JP2011032128A - Refining method of hydrogen, shipping equipment of hydrogen, and hydrogen station - Google Patents

Refining method of hydrogen, shipping equipment of hydrogen, and hydrogen station Download PDF

Info

Publication number
JP2011032128A
JP2011032128A JP2009179571A JP2009179571A JP2011032128A JP 2011032128 A JP2011032128 A JP 2011032128A JP 2009179571 A JP2009179571 A JP 2009179571A JP 2009179571 A JP2009179571 A JP 2009179571A JP 2011032128 A JP2011032128 A JP 2011032128A
Authority
JP
Japan
Prior art keywords
hydrogen
carbon monoxide
containing gas
gas
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009179571A
Other languages
Japanese (ja)
Inventor
Suguru Iki
英 壱岐
Atsushi Segawa
敦司 瀬川
Yoshimitsu Takeshita
良充 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2009179571A priority Critical patent/JP2011032128A/en
Publication of JP2011032128A publication Critical patent/JP2011032128A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for refining hydrogen, which can reduce the content of carbon monoxide in hydrogen. <P>SOLUTION: The refining method of hydrogen includes a refining step of removing carbon monoxide from a hydrogen-containing gas, using at least one step selected from the groups consisting of a methanation step of methanating carbon monoxide remaining in a hydrogen-containing gas refined by an adsorption method, by a catalyst, an adsorption step of making carbon monoxide adsorbed in an adsorbent, and an oxidation step of oxidizing carbon monoxide. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、水素の精製方法、水素の出荷設備、及び水素ステーションに関する。   The present invention relates to a hydrogen purification method, a hydrogen shipping facility, and a hydrogen station.

従来、安価で実用的な水素含有ガスの製造方法の一つとして、ナフサ等の石油系原料を水蒸気改質反応等により改質する方法が知られている。このような方法で製造した水素含有ガス中には、水素の他に、水蒸気、未反応の炭化水素、一酸化炭素及び二酸化炭素等の不純物が含まれる。   Conventionally, a method for reforming petroleum-based raw materials such as naphtha by a steam reforming reaction or the like is known as one of inexpensive and practical methods for producing a hydrogen-containing gas. The hydrogen-containing gas produced by such a method contains impurities such as water vapor, unreacted hydrocarbons, carbon monoxide and carbon dioxide in addition to hydrogen.

水素含有ガスから上記の不純物を除去して水素ガスを精製する方法としては、Pressure Swing Adsorption法(PSA法)、Thermal Swing Adsorption法(TSA法)、Thermal Pressure Swing Adsorption法(TPSA法)などの吸着法が知られている。PSA法では、例えば下記特許文献1に示すように、高圧の吸着塔内で水素含有ガスに含まれる不純物を吸着剤に吸着させることにより、高純度の水素ガスを精製する。   As a method for purifying the hydrogen gas by removing the above-mentioned impurities from the hydrogen-containing gas, the Pressure Swing Adsorption method (PSA method), the Thermal Swing Adsorption method (TSA method), the Thermal Pressure Swing Adsorption method (TPSA method) and the like are used. The law is known. In the PSA method, for example, as shown in Patent Document 1 below, high-purity hydrogen gas is purified by allowing an adsorbent to adsorb impurities contained in a hydrogen-containing gas in a high-pressure adsorption tower.

特開平10−212103号公報Japanese Patent Laid-Open No. 10-212103

近年、従来のガソリン車に代わる環境負荷の小さい輸送手段として、水素ガスを燃料とする燃料電池車の普及が望まれている。燃料電池車の普及には、燃料電池車に適用できる純度を有する水素ガスを燃料電池車に供給するための水素ステーションや、水素ステーションへ水素ガスを供給する出荷設備を普及させることが必要となる。   In recent years, the spread of a fuel cell vehicle using hydrogen gas as a fuel has been demanded as a transportation means with a low environmental load in place of a conventional gasoline vehicle. For the spread of fuel cell vehicles, it is necessary to disseminate hydrogen stations for supplying hydrogen gas having a purity applicable to fuel cell vehicles to fuel cell vehicles and shipping facilities for supplying hydrogen gas to hydrogen stations. .

水素ガスを燃料電池車に用いる場合、水素ガスから不純物を除去して、好ましくは、99.99質量%、より好ましくは99.999質量%以上の純度を有する水素ガスを精製することが求められる。不純物の中でも特に一酸化炭素(CO)は、燃料電池の電極用触媒に多用される白金(Pt)の触媒毒であるため、少しでも多くの一酸化炭素を水素ガスから除去することが求められる。   When hydrogen gas is used in a fuel cell vehicle, it is required to remove impurities from the hydrogen gas to purify the hydrogen gas having a purity of preferably 99.99% by mass, more preferably 99.999% by mass or more. . Among impurities, particularly carbon monoxide (CO) is a catalyst poison of platinum (Pt) that is frequently used as an electrode catalyst for fuel cells. Therefore, it is required to remove as much carbon monoxide from hydrogen gas as possible. .

高純度の水素ガスを上記のPSA法で精製する場合、水素ガス中に残存する一酸化炭素を減らそうとするほど、水素含有ガスの高圧化や精製装置の多段化が必要となる。しかし、水素含有ガスの高圧化によって、吸着剤に吸着する水素が増えてしまうため、水素ガスの回収率が低下してしまう。また、PSA法によって水素ガスの純度を高めるためには、水素含有ガスの高圧化(水素含有ガスの圧縮)に多大なエネルギーを要する。さらに、水素含有ガスの高圧化に伴って安全性が問題になる。また、装置を多段化すれば、水素ガスの回収率が低下してしまうことや、多段化に要するコストや装置の複雑化が問題となる。このように、PSA法で水素ガスの過度の高純度化を行おうとすれば、吸着剤の増量、それに伴う吸着塔の大型化、多段化、水素含有ガスの高圧化のためのコンプレッサーの大規模化が必要となる。   When purifying high-purity hydrogen gas by the above-described PSA method, it is necessary to increase the pressure of the hydrogen-containing gas and to increase the number of stages of the purification apparatus as the carbon monoxide remaining in the hydrogen gas is reduced. However, the increase in the pressure of the hydrogen-containing gas results in an increase in the amount of hydrogen adsorbed on the adsorbent, so that the hydrogen gas recovery rate decreases. Further, in order to increase the purity of the hydrogen gas by the PSA method, a large amount of energy is required for increasing the pressure of the hydrogen-containing gas (compression of the hydrogen-containing gas). Furthermore, safety becomes a problem as the pressure of the hydrogen-containing gas increases. Further, if the apparatus is multistaged, the recovery rate of hydrogen gas is reduced, and the cost required for multistage and the complexity of the apparatus become problems. In this way, if excessive purification of hydrogen gas is attempted by the PSA method, the scale of the compressor for increasing the amount of adsorbent, enlarging the adsorbing tower, increasing the number of stages, and increasing the pressure of the hydrogen-containing gas Needs to be made.

