JP2011035318A - Method of manufacturing light emitting element - Google Patents

Method of manufacturing light emitting element Download PDF

Info

Publication number
JP2011035318A
JP2011035318A JP2009182682A JP2009182682A JP2011035318A JP 2011035318 A JP2011035318 A JP 2011035318A JP 2009182682 A JP2009182682 A JP 2009182682A JP 2009182682 A JP2009182682 A JP 2009182682A JP 2011035318 A JP2011035318 A JP 2011035318A
Authority
JP
Japan
Prior art keywords
layer
semiconductor crystal
light emitting
manufacturing
ohmic electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009182682A
Other languages
Japanese (ja)
Inventor
Hitoshi Ikeda
均 池田
Masayoshi Obara
正義 小原
Kingo Suzuki
金吾 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2009182682A priority Critical patent/JP2011035318A/en
Publication of JP2011035318A publication Critical patent/JP2011035318A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/1012Auxiliary members for bump connectors, e.g. spacers
    • H01L2224/10122Auxiliary members for bump connectors, e.g. spacers being formed on the semiconductor or solid-state body to be connected
    • H01L2224/10125Reinforcing structures
    • H01L2224/10126Bump collar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a light emitting element capable of forming an electrode excelling in wire bondability. <P>SOLUTION: In this method of manufacturing a light emitting element, a layer containing at least AuBe as an ohmic electrode material, a Ti layer and a Au layer are formed on a surface of a p-type semiconductor crystal of a semiconductor crystal wherein at least an n-type semiconductor crystal, a luminescent layer and the p-type semiconductor crystal containing Ga or In and having a carrier concentration of 1×10<SP>17</SP>to 1×10<SP>19</SP>/cm<SP>3</SP>are formed in this order, thereafter an ohmic electrode is formed by performing a heat treatment, and thereafter the semiconductor crystal is diced. The method of manufacturing a light emitting element includes a process of cleaning at least a surface of the formed ohmic electrode using an iodine potassium iodide solution. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、発光素子の製造方法に関し、具体的には、ワイヤーボンダビリティ特性の優れた電極を形成することができる電極形成工程を含んだ発光素子の製造方法に関する。   The present invention relates to a method for manufacturing a light-emitting element, and more specifically, to a method for manufacturing a light-emitting element including an electrode forming step capable of forming an electrode having excellent wire bondability characteristics.

従来からGaP、GaAs、GaAsP、GaAlAs、AlGaInP等の化合物半導体結晶を用いた発光素子が知られている。   Conventionally, light emitting devices using compound semiconductor crystals such as GaP, GaAs, GaAsP, GaAlAs, and AlGaInP are known.

ここで、従来の発光素子の製造方法の一例について説明する。
まず、n型GaAs基板の上に、AlGaInP発光層、p型GaPをエピタキシャル成長させる。次にn型GaAs基板を除去し、そこにn型GaP基板を貼り合わせる。
次に、n型GaP基板の裏面側にAuSi合金層を形成後、エッチングによってカソード電極を形成する。
次に、p型GaPエピタキシャル層の上面に、アノード電極層を蒸着法により形成し、フォトリソにより所望の形状のアノード電極を形成する。
このアノード電極層は、例えば下層がAuBe層(200nm)、上層がAu層から構成される。ここで、アノード電極層の厚みは通常、1〜2.0μm程度である。
次に、ウエーハを素子毎にダイシング工程またはブレーキングして、最終的な発光素子を得る。
Here, an example of a conventional method for manufacturing a light emitting element will be described.
First, an AlGaInP light emitting layer and p-type GaP are epitaxially grown on an n-type GaAs substrate. Next, the n-type GaAs substrate is removed, and an n-type GaP substrate is bonded thereto.
Next, after forming an AuSi alloy layer on the back side of the n-type GaP substrate, a cathode electrode is formed by etching.
Next, an anode electrode layer is formed on the upper surface of the p-type GaP epitaxial layer by vapor deposition, and an anode electrode having a desired shape is formed by photolithography.
The anode electrode layer is composed of, for example, an AuBe layer (200 nm) as a lower layer and an Au layer as an upper layer. Here, the thickness of the anode electrode layer is usually about 1 to 2.0 μm.
Next, the wafer is diced or braked element by element to obtain a final light emitting element.

ここで上記アノード電極についてさらに詳述すれば、GaP、GaAs、GaAsP、GaAlAs、AlGaInP等の半導体結晶を用いた発光素子では、p型半導体結晶に設けるオーミック電極として、以前からAuBeが使われてきた。   Here, the anode electrode will be described in more detail. In light emitting devices using semiconductor crystals such as GaP, GaAs, GaAsP, GaAlAs, and AlGaInP, AuBe has been used for some time as an ohmic electrode provided on a p-type semiconductor crystal. .

このp型半導体結晶側の電極の形成には、量産工程では電極素材の金属膜成膜手段として、密着性ではスパッタよりは劣るが、生産性で優位性のある大型の蒸着機を用いることが多い。
この際の蒸発手段としては、抵抗加熱またはEB加熱で蒸発させ鍍金されることが多い(例えば特許文献1,2参照)。
For the formation of the electrode on the p-type semiconductor crystal side, a large-sized vapor deposition apparatus having an advantage in productivity is used as a metal film forming means of an electrode material in a mass production process, although adhesion is inferior to sputtering. Many.
In this case, the evaporation means is often evaporated by resistance heating or EB heating and plated (for example, see Patent Documents 1 and 2).

また、半導体発光素子としては、結晶の成長の順番や光の取り出し効率の都合で、p型半導体結晶側が発光素子の上面になることが多い。
さらに、オーミック性の接触を持つアノード電極を形成するのみでなく、発光素子チップ化後のLEDランプ組み立て工程時に、直径25μm程度の金線をワイヤーボンディングするため、金の比較的厚い1〜2μm程度のいわゆるボンディングパッドをオーミック電極上に形成する必要がある。
Moreover, as a semiconductor light emitting element, the p-type semiconductor crystal side is often the upper surface of the light emitting element for convenience of crystal growth order and light extraction efficiency.
Furthermore, in addition to forming an anode electrode having ohmic contact, a gold wire having a diameter of about 25 μm is wire-bonded at the time of assembling the LED lamp after the light emitting device chip is formed, so that the gold is relatively thick, about 1 to 2 μm. It is necessary to form a so-called bonding pad on the ohmic electrode.

