 2001-346852 A 特開2008−136834号公報JP 2008-136834 A 特許第3686577号Japanese Patent No. 3686577

本発明は、飲料水を浄化し、各種飲食物の味をまろやかにし、冷蔵庫の脱臭剤としても機能する遠赤外放射性、保湿性、脱臭性等に優れた鉱物質ボールとその製造方法を提供する。   The present invention provides a mineral ball that purifies drinking water, softens the taste of various foods and drinks, and functions as a deodorizer for refrigerators and has excellent far-infrared radiation, moisture retention, deodorization, and the like, and a method for producing the same To do.

本発明は、天然の遠赤外線放射岩石を含有した陶土からなる球状の素焼き芯体表面に、超微粒の遠赤外線放射物質を含有する釉薬を施した外径が20〜30mmの遠赤外線を放射するボール状焼き物である。   The present invention radiates far-infrared rays having an outer diameter of 20 to 30 mm in which a glaze containing ultrafine far-infrared radiation material is applied to the surface of a spherical unglazed core made of porcelain clay containing natural far-infrared radiation rocks. It is a ball-shaped pottery.

天然の遠赤外線放射物質としては、破砕した蛇紋石、角閃石等を使用できる。破砕した蛇紋石、角閃石等は、その角ばったへき面を有し、陶土中に均一に分散でき、また、その粉砕の程度が数μm径以上であっても、分散の度合いがさほど均一がでなくとも、通常の陶土の素焼きの程度で、通常の使用の状態の下での強度は得られる。   As the natural far-infrared emitting material, crushed serpentine, amphibole and the like can be used. Crushed serpentine, amphibole, etc. have a squared surface and can be uniformly dispersed in the clay, and even if the degree of pulverization is several μm or more, the degree of dispersion is much more uniform. Even if it is not, the intensity | strength under the condition of normal use is obtained by the grade of the unglazed ceramic clay.

この素焼きの芯体の表面には、ナノメーターオーダーの超微粉状の遠赤外線放射物質を含有する釉薬を数ミクロンの厚みに施したのち、通常の釉薬の焼成温度1150〜1260℃で焼成する。   On the surface of the unglazed core, a glaze containing a nanometer-order ultrafine powdered far-infrared emitting material is applied to a thickness of several microns, and then fired at a normal glaze firing temperature of 1150 to 1260 ° C. .

陶土に遠赤外線を放出する鉱物質粉末を混ぜて球状の芯体を成形し、これの素焼きに際しての安定性を得るために底を平らにし、ここの底部を除いて、ナノオーダーの超微粒遠赤外線放射物質を含有する釉薬中に浸漬して釉薬を施し、焼成して作製する。   Mixing mineral powder that emits far-infrared rays with porcelain to form a spherical core, flatten the bottom to obtain stability during unglazed firing, and remove nano-order ultrafine particles far from the bottom. It is prepared by dipping in a glaze containing an infrared emitting substance, applying the glaze, and firing.

本発明において、芯体の製造のために陶土に配合する遠赤外線を放射する自然鉱石としては、蛇紋岩、角閃石等が使用できる。   In the present invention, serpentinite, amphibole, and the like can be used as natural ores that emit far-infrared rays to be blended with porcelain for the production of the core.

また、本発明は、特許文献4に開示された記載の1〜100nm径の超微相寸法のナノ複合体粒子が、赤外線放射性を有し、通常の陶磁器類の施釉中に良く分散することを見出したことによる。   In addition, the present invention is that the nanocomposite particles having an ultrafine phase size of 1 to 100 nm described in Patent Document 4 have infrared radiation and are well dispersed during normal ceramic glazing. By finding out.

この特許文献4には、ポリマーマトリックスと、このポリマーマトリックス内に均一に分散し、ポリマーマトリックスの重合に触媒作用を及ぼす触媒が挿入された層状陶土鉱物とからなるポリマーと陶土との複合体であって、この層状陶土鉱物に、反応性官能基を有する界面活性剤、カップリング剤または相溶化剤がさらに挿入されたポリマーと陶土複合体の超微粒粒子が開示されている。   This patent document 4 is a composite of a polymer and a clay comprising a polymer matrix and a layered porcelain mineral that is uniformly dispersed in the polymer matrix and into which a catalyst that catalyzes the polymerization of the polymer matrix is inserted. In addition, a polymer and porcelain composite ultrafine particles in which a surfactant having a reactive functional group, a coupling agent or a compatibilizing agent is further inserted into the layered porcelain mineral are disclosed.