以上のように、回収率、エネルギーロス、安全性又はコストの点において、燃料電池車に適用できる程度にまで一酸化炭素の含有率が低減された水素ガスをPSA法で精製することには問題があった。そのため、PSA法を適用した水素の出荷設備や水素ステーションを普及させることは困難であった。   As described above, in terms of recovery rate, energy loss, safety, or cost, there is a problem in purifying hydrogen gas whose carbon monoxide content has been reduced to a level applicable to a fuel cell vehicle by the PSA method. was there. Therefore, it has been difficult to spread hydrogen shipping equipment and hydrogen stations to which the PSA method is applied.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、水素中の一酸化炭素の含有率を低減することが可能な水素の精製方法、当該精製方法を適用した水素の出荷設備及び水素ステーションを提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and includes a hydrogen purification method capable of reducing the content of carbon monoxide in hydrogen, and a hydrogen shipping facility to which the purification method is applied. And to provide a hydrogen station.

上記目的を達成するために、本発明に係る水素の精製方法は、吸着法により精製した水素含有ガス中に残存する一酸化炭素を触媒でメタン化するメタン化工程、一酸化炭素を吸着剤に吸着させる吸着工程、及び一酸化炭素を酸化する酸化工程からなる群より選ばれる少なくとも一種の工程により、水素含有ガスから一酸化炭素を除去する精製工程を備える。なお、吸着法とは、PSA法、TSA法又はTPSA法のように、水素含有ガスに含まれる不純物を吸着剤に吸着させることにより、水素ガスを精製する方法である。PSA法では、水素含有ガスの圧力の変動によって、吸着剤に対する不純物の吸脱着を制御する。TSA法では、水素含有ガスの温度の変動によって、吸着剤に対する不純物の吸脱着を制御する。TPSA法では、水素含有ガスの圧力と温度の変動によって、吸着剤に対する不純物の吸脱着を制御する。   In order to achieve the above object, a method for purifying hydrogen according to the present invention comprises a methanation step of methanating carbon monoxide remaining in a hydrogen-containing gas purified by an adsorption method using a catalyst, and using carbon monoxide as an adsorbent. It comprises a purification step for removing carbon monoxide from the hydrogen-containing gas by at least one step selected from the group consisting of an adsorption step for adsorption and an oxidation step for oxidizing carbon monoxide. The adsorption method is a method for purifying hydrogen gas by causing an adsorbent to adsorb impurities contained in the hydrogen-containing gas, such as a PSA method, a TSA method, or a TPSA method. In the PSA method, the adsorption / desorption of impurities with respect to the adsorbent is controlled by changing the pressure of the hydrogen-containing gas. In the TSA method, the adsorption / desorption of impurities with respect to the adsorbent is controlled by changing the temperature of the hydrogen-containing gas. In the TPSA method, the adsorption / desorption of impurities with respect to the adsorbent is controlled by fluctuations in the pressure and temperature of the hydrogen-containing gas.

上記本発明によれば、吸着法単独で水素を精製する場合に比べて、水素中の一酸化炭素の含有率を低減することが可能となる。また、上記本発明によれば、吸着法により精製した水素含有ガスにおける一酸化炭素の含有率が、燃料電池車に適用できる程度にまで低減されていない場合であっても、精製工程において水素中の一酸化炭素の含有率を燃料電池車に適用できる程度にまで低減することが可能となる。   According to the present invention, it is possible to reduce the content of carbon monoxide in hydrogen as compared with the case of purifying hydrogen by the adsorption method alone. Further, according to the present invention, even if the carbon monoxide content in the hydrogen-containing gas purified by the adsorption method is not reduced to a level applicable to a fuel cell vehicle, It is possible to reduce the carbon monoxide content to such an extent that it can be applied to a fuel cell vehicle.

上記本発明では、メタン化工程で用いる触媒が、活性金属として、ニッケル、コバルト、鉄、ルテニウム及びロジウムからなる群より選ばれる少なくとも一種を含有することが好ましい。これにより、本発明の効果が顕著なる。   In the said invention, it is preferable that the catalyst used at a methanation process contains at least 1 type chosen from the group which consists of nickel, cobalt, iron, ruthenium, and rhodium as an active metal. Thereby, the effect of this invention becomes remarkable.

上記本発明では、吸着工程で用いる吸着剤が、活性炭、ゼオライト及びアルミナからなる群より選ばれる少なくとも一種であることが好ましい。これにより、本発明の効果が顕著なる。   In the present invention, the adsorbent used in the adsorption step is preferably at least one selected from the group consisting of activated carbon, zeolite and alumina. Thereby, the effect of this invention becomes remarkable.

上記本発明では、吸着工程で用いる吸着剤に銅が担持されていることが好ましい。これにより、吸着剤への一酸化炭素の吸着が促進される。   In the present invention, copper is preferably supported on the adsorbent used in the adsorption step. Thereby, adsorption of carbon monoxide to the adsorbent is promoted.

上記本発明では、酸化工程において、ルテニウム又は白金を含有する触媒を用いて一酸化炭素を酸化することが好ましい。これにより、本発明の効果が顕著なる。   In the present invention, it is preferable to oxidize carbon monoxide in the oxidation step using a catalyst containing ruthenium or platinum. Thereby, the effect of this invention becomes remarkable.

本発明に係る水素の出荷設備は、上記本発明に係る水素の精製方法を実施するための設備を備える。また、本発明に係る水素ステーションは、上記本発明に係る水素の精製方法を実施するための設備を備える。本発明に係る水素の出荷設備及び水素ステーションでは、燃料電池車に適用できる程度にまで一酸化炭素の含有率が低減された水素を供給することが可能となる。   The hydrogen shipping facility according to the present invention includes a facility for carrying out the hydrogen purification method according to the present invention. Moreover, the hydrogen station which concerns on this invention is equipped with the equipment for enforcing the hydrogen purification method which concerns on the said invention. In the hydrogen shipping facility and the hydrogen station according to the present invention, it is possible to supply hydrogen with a carbon monoxide content reduced to such an extent that it can be applied to a fuel cell vehicle.

本発明によれば、水素中の一酸化炭素の含有率を低減することが可能な水素の精製方法、当該精製方法を適用した水素の出荷設備及び水素ステーションを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the hydrogen purification method which can reduce the content rate of the carbon monoxide in hydrogen, the hydrogen shipping equipment and hydrogen station which applied the said purification method can be provided.

以下、本発明の好適な一実施形態について詳細に説明する。   Hereinafter, a preferred embodiment of the present invention will be described in detail.