ところで、ボンディングパッドを持つアノード電極の形成方法の基本的手法として、AuBeを蒸着し、その上にAuをボンディングパッドとして成膜した場合、ワイヤーボンディングが困難なことが多い。
これは、半導体結晶からのGa、Inや電極中のBeの拡散により、電極表面のボンディングパッド部分のAuが変質するためと考えられる。
By the way, as a basic method of forming an anode electrode having a bonding pad, wire bonding is often difficult when AuBe is vapor-deposited and Au is used as a bonding pad.
This is presumably because Au in the bonding pad portion on the electrode surface is altered by the diffusion of Ga and In from the semiconductor crystal and Be in the electrode.

この拡散に対する対策として、オーミック電極を一度形成し、その上にボンディングパッドを形成する2段形成工程が用いられている(特許文献1参照)。
これは、AuBeを成膜、フォトリソ、パターンエッチング、レジスト剥離、熱処理し、更に、Auを1〜2μm程度成膜し、フォトリソ、マスクアライメント、パターンエッチング、レジスト剥離、熱処理の順に工程処理するものである。
As a countermeasure against this diffusion, a two-stage forming process is used in which an ohmic electrode is formed once and a bonding pad is formed thereon (see Patent Document 1).
In this method, AuBe is formed, photolithography, pattern etching, resist stripping, and heat treatment are performed, and Au is further formed to have a thickness of about 1 to 2 μm, and photolithography, mask alignment, pattern etching, resist stripping, and heat treatment are performed in this order. is there.

しかし、この方法では、工程が2倍になる。またAuBe層と上部のAu層がその間の微量な汚れなどで、うまく合金化せず剥離する危険性もある。   However, this method doubles the process. In addition, there is a risk that the AuBe layer and the upper Au layer may peel off without being well alloyed due to a slight amount of dirt between them.

そこで、AuBe層とAuパッド層の間にTi、Mo、W等の高融点金属や、それに近い金属の層、また場合によってはPt等の貴金属の層を設ける場合もある(例えば特許文献3−5参照)。
この製法の場合、AuBe、AuZnなどのドーパントドープ層の上に、Ti、Auと順に一蒸着内で連続して成膜し、フォトリソ、パターンエッチング、レジスト剥離、熱処理と一度の工程で完了するものである。
Therefore, a refractory metal such as Ti, Mo, or W, a layer of a metal close thereto, or a noble metal layer such as Pt may be provided between the AuBe layer and the Au pad layer (for example, Patent Document 3- 5).
In the case of this manufacturing method, Ti and Au are successively formed in a single vapor deposition on a dopant doped layer such as AuBe and AuZn, and completed in a single step of photolithography, pattern etching, resist stripping, and heat treatment. It is.

この特許文献3−5に記載の方法で得られるアノード電極は、バリヤメタル(Ti等の金属層)を含み、熱処理でのGaなどの金属の金中への拡散はある程度防ぐことができ、ワイヤーボンディングも可能な状態も得られるが、十分とはいえない。
また、ボンディングの高速化により、ワイヤがうまく溶着せずに剥がれてしまう場合があり、未だワイヤーボンダビリティは十分とはいえない。
そのため、更にワイヤーボンダビリティが良好な電極が望まれている。
The anode electrode obtained by the method described in Patent Document 3-5 includes a barrier metal (a metal layer such as Ti), and can prevent diffusion of a metal such as Ga into gold during heat treatment to some extent. Is possible, but not enough.
In addition, due to increased bonding speed, the wire may not be welded well and may be peeled off, and wire bondability is still not sufficient.
Therefore, an electrode with better wire bondability is desired.

特開昭61−180430号公報JP-A-61-180430 特開平09−232255号公報JP 09-232255 A 特開2000−200926号公報JP 2000-2000926 A 特開2006−040997号公報JP 2006-040997 A 特開2007−317913号公報JP 2007-317913 A

本発明は、上記問題に鑑みてなされたものであって、ワイヤーボンダビリティが良好な電極を形成することのできる発光素子の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing a light-emitting element capable of forming an electrode with good wire bondability.

上記課題を解決するため、本発明では、少なくとも、n型半導体結晶と、発光層と、GaまたはInを含みキャリア濃度が1×1017/cm以上1×1019/cm以下であるp型半導体結晶とが、この順で形成された半導体結晶の前記p型半導体結晶の表面に、オーミック電極材料として、少なくとも、AuBeを含む層、Ti層、Au層を形成し、その後熱処理を行ってオーミック電極を形成し、その後前記半導体結晶をダイシングする発光素子の製造方法であって、少なくとも、前記形成されたオーミック電極の表面を、ヨウ素ヨウ化カリウム溶液を用いて洗浄する工程を含むことを特徴とする発光素子の製造方法を提供する。 In order to solve the above problems, in the present invention, at least an n-type semiconductor crystal, a light emitting layer, and Ga or In, and a carrier concentration is 1 × 10 17 / cm 3 or more and 1 × 10 19 / cm 3 or less. At least a layer containing AuBe, a Ti layer, and an Au layer are formed as ohmic electrode materials on the surface of the p-type semiconductor crystal of the semiconductor crystal formed in this order, and then heat treatment is performed. A method of manufacturing a light-emitting device in which an ohmic electrode is formed and then the semiconductor crystal is diced, and includes at least a step of cleaning the surface of the formed ohmic electrode with a potassium iodide iodide solution. A method for manufacturing a light emitting device is provided.

このように、熱処理によってp型半導体結晶の表面に形成されたオーミック電極の表面を、ヨウ素ヨウ化カリウム溶液を用いて洗浄することで、電極最表面層のAu層の表面近傍のGa、In、Al等の不純物が除去され、ワイヤーボンダビリティが向上する。従って、従来に比べてワイヤーボンダビリティが良好なオーミック電極が形成された発光素子を製造することができる。   In this way, by cleaning the surface of the ohmic electrode formed on the surface of the p-type semiconductor crystal by the heat treatment using a potassium iodide iodide solution, Ga, In, Impurities such as Al are removed, and wire bondability is improved. Accordingly, it is possible to manufacture a light emitting device in which an ohmic electrode having better wire bondability than the conventional one is formed.

また、前記ヨウ素ヨウ化カリウム溶液を、水溶液またはアルコール溶液とすることが好ましい。   The iodine iodide solution is preferably an aqueous solution or an alcohol solution.

また、前記ヨウ素ヨウ化カリウム溶液を、ヨウ素の重量比率が0.02〜0.2%とすることが好ましい。   Moreover, it is preferable that the weight ratio of iodine is 0.02 to 0.2% in the iodine iodide solution.