そして、この特許文献4に開示されたポリマーと陶土との複合体は、超微相寸法(ultrafine phase dimensions)が1〜100nmである、7〜300ミリ当量/100gの陽イオン交換容量を有し、マイクロ複合体およびマクロ複合体と比べて、高剛性、高強度、高耐熱性、低吸湿性、低燃焼性、低通気性において改善された層状のナノ複合体である。   The composite of polymer and porcelain disclosed in Patent Document 4 has a cation exchange capacity of 7 to 300 meq / 100 g with an ultrafine phase dimension of 1 to 100 nm. Compared with microcomposites and macrocomposites, it is a layered nanocomposite improved in high rigidity, high strength, high heat resistance, low hygroscopicity, low combustibility, and low air permeability.

そして、本発明においては、このナノ複合体を配合した釉薬を、20〜30mmの外径を持ち、天然の遠赤外線放射岩石を含有する陶土からなる球状の素焼き芯体の表面に施釉することによって、遠赤外線の放射の均一性が維持でき、前記家庭用として、入浴用、水の浄化その他の目的に利用できる。   And in this invention, it glazes the glaze which mix | blended this nano composite_body | complex to the surface of the spherical unglazed core which has an outer diameter of 20-30 mm, and consists of porcelain clay containing a natural far-infrared radiation rock. , it can maintain the uniformity of the far infrared radiation, as for the home, available for bathing, cleaning and other purposes of water.

この発明の遠赤外線放射性ボールは、ほぼ、半永久的に遠赤外線放射性を維持でき、しかも、その基材が劣化することがなく、使い勝手も優れた極めて重宝な家庭用遠赤外線放射性機能材であり、安価に製造できる。   The far-infrared radiation ball of the present invention is a very useful home-use far-infrared radiation functional material that can maintain far-infrared radiation almost semi-permanently, and the base material is not deteriorated and is excellent in usability. Can be manufactured at low cost.

本発明に係る遠赤外線放射鉱物質ボールの外観を示す。The external appearance of the far-infrared radiation mineral ball concerning this invention is shown. 本発明の実施例に係る鉱物質ボールの遠赤外線放射特性を示す。The far-infrared radiation characteristic of the mineral ball | bowl which concerns on the Example of this invention is shown.

以下、具体的な実施例によって本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to specific examples.

芯材の作成
陶土に蛇紋岩を1mm径に粉砕したものを10〜15重量%を添加し、土練木によって混合した。 混合ののち、この陶土を30g単位の塊とし球形に成形後、底部を平らにして、大気中で800〜850℃で素焼きした。
Preparation of core material 10-15 wt% of serpentine ground to 1 mm diameter was added to porcelain clay, and mixed with clay. After mixing, this ceramic clay was formed into a lump of 30 g and formed into a spherical shape, and then the bottom was flattened and baked at 800 to 850 ° C. in the atmosphere.

釉薬の調製
その色に応じて、藁、松の木を燃やして灰にしたものをベースにして、これに、長石、石灰、酸化鉄を加え、これに、先の特許に係る超微粉ポリマー・粘土複合物(石康奈米科技股分有限公司社製 商標名 Nanoclay)を3〜10重量%を配合し、これに、水を添加して釉薬を調製した。ポットミルで10時間〜15時間、回転させ混ぜ合わせて調整した。
Preparation of glaze Depending on the color, ash, pine tree burned into ash as a base, feldspar, lime, iron oxide added to this, ultrafine powder polymer-clay composite according to the previous patent 3 to 10% by weight of a product (trade name Nanoclay manufactured by Ishiyuna Nana Technology Co., Ltd.) was added, and water was added thereto to prepare a glaze. It was adjusted by rotating and mixing in a pot mill for 10 to 15 hours.