(PSA法)
以下では、吸着法として、PSA法を用いる場合について説明する。本実施形態に係る水素の精製方法では、PSA法により精製した水素含有ガスを用いる。PSA法では、ゼオライト、カーボンモレキュラーシーブ、アルミナ等の吸着剤を単独で、または組み合わせて用いる。これらの吸着剤を吸着塔内に設置し、コンプレッサーで圧縮した高圧の水素含有ガスを吸着塔内に導入する。または、水素含有ガスを導入した吸着塔内を昇圧する。これにより、水素含有ガスに含まれる一酸化炭素、二酸化炭素、炭化水素及び水等の不純物を吸着剤に吸着させるとともに、不純物が除去された水素含有ガスを回収する。水素含有ガスを回収した後は、吸着塔内の圧力を高圧から常圧まで減圧することにより、吸着剤に吸着した不純物を脱着させ、吸着剤を再生する。
(PSA method)
Below, the case where PSA method is used as an adsorption method is demonstrated. In the hydrogen purification method according to the present embodiment, a hydrogen-containing gas purified by the PSA method is used. In the PSA method, adsorbents such as zeolite, carbon molecular sieve, and alumina are used alone or in combination. These adsorbents are installed in an adsorption tower, and a high-pressure hydrogen-containing gas compressed by a compressor is introduced into the adsorption tower. Alternatively, the pressure in the adsorption tower into which the hydrogen-containing gas has been introduced is increased. Thereby, impurities such as carbon monoxide, carbon dioxide, hydrocarbons and water contained in the hydrogen-containing gas are adsorbed by the adsorbent, and the hydrogen-containing gas from which the impurities have been removed is recovered. After recovering the hydrogen-containing gas, the pressure in the adsorption tower is reduced from a high pressure to a normal pressure to desorb impurities adsorbed on the adsorbent and regenerate the adsorbent.

本実施形態では、PSA法による精製により、純度が99.99質量%以上である水素ガスを得ることが好ましい。これにより、後述する精製工程において、水素ガス中の一酸化炭素の含有率を0.2質量ppm以下に低減することが可能となる。   In this embodiment, it is preferable to obtain hydrogen gas having a purity of 99.99% by mass or more by purification by the PSA method. This makes it possible to reduce the content of carbon monoxide in the hydrogen gas to 0.2 mass ppm or less in the purification step described later.

PSA法では、吸着塔内での水素含有ガスの圧力は、0.5〜4.0MPaであればよい。吸着塔に送られる水素含有ガスの温度は10〜100℃であればよい。PSA法による精製で、純度が99.99質量%以上である水素ガスを得るためには、吸着塔内での水素含有ガスの圧力を1.5MPa以上に調整することが好ましい。なお、水素含有ガスの圧力と温度は、必ずしも上記の数値範囲に限定されない。   In the PSA method, the pressure of the hydrogen-containing gas in the adsorption tower may be 0.5 to 4.0 MPa. The temperature of the hydrogen-containing gas sent to the adsorption tower should just be 10-100 degreeC. In order to obtain hydrogen gas having a purity of 99.99% by mass or more by purification by the PSA method, the pressure of the hydrogen-containing gas in the adsorption tower is preferably adjusted to 1.5 MPa or more. Note that the pressure and temperature of the hydrogen-containing gas are not necessarily limited to the above numerical range.

PSA法で精製する前の水素含有ガスとしては、例えば、石油系炭化水素、天然ガス、アルコール類又はエーテル類等の原料の水蒸気改質反応により製造した改質ガスを用いればよい。改質ガスの具体的な原料としては、例えば、ナフサ、灯油、ガソリン、メタン、エタン、プロパン、ブタン、ペンタン、メタノール、ジメチルエーテル等が挙げられる。   As the hydrogen-containing gas before purification by the PSA method, for example, a reformed gas produced by a steam reforming reaction of a raw material such as petroleum hydrocarbon, natural gas, alcohols or ethers may be used. Specific examples of the reformed gas include naphtha, kerosene, gasoline, methane, ethane, propane, butane, pentane, methanol, and dimethyl ether.

(精製工程)
本実施形態では、PSA法により精製した水素含有ガス中に残存する一酸化炭素及びその他の不純物を、精製工程において除去する。精製工程では、下記のメタン化工程、吸着工程及び酸化工程からなる群より選ばれる一種又は二種以上の工程を用いることにより、水素含有ガスから一酸化炭素及びその他の不純物を除去する。なお、メタン化工程、吸着工程及び酸化工程を組み合わせて実施する場合、工程の順序は、特に限定されない。また、メタン化工程、吸着工程及び酸化工程のうち少なくともいずれかを繰り返してもよい。
(Purification process)
In this embodiment, carbon monoxide and other impurities remaining in the hydrogen-containing gas purified by the PSA method are removed in the purification step. In the purification process, carbon monoxide and other impurities are removed from the hydrogen-containing gas by using one or more processes selected from the group consisting of the following methanation process, adsorption process and oxidation process. In addition, when implementing combining a methanation process, an adsorption process, and an oxidation process, the order of a process is not specifically limited. Moreover, you may repeat at least any one among a methanation process, an adsorption process, and an oxidation process.

<メタン化工程>
メタン化工程では、PSA法により精製した水素含有ガス中に残存する一酸化炭素を、触媒を用いてメタン化する。なお、メタン化工程では、水素含有ガスに含まれる水素によって一酸化炭素がメタン化する。
<Methanation process>
In the methanation step, carbon monoxide remaining in the hydrogen-containing gas purified by the PSA method is methanated using a catalyst. In the methanation step, carbon monoxide is methanated by hydrogen contained in the hydrogen-containing gas.

メタン化工程で用いる触媒は、活性金属として、ニッケル、コバルト、鉄、ルテニウム及びロジウムからなる群より選ばれる少なくとも一種を含有することが好ましい。これらの活性金属は、シリカ、アルミナ、チタニア又はジルコニア等に担体に担持させて用いればよい。   The catalyst used in the methanation step preferably contains at least one selected from the group consisting of nickel, cobalt, iron, ruthenium and rhodium as the active metal. These active metals may be used by being supported on a carrier such as silica, alumina, titania or zirconia.

メタン化工程における水素含有ガスの温度は150〜400℃程度とすればよい。メタン化工程における水素含有ガスの圧力は、常圧〜5MPa程度とすればよい。メタン化工程における触媒の温度は、150〜400℃程度とすればよい。   The temperature of the hydrogen-containing gas in the methanation step may be about 150 to 400 ° C. The pressure of the hydrogen-containing gas in the methanation step may be about normal pressure to about 5 MPa. The temperature of the catalyst in the methanation step may be about 150 to 400 ° C.