このように、ヨウ素の重量比率が0.2%以下であると、オーミック電極最表面層のAu層の表面が腐食し、Au層の表面に凸凹が発生したり、金が捲れたりする恐れがなく、ヨウ素の重量比率が0.02%以上であると、エッチング力が弱くなり、洗浄時間が長くなり過ぎたり、不純物が十分除去できないという恐れがない。従って、より確実にボンディング強度を改善することができる。   Thus, when the weight ratio of iodine is 0.2% or less, the surface of the Au layer of the ohmic electrode outermost surface layer may corrode, and the surface of the Au layer may be uneven, or gold may be drowned. If the weight ratio of iodine is 0.02% or more, the etching power becomes weak, and there is no fear that the cleaning time becomes too long or impurities cannot be removed sufficiently. Therefore, the bonding strength can be improved more reliably.

前記ヨウ素ヨウ化カリウム溶液を用いて行うオーミック電極表面の洗浄を、前記ダイシングによる切断面の歪除去エッチングの後に行うことが好ましい。   It is preferable to perform the cleaning of the ohmic electrode surface using the iodine iodide solution after the strain removal etching of the cut surface by the dicing.

このように、ヨウ素ヨウ化カリウム溶液による洗浄は、熱処理時にオーミック電極の表面(電極最表面層のAu層の表面)に拡散した不純物を除去することで、ある程度の効果が期待できるため熱処理後に行えば良いが、熱処理後の工程での汚染を除去することで更にワイヤーボンダビリティを向上させることができるため、ワイヤーボンダリング直前であるダイシングによる切断面の歪除去エッチングの後に行うのが好ましい。   As described above, the cleaning with the iodine iodine iodide solution can be expected to have a certain effect by removing impurities diffused on the surface of the ohmic electrode (the surface of the Au layer of the electrode outermost layer) during the heat treatment. However, since wire bondability can be further improved by removing contamination in the step after the heat treatment, it is preferably performed after the strain removal etching of the cut surface by dicing immediately before the wire bonding.

以上説明したように、本発明によれば、ワイヤーボンダビリティが良好な電極を形成することのできる発光素子の製造方法が提供される。   As described above, according to the present invention, a method for manufacturing a light emitting device capable of forming an electrode with good wire bondability is provided.

本発明の発光素子の製造方法の一例を示した工程フロー図である。It is the process flowchart which showed an example of the manufacturing method of the light emitting element of this invention. 本発明の発光素子の製造方法の製造過程における電極形成前の半導体結晶の概略を示した図である。It is the figure which showed the outline of the semiconductor crystal before electrode formation in the manufacture process of the manufacturing method of the light emitting element of this invention. 本発明の発光素子の製造方法の製造過程におけるp側オーミック電極形成後の半導体結晶の概略を示した図である。It is the figure which showed the outline of the semiconductor crystal after p side ohmic electrode formation in the manufacture process of the manufacturing method of the light emitting element of this invention. 本発明の発光素子の製造方法の製造過程におけるn側オーミック電極形成後の半導体結晶の概略を示した図である。It is the figure which showed the outline of the semiconductor crystal after n side ohmic electrode formation in the manufacture process of the manufacturing method of the light emitting element of this invention. 本発明の発光素子の製造方法の製造過程におけるダイシング後の半導体結晶(発光素子)の概略を示した図である。It is the figure which showed the outline of the semiconductor crystal (light emitting element) after the dicing in the manufacturing process of the manufacturing method of the light emitting element of this invention. 発光素子のp型半導体結晶やオーミック電極付近を拡大した図である。It is the figure which expanded the p-type semiconductor crystal and ohmic electrode vicinity of the light emitting element.

以下、本発明についてより具体的に説明する。
前述のように、ワイヤーボンダビリティが良好な電極を形成することのできる発光素子の製造方法が望まれていた。
Hereinafter, the present invention will be described more specifically.
As described above, there has been a demand for a method for manufacturing a light-emitting element that can form an electrode with good wire bondability.

そこで本発明者らは、このワイヤーボンダビリティを向上させる電極の形成方法や処理方法について鋭意検討を重ねたところ、p側オーミック電極の最表面層のAuパッド層の表面状態とワイヤーボンダビリティに関係があることを見出した。   Therefore, the present inventors have made extensive studies on the electrode forming method and the processing method for improving the wire bondability, and are related to the surface state and the wire bondability of the Au pad layer of the outermost surface layer of the p-side ohmic electrode. Found that there is.

そしてワイヤーボンダビリティを向上させるためのボンディングパッド(Auパッド)層の表面の処理方法について更に鋭意検討を重ねたところ、通常Au電極の除去用に用いられるヨウ素ヨウ化カリウム溶液のヨウ素の濃度を薄くしてAuパッド層表面を洗浄することにより、表面近傍のGa、In、Al等の不純物が除去されることでワイヤーボンダビリティを向上できることが判り、この知見を基に本発明を完成させた。   Then, after further diligent investigation on the surface treatment method of the bonding pad (Au pad) layer for improving the wire bondability, the iodine concentration of the iodine iodide solution usually used for removing the Au electrode is reduced. Then, it was found that by cleaning the surface of the Au pad layer, impurities such as Ga, In, Al and the like in the vicinity of the surface can be removed to improve wire bondability, and the present invention was completed based on this knowledge.

以下、本発明について図を参照して詳細に説明するが、本発明はこれらに限定されるものではない。
本発明の発光素子の製造方法について、図1〜6を用いて説明する。
図1は本発明の発光素子の製造方法の一例を示した工程フロー図、図2は本発明の発光素子の製造方法の製造過程における電極形成前の半導体結晶の概略を示した図、図3は本発明の発光素子の製造方法の製造過程におけるp側オーミック電極形成後の半導体結晶の概略を示した図、図4は本発明の発光素子の製造方法の製造過程におけるn側オーミック電極形成後の半導体結晶の概略を示した図、図5は本発明の発光素子の製造方法の製造過程におけるダイシング後の半導体結晶の概略を示した図、図6は発光素子のp型半導体結晶やオーミック電極付近を拡大した図である。
Hereinafter, the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.
The manufacturing method of the light emitting element of this invention is demonstrated using FIGS.
FIG. 1 is a process flow diagram showing an example of a method for manufacturing a light emitting device of the present invention, FIG. 2 is a diagram showing an outline of a semiconductor crystal before electrode formation in the manufacturing process of the method for manufacturing a light emitting device of the present invention, and FIG. FIG. 4 is a diagram showing an outline of a semiconductor crystal after forming a p-side ohmic electrode in the manufacturing process of the light emitting device manufacturing method of the present invention, and FIG. 4 is after forming an n-side ohmic electrode in the manufacturing process of the light emitting device manufacturing method of the present invention FIG. 5 is a diagram showing an outline of a semiconductor crystal after dicing in the manufacturing process of the light emitting device manufacturing method of the present invention, and FIG. 6 is a diagram showing a p-type semiconductor crystal and an ohmic electrode of the light emitting device. It is the figure which expanded the vicinity.

