JP2011036737A - Exhaust-gas catalyst for automobile - Google Patents

Exhaust-gas catalyst for automobile Download PDF

Info

Publication number
JP2011036737A
JP2011036737A JP2009183592A JP2009183592A JP2011036737A JP 2011036737 A JP2011036737 A JP 2011036737A JP 2009183592 A JP2009183592 A JP 2009183592A JP 2009183592 A JP2009183592 A JP 2009183592A JP 2011036737 A JP2011036737 A JP 2011036737A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
carrier
catalyst component
automobile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009183592A
Other languages
Japanese (ja)
Inventor
Keisuke Nakamura
圭介 中村
Kazuo Osumi
和生 大角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2009183592A priority Critical patent/JP2011036737A/en
Publication of JP2011036737A publication Critical patent/JP2011036737A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust-gas catalyst for an automobile which improves catalytic performance and reduces a pressure loss. <P>SOLUTION: The exhaust-gas catalyst 1 for an automobile carries a catalyst component 3 on a ceramic-made carrier 2 having a honeycomb shape. In this case, the carrier 2 is formed to be a porous material having a plurality of micropores 6, and the micropores 6 is impregnated with the catalyst component 3. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、セラミック製の担体に触媒成分を担持させた自動車用排ガス触媒に関するものである。   The present invention relates to an exhaust gas catalyst for automobiles in which a catalyst component is supported on a ceramic carrier.

従来より、触媒をコートするハニカム状の担体にはコーディエライト(Cordierite)やSiCなどのセラミック製のものが用いられている。この担体の壁表面にウォッシュコート(Wash Coat(以下、WCと略記する))と呼ばれる触媒成分を含む層(以下、WC層という)をコートさせている。このWC層にエンジンからの排ガスが接触・反応する事により排ガスは浄化される。   Conventionally, a ceramic carrier such as cordierite or SiC has been used as a honeycomb-shaped carrier for coating a catalyst. A layer (hereinafter referred to as a WC layer) containing a catalyst component called a wash coat (hereinafter abbreviated as WC) is coated on the wall surface of the carrier. The exhaust gas from the engine comes into contact with and reacts with the WC layer so that the exhaust gas is purified.

また、同一の触媒量の条件下でWC層を薄く(重量を小さく)する事により自動車用排ガス触媒の昇温速度が高くなり、浄化性能が向上する事が知られている。例えば、触媒成分を含むWC層でハニカム構造を成型して使用した場合、浄化性能は向上すると考えられるが、強度の面から実用には向いていない。   Further, it is known that the temperature rise rate of the exhaust gas catalyst for automobiles is increased and the purification performance is improved by making the WC layer thin (reducing weight) under the same catalyst amount condition. For example, when the honeycomb structure is molded and used with a WC layer containing a catalyst component, the purification performance is considered to be improved, but it is not suitable for practical use in terms of strength.

非特許文献1には、ハニカム状の担体にコートされた触媒の昇温について次式が紹介されている。   Non-Patent Document 1 introduces the following equation for raising the temperature of a catalyst coated on a honeycomb-shaped carrier.

Figure 2011036737
Figure 2011036737

上式の値が小さい程、昇温速度が速く、反応に有利である。   The smaller the value of the above formula, the faster the temperature rise rate, and the more advantageous the reaction.

特開平5−68892号公報Japanese Patent Laid-Open No. 5-68892

社団法人自動車技術会 学術講演会前刷集No.80−08Japan Society for Automotive Technology Academic Lecture Preprints No. 80-08