従来、例えば、特開2006−290732号公報(以下、「文献2」と記す。)に示すように、PSA法による精製を経ることなく、一酸化炭素をメタン化することにより精製した水素含有ガスを燃料電池に用いる方法が知られている。しかし、文献2の方法では、PSA法による精製を行わないため、メタン化を行う前の水素含有ガス中の一酸化炭素の含有率が、本実施形態で用いる水素含有ガスに比べて高い。したがって、一酸化炭素のメタン化で消費される水素の量が、本実施形態のメタン化工程に比べて多くなる。そのため、文献2の方法では、本実施形態に比べて、最終的に得られる水素の回収率が低くなる。また、文献2に示す方法では、一酸化炭素のメタン化で発生するメタンの量も、本実施形態のメタン化工程に比べて多くなる。その結果、文献2の方法で最終的に得られるガスは、その水素の分圧が本実施形態に比べて低くなり、燃料電池の燃料として用い難くなる。   Conventionally, as shown in, for example, Japanese Patent Application Laid-Open No. 2006-290732 (hereinafter referred to as “Document 2”), a hydrogen-containing gas purified by methanation of carbon monoxide without being purified by the PSA method. There is known a method of using for a fuel cell. However, in the method of Document 2, since purification by the PSA method is not performed, the content of carbon monoxide in the hydrogen-containing gas before methanation is higher than that of the hydrogen-containing gas used in this embodiment. Therefore, the amount of hydrogen consumed by methanation of carbon monoxide is larger than that in the methanation process of this embodiment. Therefore, in the method of Document 2, the hydrogen recovery rate finally obtained is lower than that in the present embodiment. Moreover, in the method shown in Document 2, the amount of methane generated by methanation of carbon monoxide is larger than that in the methanation process of this embodiment. As a result, the gas finally obtained by the method of Document 2 has a lower hydrogen partial pressure than that of the present embodiment, making it difficult to use as a fuel for a fuel cell.

一方、本実施形態では、PSA法により精製した水素含有ガス中の一酸化炭素をメタン化するため、メタン化単独で水素を精製する文献2の方法に比べて、水素ガスの回収率が高くなる。また、本実施形態では、メタン化工程において発生するメタンの量も、文献2の方法に比べて低くなる。   On the other hand, in this embodiment, since carbon monoxide in the hydrogen-containing gas purified by the PSA method is methanated, the hydrogen gas recovery rate is higher than the method of Document 2 in which hydrogen is purified by methanation alone. . In the present embodiment, the amount of methane generated in the methanation step is also lower than that of the method of Document 2.

<吸着工程>
吸着工程では、PSA法により精製した水素含有ガス中に残存する一酸化炭素を吸着剤に吸着させる。
<Adsorption process>
In the adsorption step, carbon monoxide remaining in the hydrogen-containing gas purified by the PSA method is adsorbed on the adsorbent.

吸着工程で用いる吸着剤は、活性炭、ゼオライト及びアルミナからなる群より選ばれる少なくとも一種であることが好ましい。これにより、本発明の効果が顕著なる。   The adsorbent used in the adsorption step is preferably at least one selected from the group consisting of activated carbon, zeolite and alumina. Thereby, the effect of this invention becomes remarkable.

本実施形態では、銅又は銅の化合物が吸着剤に担持されていることが好ましい。これにより、吸着剤への一酸化炭素の吸着が促進される。   In this embodiment, it is preferable that copper or a copper compound is supported on the adsorbent. Thereby, adsorption of carbon monoxide to the adsorbent is promoted.

吸着工程における水素含有ガスの温度は−10〜100℃程度とすればよい。吸着工程における水素含有ガスの圧力は、常圧〜5MPa程度とすればよい。   The temperature of the hydrogen-containing gas in the adsorption step may be about −10 to 100 ° C. The pressure of the hydrogen-containing gas in the adsorption step may be about normal pressure to about 5 MPa.

従来、例えば、特許2607682号公報(以下、「文献3」と記す。)に示すように、PSA法による精製を経ることなく、一酸化炭素をガス拡散電極に吸着することにより精製した水素含有ガスを燃料電池に用いる方法が知られている。しかし、文献2の方法では、PSA法により精製した水素含有ガスを用いないため、本実施形態に比べて、精製後の水素中の一酸化炭素の含有率が本実施形態に比べて高くなる。   Conventionally, as shown in, for example, Japanese Patent No. 2607682 (hereinafter referred to as “Document 3”), a hydrogen-containing gas purified by adsorbing carbon monoxide on a gas diffusion electrode without being purified by the PSA method. There is known a method of using for a fuel cell. However, in the method of Document 2, since the hydrogen-containing gas purified by the PSA method is not used, the content of carbon monoxide in the hydrogen after purification is higher than that of this embodiment compared to this embodiment.

<酸化工程>
酸化工程では、PSA法により精製した水素含有ガス中に残存する一酸化炭素を酸化する。
<Oxidation process>
In the oxidation step, carbon monoxide remaining in the hydrogen-containing gas purified by the PSA method is oxidized.

本実施形態では、酸化工程において、ルテニウム又は白金の少なくともいずれかを含有する触媒を用いて一酸化炭素を酸化することが好ましい。ルテニウム又は白金は、アルミナ、チタニア、シリカ及びジルコニア等からなる群より選ばれる一種又は二種以上の担体に担持させて用いればよい。   In the present embodiment, in the oxidation step, it is preferable to oxidize carbon monoxide using a catalyst containing at least one of ruthenium and platinum. Ruthenium or platinum may be used by supporting it on one or more carriers selected from the group consisting of alumina, titania, silica, zirconia and the like.

酸化工程では、PSA法により精製した水素含有ガス中に酸素を添加することにより、一酸化炭素を酸化することが好ましい。これより、水素含有ガス中の一酸化炭素の酸化が促進される。   In the oxidation step, it is preferable to oxidize carbon monoxide by adding oxygen to the hydrogen-containing gas purified by the PSA method. Thereby, the oxidation of carbon monoxide in the hydrogen-containing gas is promoted.

酸化工程における水素含有ガスの温度は50〜300℃程度とすればよい。酸化工程における水素含有ガスの圧力は、常圧〜5MPa程度とすればよい。酸化工程における触媒の温度は、50〜300℃程度とすればよい。   The temperature of the hydrogen-containing gas in the oxidation step may be about 50 to 300 ° C. The pressure of the hydrogen-containing gas in the oxidation step may be about normal pressure to about 5 MPa. The temperature of the catalyst in the oxidation step may be about 50 to 300 ° C.