まず、図1および図2に示すように、n型半導体結晶11(例えばn型GaAs基板)の上に、例えばAlGaInPからなる発光層12と、GaまたはInを含むキャリア濃度が1×1017〜1×1019/cmのp型半導体結晶13(例えばp型GaP層)とを、エピタキシャル成長によってこの順に形成した半導体結晶14を準備する(図1(A))。 First, as shown in FIGS. 1 and 2, a light emitting layer 12 made of, for example, AlGaInP on a n-type semiconductor crystal 11 (for example, an n-type GaAs substrate), and a carrier concentration containing Ga or In is 1 × 10 17 to A semiconductor crystal 14 in which a 1 × 10 19 / cm 3 p-type semiconductor crystal 13 (for example, a p-type GaP layer) is formed in this order by epitaxial growth is prepared (FIG. 1A).

このn型半導体結晶11と、発光層12と、p型半導体結晶13の作製は一般的な方法で行えばよく、例えばn型半導体結晶からなる単結晶基板に、MOVPE(Metal Organic Vapor Phase Epitaxy)法によって発光層を気相成長させた後に、p型半導体結晶をHVPE(Hydride Vapor Phase Epitaxy)法によって形成することができる。   The n-type semiconductor crystal 11, the light emitting layer 12, and the p-type semiconductor crystal 13 may be manufactured by a general method. For example, a MOVPE (Metal Organic Vapor Phase Epitaxy) is formed on a single crystal substrate made of an n-type semiconductor crystal. After vapor-phase growth of the light emitting layer by the method, a p-type semiconductor crystal can be formed by the HVPE (Hydride Vapor Phase Epitaxy) method.

この場合、発光効率を向上させるため、n型GaAs基板にAlGaInPからなる発光層とp型半導体結晶をエピタキシャル成長させた後に、n型GaAs基板を除去し、そこにn型GaP基板を貼り合わせるようにしてもよい。   In this case, in order to improve the light emission efficiency, the light emitting layer made of AlGaInP and the p-type semiconductor crystal are epitaxially grown on the n-type GaAs substrate, and then the n-type GaAs substrate is removed and the n-type GaP substrate is bonded thereto. May be.

その後、図1(B)に示すように、p型GaP層13の表面を、硫酸過水で洗浄した後に純水で洗浄することができる。
その後、図1(C)および図6に示すように、p型GaP層13の表面上に、まず、AuBeを含む合金材料を蒸着させて、例えば厚さ0.3μmのAuBeを含む層15aを形成する。これは、例えばAuBe合金材料を抵抗加熱ボート、たとえばタングステンボートに入れて蒸着させればよい。
また、ここでは、AuBeを含む層15aを単独で形成する他に、Au層をその前後に形成しても良い。
Thereafter, as shown in FIG. 1B, the surface of the p-type GaP layer 13 can be washed with pure water after being washed with sulfuric acid / hydrogen peroxide.
Thereafter, as shown in FIGS. 1C and 6, first, an alloy material containing AuBe is vapor-deposited on the surface of the p-type GaP layer 13, and a layer 15a containing AuBe having a thickness of 0.3 μm, for example, is formed. Form. For example, the AuBe alloy material may be deposited in a resistance heating boat such as a tungsten boat.
Here, in addition to forming the layer 15a containing AuBe alone, an Au layer may be formed before and after the layer 15a.

次に、Ti層15bを、EBガン蒸着等によって厚さ50〜150nm真空蒸着する。
このようにTi層15bを形成することによって、p型半導体結晶13からのGaやAl、In、AuBeを含む層15aからのBeが上部に形成するAu層まで拡散することを抑制するバリアー層を設けることができ、最表面層であるAu層(Auパッド層)中のGaやBe等の不純物濃度を低減させることができる。また厚さを50〜150nmとすることでAu層へのGaやBe等の不純物の拡散を更に抑制することができる厚さとすることができ、また長時間蒸着させる必要がなく、製造時間の短縮を図ることができる。
Next, the Ti layer 15b is vacuum-deposited with a thickness of 50 to 150 nm by EB gun evaporation or the like.
By forming the Ti layer 15b in this manner, a barrier layer that suppresses diffusion of Be from the layer 15a containing Ga, Al, In, and AuBe from the p-type semiconductor crystal 13 to the Au layer formed thereon is formed. It is possible to reduce the concentration of impurities such as Ga and Be in the Au layer (Au pad layer) which is the outermost surface layer. Further, by setting the thickness to 50 to 150 nm, it is possible to achieve a thickness that can further suppress the diffusion of impurities such as Ga and Be into the Au layer, and it is not necessary to deposit for a long time, thereby shortening the manufacturing time. Can be achieved.

その後、Ti層15b上に、Au層(Auパッド層)15cを、真空蒸着により厚さ1.5〜2μm形成する。このように、Au層15cの厚さを1.5〜2μmとすることによって、より良好なワイヤーボンディング特性を得ることができる   Thereafter, an Au layer (Au pad layer) 15c is formed on the Ti layer 15b by vacuum deposition to a thickness of 1.5 to 2 μm. Thus, by setting the thickness of the Au layer 15c to 1.5 to 2 μm, better wire bonding characteristics can be obtained.

その後、図1(D)に示すように、フォトリソ、エッチング、レジスト剥離等を行って電極パターンを形成する。電極パターンの形成方法は一般的な方法を用いることができるが、特に、リフトオフ法、エッチング法のいずれかとすることが好ましい。
電極パターンの形成にエッチング法を用いることによって、短時間で、高い精度で電極パターンを形成することができる。また、リフトオフ法であれば、高い精度で電極パターンを形成することができるとともに、環境負荷の大きな酸やアルカリ性薬液を用いるエッチング工程を行わずに済む。
Thereafter, as shown in FIG. 1D, photolithography, etching, resist stripping, and the like are performed to form an electrode pattern. As a method for forming the electrode pattern, a general method can be used, and it is particularly preferable to use either a lift-off method or an etching method.
By using an etching method for forming the electrode pattern, the electrode pattern can be formed with high accuracy in a short time. Further, with the lift-off method, an electrode pattern can be formed with high accuracy, and an etching process using an acid or alkaline chemical having a large environmental load is not required.