自動車用排ガス触媒のように排ガスの持つ熱を排ガス触媒の昇温に利用する場合、排ガスとの接触面に近いほど、昇温には有利である。自動車用排ガス触媒に用いられるハニカム材料としてはコーディエライト、WCの主な成分としてはγ−アルミナが挙げられる。両者の熱伝導率を比較するとγ−アルミナの熱伝導率はコーディエライトより10倍程度大きい。したがって、排ガス接触面から担体までの距離とWC濃度及び熱伝導率の関係は図4のように右下がりのグラフを描く。図5に示すように、熱伝導率の観点からは、WC層30の厚さを出来る限り薄くすることが好ましいが、WC量の減少は排ガス浄化性能の低下を招いてしまう。   When the heat of exhaust gas is used to raise the temperature of the exhaust gas catalyst as in an automobile exhaust gas catalyst, the closer to the contact surface with the exhaust gas, the more advantageous the temperature rise. A cordierite is used as a honeycomb material used for an exhaust gas catalyst for automobiles, and γ-alumina is used as a main component of WC. Comparing the thermal conductivity of the two, the thermal conductivity of γ-alumina is about 10 times greater than that of cordierite. Therefore, the relationship between the distance from the exhaust gas contact surface to the carrier, the WC concentration, and the thermal conductivity draws a downward-sloping graph as shown in FIG. As shown in FIG. 5, from the viewpoint of thermal conductivity, it is preferable to make the thickness of the WC layer 30 as thin as possible. However, a reduction in the amount of WC leads to a reduction in exhaust gas purification performance.

このため、図6及び図7に示すように、自動車用排ガス触媒34、35の浄化性能を向上させる目的で触媒コート量を多くするとWC層31、32が厚くなり、熱伝達効率が悪くなり、触媒性能が低下してしまうという問題があった。   For this reason, as shown in FIGS. 6 and 7, when the catalyst coating amount is increased for the purpose of improving the purification performance of the exhaust gas catalysts 34 and 35 for automobiles, the WC layers 31 and 32 become thicker and the heat transfer efficiency becomes worse. There was a problem that the catalyst performance would be degraded.

また、排ガスが通過する通路33が狭くなることにより自動車用排ガス触媒34、35の前後(排ガス入口と排ガス出口)での圧力損失が大きくなり、結果としてエンジンの燃費に悪影響を及ぼすという問題があった。またさらに、WC層31、32の触媒成分の濃度が一定で、かつWC層31、32の厚さが大きい場合にはWC層31、32の深層部(排ガスとの接触面36、37から離れた部分)の昇温に不利であるという問題があった。これらのことから自動車用排ガス触媒34、35の浄化性能を向上させるためには触媒成分の量を減らすことなくWC層31、32を薄くすることが望ましいが、このような自動車用排ガス触媒は存在しないという課題があった。   Further, since the passage 33 through which the exhaust gas passes becomes narrow, the pressure loss before and after the exhaust gas catalysts 34 and 35 for the automobile (exhaust gas inlet and exhaust gas outlet) increases, resulting in a problem of adversely affecting the fuel consumption of the engine. It was. Furthermore, when the concentration of the catalyst component in the WC layers 31 and 32 is constant and the thickness of the WC layers 31 and 32 is large, the deep layers of the WC layers 31 and 32 (separate from the exhaust gas contact surfaces 36 and 37). There was a problem that it was unfavorable for the temperature rise of the part. For these reasons, in order to improve the purification performance of the exhaust gas catalysts 34 and 35 for automobiles, it is desirable to make the WC layers 31 and 32 thin without reducing the amount of the catalyst component. There was a problem of not doing.

そこで、本発明の目的は、上記課題を解決し、触媒性能を向上でき、圧力損失を低減できる自動車用排ガス触媒を提供することにある。   Therefore, an object of the present invention is to provide an automobile exhaust gas catalyst that can solve the above-mentioned problems, improve the catalyst performance, and reduce the pressure loss.

上記課題を解決するために本発明は、ハニカム状に形成されたセラミック製の担体に触媒成分を担持させた自動車用排ガス触媒において、前記担体が複数の細孔を有する多孔質に形成され、前記触媒成分が前記細孔中に含浸されるものとした。   In order to solve the above problems, the present invention provides an exhaust gas catalyst for automobiles in which a catalyst component is supported on a ceramic support formed in a honeycomb shape, wherein the support is formed in a porous shape having a plurality of pores, The catalyst component was impregnated in the pores.

前記担体の気孔率が30%以上、60%以下にされるとよい。   The porosity of the carrier is preferably 30% or more and 60% or less.

前記触媒成分は前記細孔中に含浸されるのみとされ、前記担体の表面には前記触媒成分とは組成の異なる他の触媒成分がコートされてもよい。   The catalyst component may be impregnated only in the pores, and the surface of the support may be coated with another catalyst component having a composition different from that of the catalyst component.