従来、例えば、特開2000−169107号公報(以下、「文献4」と記す。)に示すように、PSA法による精製を経ることなく、一酸化炭素のメタン化と酸化により精製した水素含有ガスを燃料電池に用いる方法が知られている。しかし、文献4の方法では、PSA法による精製を行わないため、酸化を行う前の水素含有ガス中の一酸化炭素の含有率が、本実施形態で用いる水素含有ガスに比べて高い。したがって、文献4の方法では、一酸化炭素の酸化に伴い発生する二酸化炭素の量が、本実施形態の酸化工程に比べて多くなる。そのため、文献4の方法では、本実施形態に比べて、最終的に得られる水素に含まれる二酸化炭素の含有率とその分圧が高くなる。その結果、文献4の方法で最終的に得られるガスは、その水素の分圧が本実施形態に比べて低くなり、燃料電池の燃料として用い難くなる。また、文献4の方法では、一酸化炭素の酸化に要する酸素の量が多いため、本実施形態の酸化工程に比べて、多量の酸素を水素含有ガスに供給する必要がある。そのため、一酸化炭素の酸化のみならず、水素の酸化(燃焼)も進行し易くなる。これにより、文献4の方法では、本実施形態に比べて、最終的に得られる水素の回収率が低くなる。また、文献4の方法では、危険性のある水素の酸化反応が起こり易いため、本実施形態に比べて安全性が低い。   Conventionally, as shown in, for example, Japanese Patent Application Laid-Open No. 2000-169107 (hereinafter referred to as “Document 4”), a hydrogen-containing gas purified by methanation and oxidation of carbon monoxide without being purified by the PSA method. There is known a method of using for a fuel cell. However, since the method of Document 4 does not perform purification by the PSA method, the content of carbon monoxide in the hydrogen-containing gas before oxidation is higher than that of the hydrogen-containing gas used in this embodiment. Therefore, in the method of Document 4, the amount of carbon dioxide generated with the oxidation of carbon monoxide is larger than that in the oxidation process of the present embodiment. Therefore, in the method of Document 4, the content rate and partial pressure of carbon dioxide contained in the finally obtained hydrogen are higher than in the present embodiment. As a result, the gas finally obtained by the method of Document 4 has a lower hydrogen partial pressure than that of the present embodiment, making it difficult to use as a fuel for a fuel cell. Further, in the method of Document 4, since the amount of oxygen required for the oxidation of carbon monoxide is large, it is necessary to supply a large amount of oxygen to the hydrogen-containing gas as compared with the oxidation step of this embodiment. Therefore, not only the oxidation of carbon monoxide but also the oxidation (combustion) of hydrogen easily proceeds. Thereby, in the method of literature 4, compared with this embodiment, the recovery rate of hydrogen finally obtained becomes low. Further, the method of Document 4 is less safe than the present embodiment because a dangerous hydrogen oxidation reaction is likely to occur.

一方、本実施形態では、PSA法により精製した水素含有ガス中の一酸化炭素を酸化するため、文献4の方法に比べて、酸化工程で発生する二酸化炭素や水の量が少なく、水素ガスの回収率が高くなる。また、本実施形態では、文献4の方法に比べて、水素の酸化反応が起こり難く、精製の安全性が向上する。   On the other hand, in this embodiment, since carbon monoxide in the hydrogen-containing gas purified by the PSA method is oxidized, the amount of carbon dioxide and water generated in the oxidation process is smaller than that of the method of Document 4, and the amount of hydrogen gas The recovery rate is increased. Moreover, in this embodiment, compared with the method of the literature 4, the oxidation reaction of hydrogen does not occur easily, and the safety of purification improves.

本実施形態によれば、PSA法単独で水素を精製する方法及び上記文献2〜4の方法に比べて、水素中の一酸化炭素の含有率を低減することが可能となる。また、本実施形態では、PSA法により精製した水素含有ガスにおける一酸化炭素の含有率が、燃料電池車に適用できる程度にまで低減されていない場合であっても、メタン化工程、吸着工程又は酸化工程において水素中の一酸化炭素の含有率を燃料電池車に適用できる程度にまで低減することが可能となる。具体的には、本実施形態では、水素中の一酸化炭素の含有率を0.2質量ppm以下に低減することが可能となる。一酸化炭素の含有率が0.2質量ppm以下に低減された水素は、燃料電池車の燃料として好適である。   According to this embodiment, it becomes possible to reduce the content of carbon monoxide in hydrogen as compared with the method of purifying hydrogen by the PSA method alone and the methods of the above-mentioned documents 2 to 4. In the present embodiment, even if the carbon monoxide content in the hydrogen-containing gas purified by the PSA method is not reduced to a level applicable to a fuel cell vehicle, the methanation step, the adsorption step, or the In the oxidation step, the content of carbon monoxide in hydrogen can be reduced to a level that can be applied to a fuel cell vehicle. Specifically, in the present embodiment, the content of carbon monoxide in hydrogen can be reduced to 0.2 mass ppm or less. Hydrogen whose carbon monoxide content is reduced to 0.2 mass ppm or less is suitable as a fuel for fuel cell vehicles.

従来のように、改質ガスをPSA法単独で精製して、水素ガス中の一酸化炭素の含有率を1質量ppm程度に低減する場合、改質ガスの組成にもよるが、水素の回収率は約85質量%以上になる。しかし、改質ガスをPSA法単独で精製して、水素ガス中の一酸化炭素の含有率を0.2質量ppm未満に低減する場合、水素含有ガスの高圧化によって水素の吸着剤への吸着が促進されるため、水素の回収率が約70質量%以下に低下してしまう。一方、本実施形態では、PSA法による精製で水素含有ガスの圧力を低く設定しても、その後の精製工程で一酸化炭素を除去できるため、水素の回収率を低下させることなく、水素中の一酸化炭素の含有率を燃料電池車に適用できる程度にまで低減することが可能となる。   When the reformed gas is purified by the PSA method alone and the carbon monoxide content in the hydrogen gas is reduced to about 1 ppm by mass as in the past, the hydrogen recovery is dependent on the reformed gas composition. The rate is about 85% by mass or more. However, when the reformed gas is purified by the PSA method alone and the carbon monoxide content in the hydrogen gas is reduced to less than 0.2 ppm by mass, the hydrogen is adsorbed on the adsorbent by increasing the pressure of the hydrogen-containing gas. Therefore, the hydrogen recovery rate is reduced to about 70% by mass or less. On the other hand, in this embodiment, even if the pressure of the hydrogen-containing gas is set low by purification by the PSA method, carbon monoxide can be removed in the subsequent purification step, so that the hydrogen recovery rate is not reduced without reducing the hydrogen recovery rate. It becomes possible to reduce the carbon monoxide content to such an extent that it can be applied to a fuel cell vehicle.

仮に、PSA法単独で水素中の一酸化炭素の含有率を0.2質量ppm以下に低減する場合、PSA法における水素含有ガスを約4.0MPaGより高い圧力に調整したり、精製装置を多段化したりする必要がある。しかし、水素含有ガスを高圧で圧縮するほど、圧縮に要するエネルギーが増大し、PSA法を実施するための設備(吸着塔、コンプレッサー等)が大型化するため、精製に伴うコストが増大する。精製装置の多段化にもコストがかかる。また、高圧化に伴って精製の安全性が低下する。一方、本実施形態では、PSA法単独で水素を精製する方法に比べて、精製に伴うコストを軽減し、精製の安全性を向上させることが可能である。   If the content of carbon monoxide in hydrogen is reduced to 0.2 mass ppm or less by the PSA method alone, the hydrogen-containing gas in the PSA method is adjusted to a pressure higher than about 4.0 MPaG, or a refining device is installed in multiple stages. It is necessary to make it. However, as the hydrogen-containing gas is compressed at a higher pressure, the energy required for the compression increases, and the equipment (adsorption tower, compressor, etc.) for carrying out the PSA method increases in size, which increases the costs associated with purification. Multi-stage purification equipment is also expensive. In addition, the safety of the purification decreases as the pressure increases. On the other hand, in this embodiment, compared with the method of purifying hydrogen by the PSA method alone, it is possible to reduce the cost associated with purification and improve the safety of purification.