その後、図1(E)および図3に示すように、熱処理を行うことによって、先に蒸着させた金属層とp型半導体結晶とをオーミック接触させてオーミック電極とし、p側オーミック電極15を形成する。ここで、この熱処理条件を、不活性または活性の低いガス雰囲気(例えばArやN)中で、400℃〜500℃の温度で、20〜100分とすることができる。
このような熱処理条件であれば、各々の金属層が熱処理雰囲気と反応したり、熱によって劣化することを確実に防止することができ、また金属層とp型半導体結晶とをオーミック接触させることができる程度にBeを拡散させることができる。
Thereafter, as shown in FIGS. 1E and 3, by performing a heat treatment, the metal layer previously deposited and the p-type semiconductor crystal are brought into ohmic contact to form an ohmic electrode, thereby forming a p-side ohmic electrode 15. To do. Here, the heat treatment conditions can be set to 20 to 100 minutes at a temperature of 400 ° C. to 500 ° C. in an inert or low activity gas atmosphere (for example, Ar or N 2 ).
Under such heat treatment conditions, it is possible to reliably prevent each metal layer from reacting with the heat treatment atmosphere or being deteriorated by heat, and making the ohmic contact between the metal layer and the p-type semiconductor crystal. Be can be diffused as much as possible.

また、熱処理後に、図1(F)に示すように、p側オーミック電極とp型半導体結晶との間の抵抗を測定することが望ましい。   Moreover, it is desirable to measure the resistance between the p-side ohmic electrode and the p-type semiconductor crystal after the heat treatment, as shown in FIG.

その後、図1(G)に示すように、n型GaAs層11の表面を、硫酸過水で洗浄した後に純水で洗浄することができる。その後、図1(H)に示すように、n型GaAs層11の裏面側(発光層12やp型GaP層13とは反対側)に、1×10−6Torr程度の真空度でNi層その上にAuGe層を蒸着装置等によって成膜する。
ここで、このn側オーミック電極となる材料からなる層の形成方法や組成は、これに限らず、作製する半導体素子(n型半導体結晶)に合わせて適宜選択すればよい。
Thereafter, as shown in FIG. 1G, the surface of the n-type GaAs layer 11 can be washed with pure water after washing with sulfuric acid / hydrogen peroxide. Thereafter, as shown in FIG. 1 (H), the Ni layer is formed on the back side of the n-type GaAs layer 11 (on the side opposite to the light-emitting layer 12 and the p-type GaP layer 13) at a degree of vacuum of about 1 × 10 −6 Torr. An AuGe layer is formed thereon by a vapor deposition apparatus or the like.
Here, the formation method and composition of the layer made of the material to be the n-side ohmic electrode are not limited thereto, and may be appropriately selected according to the semiconductor element to be manufactured (n-type semiconductor crystal).

その後、図1(I)、(J)および図4に示すように、蒸着装置から取り出して、フォトリソ、パターンエッチング、レジスト剥離等の工程を行って電極パターンを形成した後、熱処理してオーミック電極とし、n側オーミック電極16を形成する。
この電極パターンの形成方法や熱処理も、一般的な方法、条件を採用できる。
Thereafter, as shown in FIGS. 1 (I), (J), and FIG. 4, the electrode pattern is formed by performing steps such as photolithography, pattern etching, resist stripping, etc. Then, the n-side ohmic electrode 16 is formed.
As a method for forming the electrode pattern and heat treatment, general methods and conditions can be adopted.

また、熱処理後に、図1(K)に示すように、作製したn側オーミック電極とn型半導体結晶とがオーミック接触しているかどうかを確認するために抵抗を測定することが望ましい。   In addition, after the heat treatment, as shown in FIG. 1K, it is desirable to measure resistance in order to confirm whether or not the manufactured n-side ohmic electrode and the n-type semiconductor crystal are in ohmic contact.

その後、図1(L)に示すように、電極を形成した半導体結晶をダイシングする工程を行う。
そして、図1(M)に示すように、ダイシングによるダメージを除去するための歪取りエッチングや高輝度化のための粗面化処理等を任意で行うことができる。
Thereafter, as shown in FIG. 1L, a step of dicing the semiconductor crystal on which the electrodes are formed is performed.
Then, as shown in FIG. 1M, strain relief etching for removing damage due to dicing, roughening treatment for increasing the brightness, and the like can be arbitrarily performed.

次に、図1(N)に示すように、ヨウ化カリウム溶液にヨウ素を溶かした液でp型半導体結晶の表面に形成されたオーミック電極(p側オーミック電極15)の表面を洗浄し、図5に示すような発光素子10を製造する。
このヨウ素ヨウ化カリウム溶液は水溶液又はアルコール溶液とすることができる。また、ヨウ素ヨウ化カリウム溶液のヨウ素の重量比率を0.02〜0.2%とすることができる。
Next, as shown in FIG. 1 (N), the surface of the ohmic electrode (p-side ohmic electrode 15) formed on the surface of the p-type semiconductor crystal is washed with a solution obtained by dissolving iodine in a potassium iodide solution. A light emitting device 10 as shown in FIG.
This potassium iodide iodide solution can be an aqueous solution or an alcohol solution. Moreover, the weight ratio of iodine in the iodine iodide solution can be 0.02 to 0.2%.

ヨウ素の重量比率が0.2%以下であると、p側オーミック電極15最表面層のAu層15cの表面が腐食し、Au層15cの表面に凸凹が発生したり、金が捲れたりする恐れがなく、ヨウ素の重量比率が0.02%以上であると、エッチング力が弱くなり、洗浄時間が長くなり過ぎたり、不純物が十分除去できないという恐れがない。従って、より確実にボンディング強度を改善することができる。   If the weight ratio of iodine is 0.2% or less, the surface of the Au layer 15c as the outermost surface layer of the p-side ohmic electrode 15 may be corroded, and irregularities may be generated on the surface of the Au layer 15c or gold may be drawn. If the weight ratio of iodine is 0.02% or more, the etching power becomes weak, and there is no fear that the cleaning time becomes too long or impurities cannot be removed sufficiently. Therefore, the bonding strength can be improved more reliably.