本発明によれば、触媒性能を向上でき、圧力損失を低減できる。   According to the present invention, catalyst performance can be improved and pressure loss can be reduced.

図1は本発明の実施の形態を示す自動車用排ガス触媒の要部断面図である。FIG. 1 is a cross-sectional view of a main part of an automobile exhaust gas catalyst showing an embodiment of the present invention. 図2は本発明の他の実施の形態を示す自動車用排ガス触媒の要部断面図である。FIG. 2 is a cross-sectional view of a main part of an exhaust gas catalyst for automobiles showing another embodiment of the present invention. 図3(a)は従来の担体とWC層の拡大断面図であり、図3(b)は図1の担体とWC層の拡大断面図である。3A is an enlarged cross-sectional view of the conventional carrier and the WC layer, and FIG. 3B is an enlarged cross-sectional view of the carrier and the WC layer in FIG. 図4は排ガス接触面からの距離とWC濃度及び熱伝導率の関係を示すグラフである。FIG. 4 is a graph showing the relationship between the distance from the exhaust gas contact surface, the WC concentration, and the thermal conductivity. 図5はWC層を薄くした自動車用排ガス触媒の断面説明図である。FIG. 5 is a cross-sectional explanatory view of an automobile exhaust gas catalyst having a thin WC layer. 図6は触媒コート量を増やしてWC層を厚くした自動車用排ガス触媒の断面説明図である。FIG. 6 is an explanatory cross-sectional view of an automobile exhaust gas catalyst in which the catalyst coat amount is increased and the WC layer is thickened. 図7はWC層を二層とした自動車用排ガス触媒の断面説明図である。FIG. 7 is a cross-sectional explanatory view of an automobile exhaust gas catalyst having two WC layers. 図8は多孔質の担体にWC層をコートした自動車用排ガス触媒の断面説明図である。FIG. 8 is an explanatory cross-sectional view of an automobile exhaust gas catalyst in which a porous carrier is coated with a WC layer.

図1に示すように、自動車用排ガス触媒1は、ディーゼルエンジンの排ガスを浄化するものであり、ハニカム状に形成されたセラミック製の担体2に触媒成分3を担持させてなる。具体的には、自動車用排ガス触媒1は、ディーゼル用酸化触媒(DOC:Diesel Oxidation Catalyst)であり、排ガス中の一酸化炭素、炭化水素を酸化反応により酸化除去する機能を有する。   As shown in FIG. 1, an exhaust gas catalyst 1 for an automobile purifies exhaust gas from a diesel engine, and a catalyst component 3 is supported on a ceramic carrier 2 formed in a honeycomb shape. Specifically, the exhaust gas catalyst 1 for automobiles is a diesel oxidation catalyst (DOC) and has a function of oxidizing and removing carbon monoxide and hydrocarbons in exhaust gas by an oxidation reaction.

担体2は、コーディエライトにてハニカム状に形成されており、複数の並行な排ガス用流路4を有する。また、担体2は、排ガス用流路4を区画するハニカムセル壁5に複数の細孔6を有する多孔質に形成される。担体2の気孔率は、約50%にされており、担体2は略スポンジ状に形成されている。   The carrier 2 is formed in a honeycomb shape with cordierite, and has a plurality of parallel exhaust gas flow paths 4. The carrier 2 is formed in a porous shape having a plurality of pores 6 in the honeycomb cell wall 5 that defines the exhaust gas flow path 4. The porosity of the carrier 2 is about 50%, and the carrier 2 is formed in a substantially sponge shape.

触媒成分3は、白金等の貴金属の粒子からなり、WC7の主成分であるγ−アルミナと共に担体2の細孔6中に含浸されている。担体2への触媒成分3の含浸は、担体2を液状のWC7中に浸し、担体2に負圧を作用させることで行う。図3(b)に示すように、担体2へのWC7の含浸深さは、従来の自動車用排ガス触媒(図3(a)参照)8よりも深くなっており、ハニカムセル壁5の厚さの半分未満となっている。   The catalyst component 3 is made of particles of noble metal such as platinum, and is impregnated in the pores 6 of the carrier 2 together with γ-alumina which is the main component of WC7. The carrier 2 is impregnated with the catalyst component 3 by immersing the carrier 2 in the liquid WC 7 and applying a negative pressure to the carrier 2. As shown in FIG. 3B, the impregnation depth of the WC 7 into the carrier 2 is deeper than that of the conventional automobile exhaust gas catalyst (see FIG. 3A) 8, and the thickness of the honeycomb cell wall 5 Less than half.