本実施形態に係る水素の出荷設備は、上記本実施形態に係る水素の精製方法を実施するための設備を備える。本実施形態に係る水素ステーションは、上記本実施形態に係る水素の精製方法を実施するための設備を備える。つまり、上記本実施形態に係る水素の出荷設備及び水素ステーションは、PSA法で精製された水素含有ガスを用いたメタン化工程、吸着工程又は酸化工程を実施するための設備を備える。水素の出荷設備は、例えば、精製した水素ガスを燃料電池車用の水素ステーション等に供給する。水素ステーションは、例えば、道路沿いに設置され、燃料電池車等に水素を直接供給する。   The hydrogen shipping facility according to the present embodiment includes a facility for performing the hydrogen purification method according to the present embodiment. The hydrogen station according to the present embodiment includes equipment for performing the hydrogen purification method according to the present embodiment. That is, the hydrogen shipping facility and the hydrogen station according to the present embodiment include a facility for performing a methanation process, an adsorption process, or an oxidation process using a hydrogen-containing gas purified by the PSA method. For example, the hydrogen shipping facility supplies purified hydrogen gas to a hydrogen station for a fuel cell vehicle. The hydrogen station is installed along a road, for example, and supplies hydrogen directly to a fuel cell vehicle or the like.

本実施形態に係る水素の出荷設備及び水素ステーションでは、PSA法単独で水素を精製する出荷設備及び水素ステーションに比べて、水素の精製に伴うコスト及び消費エネルギーを軽減し、精製の安全性を向上させることが可能である。そのため、本実施形態に係る水素の出荷設備及び水素ステーションは、普及させ易い。   The hydrogen shipping facility and hydrogen station according to this embodiment reduce the cost and energy consumption associated with hydrogen purification and improve the safety of the purification compared to the shipping facility and hydrogen station that purify hydrogen by the PSA method alone. It is possible to make it. Therefore, the hydrogen shipping facility and the hydrogen station according to the present embodiment are easy to spread.

以上、本発明に係る水素の精製方法、水素の出荷設備及び水素ステーションの好適な一実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。例えば、PSA法の代わりに、TSA法又はTPSA法により精製した水素含有ガス中に残存する一酸化炭素及びその他の不純物を、精製工程において除去してもよい。この場合も、上述した実施形態と同様の効果を奏することができる。   The preferred embodiments of the hydrogen purification method, the hydrogen shipping facility, and the hydrogen station according to the present invention have been described above in detail, but the present invention is not limited to the above embodiments. For example, instead of the PSA method, carbon monoxide and other impurities remaining in the hydrogen-containing gas purified by the TSA method or TPSA method may be removed in the purification step. Also in this case, the same effects as those of the above-described embodiment can be obtained.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(比較例1)
ナフサを原料とし、水蒸気改質反応により、水素含有ガスを製造した。この水素含有ガスをPSA法で精製した。PSA法では、水素含有ガスを加圧して、水素含有ガスの圧力を3.0MPaに調整した。また、PSA法では、加圧した水素含有ガスの温度を40℃に調整した。以下では、比較例1においてPSA法により精製した水素含有ガスを「水素含有ガス1」と記す。
(Comparative Example 1)
Using naphtha as a raw material, a hydrogen-containing gas was produced by a steam reforming reaction. This hydrogen-containing gas was purified by the PSA method. In the PSA method, the hydrogen-containing gas was pressurized and the pressure of the hydrogen-containing gas was adjusted to 3.0 MPa. In the PSA method, the temperature of the pressurized hydrogen-containing gas was adjusted to 40 ° C. Hereinafter, the hydrogen-containing gas purified by the PSA method in Comparative Example 1 is referred to as “hydrogen-containing gas 1”.

水素含有ガス1の組成を、ガスクロマトグラフィーによって分析した。水素含有ガス1の組成を表1に示す。表1に示すように、水素含有ガス1における水素の濃度は99.99質量%以上であった。一方、水素含有ガス1中に不純物として残存する一酸化炭素の濃度は0.70ppmであった。   The composition of the hydrogen-containing gas 1 was analyzed by gas chromatography. The composition of the hydrogen-containing gas 1 is shown in Table 1. As shown in Table 1, the hydrogen concentration in the hydrogen-containing gas 1 was 99.99% by mass or more. On the other hand, the concentration of carbon monoxide remaining as an impurity in the hydrogen-containing gas 1 was 0.70 ppm.

(実施例1)
水素含有ガス1に含まれる一酸化炭素を、市販の50質量%ニッケル/シリカ触媒を用いてメタン化して、実施例1の水素ガスを得た。メタン化では、300℃の水素含有ガス1を常圧下で反応させた。なお、50質量%ニッケル/シリカ触媒とは、シリカを担体として有し、触媒の全質量に対して50質量%のニッケルが担持された触媒を意味する。
Example 1
Carbon monoxide contained in the hydrogen-containing gas 1 was methanated using a commercially available 50% by mass nickel / silica catalyst to obtain hydrogen gas of Example 1. In methanation, a hydrogen-containing gas 1 at 300 ° C. was reacted under normal pressure. The 50 mass% nickel / silica catalyst means a catalyst having silica as a carrier and carrying 50 mass% of nickel with respect to the total mass of the catalyst.

(実施例2)
水素含有ガス1に含まれる一酸化炭素を、2質量%Ru/アルミナ触媒を用いてメタン化して、実施例2の水素ガスを精製した。メタン化では、270℃の水素含有ガス1を常圧下で反応させた。
(Example 2)
Carbon monoxide contained in the hydrogen-containing gas 1 was methanated using a 2% by mass Ru / alumina catalyst to purify the hydrogen gas of Example 2. In methanation, a hydrogen-containing gas 1 at 270 ° C. was reacted under normal pressure.

(実施例3)
水素含有ガス1に含まれる一酸化炭素を、2質量%Rh/アルミナ触媒を用いてメタン化して、実施例3の水素ガスを精製した。メタン化では、250℃の水素含有ガス1を常圧下で反応させた。
(Example 3)
Carbon monoxide contained in the hydrogen-containing gas 1 was methanated using a 2% by mass Rh / alumina catalyst to purify the hydrogen gas of Example 3. In the methanation, a hydrogen-containing gas 1 at 250 ° C. was reacted under normal pressure.

(実施例4)
水素含有ガス1に含まれる一酸化炭素を、5質量%Fe/活性炭触媒を用いてメタン化して、実施例4の水素ガスを精製した。メタン化では、350℃の水素含有ガス1を常圧下で反応させた。
Example 4
Carbon monoxide contained in the hydrogen-containing gas 1 was methanated using a 5% by mass Fe / activated carbon catalyst to purify the hydrogen gas of Example 4. In methanation, a hydrogen-containing gas 1 at 350 ° C. was reacted under normal pressure.