このようにヨウ素ヨウ化カリウム溶液でp側オーミック電極15表面を洗浄した場合ボンダビリティが向上する理由は以下のように考えられる。
前述したように、発光素子製造工程では、通常2度の電極形成工程において熱処理がなされることになる。このときに半導体と金の界面に合金層が作られる。その際に、相互に拡散がおき結晶からAu層の方向、表面については、ボンディングパッド(Au層)の表面まで拡散が進むことが、SIMS分析等で確認された。例えば、Ga、In、Alなどが電極最表面層のAu層の表面側に拡散する。これにより、ボンディングパッドであるAu層には、Ga、In、Al、Beなどが進入し、Auは硬くなり、ボンディングの熱圧着がしにくくなる。
The reason why bondability is improved when the surface of the p-side ohmic electrode 15 is washed with a potassium iodide iodide solution is considered as follows.
As described above, in the light emitting element manufacturing process, heat treatment is usually performed in two electrode forming processes. At this time, an alloy layer is formed at the interface between the semiconductor and the gold. At that time, it was confirmed by SIMS analysis or the like that diffusion occurred between the crystal and the direction and surface of the Au layer from the crystal to the surface of the bonding pad (Au layer). For example, Ga, In, Al or the like diffuses to the surface side of the Au layer that is the outermost surface layer of the electrode. As a result, Ga, In, Al, Be or the like enters the Au layer, which is a bonding pad, and the Au becomes hard, making it difficult to perform thermocompression bonding.

また、これらの不純物がAu層表面にまで突き抜けてきて、酸素、窒素などと化合することも考えられる。このように熱処理によって低抵抗のオーミック性の接触がAuと結晶との間で成り立つ代わりに、ワイヤーボンダビリティが犠牲になっていた。そこで、p側オーミック電極15表面(ボンディングパッド表面)をヨウ素ヨウ化カリウム溶液で洗浄することで、ボンディングパッド表面に拡散したGa、In、Al、Be等の不純物が除去され、ワイヤーボンダビリティが向上すると考えられる。   It is also conceivable that these impurities penetrate to the surface of the Au layer and combine with oxygen, nitrogen and the like. Thus, instead of the low resistance ohmic contact between Au and the crystal due to the heat treatment, wire bondability is sacrificed. Therefore, by washing the surface of the p-side ohmic electrode 15 (bonding pad surface) with a potassium iodide iodide solution, impurities such as Ga, In, Al, and Be diffused on the bonding pad surface are removed, and wire bondability is improved. I think that.

また、作製された発光素子の特性検査として、上記のようにヨウ素ヨウ化カリウム溶液でp側オーミック電極15表面を洗浄した後(または評価ランプ組み立て後(図1(O)))に、シアテスト(図1(P))を行うことによって、製造する発光素子の品質を検査して、歩留り向上を図ることが望ましい。   Further, as a characteristic inspection of the manufactured light emitting element, after the surface of the p-side ohmic electrode 15 was washed with a potassium iodide iodide solution as described above (or after the evaluation lamp was assembled (FIG. 1 (O))), a shear test ( By performing FIG. 1 (P)), it is desirable to inspect the quality of the light emitting element to be manufactured and to improve the yield.

尚、上記例示では、p型半導体結晶にGaPを用いる場合について説明したが、本発明はこれに限定されず、p型半導体結晶としては、他に、GaAs、GaAsP、GaAlAs、AlGaInP等のGaまたはInを含む半導体結晶を用いることができる。   In the above example, the case where GaP is used for the p-type semiconductor crystal has been described. However, the present invention is not limited thereto, and other examples of the p-type semiconductor crystal include Ga such as GaAs, GaAsP, GaAlAs, AlGaInP, or the like. A semiconductor crystal containing In can be used.

また、n型半導体結晶もGaAsに限定されず、同様にGaP、GaAsP、GaAlAs、AlGaInP等を用いることができる。   Further, the n-type semiconductor crystal is not limited to GaAs, and similarly, GaP, GaAsP, GaAlAs, AlGaInP, or the like can be used.

尚、上記ではヨウ素ヨウ化カリウム溶液を用いて行うp側オーミック電極表面の洗浄を、ダイシングによる切断面の歪除去エッチング後に行ったが、もちろん本発明の発光素子の製造方法におけるヨウ素ヨウ化カリウム溶液を用いて行う洗浄は、ダイシングによる切断面の歪除去エッチングの後には限られない。
上記したように、本発明は、ヨウ素ヨウ化カリウム溶液によるp側オーミック電極表面の洗浄を行うことによって、熱処理によりp側オーミック電極の表面(電極最表面層のAu層の表面)に拡散した不純物を除去することができ、ワイヤーボンダビリティが向上するという効果を得ることができるものである。従って、ヨウ素ヨウ化カリウム溶液による洗浄は、p側オーミック電極を形成するための熱処理後であれば、当該洗浄を行わない場合に較べて、ワイヤーボンダビリティが向上するという本発明の効果を確実に奏することができるため、p側オーミック電極を形成するための熱処理後であれば、いずれの工程で行っても良い。
In the above, the cleaning of the p-side ohmic electrode surface using the potassium iodide iodide solution was performed after the strain removal etching of the cut surface by dicing. Of course, the iodine iodide solution in the manufacturing method of the light emitting device of the present invention The cleaning performed using is not limited to after the strain removal etching of the cut surface by dicing.
As described above, according to the present invention, the impurity diffused on the surface of the p-side ohmic electrode (the surface of the Au layer of the electrode outermost surface layer) by the heat treatment by cleaning the surface of the p-side ohmic electrode with a potassium iodide iodide solution. Can be removed, and the effect of improving wire bondability can be obtained. Therefore, the cleaning with the potassium iodide iodide solution ensures the effect of the present invention that the wire bondability is improved after the heat treatment for forming the p-side ohmic electrode as compared with the case where the cleaning is not performed. As long as it is after the heat treatment for forming the p-side ohmic electrode, it may be performed in any step.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to this.

(実施例)
厚さ100μmでドーパント濃度が2×1018/cmのn型GaAs基板上に、厚さ数μmのAlGaInP発光層と、厚さ5μmでドーパント濃度が3×1017/cmのp型GaP層からなる半導体結晶を作製した。
次に、p型GaP層の表面を、硫酸過水(硫酸:過酸化水素水:純水=3:1:1)で40℃、10秒間、洗浄した後に純水で洗浄した。
(Example)
On an n-type GaAs substrate having a thickness of 100 μm and a dopant concentration of 2 × 10 18 / cm 3 , an AlGaInP light emitting layer having a thickness of several μm and a p-type GaP having a thickness of 5 μm and a dopant concentration of 3 × 10 17 / cm 3 A semiconductor crystal composed of layers was produced.
Next, the surface of the p-type GaP layer was washed with sulfuric acid / hydrogen peroxide (sulfuric acid: hydrogen peroxide: pure water = 3: 1: 1) at 40 ° C. for 10 seconds and then with pure water.