次に本実施の形態の作用を述べる。   Next, the operation of this embodiment will be described.

自動車用排ガス触媒1の排ガス用流路4に流入した排ガスは、触媒成分3と接触し反応して浄化される。このとき、担体2には十分な量の触媒成分3が担持されているため、高い浄化性能で排ガスを浄化できる。   The exhaust gas flowing into the exhaust gas flow path 4 of the automobile exhaust gas catalyst 1 comes into contact with the catalyst component 3 and reacts to be purified. At this time, since a sufficient amount of the catalyst component 3 is supported on the carrier 2, the exhaust gas can be purified with high purification performance.

また、触媒成分3が細孔6内に含浸されているため、WC層8の表面から担体2の表面までの厚さは薄く、排ガスの熱が担体2に良好に伝達され、高い触媒性能が得られる。   Further, since the catalyst component 3 is impregnated in the pores 6, the thickness from the surface of the WC layer 8 to the surface of the carrier 2 is thin, and the heat of the exhaust gas is transmitted to the carrier 2 well, and high catalyst performance is achieved. can get.

そして、担体2内の排ガス用流路4が十分大きな断面積に形成されるため、自動車用排ガス触媒1の排ガス入口(図示せず)と排ガス出口(図示せず)との間で生じる圧力損失は小さく抑えられ、エンジンの燃費向上に寄与することができる。   And since the flow path 4 for exhaust gas in the support | carrier 2 is formed in a sufficiently large cross-sectional area, the pressure loss which arises between the exhaust gas inlet (not shown) and the exhaust gas outlet (not shown) of the exhaust gas catalyst 1 for motor vehicles. Can be kept small, and can contribute to improving the fuel consumption of the engine.

また、細孔6中にWC7が含浸されることにより担体2の空隙が埋められるため、担体2のハニカムセル壁5にWC7をコートした場合(図8参照)よりも自動車用排ガス触媒1の強度が向上する。   In addition, since the voids of the carrier 2 are filled by impregnating the WC 7 in the pores 6, the strength of the automobile exhaust gas catalyst 1 is higher than when the honeycomb cell wall 5 of the carrier 2 is coated with WC 7 (see FIG. 8). Will improve.

このように、ハニカム状に形成されたセラミック製の担体2に触媒成分3を担持させた自動車用排ガス触媒1において、担体2が複数の細孔6を有する多孔質に形成され、触媒成分3が細孔6中に含浸されるものとしたため、自動車用排ガス触媒1の機械的強度を十分確保でき、必要な触媒量を確保した上で触媒性能の向上及び圧力損失の低減ができ、エンジンの燃費を向上できる。そして、WC層8を厚く形成した場合と比べて貴金属の使用量を低減でき、コストダウンできる。また、担体2の細孔6中に触媒成分3が含浸されることによりハニカムセル壁5の壁面にコートされる触媒量を少なくでき、結果として担体2を含めた自動車用排ガス触媒1の重量を従来のものより小さくでき、昇温速度が上昇し、浄化性能が向上する。また、流路に占めるWC7の量量が少なくなることにより、圧力損失の低減が可能となる。   Thus, in the automobile exhaust gas catalyst 1 in which the catalyst component 3 is supported on the ceramic carrier 2 formed in a honeycomb shape, the carrier 2 is formed in a porous shape having a plurality of pores 6, and the catalyst component 3 is Since it is impregnated in the pores 6, the mechanical strength of the exhaust gas catalyst 1 for automobiles can be sufficiently secured, and the catalyst performance can be improved and the pressure loss can be reduced after securing the necessary amount of catalyst. Can be improved. And compared with the case where WC layer 8 is formed thickly, the usage-amount of a noble metal can be reduced and cost can be reduced. Further, the catalyst component 3 is impregnated in the pores 6 of the carrier 2 to reduce the amount of catalyst coated on the wall surface of the honeycomb cell wall 5. As a result, the weight of the exhaust gas catalyst 1 for automobile including the carrier 2 can be reduced. It can be made smaller than the conventional one, the heating rate is increased, and the purification performance is improved. Further, the pressure loss can be reduced by reducing the amount of WC7 occupying the flow path.