(実施例5)
常温、常圧の水素含有ガス1を、市販の活性炭にCuClを担持した吸着剤で処理した。これにより、水素含有ガス1中の一酸化炭素を吸着剤に吸着させて、実施例5の水素ガスを精製した。
(Example 5)
A hydrogen-containing gas 1 at normal temperature and normal pressure was treated with an adsorbent in which CuCl was supported on commercially available activated carbon. Thereby, carbon monoxide in the hydrogen-containing gas 1 was adsorbed by the adsorbent, and the hydrogen gas of Example 5 was purified.

(実施例6)
常温、常圧の水素含有ガス1を、市販のゼオライトにCuClを担持した吸着剤で処理した。これにより、水素含有ガス1中の一酸化炭素を吸着剤に吸着させて、実施例6の水素ガスを精製した。
(Example 6)
A hydrogen-containing gas 1 at room temperature and normal pressure was treated with an adsorbent in which CuCl was supported on a commercially available zeolite. Thereby, carbon monoxide in the hydrogen-containing gas 1 was adsorbed by the adsorbent, and the hydrogen gas of Example 6 was purified.

(実施例7)
常温、常圧の水素含有ガス1を、市販のアルミナにCuClを担持した吸着剤で処理した。これにより、水素含有ガス1中の一酸化炭素を吸着剤に吸着させて、実施例7の水素ガスを精製した。
(Example 7)
A hydrogen-containing gas 1 at normal temperature and normal pressure was treated with an adsorbent in which CuCl was supported on commercially available alumina. Thereby, carbon monoxide in the hydrogen-containing gas 1 was adsorbed by the adsorbent, and the hydrogen gas of Example 7 was purified.

(実施例8)
常温、常圧の水素含有ガス1を、市販のゼオライト系吸着剤で処理した。これにより、水素含有ガス1中の一酸化炭素を吸着剤に吸着させて、実施例8の水素ガスを精製した。
(Example 8)
A hydrogen-containing gas 1 at normal temperature and pressure was treated with a commercially available zeolitic adsorbent. Thereby, carbon monoxide in the hydrogen-containing gas 1 was adsorbed on the adsorbent, and the hydrogen gas of Example 8 was purified.

(実施例9)
常温、常圧の水素含有ガス1を、市販の活性炭系吸着剤で処理した。これにより、水素含有ガス1中の一酸化炭素を吸着剤に吸着させて、実施例9の水素ガスを精製した。
Example 9
A hydrogen-containing gas 1 at normal temperature and normal pressure was treated with a commercially available activated carbon-based adsorbent. Thereby, carbon monoxide in the hydrogen-containing gas 1 was adsorbed by the adsorbent, and the hydrogen gas of Example 9 was purified.

(実施例10)
0.5質量%Ru/アルミナ触媒を用いて、酸素を添加した200℃の水素含有ガス1を常圧下で反応させた。これにより、水素含有ガス1中の一酸化炭素を酸化して、実施例10の水素ガスを精製した。
(Example 10)
Using a 0.5 mass% Ru / alumina catalyst, a hydrogen-containing gas 1 at 200 ° C. to which oxygen was added was reacted under normal pressure. Thereby, carbon monoxide in the hydrogen-containing gas 1 was oxidized to purify the hydrogen gas of Example 10.

(実施例11)
0.5質量%Ru−0.1質量%Pt/アルミナ触媒を用いて、酸素を添加した180℃の水素含有ガス1を常圧下で反応させた。これにより、水素含有ガス1中の一酸化炭素を酸化して、実施例11の水素ガスを精製した。
(Example 11)
Using a 0.5 mass% Ru-0.1 mass% Pt / alumina catalyst, a hydrogen-containing gas 1 at 180 ° C. to which oxygen was added was reacted under normal pressure. Thereby, carbon monoxide in the hydrogen-containing gas 1 was oxidized to purify the hydrogen gas of Example 11.

(実施例12)
0.5質量%Pt−0.1質量%Ni/アルミナ触媒を用いて、酸素を添加した180℃の水素含有ガス1を常圧下で反応させた。これにより、水素含有ガス1中の一酸化炭素を酸化して、実施例12の水素ガスを精製した。
(Example 12)
Using a 0.5 mass% Pt-0.1 mass% Ni / alumina catalyst, a hydrogen-containing gas 1 at 180 ° C. to which oxygen was added was reacted under normal pressure. Thereby, carbon monoxide in the hydrogen-containing gas 1 was oxidized to purify the hydrogen gas of Example 12.

比較例1においてPSA法により精製した水素含有ガス、実施例1〜12の精製された水素ガスの各組成をガスクロマトグラフィーによって分析した。分析結果を表1に示す。なお、表1に記載の「%」及び「ppm」は質量を基準としている。   Each composition of the hydrogen-containing gas purified by the PSA method in Comparative Example 1 and the purified hydrogen gas of Examples 1 to 12 was analyzed by gas chromatography. The analysis results are shown in Table 1. In addition, “%” and “ppm” described in Table 1 are based on mass.

Figure 2011032128
Figure 2011032128

実施例1〜12の水素ガスにおける一酸化炭素の含有率は0.2質量ppm未満であり、比較例1に比べて小さいことが確認された。   The content of carbon monoxide in the hydrogen gas of Examples 1 to 12 was less than 0.2 mass ppm, and was confirmed to be smaller than that of Comparative Example 1.

Claims (7)

吸着法により精製した水素含有ガス中に残存する一酸化炭素を触媒でメタン化するメタン化工程、前記一酸化炭素を吸着剤に吸着させる吸着工程、及び前記一酸化炭素を酸化する酸化工程からなる群より選ばれる少なくとも一種の工程により、前記水素含有ガスから前記一酸化炭素を除去する精製工程を備える、
水素の精製方法。
It comprises a methanation step for methanating carbon monoxide remaining in a hydrogen-containing gas purified by an adsorption method with a catalyst, an adsorption step for adsorbing the carbon monoxide on an adsorbent, and an oxidation step for oxidizing the carbon monoxide. A purification step of removing the carbon monoxide from the hydrogen-containing gas by at least one step selected from the group;
Hydrogen purification method.
前記メタン化工程で用いる前記触媒が、活性金属として、ニッケル、コバルト、鉄、ルテニウム及びロジウムからなる群より選ばれる少なくとも一種を含有する、
請求項1に記載の水素の精製方法。
The catalyst used in the methanation step contains at least one selected from the group consisting of nickel, cobalt, iron, ruthenium and rhodium as an active metal.
The method for purifying hydrogen according to claim 1.
前記吸着工程で用いる前記吸着剤が、活性炭、ゼオライト及びアルミナからなる群より選ばれる少なくとも一種である、
請求項1又は2に記載の水素の精製方法。
The adsorbent used in the adsorption step is at least one selected from the group consisting of activated carbon, zeolite and alumina.
The method for purifying hydrogen according to claim 1 or 2.
前記吸着剤に銅が担持されている、
請求項3に記載の水素の精製方法。
Copper is supported on the adsorbent,
The method for purifying hydrogen according to claim 3.
前記酸化工程において、ルテニウム又は白金を含有する触媒を用いて前記一酸化炭素を酸化する、
請求項1〜4のいずれか一項に記載の水素の精製方法。
In the oxidation step, the carbon monoxide is oxidized using a catalyst containing ruthenium or platinum.
The method for purifying hydrogen according to any one of claims 1 to 4.
請求項1〜5のいずれか一項に記載の水素の精製方法を実施するための設備を備える、
水素の出荷設備。
A facility for carrying out the method for purifying hydrogen according to any one of claims 1 to 5,
Hydrogen shipping equipment.
請求項1〜5のいずれか一項に記載の水素の精製方法を実施するための設備を備える、
水素ステーション。