その後、1×10−6Torr程度の真空度で、Be濃度1%のAuBe合金材料をタングステンボートにセットし、蒸気圧が低い状態で溶かし、その後蒸発させ厚さ60nmのAuBeを含む層を成膜した。
その後、その上に、EB蒸着で、厚さ80nmのTi層を成膜した。このTi層形成の際は、シャッターを閉めた状態で、蒸発しない程度の電流でTiインゴットを10分程度電子ビームで加熱して、Tiインゴット内の水分、酸素、窒素などTiに吸着されているであろう成分を放出させる脱ガスを行った後にTiを蒸発させた。そして、その上に、Au層を1.5μm蒸着した。この金は、ワイヤーボンディング時のワイヤーを超音波熱圧着するボンディングパッドとなる。
Thereafter, an AuBe alloy material having a Be concentration of 1% is set in a tungsten boat at a vacuum degree of about 1 × 10 −6 Torr, melted in a low vapor pressure state, and then evaporated to form a layer containing AuBe having a thickness of 60 nm. Filmed.
Thereafter, a Ti layer having a thickness of 80 nm was formed thereon by EB vapor deposition. When the Ti layer is formed, the Ti ingot is heated with an electron beam for about 10 minutes with a current that does not evaporate with the shutter closed, and is adsorbed by Ti such as moisture, oxygen, nitrogen in the Ti ingot. Ti was evaporated after degassing to release the components that would be. And Au layer was vapor-deposited 1.5 micrometers on it. This gold serves as a bonding pad for ultrasonic thermocompression bonding of the wire during wire bonding.

次に、フォトリソ法で、120μm四角の電極パターンを形成した。この際のAu層のエッチングには、ヨウ素系のエッチャントを用いた。その後、レジストを剥離した。
次に、窒素雰囲気中で、500℃、20分の熱処理を行い、オーミック接触を得た。以上でp側オーミック電極(アノード電極)が完成した。
Next, a 120 μm square electrode pattern was formed by photolithography. In this case, an iodine-based etchant was used for etching the Au layer. Thereafter, the resist was peeled off.
Next, heat treatment was performed at 500 ° C. for 20 minutes in a nitrogen atmosphere to obtain ohmic contact. Thus, the p-side ohmic electrode (anode electrode) was completed.

次に背面電極を形成した。まずn型GaAsの表面を、硫酸過水(硫酸:過酸化水素水:純水=3:1:1)で、40℃、10秒間、洗浄した後に純水で洗浄した。次にn型GaAs面上に真空蒸着を行った。1×10−6Torr程度の真空度で、Niを30nm、その上にAuGeを300nm、更にAuを200nm蒸着した。
その後フォトリソ、パターンエッチング、レジスト剥離を行い窒素雰囲気中で430℃、30分の熱処理を行いn側オーミック電極(カソード電極)を形成した。
その後、280μmピッチでダイシングし、約250μm四角のチップを切り出した。
その後、ダイシングによる切断面の歪除去として、硫酸:過酸化水素水:純水=3:1:1で、60℃、6分のエッチングを行った。
Next, a back electrode was formed. First, the surface of n-type GaAs was washed with sulfuric acid / hydrogen peroxide (sulfuric acid: hydrogen peroxide solution: pure water = 3: 1: 1) at 40 ° C. for 10 seconds and then with pure water. Next, vacuum deposition was performed on the n-type GaAs surface. At a degree of vacuum of about 1 × 10 −6 Torr, Ni was deposited to 30 nm, AuGe was deposited to 300 nm, and Au was further deposited to 200 nm.
Thereafter, photolithography, pattern etching, and resist removal were performed, and a heat treatment was performed at 430 ° C. for 30 minutes in a nitrogen atmosphere to form an n-side ohmic electrode (cathode electrode).
Thereafter, dicing was performed at a pitch of 280 μm to cut out a chip of about 250 μm square.
Thereafter, etching was performed at 60 ° C. for 6 minutes with sulfuric acid: hydrogen peroxide solution: pure water = 3: 1: 1 as distortion removal of the cut surface by dicing.

次にヨウ化カリウム水溶液にヨウ素を0.15重量%溶かした液で、p側オーミック電極の表面を10秒間洗浄し、その後、水洗し乾燥させた。ここでヨウ素ヨウ化カリウム水溶液は純水1000mlにヨウ化カリウムを230gを溶かし、そこに1.8gのヨウ素を溶かしたものを用いた。   Next, the surface of the p-side ohmic electrode was washed with a solution obtained by dissolving 0.15% by weight of iodine in an aqueous potassium iodide solution, then washed with water and dried. Here, an aqueous solution of potassium iodide was prepared by dissolving 230 g of potassium iodide in 1000 ml of pure water and dissolving 1.8 g of iodine therein.

その後、チップをTO−18ステム上に、銀のフィラーを含む一液性の樹脂を用いて、GaAs面をダイボンディングし、150℃、1時間で熱硬化させた。その後、超音波ボンダーで、ステム加熱温度100℃で直径25μmのAuワイヤーをボンディングパッドに熱圧着した。この温度は、通常200℃で行うが、少し低めの温度で行った。したがってボンディング強度は少し低くなる。   Thereafter, the chip was die-bonded on the TO-18 stem using a one-component resin containing a silver filler and thermally cured at 150 ° C. for 1 hour. Thereafter, an Au wire having a diameter of 25 μm was thermocompression bonded to the bonding pad with an ultrasonic bonder at a stem heating temperature of 100 ° C. This temperature is usually 200 ° C., but a little lower. Accordingly, the bonding strength is slightly reduced.

次にシアテスターで熱圧着したAuワイヤーのボール部分を横方向から押し、Auワイヤーのボール部分がボンディングパッドから剥がれたときの力(シア強度)を測定した。尚、測定は30個のチップについて行い、平均値を算出した。測定結果を下記表1に示す。   Next, the ball portion of the Au wire thermocompression-bonded with a shear tester was pushed from the lateral direction, and the force (shear strength) when the ball portion of the Au wire was peeled off from the bonding pad was measured. The measurement was performed on 30 chips, and the average value was calculated. The measurement results are shown in Table 1 below.

(比較例)
実施例においてヨウ素ヨウ化カリウム水溶液によるp側オーミック電極表面の洗浄を行わないこと以外は実施例と同じ条件で発光素子を作製し、Auワイヤーのシア強度を測定した。尚、測定は実施例と同様30個のチップについて行い、平均値を算出した。測定結果を下記表1に示す。
(Comparative example)
In the examples, a light emitting device was prepared under the same conditions as in the examples except that the surface of the p-side ohmic electrode was not washed with an aqueous potassium iodide solution, and the shear strength of the Au wire was measured. In addition, the measurement was performed on 30 chips as in the example, and the average value was calculated. The measurement results are shown in Table 1 below.