また、担体2の気孔率が約50%にされるものとしたため、自動車用排ガス触媒1を実用的な強度にできると共に、触媒性能の向上及び圧力損失の低減ができる。   Further, since the porosity of the carrier 2 is set to about 50%, the exhaust gas catalyst 1 for an automobile can be made practical strength, and the catalyst performance can be improved and the pressure loss can be reduced.

他の実施の形態について述べる。   Another embodiment will be described.

図2に示す自動車用排ガス触媒10は、組成の異なる2種類の触媒成分を用いる場合のものである。一般に酸化触媒などは異なる特性のものを組み合わせて使用することが多く、その場合には二層構造をとっている事が多い。上述と同様の構成については同符号を付し説明を省略する。   The automobile exhaust gas catalyst 10 shown in FIG. 2 is a case where two types of catalyst components having different compositions are used. In general, oxidation catalysts and the like are often used in combination with different characteristics, and in that case, a two-layer structure is often adopted. The same components as those described above are denoted by the same reference numerals and description thereof is omitted.

図2に示すように、自動車用排ガス触媒10は、担体2に組成の異なる2種類の触媒成分のうち一方の触媒成分11を細孔6中に含浸させ、他方の触媒成分12をハニカムセル壁5の壁面にコートすることで形成されている。すなわち、一方の触媒成分11は細孔6中に含浸されるのみとされ、他方の触媒成分12は、担体2の表面にコートされる。   As shown in FIG. 2, the exhaust gas catalyst 10 for automobiles impregnates the carrier 2 with one catalyst component 11 of the two types of catalyst components having different compositions, and the other catalyst component 12 on the honeycomb cell wall. 5 is formed by coating the wall surface. That is, one catalyst component 11 is only impregnated in the pores 6, and the other catalyst component 12 is coated on the surface of the carrier 2.

このように、一方の触媒成分11が細孔6中に含浸されるのみとされ、担体2の表面には他方の触媒成分12がコートされるものとしても自動車用排ガス触媒10の機械的強度を十分確保でき、必要な触媒量を確保した上で触媒性能の向上及び圧力損失の低減ができ、エンジンの燃費を向上できる。そして、WC層13を厚く形成した場合と比べて貴金属の使用量を低減でき、コストダウンできる。また、ハニカムセル壁5の壁面にコートされる触媒量を少なくでき、自動車用排ガス触媒10を軽量化でき、浄化性能を向上できる。   Thus, even if one catalyst component 11 is only impregnated in the pores 6 and the surface of the carrier 2 is coated with the other catalyst component 12, the mechanical strength of the exhaust gas catalyst 10 for automobiles is increased. Sufficiently secured, sufficient catalyst amount can be secured, catalyst performance can be improved and pressure loss can be reduced, and engine fuel efficiency can be improved. And compared with the case where WC layer 13 is formed thickly, the usage-amount of a noble metal can be reduced and cost can be reduced. In addition, the amount of catalyst coated on the wall surface of the honeycomb cell wall 5 can be reduced, the automobile exhaust gas catalyst 10 can be reduced in weight, and the purification performance can be improved.

なお、担体2の気孔率は約50%としたが、WC成分含浸の面から30%以上が好ましく、実用的な強度の面から40%以上、60%以下の気孔率がより好ましい。   Although the porosity of the carrier 2 is about 50%, it is preferably 30% or more from the viewpoint of WC component impregnation, and more preferably 40% or more and 60% or less from the viewpoint of practical strength.

また、自動車用排ガス触媒1、10がDOCである場合について説明したがこれに限るものではない、自動車用排ガス触媒1、10は貴金属触媒成分を担持するDPF(ディーゼル・パティキュレート・フィルター)であってもよく、DeNOx触媒であってもよい。   Further, the case where the exhaust gas catalysts 1 and 10 for automobiles are DOCs has been described, but the present invention is not limited to this, and the exhaust gas catalysts 1 and 10 for automobiles are DPFs (diesel particulate filters) carrying noble metal catalyst components. It may be a DeNOx catalyst.