A facility for carrying out the method for purifying hydrogen according to any one of claims 1 to 5,
Hydrogen station.







JP2009179571A 2009-07-31 2009-07-31 Refining method of hydrogen, shipping equipment of hydrogen, and hydrogen station Pending JP2011032128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009179571A JP2011032128A (en) 2009-07-31 2009-07-31 Refining method of hydrogen, shipping equipment of hydrogen, and hydrogen station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009179571A JP2011032128A (en) 2009-07-31 2009-07-31 Refining method of hydrogen, shipping equipment of hydrogen, and hydrogen station

Publications (1)

Publication Number Publication Date
JP2011032128A true JP2011032128A (en) 2011-02-17

Family

ID=43761577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009179571A Pending JP2011032128A (en) 2009-07-31 2009-07-31 Refining method of hydrogen, shipping equipment of hydrogen, and hydrogen station

Country Status (1)

Country Link
JP (1) JP2011032128A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4956894A (en) * 1972-10-06 1974-06-03
JPH02311302A (en) * 1989-05-25 1990-12-26 Mitsubishi Heavy Ind Ltd Purification apparatus for hydrogen gas to be supplied to fuel cell
JPH10212103A (en) * 1997-01-24 1998-08-11 Ceca Sa Improvement of pressure swing adsorption psa method in purification of hydrogen
JP2000169107A (en) * 1998-12-03 2000-06-20 Idemitsu Kosan Co Ltd Production of hydrogen-containing gas reduced in carbon monoxide
JP2003095612A (en) * 2001-09-25 2003-04-03 Mitsubishi Kakoki Kaisha Ltd Hydrogen producing plant
JP2003527279A (en) * 2000-03-13 2003-09-16 アイダテック, エル.エル.シー. Fuel processor and system and device incorporating the same
JP2004284875A (en) * 2003-03-20 2004-10-14 Nippon Oil Corp Hydrogen production system, and fuel cell system
JP2006290732A (en) * 2005-03-17 2006-10-26 Toshiba Corp Method for removing co, apparatus for removing co and its manufacturing method, hydrogen generator using the same and fuel cell system using the same
JP2007016975A (en) * 2005-07-11 2007-01-25 Kobe Steel Ltd Hydrogen station
JP2008037691A (en) * 2006-08-04 2008-02-21 Toshiba Corp Carbon monoxide reduction apparatus, carbon monoxide reduction method, hydrogen production apparatus, and fuel cell power generation system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4956894A (en) * 1972-10-06 1974-06-03
JPH02311302A (en) * 1989-05-25 1990-12-26 Mitsubishi Heavy Ind Ltd Purification apparatus for hydrogen gas to be supplied to fuel cell
JPH10212103A (en) * 1997-01-24 1998-08-11 Ceca Sa Improvement of pressure swing adsorption psa method in purification of hydrogen
JP2000169107A (en) * 1998-12-03 2000-06-20 Idemitsu Kosan Co Ltd Production of hydrogen-containing gas reduced in carbon monoxide
JP2003527279A (en) * 2000-03-13 2003-09-16 アイダテック, エル.エル.シー. Fuel processor and system and device incorporating the same
JP2003095612A (en) * 2001-09-25 2003-04-03 Mitsubishi Kakoki Kaisha Ltd Hydrogen producing plant
JP2004284875A (en) * 2003-03-20 2004-10-14 Nippon Oil Corp Hydrogen production system, and fuel cell system
JP2006290732A (en) * 2005-03-17 2006-10-26 Toshiba Corp Method for removing co, apparatus for removing co and its manufacturing method, hydrogen generator using the same and fuel cell system using the same
JP2007016975A (en) * 2005-07-11 2007-01-25 Kobe Steel Ltd Hydrogen station
JP2008037691A (en) * 2006-08-04 2008-02-21 Toshiba Corp Carbon monoxide reduction apparatus, carbon monoxide reduction method, hydrogen production apparatus, and fuel cell power generation system

Similar Documents

Publication Publication Date Title
JP5039408B2 (en) Hydrogen production and carbon dioxide recovery method and apparatus
JP5039407B2 (en) Hydrogen production and carbon dioxide recovery method and apparatus
US8460630B2 (en) Method and apparatus for producing hydrogen and recovering carbon dioxide
JP5566815B2 (en) Gas purification method and gas purification apparatus
EP0750361B1 (en) Method of removing CO from CO + H2 gases and fuel cell system using method
JP5039426B2 (en) Hydrogen production and carbon dioxide recovery method
JP4801359B2 (en) Hydrogen production method
US6770390B2 (en) Carbon monoxide/water removal from fuel cell feed gas
JP2003531795A (en) Method for producing hydrogen by partial oxidation of hydrocarbons
WO2011122434A1 (en) Method for producing hydrogen for storage and transportation
JP2008214181A (en) Method and apparatus for separating hydrogen from oxygen-containing gas stream
JPWO2008047828A1 (en) Method and apparatus for separating hydrogen gas
JP2016084272A (en) Method for producing hydrogen gas and apparatus for producing hydrogen gas
KR20130075550A (en) Method of preparing hydrogen by using coke oven gas
AU2016420899A1 (en) Method for recovering hydrogen from biomass pyrolysis gas
JP5690165B2 (en) PSA high purity hydrogen production method
JP2015124135A (en) Method and apparatus of producing hydrogen gas
JP2007015909A (en) Method for production of high-purity hydrogen
JP2007015910A (en) Method for production of high-purity hydrogen
JP2017226562A (en) Hydrogen gas manufacturing method and hydrogen gas manufacturing device
JP6055920B2 (en) Hydrogen recovery method
JP2005256899A (en) Hydrogen storage and/or derivation device
JP2011032128A (en) Refining method of hydrogen, shipping equipment of hydrogen, and hydrogen station
JP6619687B2 (en) Hydrogen gas production method and hydrogen gas production apparatus
JP5795280B2 (en) CO reduction system in CO2 gas in hydrogen production system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130910