施釉
球状芯体を釉薬中に浸漬して、平らな箇所を除いて、5μm厚に施釉し、1150〜1260℃に焼成して、図1に示す径が22mmの底面が平らな完成品10を得た。同図において、1は施釉箇所であり、2は施釉を行っていない陶土の下地が現れた芯体部分であり、3は平坦化のためのカット部分である。
Glazing A spherical core is immersed in a glaze, except for a flat portion, glazed to a thickness of 5 μm, fired to 1150 to 1260 ° C., and a finished product 10 having a flat bottom surface having a diameter of 22 mm shown in FIG. Obtained. In the figure, 1 is a glazed place, 2 is a core body portion on which a foundation of porcelain clay that has not been glazed appears, and 3 is a cut portion for flattening.

遠赤外線放射テスト
得られた遠赤外線放射鉱物質ボールを45mm×45mm×4mmのテストピースとして、長崎県窯業試験所において、遠赤外線放射率のテストを行った。試験器として日本電気製遠赤外線分光放射計JIR−E500を使用し、ヒーター温度100℃によって、表面温度を86.6℃に加熱し、波長範囲3.33〜25.42μmにおいて検知した。それぞれの波長における放射率は図2に示すとおりであり、積分放射率は89.4%であった。
Far-infrared radiation test The obtained far-infrared radiation mineral balls were used as test pieces of 45 mm × 45 mm × 4 mm, and a far-infrared emissivity test was conducted at the Nagasaki Prefectural Ceramic Laboratory. A far-infrared spectroradiometer JIR-E500 manufactured by NEC was used as a tester, the surface temperature was heated to 86.6 ° C. with a heater temperature of 100 ° C., and detection was performed in a wavelength range of 3.33 to 25.42 μm. The emissivity at each wavelength is as shown in FIG. 2, and the integrated emissivity was 89.4%.

水道水の浄化試験
伊万里市水道水をポリ容器に入れ、これに本発明品を3個入れて10日間放置した後の試験結果を調べた。
Purification test of tap water Imari city tap water was put in a plastic container, and three test products were put in this container and allowed to stand for 10 days.

その結果は、下記表1に示すとおりであった。   The results were as shown in Table 1 below.

Figure 2011037654
Figure 2011037654

表1において、水道法水質基準値は、検査前の水道水の値を示す。   In Table 1, the water quality standard value of the Waterworks Law indicates the value of tap water before inspection.

この試験結果から、本発明品は水の浄化に効果があり、この効果は家庭内で使用する飲料水の浄化に適用できることが明らかになった。   From this test result, it was clarified that the product of the present invention is effective for water purification, and this effect can be applied to purification of drinking water used in the home.

1 施釉箇所 2 芯体下地部分 3 カット部分       1 Glazed location 2 Core body ground part 3 Cut part

Claims (3)

遠赤外線を放射する自然鉱物粉末を配合した陶土からなる球状の素焼き芯体の表面に、1〜100nm径の超微相寸法のポリマーと陶土との複合体からなる遠赤外線放射物質を含有する釉薬を施した外径が20〜30mmの遠赤外線放射鉱物質ボール。   A glaze containing a far-infrared emitting substance composed of a composite of a polymer of porcelain with a 1-100 nm diameter ultrafine phase on the surface of a spherical unglazed core body composed of porcelain earth mixed with natural mineral powder that emits far-infrared rays Far-infrared emitting mineral balls with an outer diameter of 20-30 mm. 陶土からなる球状の素焼き芯体の下面を平坦にした請求項1に記載の遠赤外線放射鉱物質ボール。   The far-infrared emitting mineral ball according to claim 1, wherein the bottom surface of the spherical unglazed core made of porcelain is flattened. 遠赤外線を放射する自然鉱物粉末を陶土に配合して外径が20〜30mmの球状の芯体を形成し、この芯体を自然乾燥ののち素焼きし、この素焼きした球状の芯体を、1〜100nm径の超微相寸法のポリマーと陶土との複合体粉末からなる遠赤外線放射物質を含有する釉薬中に浸漬して釉薬をコーティングし焼成する遠赤外線放射鉱物質ボールの製造方法。   Natural mineral powder that radiates far infrared rays is blended with porcelain to form a spherical core having an outer diameter of 20 to 30 mm. The core is naturally dried and then baked. A method for producing a far-infrared emitting mineral ball, which is immersed in a glaze containing a far-infrared emitting material composed of a composite powder of a polymer with an ultrafine phase size of ˜100 nm and porcelain, coated with the glaze and fired.
JP2009185066A 2009-08-07 2009-08-07 Far infrared radiation mineral ball and method for producing the same Pending JP2011037654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009185066A JP2011037654A (en) 2009-08-07 2009-08-07 Far infrared radiation mineral ball and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009185066A JP2011037654A (en) 2009-08-07 2009-08-07 Far infrared radiation mineral ball and method for producing the same