1 自動車用排ガス触媒
2 担体
3 触媒成分
6 細孔
10 自動車用排ガス触媒
11 触媒成分
12 触媒成分
DESCRIPTION OF SYMBOLS 1 Exhaust gas catalyst for motor vehicles 2 Support | carrier 3 Catalyst component 6 Pore 10 Exhaust gas catalyst for motor vehicles 11 Catalyst component 12 Catalyst component

Claims (3)

ハニカム状に形成されたセラミック製の担体に触媒成分を担持させた自動車用排ガス触媒において、前記担体が複数の細孔を有する多孔質に形成され、前記触媒成分が前記細孔中に含浸されることを特徴とする自動車用排ガス触媒。   In an automobile exhaust gas catalyst in which a catalyst component is supported on a ceramic carrier formed in a honeycomb shape, the carrier is formed into a porous body having a plurality of pores, and the catalyst component is impregnated in the pores. An exhaust gas catalyst for automobiles. 前記担体の気孔率が30%以上、60%以下にされたことを特徴とする請求項1に記載の自動車用排ガス触媒。   The exhaust gas catalyst for automobiles according to claim 1, wherein the porosity of the carrier is 30% or more and 60% or less. 前記触媒成分は前記細孔中に含浸されるのみとされ、前記担体の表面には前記触媒成分とは組成の異なる他の触媒成分がコートされた請求項1又は2に記載の自動車用排ガス触媒。   The exhaust gas catalyst for automobiles according to claim 1 or 2, wherein the catalyst component is only impregnated in the pores, and the surface of the carrier is coated with another catalyst component having a composition different from that of the catalyst component. .
JP2009183592A 2009-08-06 2009-08-06 Exhaust-gas catalyst for automobile Pending JP2011036737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009183592A JP2011036737A (en) 2009-08-06 2009-08-06 Exhaust-gas catalyst for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009183592A JP2011036737A (en) 2009-08-06 2009-08-06 Exhaust-gas catalyst for automobile

Publications (1)

Publication Number Publication Date
JP2011036737A true JP2011036737A (en) 2011-02-24

Family

ID=43765089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009183592A Pending JP2011036737A (en) 2009-08-06 2009-08-06 Exhaust-gas catalyst for automobile

Country Status (1)

Country Link
JP (1) JP2011036737A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114740A1 (en) 2011-02-23 2012-08-30 パナソニック株式会社 Washing machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114740A1 (en) 2011-02-23 2012-08-30 パナソニック株式会社 Washing machine

Similar Documents

Publication Publication Date Title
JP5237630B2 (en) Honeycomb structure
JP4814887B2 (en) Honeycomb catalyst body and manufacturing method thereof
JP5073303B2 (en) Catalytic converter and manufacturing method of catalytic converter
JP5726414B2 (en) Catalyst-carrying filter and exhaust gas purification system
JP4935219B2 (en) Exhaust gas purification catalyst
JP5368959B2 (en) Exhaust gas treatment equipment
WO2016060050A1 (en) Exhaust gas purification catalyst
JP2006136784A (en) Filter catalyst
JPWO2007026805A1 (en) Honeycomb structure and honeycomb catalyst body
JP2015066536A5 (en)
JP2012237282A (en) Catalyst device
JP2015066536A (en) Catalyst carriage type honeycomb filter
CN103415679B (en) Multi-functional exhaust emission control filter and the waste gas cleaning plant using it
WO2014162183A1 (en) Catalyst converter
JP2007278100A (en) Exhaust gas purification device
Pyzik et al. High‐Porosity Acicular Mullite Ceramics For Multifunctional Diesel Particulate Filters
JP2007278101A (en) Exhaust gas purification catalytic converter
JP2011036737A (en) Exhaust-gas catalyst for automobile
KR101261949B1 (en) catalyst unit
JP5103052B2 (en) Oxidation catalyst of exhaust gas purification system for diesel engine
JP2015166051A (en) honeycomb structure
JP2010269270A (en) Honeycomb structure type filter
EP3617465B1 (en) Device for treating exhaust gas from engine and method for manufacturing said device
JP2018150811A (en) Exhaust emission control device and striding device vehicle
JP7215487B2 (en) Exhaust gas purification catalyst