Figure 2011035318
Figure 2011035318

表1により、比較例に比べて実施例の発光素子のシア強度は向上し、ヨウ素ヨウ化カリウム溶液を用いて洗浄することで、安定した電極を形成することができることが判った。   Table 1 shows that the shear strength of the light-emitting element of the example is improved as compared with the comparative example, and a stable electrode can be formed by washing with a potassium iodide iodide solution.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits the same function and effect. Are included in the technical scope.

10…発光素子、 11…n型GaAs基板(n型半導体結晶)、 12…発光層、 13…p型GaP層(p型半導体結晶)、 14…半導体結晶、 15…p側オーミック電極、 15a…AuBeを含む層、 15b…Ti層、 15c…Au層(Auパッド層)、 16…n側オーミック電極。   DESCRIPTION OF SYMBOLS 10 ... Light emitting element, 11 ... n-type GaAs substrate (n-type semiconductor crystal), 12 ... Light emitting layer, 13 ... p-type GaP layer (p-type semiconductor crystal), 14 ... Semiconductor crystal, 15 ... P-side ohmic electrode, 15a ... A layer containing AuBe, 15b ... Ti layer, 15c ... Au layer (Au pad layer), 16 ... n-side ohmic electrode.

Claims (4)

少なくとも、n型半導体結晶と、発光層と、GaまたはInを含みキャリア濃度が1×1017/cm以上1×1019/cm以下であるp型半導体結晶とが、この順で形成された半導体結晶の前記p型半導体結晶の表面に、オーミック電極材料として、少なくとも、AuBeを含む層、Ti層、Au層を形成し、その後熱処理を行ってオーミック電極を形成し、その後前記半導体結晶をダイシングする発光素子の製造方法であって、
少なくとも、前記形成されたオーミック電極の表面を、ヨウ素ヨウ化カリウム溶液を用いて洗浄する工程を含むことを特徴とする発光素子の製造方法。
At least an n-type semiconductor crystal, a light emitting layer, and a p-type semiconductor crystal containing Ga or In and having a carrier concentration of 1 × 10 17 / cm 3 or more and 1 × 10 19 / cm 3 or less are formed in this order. At least a layer containing AuBe, a Ti layer, and an Au layer are formed as an ohmic electrode material on the surface of the p-type semiconductor crystal of the obtained semiconductor crystal, followed by heat treatment to form an ohmic electrode, and then the semiconductor crystal is formed. A method of manufacturing a light emitting device for dicing,
The manufacturing method of the light emitting element characterized by including the process of wash | cleaning at least the surface of the said ohmic electrode formed using the potassium iodide iodide solution.
前記ヨウ素ヨウ化カリウム溶液を、水溶液またはアルコール溶液とすることを特徴とする請求項1に記載の発光素子の製造方法。   The method for manufacturing a light-emitting element according to claim 1, wherein the iodine iodide solution is an aqueous solution or an alcohol solution. 前記ヨウ素ヨウ化カリウム溶液を、ヨウ素の重量比率が0.02〜0.2%とすることを特徴とする請求項1又は請求項2に記載の発光素子の製造方法。   3. The method for manufacturing a light-emitting element according to claim 1, wherein the potassium iodide solution has an iodine weight ratio of 0.02 to 0.2%. 前記ヨウ素ヨウ化カリウム溶液を用いて行うオーミック電極表面の洗浄を、前記ダイシングによる切断面の歪除去エッチングの後に行うことを特徴とする請求項1乃至請求項3のいずれか1項に記載の発光素子の製造方法。   The light emission according to any one of claims 1 to 3, wherein the cleaning of the ohmic electrode surface performed using the iodine iodide solution is performed after the strain removal etching of the cut surface by the dicing. Device manufacturing method.
JP2009182682A 2009-08-05 2009-08-05 Method of manufacturing light emitting element Pending JP2011035318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009182682A JP2011035318A (en) 2009-08-05 2009-08-05 Method of manufacturing light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009182682A JP2011035318A (en) 2009-08-05 2009-08-05 Method of manufacturing light emitting element

Publications (1)

Publication Number Publication Date
JP2011035318A true JP2011035318A (en) 2011-02-17

Family

ID=43764063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009182682A Pending JP2011035318A (en) 2009-08-05 2009-08-05 Method of manufacturing light emitting element

Country Status (1)

Country Link
JP (1) JP2011035318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020181924A (en) * 2019-04-26 2020-11-05 日亜化学工業株式会社 Manufacturing method of light-emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020181924A (en) * 2019-04-26 2020-11-05 日亜化学工業株式会社 Manufacturing method of light-emitting device
JP7256382B2 (en) 2019-04-26 2023-04-12 日亜化学工業株式会社 Method for manufacturing light emitting device

Similar Documents

Publication Publication Date Title
TWI405350B (en) Light emitting element and manufacturing method thereof
US7829359B2 (en) Method for fabricating highly reflective ohmic contact in light-emitting devices
US8012783B2 (en) Semiconductor element and method for manufacturing same
JP4985067B2 (en) Semiconductor light emitting device
EP1885001A1 (en) InGaAlN LIGHT-EMITTING DEVICE AND MANUFACTURING METHOD THEREOF
US20140217457A1 (en) Light-emitting element chip and manufacturing method therefor
US20150037963A1 (en) Semiconductor substrate, semiconductor device, and manufacturing methods thereof
JP2023014201A (en) Semiconductor light-emitting element and manufacturing method thereof
JPH11177134A (en) Manufacture of semiconductor element, semiconductor, manufacture of light emitting element, and light emitting element
JP2005340860A (en) Semiconductor light-emitting element
JP5287837B2 (en) Gallium nitride compound semiconductor light emitting device and negative electrode thereof
JPH1187772A (en) Electrode for semiconductor light emitting element
WO2009147822A1 (en) Light-emitting element
JP2002368273A (en) Semiconductor light-emitting device
JP2005259912A (en) Manufacturing method of light emitting element
JP2011035318A (en) Method of manufacturing light emitting element
TWI225311B (en) Method for producing group III nitride compound semiconductor device
JP2010263046A (en) Method for manufacturing light emitting element
JP2005203765A (en) Semiconductor light emitting element of gallium nitride compound and its negative electrode
JP4985930B2 (en) Nitride-based compound semiconductor light-emitting device and method for manufacturing the same
JP2008140811A (en) Method of manufacturing semiconductor device
JP4666158B2 (en) Manufacturing method of semiconductor light emitting device
JP2005197670A (en) Gallium nitride base compound semiconductor light emitting element and its negative electrode
JP5169959B2 (en) Method for manufacturing light emitting device
JP2003142731A (en) Light emitting diode element and device thereof