Publications (1)

Publication Number Publication Date
JP2011037654A true JP2011037654A (en) 2011-02-24

Family

ID=43765862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009185066A Pending JP2011037654A (en) 2009-08-07 2009-08-07 Far infrared radiation mineral ball and method for producing the same

Country Status (1)

Country Link
JP (1) JP2011037654A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5564142B1 (en) * 2013-07-23 2014-07-30 保夫 三浦 Method for producing ornamental dried plant, ceramic body for desiccant, container ornamental plant and method for producing container ornamental plant
US10405695B2 (en) * 2016-07-11 2019-09-10 Josiah D. Smith Thermodynamic element for reducing cooling rate of a liquid
CN115448692A (en) * 2022-09-28 2022-12-09 郭玮玲 Nano-material ceramic ball and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5564142B1 (en) * 2013-07-23 2014-07-30 保夫 三浦 Method for producing ornamental dried plant, ceramic body for desiccant, container ornamental plant and method for producing container ornamental plant
JP2015042628A (en) * 2013-07-23 2015-03-05 保夫 三浦 Method for producing dry plant for aquarium, ceramic body for dryer, container-filled plant for aquarium, and method for producing container-filled plant for aquarium
US10405695B2 (en) * 2016-07-11 2019-09-10 Josiah D. Smith Thermodynamic element for reducing cooling rate of a liquid
CN115448692A (en) * 2022-09-28 2022-12-09 郭玮玲 Nano-material ceramic ball and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR100916739B1 (en) A manufacturing process of far infrared ray emission ceramics ball
US10674748B2 (en) Method for preparing organic coating porous granules for fish feed or assorted feed aid using blood of livestock and clay minerals
KR101873871B1 (en) Celadon glaze composition and manufacturing method of the same
KR20110006390A (en) Method for making ceramic ball
CN105036719A (en) Accompanying ceramic ball for Baijiu
JP2018193292A (en) Composite ceramic and method of production and method of application thereof
JP2011037654A (en) Far infrared radiation mineral ball and method for producing the same
KR100896822B1 (en) Manufacturing method of sintered ceramic
CN105110778A (en) Beer mate ceramic ball
KR101337385B1 (en) Illite board and method for producting illite board
KR100602522B1 (en) Far-Infrared Ray Radiating Porcelain and Manufacturing Method Thereof
CN107954744A (en) Micropore andalusite light fire brick and preparation method thereof
KR20130130365A (en) Composite for lightweight ceramic ware and manufacturing method of the lightweight ceramic ware using the composite
KR101517933B1 (en) The green moltar and the manufacturing method for using inner wall of construction
KR101252586B1 (en) eco-friendly interior materials for building using expanded perlite and its manufacturing method
KR101215068B1 (en) Method for Preparing a Forming Bone
KR20180021989A (en) Multi-function ceramic ware and Manufacturing Method thereof
KR100560861B1 (en) A building cement mortar using olivine and a production method thereof
KR102146794B1 (en) foam ceramic fabrication and manufacturing method thereof
KR101638898B1 (en) Manufacturing method of loess composition improved water-proof and mechanical property
TW200914070A (en) Porous bio-material and method of preparation thereof
KR101106364B1 (en) Clay composition for body of earthen bowl
KR20210004743A (en) Functional white clay ceramic ball made from porous powder and its manufacturing method.
KR20030088317A (en) Foundation-soil for making ceramics, Ceramics and Manufacturing method therefor
KR101525356B1 (en) Manufacturing method of the double layered porcelain having basalt in hantan river and the porcelain using the same